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STABILITY OF THE TANGENT BUNDLE OF G/P IN POSITIVE CHARACTERISTICS

INDRANIL BISWAS, PIERRE-EMMANUEL CHAPUT, AND CHRISTOPHE MOUROUGANE

ABSTRACT. Let G be an almost simple simply-connected affine algebraic group over an algebraically closed
field k of characteristic p > 0. If G has type Bn , Cn or F4, we assume that p > 2, and if G has type G2,
we assume that p > 3. Let P ⊂ G be a parabolic subgroup. We prove that the tangent bundle of G/P is
Frobenius stable with respect to the anticanonical polarization on G/P .

1. INTRODUCTION

Let G be an almost simple simply-connected affine algebraic group over an algebraically closed field k ,
and let P ⊂ G be a parabolic subgroup. If the characteristic char(k) is zero, then it is known that the
tangent bundle of G/P is stable with respect to the anticanonical polarization on G/P . Throughout,
(semi)stability means slope (semi)stability. In the complex case it was proved long ago that this bundle
admits a Kähler-Einstein metric (see [Ko55] or [Be87, Chapter 8]), which implies polystability. Simplicity
of this bundle was proved in [AB10], proving the stability; A. Boralevi proved stability of T (G/P) when
G is of type ADE [Bor12, Theorem C]. Our aim here is to address stability of T (G/P) in the case where
char(k) is positive.

If G is of type Bn , Cn or F4, we assume that char(k) > 2; if G is of type G2, we assume that char(k) > 3.
The main Theorem of this note says that under the above assumption, the tangent bundle of G/P and

all its iterated Frobenius pull-backs are stable with respect to the anticanonical polarization on G/P .
The method of proof of the main Theorem is as follows. We prove that the stability of T (G/P) is equiv-

alent to certain statement on the quotient Lie(G)/Lie(P) considered as a P–module. The statement in
question is shown to be independent of the characteristic of k (as long as the above assumptions hold).
Finally, the main Theorem follows from the fact that T (G/P) is stable if char(k) = 0.

A natural question to ask is whether T (G/P) remains stable with respect to polarizations on G/P other
than the anticanonical one. A. Boralevi gave a negative answer to this question. She constructed ex-
amples of G/P and polarization on them with respect to which T (G/P) is not even semistable [Bor12,
Theorem D].

2. TANGENT BUNDLE OF G/P

Let G be an almost simple simply-connected affine algebraic group defined over an algebraically
closed field k . The Lie algebra of G will be denoted by g. Let P ( G be a parabolic subgroup. We start
with a result which is valid in all characteristics.

Proposition 2.1. Let M1, M2 be two G-modules such that H 0(G/P, T (G/P)) = M1 ⊗ M2 as G-modules.

Then either M1 = k or M2 = k.

Proof. Let θ be the highest root of g. We claim that θ is a maximal weight of H 0(G/P, T (G/P)) in the
sense that θ+α is not a weight of H 0(G/P, T (G/P)) for any positive root α. To prove this, first note that if
H 0(G/P, T (G/P)) = g, then this is in fact the definition of the highest root. By [De77, Théorème 1], there
are only three cases where H 0(G/P, T (G/P)) 6= g:

(1) G = Sp(2n) of type Cn with H 0(G/P, T (G/P)) = sl(2n),
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(2) G = SO(n +2) of type Bn with H 0(G/P, T (G/P)) = so(2n +2), and
(3) G = G2 with H 0(G/P, T (G/P)) = so(7).

In these three cases, we have exceptional automorphisms that account for additional vector fields and
we have H 0(G/P, T (G/P)) = g⊕V , where V has a unique highest weight which is not higher than θ.
For example, if G = Sp2n , then G/P = SL(2n)/PSL(2n) is a projective space of dimension 2n −1, so that
H 0(G/P, T (G/P)) is sl(2n). Then V is a module with unique highest weight ǫ1 + ǫ2, whereas θ = 2ǫ1 (in
the notation of [Bou05, Chap VI, Planches]). So the claim is proved.

As θ is a maximal weight of H 0(G/P, T (G/P)) = M1 ⊗M2, there are maximal weights ω1 and ω2 of M1

and M2 respectively, such that

θ = ω1 +ω2 . (1)

Since ω1 and ω2 are maximal, they are dominant. In all types except An and Cn , we have θ to be a
fundamental weight. Therefore, from the equality in (1) it follows that either ω1 = 0 or ω2 = 0, hence the
proposition is proved in these cases.

For the remaining cases of An and Cn , assume that ω1 6= 0 and ω2 6= 0. Let ̟i denote the i -th fun-
