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A NEW TWO–PARAMETER FAMILY OF

ISOMONODROMIC DEFORMATIONS OVER THE FIVE

PUNCTURED SPHERE

by Arnaud Girand

Abstract. — The object of this paper is to describe an explicit two–parameter family
of logarithmic flat connections over the complex projective plane. These connections
have dihedral monodromy and their polar locus is a prescribed quintic composed of a
conic and three tangent lines. By restricting them to generic lines we get an algebraic
family of isomonodromic deformations of the five–punctured sphere. This yields new
algebraic solutions of a Garnier system. Finally, we use the associated Riccati one–
forms to construct and prove the integrability (in the transversally projective sense)
of a subfamily of Lotka–Volterra foliations.

Résumé. — Le but de cet article est de décrire une famille explicite à deux paramètres
de connexions logarithmiques plates au dessus du plan projectif complexe. Ces con-
nexions sont à monodromie diédrale et leur lieu polaire est une quintique prescrite,
composée d’une conique et de trois droites tangentes. Par restriction aux droites
génériques, on obtient alors une famille algébrique de déformations isomonodromiques
de la sphère à cinq trous. Ceci livre de nouvelles solutions algébriques d’un système
de Garnier. Enfin, nous utilisons les formes de Riccati associées à ces connexions
pour construire et montrer l’intégrabilité (au sens transversalement projectif) d’une
sous-famille de feuilletages de Lotka–Volterra.
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1. Introduction

1.1. Topology of the complement of a particular plane quintic. —
In this paper, we concern ourselves with setting up a two–parameter family of
logarithmic flat sl2(C)–connections over P2 with a specific polar locus, namely
a quintic curve Q composed of a circle and three tangent lines. More precisely,
in homogeneous coordinates [x : y : t], Q is defined, up to PGL3(C) action, by
the equation

xyt(x2 + y2 + t2 − 2(xy + xt+ yt)) = 0 .

Before stating our main result, let us specify what we are looking for: we
want to find a family of rank two logarithmic flat connections over P2 with
polar locus equal to some small degree curve and "interesting monodromy".
We will show that it is possible to do so with the quintic Q define above.

Definition 1.1. — We say that the monodromy representation associated
with a rank two logarithmic flat sl2(C)–connection over P2 − Q is non–
degenerate if

– its image forms an irreducible subgroup of SL2(C) ;
– its local monodromy (see Definition 2.3) about any irreducible component

of Q is projectively non–trivial (i.e is non-trivial in PSL2(C)).

In order to establish the existence of such representations, we use the fol-
lowing result by Degtyarev.

Proposition 1.2. — [Degtyarev, 1999 [6]] The fundamental group Γ of
the complement of a smooth conic and three tangent lines in P2 admits the
following presentation:

Γ ∼= 〈a, b, c | (ab)2(ba)−2, (ac)2(ca)−2, [b, c]〉 .

More precisely, Degtyarev proves that we can take a (resp. b, c) to be a
loop realising the local monodromy (see Definition 2.3) around the conic C :=
(x2 + y2 + t2 − 2(xy + xt + yt) = 0) (resp. the lines (y = 0), (x = 0)), as
illustrated in the left–hand side of Fig. 1. Also note that the fundamental
group of the intersection of P2 − Q with any generic line is isomorphic to the
free group F4 := 〈d1, . . . , d5 | d1 . . . d5〉; the Lefschetz hyperplane theorem (see
[17], Theorem 7.4) tells us that the natural morphism τ : F4 → Γ is onto.
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Figure 1. Fundamental group of the complement of the quintic Q
in P2 and restriction to a generic line.

Moreover we know from the explicit Van Kampen method given in Subsection
4.1 of [6] that the group Γ can be computed by taking the four free generators
of the fundamental group of the intersection of P2−Q with any generic line and
adding some braid monodromy relations. Thus, if we chose a line going through
the base point used to define a, b and c then τ is given (up to a permutation of
the di) by (see the right–hand side of Fig. 1):

d1 7→ b

d2 7→ a

d3 7→ bab−1

d4 7→ c

d5 7→ (abac)−1 .

In particular, any non–degenerate representation ρ of Γ must satisfy

ρ(a), ρ(b), ρ(c), ρ(abac) 6= ±I2 .

Proposition 1.3. — The only (up to conjugacy) family of non–degenerate
representations of Γ into SL2(C) is as follows:

ρu,v : a 7→
(

0 1
−1 0

)

, b 7→
(

u 0
0 u−1

)

, c 7→
(

v 0
0 v−1

)

, for u, v ∈ C∗ .

1.2. Main results. — The core of this paper will be devoted to proving the
following theorem, in which we explicitly construct the announced family of
rank two logarithmic flat connections.

Theorem A. — There exists an explicit two–parameter family ∇λ0,λ1 of log-
arithmic flat connections over the trivial rank two vector bundle C2 × P2 → P2

with the following properties:
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(i) the polar locus of ∇λ0,λ1 is equal to the quintic Q ∈ P2 and as such does
not depend on λ0, λ1 ∈ C;

(ii) the monodromy of ∇λ0,λ1 is conjugated to ρu,v with u = −e−iπλ0 and v =
e−iπλ1 . For generic parameters λ0, λ1, it is a virtually abelian dihedral
representation of the fundamental group Γ := π1(P

2 − Q) into SL2(C)
whose image is not Zariski–dense.

The connection ∇λ0,λ1 is given in some (see Subsection 2.1) affine chart C2
x,y ⊂

P2 by:

∇λ0,λ1 = d− 1

2(x2 + y2 + 1− 2(xy + x+ y))
(λ0A0 + λ1A1 +A2) ,

where

A0 :=

(

2(x − 1)ydx + (x2 + x(y − 2) − y + 1)x dy
y

2(2x − y + 2)ydx + (2x2 + y(x − y + 3) − 2)x dy
y

−2y2dx + (x + y − 1)x2 dy
y

−2(x − 1)ydx − (x2 + x(y − 2) − y + 1)x

)

A1 :=

(

(x2 + (x − 1)(y − 1))y dx
x

+ 2(x − 1)xdy (x2 + y(x − y + 3) − 2)y dx
x

+ 2(2x − y + 2)xdy

−(x + y − 1)y2 dx
x

− 2x2dy −(x2 + (x − 1)(y − 1))y dx
x

− 2(x − 1)xdy

)

A2 :=

(

−(x + y + 1)ydx − (x2
− x(y + 2) − y + 1)x dy

y
−2(x − y + 3)ydx − (x2

− 2y(x + 1) + 1)x dy
y

0 (x + y + 1)ydx + (x2
− x(y + 2) − y + 1)x dy

y

)

.

Remark 1.4. — Note that the existence, and uniqueness up to gauge trans-
formation, of such a family of connections follows from Proposition 1.3 and
the classical Riemann–Hilbert correspondence. The original part of this work
resides in the fact that we give a constructive proof of this result; in particular
this allows us to describe the associated algebraic Garnier solution.

Since P2 is the symmetric product Sym2(P1) one has a natural two–fold

ramified covering π : P1 × P1 2:1−−→ P2 which pulls the quintic Q back onto
the subset D ⊂ X := P1 × P1 composed of the six lines u0, u1 = 0, 1,∞ (for
some pair (u0, u1) of projective coordinates on X) and of the diagonal ∆ while
ramifying over the latter (see Subsection 2.1 for more details). As we are aiming
at dihedral monodromy, a natural idea to prove Theorem A is to define a family
of rank one logarithmic flat connections over X with infinite monodromy about
D \∆ and to push it forward using π to get a family of such connections over
P2 −Q with monodromy of (generically) infinite order about the three lines in
the quintic and of projective order two at the conic C. This is exactly what we
will do in Section 2.

Representations of fundamental groups of quasi-projective varieties in
SL2(C) have been classified mainly by Corlette and Simpson [4], with more
precise results recently discovered in the solvable case [5, 15]. One important
class of such representations is that of those factoring through an orbicurve.

Definition 1.5 (See [4, 15]). — We say that a representation ρ : Γ → SL2(C)
factors through an orbicurve if there exists a projective complex curve C, a
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divisor δ ⊂ C, an algebraic mapping f : P2 −Q → C − δ and a representation
ρ̃ of the fundamental group of C − δ into PSL2(C) such that the diagram

π1(C − δ)

ρ̃
''P

PP
PP

PP
PP

PP
P

Γ = π1(P
2 −Q)

f∗
oo

ρ

��

PSL2(C)

commutes.

Indeed, representations admitting such a factorisation can be obtained
through pullback from the monodromy of some logarithmic flat connection
on a curve. We prove that this is not generically the case for our family of
connections.

Theorem B. — The monodromy representation of the connections ∇λ0,λ1 in-
troduced in Theorem A factors through an orbicurve if and only if there exists
(p, q) ∈ Z2 \ {(0, 0)} such that pλ0 + qλ1 = 0, i.e if and only if [λ0 : λ1] ∈ P1

Q.

Remark 1.6. — Note that our choice of this particular quintic is not arbi-
trary: work in progress [10] using Degtyarev’s aforementioned paper suggests
that representations of the complement of most quintics in the projective plane
are either degenerate or factor through an orbicurve.

1.3. Isomonodromic deformations. — By restriction to generic lines in
P2, we obtain a family (parametrized by (λ0, λ1)) of isomonodromic defor-
mations over the Riemann sphere with five pairwise distinct punctures P1

x \
{0, 1, t1, t2,∞}, whose monodromy is given in Table 1, where x is a well chosen
projective coordinate on P1 and t1, t2 are two independent variables (well de-
fined up to double covering) corresponding to the intersection of the line with
the conic C. Since this family of connections is algebraic we get a two–parameter
family of algebraic solutions of the isomonodromy equation associated with such
deformations, namely the following Garnier system:

{

∂tkpi = −∂qiHk

∂tkqi = ∂pi
Hk

i, j = 1, 2 , (1)

where (pi, qi)i are algebraic functions of t1, t2 and H1, H2 are explicit Hamil-
tonians given in Proposition 3.3 (see also [8, 16]). More precisely if one sets
Sq := q1 + q2, Pq := q1q2, St := t1 + t2 and Pt := t1t2 one has the following
relations:

{

(λ0 − 1)2λ2
1St = −F (Sq, Pq)

(λ0 − 1)2Pt = −(λ0 + λ1 − 1)2P 2
q

; (2)
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where:

F (Sq, Pq) =(λ0 − λ1 − 1)(λ0 + λ1 − 1)3P 2
q

+ (λ0 − 1)2(λ0 + λ1 − 1)2(2Pq − 2PqSq + S2
q − 2Sq)

+ (λ0 − 1)3(λ0 + 2λ1 − 1) .

These solutions generalise the two parameter family known for the Painlevé
VI equation (see Subsection 3.1) and the complex surface associated with the
graph of (t1, t2) 7→ (Sq, Pq) is rational.

x = 0 x = 1 x = t1 x = t2 x = ∞
(

a1 0
0 a−1

1

) (

−a0 0
0 −a−1

0

) (

0 1
−1 0

) (

0 a20
a−2
0 0

) (

a0a
−1
1 0
0 a−1

0 a1

)

Table 1. Monodromy on a generic line; here aj = exp(−iπλj) for

j ∈ {0, 1}.

1.4. Lotka–Volterra foliations. — One last fact worth noting is that since
∇ is a flat sl2(C)–connection on a trivial bundle, there exist three meromorphic
one–forms α0, α1 and α2 (given in Theorem A) such that

∇ = d + Ω , where Ω :=

(

α1 α0

−α2 −α1

)

satisfies dΩ = Ω ∧ Ω .

In particular, this implies that dα2 ∧ α2 = 0 and thus one obtains a family
of transversally projective degree two foliations over P2 (see [15] and Section
4; note that this family is therefore integrable in the Casale–Malgrange sense
[2]) with invariant locus containing the quintic Q. We show that these are
conjugate to a family of Lotka-Volterra foliations over C3 [18,19]; namely given
three complex parameters (A,B,C), the codimension one foliation associated
with the one–form over C3, with coordinates (x, y, t):

ω0 := (yVt − tVy)dx + (tVx − xVt)dy + (xVy − yVx)dt ,

where:

Vx := x(Cy + t), Vy := y(At+ x) and V t := t(Bx + y) .

Theorem C. — The foliation defined by the meromorphic one–form α2 is
equal to the foliation over P2 associated with a Lotka–Volterra system with
parameters

(A,B,C) =

(

λ1

λ0
,

−λ0

λ0 + λ1
,
−(λ0 + λ1)

λ1

)

.
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Conversely, any degree two foliation whose invariant locus contains the quintic
Q is equal to one of the above form.

One can see from Theorem C that this family of foliations is governed by
the parameter λ0/λ1; there exists a one–parameter family of connections corre-
sponding to any given foliation (see also Subsection 4.4 in [15]). We then prove
that this gives an example of a family of foliations with algebraic invariant
curves of arbitrarily high degree (see also [14]).

Acknowledgements. — The author would like to thank both Serge Can-
tat and Frank Loray for their support and guidance in writing this paper.
Gaël Cousin, Karamoko Diarra and Valente Ramirez Garcia Luna contributed
through several interesting conversations and offered valuable insight on var-
ious topics. Special thanks to Thiago Fassarella for the interest he took in
this paper and for suggesting several improvements to its exposition. Funding
was provided by the Université de Rennes 1, the École normale supérieure de
Rennes and the Centre Henri Lebesgue.

2. Proof of Theorem A

In this section we concern ourselves with setting up a particular fibre bundle
over the projective plane P2, and then endowing it with a family of logarithmic
flat connections satisfying the conditions of Theorem A.

2.1. A rank two fibre bundle. — Start by considering the complex mani-
fold X := P1 × P1 and define the following involution:

η̃ : X → X

(u0, u1) 7→ (u1, u0) .

The action of η̃ gives us a two–fold ramified covering of P1 × P1 over the
projective plane P2, i.e the fibres of the morphism

P1 × P1 −→ P2

([u0
0 : u1

0], [u
0
1 : u1

1]) 7→ [s : p : t] := [(u0
0u

1
1 + u1

0u
0
1) : u

0
0u

0
1 : u1

0u
1
1] .

are the orbits under η̄. However, for the purpose of this paper, we will compose
this mapping with the linear projective transformation of P2 given by:

[s : p : t] 7→ [p+ t− s : p : t] .

This means that we will now work in the homogeneous coordinates x := p+t−s,
y := p and t. We get a two–fold ramified covering π : X → P2 that ramifies
along the diagonal ∆ := (u0 = u1) ⊂ X and sends it onto the conic:

(C) x2 + y2 + t2 = 2(xy + xt+ yt) .
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Now consider the rank two fibre bundle E over the projective plane associ-
ated with the locally free sheaf

E := OP2 ⊕OP2(−1) .

Let e+ be some global nonvanishing holomorphic section of E (corresponding to
the OP2 part of the above decomposition) and e− be some global meromorphic
section linearly independent from e+ (and so corresponding to OP2(−1)) with
associated (zeroes and poles) divisor equal to −L∞, where L∞ is the line "at
infinity" (t = 0).

Let us ask ourselves the following question: what does the pullback sheaf
F := π∗E look like ? For any open set U ⊂ X we have F(U) = E(π(U)), which
implies that F is a rank two locally free sheaf inducing a rank two fibre bundle
F → X with two global section: one nonvanishing holomorphic e1 := π∗e+ and
one meromorphic e2 := π∗e−. Since π does not ramify over L0

∞ := (u0 = ∞)
nor L1

∞ := (u1 = ∞), e2 has associated divisor −(L0
∞ + L1

∞); thus:

F ∼= OX ⊕OX(−1,−1) .

To better understand the bundle F , start by considering the rank two triv-
ial bundle E0 := C2 × X → X over X ; it has two independent (constant)
holomorphic global sections f1 ≡ (1, 0) and f2 ≡ (0, 1). Define the following
involution:

E0 → E0

(u0, u1, (Z1, Z2)e1,e2) 7→ (u1, u0, (Z1,−Z2)e1,e2) .

First of all, note that its action on the base coincides with that of the in-
volution η̄. One can then identify two global invariant sections of the bundle
E0:

– f1, which is holomorphic;
– f̂2 := b·f2, where b is the global meromorphic function (u0, u1) 7→ u0−u1.

The local expression b ·f2 defines a global meromorphic section with associated
divisor ∆− (L0

∞ +L1
∞). The OX–module spanned by the sections f1 and f̂2 is

isomorphic to the rank two locally free module F (by mapping f1 to e1 and f̂2 to
e2) and as such defines a rank two vector bundle over X isomorphic to F . More
precisely, one goes (locally) from E0 to F using the following transformation
(which is trivial on the base):

(

Z1

Z2

)

e1,e2

7→
(

Z1
Z2

u0−u1

)

e1,ẽ2

.

2.2. A rank one projective bundle. — By quotient on the fibres (P(C2) =
P1
C), one can associate to both vector bundles E0 and E rank one projective
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bundles P1 × X and P(E). We can describe the action of η on the former as
follows:

η : P1 × P1 × P1 → P1 × P1 × P1

(u0, u1, [Z1 : Z2]) 7→ (u1, u0, [Z2 : Z1]) ;

or, in the affine chart "z = Z1

Z2
", (u0, u1, z) 7→ (u1, u0, 1/z).

One goes from P1 × X to P(E) through the following invariant rational
functions:











s = u0 + u1

p = u0u1

w := (u0 − u1)
z + 1

z − 1

;

here (s, p) gives us local coordinates over the base and w does the same in the
fibres. We will use this projective point of view throughout this paper as it
allows for easier computations in the long run. It will also allow us to define
an interesting family of Lotka–Volterra foliations in Section 4.

2.3. Logarithmic flat connections. — Start by endowing the trivial rank
two vector bundle E0 → X with the following logarithmic flat connection :

∇0 := d +
1

2

(

ω0 0
0 −ω0

)

,

where u0, u1 are projective coordinates on the base X and

ω0 := λ0

(

du0

u0
− du1

u1

)

+ λ1

(

du0

u0 − 1
− du1

u1 − 1

)

,

with (λ0, λ1) ∈ C2 \ {(0, 0)}. This connection has singular locus equal to six
lines in X (if λ0λ1 6= 0) and naturally gives rise to a Riccati foliation, defined
by the following one–form over P(E0) = X × P1:

R(∇0) := dz + ω0z where z is a projective coordinate on the fibres.

Moreover one easily checks that u0−u1

z
R(∇0) is an η–invariant logarithmic

one–form over P(F ), associated with some connection ∇1 in the following sense:
if one has, in some local chart

(u0 − u1)R(∇0) = dz + α2z
2 + 2α1z + α0 ,

with α0, α1, α2 meromorphic one–forms (remark that here α2 and α0 are zero),
then one can set (in the same local chart)

∇1 := d +

(

α1 α0

−α2 −α1

)

.

Since the associated Riccati form R(∇1) := (u0 − u1)R(∇0) is η–invariant one
can use ∇1 to get a logarithmic connection ∇2 on E with poles along (y = 0),
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(x = 0), L∞ and C, the latter coming from the fact that π ramifies there. More
precisely, in the affine chart described in Subsection 2.2 one has:

R(∇2) = dw +
1

2(x2 + y2 + 1− 2(xy + x+ y))

(

g(λ0, λ1, w, x, y)
dx

x
+ g(λ1, λ0, w, y, x)

dy

y

)

,

where

g(λ0, λ1, w, x, y) =− ((2λ0 + λ1)x+ λ1(y − 1))w2 + 2(y − x+ 1)xw

+ (2λ0 + λ1)x
3 − ((4λ0 + λ1)(y + 1) + 2λ1)x

2

− ((−2λ0 + λ1)y
2 + 2(2λ0 + λ1)y − (2λ0 + 3λ1))x

+ λ1(y
3 − 3y2 + 3y − 1) .

2.4. Trivialisations. — We wish to turn ∇2 into a connection on the trivial
bundle C2 × P2; this can be done simply by blowing up the pole of any global
meromorphic section of P(E) then contracting a suitable divisor, however we
want to do so without disturbing the logarithmic nature of the connection ∇2.

Lemma 2.1. — There exists a birational mapping Φ : P(E) P1 × P2 conju-
gating R(∇2) to some Riccati one–form, that is associated with a logarithmic
flat connection ∇ over the trivial bundle C2 × P2 → P2.

Proof. — First remark that we have the following local expression along (y =
0):

R(∇2)|(y=0)
= dw + f(x)(w + x− 1)(w − x+ 1)

dy

y
.

This tells us that the codimension one foliation associated with the one–form
R(∇2) has two singular points on each fibre above (y = 0), namely at w =
±(x − 1). So in order to get a birationnal map P(E) P1 × P2 one can
proceed as follows:

– move one of the aforementioned singular loci (e.g (w = x− 1) ∩ (y = 0))
at (w = y = 0);

– blow up (y = 0)∩ (w = ∞) then contract the strict transform of the fibre
at (y = 0) on (w = y = 0). This latest step is achieved (in our usual
affine chart) through the birational map (x, y, w) 7→ (x, y, w/y).

Explicitly in our local chart, the mapping Φ is given by

Φ(w, x, y) = (y(w − x+ 1), x, y) .

This means that we are blowing up (inside the total space) a line in each fibre
over (y = 0) then contracting the strict transforms of said fibres thus resolving
the singularities of the global meromorphic section e− described in the proof of
Theorem A; this shows that our mapping does indeed end in a trivial bundle
and since we took care of contracting divisors only on points of the singular
locus of the foliation associated with R(∇2) we get a logarithmic flat connection
over C2 × P2 → P2.
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In the end, one gets a connection ∇ = ∇λ0,λ1 on the trivial bundle C2 × P2

that almost satisfies condition (i) in Theorem A, the only thing left to check
being whether or not it is a sl2(C)–connection. Explicitly, the Riccati form
associated with ∇ is given by (in the affine chart (t = 1)):

R(∇) = dw − 1

2(x2 + y2 + 1− 2(xy + x+ y))

(

f1(w, x, y)
ydx

x
− f2(w, x, y)

xdy

y

)

where

f1(x, y) =((2λ0 + λ1)x+ λ1(y − 1))yw2

+ 2((2λ0 + λ1 − 1)x2 + ((λ1 + 1)y − (2λ0 + 2λ1 − 1))x− λ1(y − 1))w

+ 2(2λ0 + λ1 − 1)x2 + ((−2λ0 + λ1 + 2)y + 2(2λ0 − 3))x

+ λ1(−y2 + 3y − 2)

and

f2(x, y) =(λ0(x− 1) + (λ0 + 2λ1)y)xw
2

+ 2((λ0 − 1)(x2 + 1) + ((λ0 + 2λ1 + 1)y − 2(λ0 − 1))x− (λ0 + 2λ1 − 1)y)w

+ 2(λ0 − 1)(x2 − 1) + (λ0 + 4λ1 + 2)yx− (λ0 + 2λ1)y
2 + (3λ0 + 4λ1 − 2)y .

Note that our birational transformation has "broken" the symmetry between
the two components f1 and f2.

We can explicitly compute the residues of the connection ∇ = ∇λ0,λ1 and
so check that it is indeed a sl2(C)–connection (see Table 2); note that the
eigenvalues at (y = 0) have been slightly modified due to our moving the
singular points of the associated foliation.

2.5. Monodromy representation. — To conclude the proof of Theorem A
one needs to compute the monodromy representation of the connection ∇ and
see that it is, as announced, a dihedral representation of Γ into SL2(C). First,
let us prove a result announced in Subsection 1.1.

Proposition 1.3. — The only (up to conjugacy) family of non–degenerate
representations of Γ into SL2(C) is as follows:

ρu,v : a 7→
(

0 1
−1 0

)

, b 7→
(

u 0
0 u−1

)

, c 7→
(

v 0
0 v−1

)

, for u, v ∈ C∗ .

Proof. — Let ρ be such a representation; since Im(ρ) must be non–abelian,
either C := ρ(c) or B := ρ(b) does not commute to A := ρ(a), say B. Then
(AB)2 = (BA)2 and so (AB)2 commutes to the non–abelian subgroup spanned
by A and B in PSL2(C), therefore (AB)2 must be equal to εI2 for some
ε ∈ {−1, 1}. This means that AB is diagonisable with eigenvalues in either
{−1, 1} (if ε = 1) or {−i, i}. In the former case, AB would be equal to ±I2
and so one would have AB = BA. Therefore, (AB)2 must be equal to −I2.
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Divisor Residue Eigenvalues

y = 0

(

− 1
2 λ0 +

1
2

2 (λ0−1)
y−x+1

0 1
2 λ0 − 1

2

)

±λ0 − 1

2

x = 0

(

−λ1(y−x+1)
2 (y−x−1)

2λ1

y−x−1

− λ1(y−x)
2 (y−x−1)

λ1(y−x+1)
2 (y−x−1)

)

±λ1

2

C
(

(2λ0+2λ1−1)(y−x+1)−4 λ0+2
4 (y−x−1) − 2 ((λ0+λ1−1)(y−x+1)−2λ0+2)

(y−x+1)(y−x−1)
(λ0+λ1)(y−x+1)(y−x−1)

8 (y−x−1) − (2λ0+2λ1−1)(y−x+1)−4λ0+2
4 (y−x−1)

)

±1

4

L∞

(− 1
2 λ0 − 1

2 λ1 0
λ0+λ1

2 (X−1)
1
2 λ0 +

1
2 λ1

)

±λ0 + λ1

2
(X = x/y)

Table 2. Residues for ∇.

Up to conjugacy, one can assume that A, B and C are of the form

A =

(

α β
−1 γ

)

, B =

(

µ κ
0 µ−1

)

and C =

(

τ χ
0 τ−1

)

.

Since (AB)2 = −I2, AB = −B−1A−1 and so one must have
{

αγ + β = det(A) = 1
αµ = γµ−1 + κ

. (3)

We assumed the monodromy representation to be non–degenerate; this means
in particular that ABAC = −B−1A−1AC = −B−1C must not be equal to
±I2, i.e B 6= ±C and so µ2 6= τ2.

Case 1: µ2 6= 1. In this case, B is diagonalizable so it is possible (up to
conjugacy) to assume κ = 0. Since B commutes to C, it follows that χ must
also be zero and τ2 6= 1. This implies that A does not commute to C and so
one gets







αγ + β = 1
αµ2 = γ
ατ2 = γ

. (4)

As τ2 6= µ2, this forces α and γ to be zero, thus β must be one.
Case 2: µ2 = 1. Since B is not projectively trivial, then κ must be nonzero.

The fact that B must commute to C forces τ2 to be one and so one must also
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have χ 6= 0. It is therefore impossible for A to commute to C and so by a
similar reasoning to the one above, (AC)2 = −I2, thus one gets







αγ + β = det(A) = 1
αµ = γµ−1 + κ
ατ = γτ−1 + χ

, (5)

which is equivalent to (since µ2 = τ2 = 1)






αγ + β = det(A) = 1
α = γ + κµ
α = γ + χτ

, (6)

therefore κµ = χτ . This means that B = ±C and so ABAC = ±I2, which
contradict the non–degeneracy condition.

Remark 2.2. — This implies that any non–degenerate representation of Γ
will have a "sizeable" kernel; indeed recall that we have a natural two–fold

ramified covering π : P1 × P1 2:1−−→ P2 ramifying over the diagonal ∆. This

mapping yields a nonramified covering π̃ : X − D
2:1−−→ P2 − Q and thus one

gets that π1(X −D) embeds into π1(P
2−Q) ∼= Γ as an index two subgroup. If

one denotes by P1
n the n punctured sphere, the projection on the line (y = 0)

gives a fibration X − D → P1
3 with fibre P1

4. As the universal covering of P1
3

(namely the hyperbolic plane H2) is contractible, the homotopy exact sequence
associated with this fibration yields:

0 = π2(P
1
3) → π1(P

1
4) → π1(X −D) → π1(P

1
3) → 0 .

In particular, there is an injective morphism from π1(P
1
4)

∼= F3, where Fr

denotes the free group over r generators, into π1(X−D); which in turn implies
that the group Γ contains a noncommutative free group.

Moreover the orbifold fundamental group Γorb
π associated with the ramified

covering π also contains a free group; more precisely if we define

Γorb
π := 〈a, b, c | (ab)2(ba)−2, (ac)2(ca)−2, [b, c], a2〉

then π induces an embedding of the fundamental group of X minus six lines
into Γorb

π , i.e F2 × F2 →֒ Γorb
π . This is especially relevant since the projective

representations Γ → PSL2(C) associated with the monodromy of the connec-
tions we will describe in this paper factor through this orbifold fundamental
group.

Now we will describe the local monodromy about irreducible components of
the polar locus. Let C be an irreducible curve contained in the polar locus of
some logarithmic flat sl2(C)–connection ∇ over P2, with associated monodromy
representation ̺. Set a point p ∈ C such that no other irreducible curve in the
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polar locus of the connection passes through p; then if U is a sufficiently small
analytic neighbourhood of p one gets:

π1(U \ C∩) ∼= Z .

Let γ be any loop generating the above cyclic group; the conjugacy class of the
matrix ̺(γ) does not depend on the choice of a base point for the fundamental
group. Indeed, if γ is chosen as above for some base point q and if q′ is some
other point in the complement of the polar locus, then if one takes δ to be any
path between q′ and q, the loop δ · γ · δ−1 is an element of the fundamental
group of the complement based at q′ whose monodromy is conjugate to ̺(γ).

Definition 2.3. — Using the notations above, define the local monodromy
of ∇ about C as the conjugacy class of the matrix ̺(γ).

For j = 0, 1 set aj := e−iπλj ; the monodromy associated with the connection
∇0 is as follows:

– around u0 = j (resp. u1 = j), j = 0, 1, it is the multiplication by aj
(resp. a−1

j );
– around u0 = ∞ (resp. u1 = ∞), it is the multiplication by a−1

0 a−1
1 (resp.

a0a1).

This is a complete description since the fundamental group of the projective
line minus six lines is isomorphic to F2 × F2 and is generated by loops going
around x, y = 0, 1 once.

The monodromy of the connection ∇2 comes directly from that of ∇0 around
the three lines in its singular locus; more precisely we can explicitly compute
(up to conjugacy) its local monodromy around:

– (y = 0):
(

a0 0
0 a−1

0

)

;

– (x = 0):
(

a1 0
0 a−1

1

)

;

– and L∞:
(

(a0a1)
−1 0

0 a0a1

)

.

However the monodromy of ∇2 about the conic C comes solely from the
ramification of the covering π. More precisely since any path linking (u0, u1) ∈
X to (u1, u0) pushes back as a loop on the quotient P2 = π(X) and since any

local solution z of ∇0 satisfies z(u1, u0) =
1

z(u0, u1)
the monodromy group of
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∇2 must contain the following matrix:
(

0 1
1 0

)

.

Proposition 2.4. — The monodromy group of the connection ∇ is the sub-
group of the infinite dihedral group

D∞ :=

{(

0 α
−α−1 0

)

,

(

β 0
0 β−1

) ∣

∣

∣

∣

α, β ∈ C∗

}

≤ SL2(C)

generated by the following three matrices:

(

0 1
−1 0

)

,

(

−e−iπλ0 0
0 −eiπλ0

)

and

(

e−iπλ1 0
0 eiπλ1

)

.

Proof. — We know from Proposition 1.2 that the fundamental group of the
complement of the singular locus of ∇ in P2 has the following presentation:

Γ = 〈a, b, c | (ab)2(ba)−2, (ac)2(ca)−2, [b, c]〉 ;

and that we can take a to be a loop lifting to some path in X joining (x, y) and
(y, x) (for generic (x, y) ∈ X) and b (resp. c) to be a loop going around (y = 0)
(resp. (x = 0)) once (see Fig. 1). If we choose a set of local coordinates
in which the monodromy matrices about both b and c are diagonal (this is
possible because the two loops commute) then the monodromy about a only
comes from the covering π and is equal to:

(

0 1
−1 0

)

.

In conclusion, the monodromy representation is given by the following matrices:
(

0 1
−1 0

)

,

(

−e−iπλ0 0
0 −eiπλ0

)

and

(

e−iπλ1 0
0 eiπλ1

)

,

which are elements of D∞.

3. Algebraic Garnier solutions

In this section we show that the connection ∇ induces an isomonodromic
deformation over the four and five punctured spheres. Furthermore we give
rational parametrisations of the associated algebraic Painlevé VI and Garnier
solutions and a description of the associated monodromy representation.
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C

Figure 2. Special lines.

3.1. Painlevé VI solutions. — It is well known [11,12] that isomonodromic
deformations of rank two sl2(C)–connections over the four punctured sphere
correspond to solutions of the sixth Painlevé equation, namely the following
order two nonlinear differential equation:

d2q

du2
=
1

2

(

1

q
+

1

q − 1
+

1

q − u

)(

dq

du

)2

−
(

1

u
+

1

u− 1
+

1

q − u

)

dq

du

+
q(q − 1)(q − u)

u2(u− 1)2

(

α+ β
u

q2
+ γ

u− 1

(q − 1)2
+ δ

u(u− 1)

(q − u)2

)

,

where α, β, γ and δ are complex–valued parameters.

Proposition 3.1. — The family of algebraic solutions of the Painlevé VI
equation associated with the connections (∇λ0,λ1)λ0,λ1 is given by the functions

q(u) = − λ1

2λ0 + λ1

√
u

and the parameters:

α =
(2λ0 + λ1)

2

2
, β = −λ2

1

2
, γ = 1/8 and δ = 3/8 .
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Pole Residue Eigenvalues

x = 0 W0 :=

(

−λ1(z
2+1)

2 (z2−1)
2λ1

z2−1

− λ1z
2

2 (z2−1)
λ1(z

2+1)
2 (z2−1)

)

±λ1

2

x = 1 W1 :=

(

(2λ0+2 λ1−1)z+2 λ0−1
4 (z+1)

(λ0+λ1−1)z+λ0−1
z2+z

− (λ0+λ1)z
2+λ0z

4 (z+1) − (2λ0+2 λ1−1)z+2 λ0−1
4 (z+1)

)

±1

4

x = t(z) W2 :=

(

(2λ0+2 λ1−1)z−2 λ0+1
4 (z−1) − (λ0+λ1−1)z−λ0+1

z2−z

(λ0+λ1)z
2−λ0z

4 (z−1) − (2λ0+2 λ1−1)z−2 λ0+1
4 (z−1)

)

±1

4

x = ∞ W :=

(

−λ0 − 1
2 λ1 +

1
2 0

0 λ0 +
1
2 λ1 − 1

2

)

±2λ0 + λ1 − 1

2

Table 3. Residues for ∇y .

Proof. — To prove this result we adapt part of a paper by Hitchin [11]. First
let us look at the connection induced by ∇ on the family of lines going through
P0 := (x = 0) ∩ L∞ (see Fig. 2) that are neither (x = 0) nor the line at
infinity; these are the lines of the form (y = c) in the affine chart (x, y) from
Subsection 2.1. According to Subsection 2.4, this corresponds to studying the
isomonodromic deformation given by the following Riccati forms, for generic y:

R(∇y) := dw − y

2x(x2 + y2 + 1− 2(xy + x+ y))
fy(x,w)dx ,

where

fy(x,w) =(λ0(x− 1) + (λ0 + 2λ1)y)yw
2

+ 2((λ0 − 1)(x2 + 1) + ((λ0 + 2λ1 + 1)y − 2(λ0 − 1))x− (λ0 + 2λ1 − 1)y)w

+ 2(λ0 − 1)(x2 − 1) + (λ0 + 4λ1 + 2)yx− (λ0 + 2λ1)y
2 + (3λ0 + 4λ1 − 2)y .

Let z be a parameter such that z2 = y; then ∇y has poles at x = (z ± 1)2,
x = 0 and x = ∞. Up to Möbius transformation, one can assume that these
are in fact located at s ∈ {0, 1, u(z),∞}, with:

u(z) =
z2 − 2z + 1

z2 + 2z + 1
=

(z − 1)2

(z + 1)2
.
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It is then possible to compute the relevant data associated with this family of
connections (see Table 3).

Let us now set

H :=
W0

x
+

W1

x− 1
+

W2

x− t
,

where the Wi are the residues from Table 3; then since −W is diagonal and
equal to the sum W0 + W1 + W2, its lower left coefficient is a degree one
polynomial in x, whose root can be explicitly computed as a rational function
of z:

q(z) := − λ1

2λ0 + λ1

z − 1

z + 1
,

or as an algebraic function of u:

q(u) = − λ1

2λ0 + λ1

√
u .

One can then check that this function u 7→ q(u) is indeed a solution of the sixth
Painlevé equation for the announced choice of parameters.

3.2. Restriction to generic lines. — Let us now consider the connection
induced by ∇ on generic lines in P2, such a line being given in our usual
affine chart by an equation of the form y = αx + β. We thus obtain an
isomonodromic deformation (∇α,β)α,β over the five punctured sphere; more
precisely if one chooses a parameter z such that z2 = β(1 − α) + α then one
gets (after Möbius transformation) a family of logarithmic flat connections over
P1 \ {0, 1, t1, t2,∞}, where:

t1 = − α(z + 1)2

(α− 1)(α− z2)
and t2 = − α(z − 1)2

(α− 1)(α− z2)
.

The associated Riccati forms are given by:

R(∇α,β) = dw +
a2(x)w

2 + a1(x)w + a0(x)

2x(x − 1)(x− t1)(x− t2)
dx

where:

a2(x)

α(x − 1)(z2 − α)
=(λ0 + λ1)(α

2 − (z2 + 1)α+ z2)x2

+ (−λ1α
2 + (λ0(z

2 + 1) + 2λ1)α− (2λ0 + λ1)z
2)x

+ λ1(z
2 − 1)α
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a1(x)

2
=(λ0 + λ1)(α

4 − 2(z2 + 1)α3 + (z4 + 4z2 + 1)α2 − 2(z4 + z2)α+ z4)x3

+ [−(2λ0 + 3λ1 − 1)α4

+ ((4λ0 + 4λ1 − 1)z2 + 4λ0 + 6λ1 − 1)α3

− ((2λ0 + λ1)z
4 + 2(4λ0 + λ1 − 1)z2 + (2λ0 + 3λ1))α

2

+ ((4λ0 + 2λ1 − 1)z4 + (4λ0 + 4λ1 − 1)z2)α

− (2λ0 + λ1 + 1)z4]x2

+ [2λ1a
4 − ((2λ0 − 1)z2 + (2λ0 + 6λ1 − 1))α3

+ ((λ0 − λ1)z
4 + 2(3λ0 + 2λ1 − 1)z2 + λ0 + 3λ1)α

2

+ ((2λ0 − 1)z4 + (2λ0 + 2λ1 − 1)z2)α]x

+ λ1(2(1− z2)α+ z4 − 1)α2

and

a0(x)

4α(α− 1)
=(λ0 + λ1 − 1)(1− α)(z2 − α)x2

+ (((λ0 − 1)(α− 2)− λ1)z
2 − λ1α

2 + (λ0 + 2λ1 − 1)α)x

+ λ1α(z
2 − 1) .

Using the explicit formulas given in Subsection 2.4, we can explicitly compute
the spectral data associated with these connections (see Table 4). To mirror
what we did in Subsection 3.1, let us assume (up to a change of basis) that the
residue at infinity M is diagonal and set:

Ĥ :=
M0

x
+

M1

x− 1
+

Mt1

x− t1
+

Mt2

x− t2
;

then since M does not depend on x, the lower left coefficient of Ĥ must be a
degree two polynomial in x, say:

Ĥ2,1 =
c(t1, t2)(x

2 − Sq(t1, t2)x+ Pq(t1, t2))

x(x− 1)(x− t1)(x− t2)
, (7)

where Sq := q1 + q2 and Pq := q1q2, with q1, q2 some algebraic functions of
(t1, t2).

3.3. Rational parametrisations. — First remark that one can rewrite (7)
as follows:

x(x − 1)(x2 − Stx+ Pt)Ĥ2,1 = c(t1, t2)(x
2 − Sqx+ Pq) ,

where St = t1 + t2 and Pt = t1t2 are the elementary symmetric polynomials in
(t1, t2).
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Pole Residue Eigenvalues

x = 0 M0 :=

(

−λ1(z
2−2α+1)

2 (z2−1) − 2λ1(α−1)
z2−1

−λ1(z
2−α)

2 (z2−1)
λ1(z

2−2α+1)
2 (z2−1)

)

±λ1

2

x = 1 M1 :=

(

− 1
2 λ0 +

1
2 − 2α(α−1)(1−λ0)

α2−z2

0 1
2 λ0 − 1

2

)

±1

2
(λ0 − 1)

x = t1 Mt1 :=

(

(2λ0−1)(z+1)+2λ1(α+z)
4 (z+1) − (α−1)(λ0+λ1α−1+(λ0+λ1−1)z)

(α+1)z+z2+α

λ0(z
2+(1+α)z+α)+λ1(z+α)2

4 ((α−1)z+α−1) − (2λ0−1)(z+1)+2λ1(α+z)
4 (z+1)

)

±1

4

x = t2 Mt2 :=

(

− (2λ0−1)(1−z)+2λ1(α−t)
4 (z−1)

(α−1)(λ0+αλ1−1−(λ0+λ1−1)z)
(α+1)z−z2−α

−λ0(z
2+(1+α)z+α)+λ1(z+α)2

4 ((α−1)z−α+1)
(2λ0−1)(1−z)+2λ1(α−z)

4 (z−1)

)

±1

4

x = ∞ M :=

(

− 1
2 λ0 − 1

2 λ1 0

− (λ0+λ1)α
2 (α−1)

1
2 λ0 +

1
2 λ1

)

±1

2
(λ0 + λ1)

Table 4. Residues for ∇α,β.

Lemma 3.2. — The parameters (α, z) introduced in Subsection 3.2 give a ra-
tional mapping (P1)2 (P1)4 giving explicit expressions of (t1, t2, Sq, Pq),
namely:

t1 = − α(z + 1)2

(α− 1)(α− z2)
,

t2 = − α(z − 1)2

(α− 1)(α− z2)
,

Sq =
λ0(α

2 − 2α+ z2)− λ1(1 + z2 + 2α)α+ α(2 − α)− z2

(λ0 + λ1 − 1)(α− z2)(α − 1)
,

Pq =
(λ0 − 1)(z − 1)(z + 1)α

(λ0 + λ1 − 1)(α− z2)(α− 1)
.
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Proof. — Using Gröbner bases to eliminate the variable x one obtains a system
of equations of the following form:

{

(λ0 − 1)2λ2
1St = −F (Sq, Pq)

(λ0 − 1)2Pt = −(λ0 + λ1 − 1)2P 2
q

; (8)

where:

F (Sq, Pq) =(λ0 − λ1 − 1)(λ0 + λ1 − 1)3P 2
q

+ (λ0 − 1)2(λ0 + λ1 − 1)2(2Pq − 2PqSq + S2
q − 2Sq)

+ (λ0 − 1)3(λ0 + 2λ1 − 1) .

The discriminant ∆t of this system vanishes along 2 pairs of parallel lines in
P1
Sq

× P1
Pq

; namely:

(∆t = 0) = (α = 0) ∪ (x′ = 0) ∪ (α = ∞) ∪ (x′ = ∞) ⊂ P1
α × P1

x′

for some projective coordinate x′ such that z2 = αx′. This explicit description
of the two–fold ramified covering given by z allows us to parametrize (Sq, Pq)
as rational functions of (α, z), hence concluding the proof.

We can now prove that we have indeed constructed a family of algebraic solu-
tions for a Garnier system. More precisely, consider the following Hamiltonian
system:

{

∂tkpi = −∂qi
Hk i, k = 1, 2

∂tkqi = ∂pi
Hk i, k = 1, 2

, (9)

where:

Hk := (−1)k
2H(tk, t3−k,p1,p2,q1,q2) +H(tk, t3−k,p2,p1,q2,q1)

2(q1 − q2)(t1 − t2)(tk − 1)tk

with:

H(t1, t2,p1,p2,q1,q2)

p1q1(q2 − t1)
= p1q

3
1 + ((t1 + t2 + 1)p1 + (λ0 + λ1 − 1))q2

1

− ((t1 + t2 + t1t2)p1 − (2λ0 + 2λ1 − 1)(t1 + t2)− 2t2 + 2(λ0 − 1))
q1

2
+ (−(2λ0 − 1)t1t2p1 + 2(λ0 + λ1 − 1)t2 + 2λ0 − 1)t1 + 2(λ0 − 3)t2 .

Proposition 3.3. — Let q1, q2 be the algebraic functions defined in Subsection
3.2; then there exist two algebraic functions p1(t1, t2) and p2(t1, t2) such that
(q1, q2, p1, p2) is a solution of (9).
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Proof. — Since we know no rational parametrisation of (q1, q2) we consider the
"symmetrized" system:


















∂tkSq = (∂p1 + ∂p2)Hk k = 1, 2
∂tkPq = (q2∂p1 + q1∂p2)Hk k = 1, 2
∂tkSp = −(∂q1 + ∂q2)Hk k = 1, 2

∂tkγ =
−1

(q1 − q2)2
((q1 − q2)(∂q1 + ∂q2) + (p1 − p2)(∂p1 + ∂p2))Hk k = 1, 2

,

where Sp := p1 +p2 and γ =
p1 − p2

q1 − q2
. To obtain this we first had to consider

the variable δ := q1−q2 and then eliminate it using the fact that all expressions
obtained had even degree in δ and that δ2 = S2

q − 4Pq.
Assume that (p1, p2) are two algebraic functions such that (q1, q2, p1, p2) is a

solution of (9). Using the first two equations with k = 1 one then gets Sp and
γ as functions of ∂t1Sq and ∂t1Pq which in turn (see Lemma 3.2) are rational
functions of (α, t), namely:

γ =− (λ0 + λ1 − 1)(α+ 1)(α− z2)2(α − 1)

2α(α− z)(α+ z)(z + 1)(z − 1)
,

Sp =
(α− z2)

2α(α− z)(α+ z)(z + 1)(z − 1)
Ŝp ,

with

Ŝp =(λ0 + 2λ1 − 1)α3

+ ((2λ0 + λ−2)z
2 − (3λ0 + λ1 − 3))α2

+ ((λ0 − 3λ1 + 1)α+ (λ0 − 1))z2 .

This completes the rational parametrisation of all relevant variables and allows
us check that (Sq, Pq, Sp, γ) indeed satisfies the above system.

We can describe more precisely the rational surface parametrising q1 and q2
as follows. Using the equations linking (St, Pt) to (Pq, Sq) and Gröbner bases
one show that Sq is root of a degree four polynomial with coefficients depending
on St, Pt (and thus on t1, t2) and that Pq can be computed as a polynomial in
St, Pt and Sq. Therefore, there exists a polynomial P ∈ C[X,T1, T2] of degree
four in its first variable such that P (Sq, t1, t2) = 0 and so if one sets

Σ := {x, t1, t2 ∈ P1 |P (x, t1, t2) = 0}
then the projection p : Σ → P1

t1
× P1

t2
is a fourfold ramified covering, whose

holonomy we can fully describe.

Proposition 3.4. — The holonomy representation into S4 of the covering p
is trivial at t1 = t2 and is a double transposition at ti = 0, 1,∞ (i = 1, 2).
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Proof. — Since (Sq, Pq) is solution of a Garnier system, we know that this
covering can only ramify over ti = 0, 1,∞ (i = 1, 2) or t1 = t2. To better
understand the way it does, let us look into its holonomy representation, which
is a mapping from the fundamental group G of the complement of the ramifi-
cation locus in P1 × P1 into the symmetric group S4. By explicitly factorising
the polynomial P over all components of the possible ramification locus one
gets that:

– over ti = 0 (i = 1, 2) the polynomial has two double roots;
– over ti = 1 (i = 1, 2), the situation is the same
– over ti = ∞ (i = 1, 2), there is only one order four root;
– over t1 = t2 the polynomial has four simple roots (the covering doesn’t

actually ramify there).

If one looks (for example) at the restricted polynomial P (Sq, t1, 7) one can
see that its discriminant has a double root at t1 = 1 and that the same is
true should one exchange the roles of t1 and t2; this means that the holonomy
around ti = 0, 1 is a double transposition. Moreover, it takes two elementary
transforms to turn the ramification at infinity into two double roots with the
discriminant in Sq having a double root there. The holonomy being invariant
under birational morphisms, it is also a double transposition.

Corollary 3.5. — The complex surface Σ is rational.

Proof. — By setting t1 or t2 to any value distinct from 0, 1,∞, one gets a
fourfold covering from some curve C onto P1 ramifying over 0, 1 and ∞. The
Riemann–Hurwitz formula yields that the curve C is of genus zero, meaning
that it is necessarily a rational curve. This proves that the surface Σ is a
fibration over P1 with general fibre isomorphic to P1 and so is in fact rational
(see for example [13]).

4. Lotka–Volterra foliations

In order to prove Theorem C, let us first define the following notion (see [20]).

Definition 4.1 (Transversally projective foliation). — Let M be a smooth
projective complex manifold; a codimension one foliation F on M (defined by a
Frobenius–integrable nonzero rational one–form ωF ) is said to be transversally
projective if there exist two rational one–forms α, β over M such that

d +

(

α β
ωF −α

)

defines a flat sl2(C)–connection over the rank two trivial bundle C2 ×M .
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If one looks at the restriction ω of the Riccati one–form R(∇) to (w = ∞)
one obtains a codimension one transversally projective foliation F over the
projective plane P2; indeed, if

R(∇) = dw + ωw2 + 2αw + β

then

d +

(

α β
ω −α

)

is gauge–equivalent to ∇ and as such is a flat sl2(C)–connection over C2 × P2.
The one–form ω can be written in the affine chart C2

x,y ⊂ P2 described in
Subsection 2.1 as:

ω = ((2λ0 + λ1)x+ λ1(y − 1))ydx− ((λ0 + 2λ1)y + λ0(x− 1))xdy

This foliation’s invariant locus contains the singular locus of ∇, namely the
quintic Q and has seven order one singularities, namely (in homogeneous co-
ordinates [x : y : t] chosen so that our usual affine chart corresponds to t = 1)
[0 : 0 : 1], [0 : 1 : 1], [1 : 0 : 1], [λ2

1 : λ2
0 : (λ0 + λ1)

2], [1 : 1 : 0], [0 : 1 : 0] and

[1 : 0 : 0]. Also note that this foliation only depends on the quotient λ :=
λ0

λ1
;

indeed it is equivalent to:

((2λ+ 1)x+ y − 1)ydx− ((λ + 2)y + λ(x− 1))xdy = 0 .

Also note that every singular point of the above foliation lies on the quintic Q.

Now define, given three complex parameters (A,B,C), the Lotka-Volterra
vector field over C3 (with coordinates x, y, t) as LV(A,B,C) := Vx∂x +Vy∂y +
Vt∂t, where:

Vx := x(Cy + t), Vy := y(At+ x) and V t := t(Bx + y) .

This system traditionally comes from the study of a "food chain" system with
3 species preying on each other in a cycle. One can then [18, 19] consider
the foliation defined by both LV(A,B,C) and the radial vector field R :=
x∂x+ y∂y+ t∂t: it is the codimension one foliation over C3 associated with the
one–form

ω0 := (yVt − tVy)dx + (tVx − xVt)dy + (xVy − yVx)dt .

4.1. Proof of Theorem C. — To prove Theorem C, one needs only show
that the foliations defined by the one–forms ω and ω′

0 := ω0|t=1
are the same

in some affine chart. Each of the aforementioned one–forms has four singular
points, namely

(0, 0) ,

(

1

B
, 0

)

, (0, A) and

(

A(C − 1) + 1

C(B − 1) + 1
,
B(A− 1) + 1

C(B − 1) + 1

)

for ω′
0
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Figure 3. Singular locus for the foliation F .

and

(0, 0) , (1, 0) , (0, 1) and

(

λ2
1

(λ0 + λ1)2
,

λ2
0

(λ0 + λ1)2

)

for ω .

We then submit ω′
0 to an affine change of coordinates to send its first three

singular points onto (0, 0), (1, 0) and (0, 1). A necessary condition for the two
forms to define the same foliation is then that their fourth singularities be
equal; after computation we find that one must have:

B(A(C − 1) + 1)

C(B − 1) + 1
=

λ2
1

(λ0 + λ1)2
(10)

and
B(A− 1) + 1

A(C(B − 1) + 1)
=

λ2
0

(λ0 + λ1)2
. (11)

Solving the two above equations, one obtains a rational parametrisation of A
and C by B, namely:

A =
(B − 1)λ1

(2λ0 + λ1)B
and C = −2B(λ0 + λ1)

2 + λ0λ1

λ0λ1(B − 1)
.

A necessary and sufficient condition for the two associated foliation to coincide
is that ω ∧ ω′

0 = 0; using this and the above parametrisation one gets that B

must be equal to − λ0

λ0 + λ1
and thus obtains the first par of Theorem C.
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Conversely, direct computation shows that any degree two foliation over P2

whose invariant locus contains the quintic Q can be written in the affine chart
(s, p) as

((γ1 + 2γ2)x+ γ1(y − 1))ydx− ((2γ1 + γ2)y + γ2(x− 1))xdy

with γ1, γ2 ∈ C. In particular, such a foliation automatically comes from the
monodromy representation of one of our connections ∇λ0,λ1 , with λ0 = γ2 and
λ1 = γ1.

Remark 4.2. —

1. The relation ABC = 1 obtained in Theorem C can be seen intuitively as
coming from the order 3 symmetry of the quintic Q: indeed if one denotes
by J the homographic order 3 transform defined on P1 by

z 7→ − 1

1 + z

then one has

(A,B,C) =

(

λ1

λ0
, J

(

λ1

λ0

)

, J2

(

λ1

λ0

))

.

2. The two variables Lotka–Volterra system is usually defined as being fol-
lowing "prey–predator" differential system:

{

x′ = x(α + βy)
y′ = y(γ + δx)

,

to model an ecosystem where x preys on y. However, the plane foliation
associated with this system cannot be conjugate to the one associated
with ω as it has two double singular points whereas ω has seven simple
singularities. Thus this gives some form of justification to the fact that we
chose to consider a three variables system in this paragraph (as opposed
to the more "natural" two variables one).

4.2. Invariant curves. — The invariant locus of the family of foliations
presented here does not have normal crossings, hence the Cerveau–Lins Neto
bound on the degree (deg(F) + 2, see [3]) does not apply here. Furthermore
one may note that (for generic parameters λ0, λ1) the foliation F has simple
singularities at the tangency locus of the conic C and the three invariant lines.
Moreover, we have the following result.

Proposition 4.3. — The foliation F admits, for λ0, λ1 ∈ Q, invariant alge-
braic curves of arbitrarily high (depending on λ0/λ1) degree.

Proof. — The section (w = ∞) ⊂ P1×P2 that we used to define our foliations

lifts through π : P1 × P1 2:1−−→ P2 (see Subsection 2.1) to the section (z = 1) of
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the trivial bundle X × P1 (see Subsection 2.2) and so the foliation itself lifts
(in our usual local chart) to:

(F ′) λ0

(

du0

u0
− du1

u1

)

+ λ1

(

du0

u0 − 1
− du1

u1 − 1

)

= 0 .

If one looks at rational values of λ0 and λ1, one gets a foliation F with finite
holonomy which as a consequence admits a rational first integral. Moreover, in
that particular case every leaf is an algebraic invariance curve and it is possible
to find these with arbitrarily high degree (for varying λ0, λ1). For example, if
λ0 = n ≥ 1 is a positive integer and if we set λ1 = 1 then a simple computation
shows that the curve

(Cn) un
0 (u0 − 1)− un

1 (u1 − 1) = 0

on X is invariant under F ′. An induction then shows that this curve is the
pullback by π of a degree 2+n curve on P2 and so we get an invariant curve of
such degree for the foliation F corresponding with the parameters (n, 1).

Remark 4.4. — Note however that this is a slightly weaker example than the
ones given in [14] as the local type of our singularities depends on the parameter
λ0/λ1.

5. Proof of Theorem B

In this paragraph, we prove that our family of monodromy representations
cannot be generically obtained through a pullback method [8, 9] by showing
that it does not factor through an orbicurve [4].

5.1. First case: λ0 and λ1 are not linearly dependant over Z. —
Suppose that we have some projective complex curve C, a divisor δ = t1+. . .+tk
in C, an algebraic mapping f : P2 −Q → C − δ and a representation ρ̃ of the
fundamental group of C − δ into PSL2(C) such that the diagram

π1(C − δ, x0)

ρ̃

''O
OO

OO
OO

OO
OO

Γ

ρ

��

f∗
oo

PSL2(C)

commutes. Since the ramified covering π : X
2:1−−→ P2 is unramified between

X −D and P2 −Q, where D is the divisor in X made of the six lines u0, u1 =
0, 1,∞ and the diagonal ∆ = (u0 = u1), then the fundamental group π1(X−D)
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is realised as a subgroup of Γ. This means that if one sets φ := f ◦ π one has:

π1(C − δ, x0)

ρ̃′

''O
OO

OO
OO

OO
OO

Γ

ρ′

��

φ∗
oo

PSL2(C)

.

We also know from Propostion 1.3 that the image of ρ′ is exactly the abelian
index two subgroup of ρ(Γ) generated by the images of b and c.

Now let L be a generic horizontal line in X (i.e of the form (u1 = c), with
c 6= 0, 1,∞); since f is algebraic the restricted map φ|L extends as a ramified
covering φL : L → C with topological degree equal to some d ≥ 1. The line L
is isomorphic to P1, so the Riemann–Hurwitz formula forces the genus of the
curve C to be equal to zero; as such we can assume without loss of generality
that φL is a d–fold covering of the projective line over itself. Moreover, one
must have that φ∗

Lδ = {0, 1, c,∞}.
The representation ρ̃′ must induce infinite order monodromy about at least

one loop in C−δ, say γ0, or else all elements in the image of ρ would be of finite
order. This means that M := ρ̃′(γ0) is a infinite-order element in PSL2(C).

Let us assume that there are at least two distinct elements γ and γ′ in the
fibre of (φL)∗ above γ0; then both ρ′(γ) and ρ′(γ′) must be powers of M . This
gives us a relation between words in the matrices

(

a0 0
0 a−1

0

)

,

(

a1 0
0 a−1

1

)

and

(

a0a1 0
0 (a0a1)

−1

)

,

where aj = e−iπλj . Since generically λ0 and λ1 are not linearly dependant, this
is impossible; hence we have that the fibre (φL)

−1
∗ (γ0) may only contain one

element. This implies that φL ramifies totally over (at least) three points in C
and so the Riemann–Hurwitz formula yields that φL must be one–to–one.

Let u ∈ P1 and set hu ∈ PSL2(C) to be the Möbius transform sending the
ramification locus of φ(u1=u) onto 0, 1,∞; up to composing it with (u0, u1) 7→
(hu1(u0), u1) we can assume that φ is exactly the first projection pr1 : X → P1.
However if one looks at the restriction of φ to some vertical line then one
should again generically obtain infinite local monodromy at three points, which
is impossible with pr1, thus concluding the proof.

5.2. Second case: there exists (p, q) in Z2 \ {(0, 0)} such that pλ0 +

qλ1 = 0. — We can assume that at least one of
λ0

λ1
or

λ1

λ0
is a rational number,

therefore the transversally projective foliation F introduced in Section 4 has
finite monodromy and so admits some rational first integral g : P2 → P1. Using
Subsection 4.4 in [15], one deduces that the transversally projective structure
(β, α, ω) associated with F is equivalent to one of the form (β̃, 0, dg) with the
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following relations (see [15], Subsection 4.1):

β̃ ∧ dg = 0 and dβ̃ = 0 .

The first relation implies that β̃ must be of the form β̃ = fdg for some rational
f : P2 → P1; using the second relation one then gets that

df ∧ dg = 0 . (12)

Using standard results from birational geometry (see for example Theorem II.7
in [1]) one obtains that there exists a complex surface M and a finite sequence
b : M → P2 of blow–ups such that g := g ◦ b is a holomorphic function on M .
Moreover, if we set f := f ◦ b then we must have

df ∧ dg = 0 . (13)

It then follows from Stein’s factorisation theorem that there exists a complex
curve C, a ramified covering r : C → P1 and a fibration φ : M → C with
connected fibres such that the following diagram

M

g

��

φ
// C

r
~~~~
~~
~~
~~

P1

commutes. This means that locally on any sufficiently small analytic open
set U the covering r gives an orbifold coordinate x on the curve C and there
exists a biholomorphism h between U ×F and φ−1(U), where F is a connected
complex curve, such that for all (x, y) ∈ U × F , g ◦ h(x, y) = x. Therefore
relation (13) yields:

d(f ◦ h) ∧ dx = 0 .

Thus f depends locally only on g and since the fibres of φ are connected one
can conclude using analytic continuation that f is globally a function of g. In
the end, this implies that the transversally projective structure associated with
F is equivalent to (f(g)dg, 0, dg) and so factors through through the algebraic
map associated with f on P2 − I, where I is the indeterminacy locus of f .
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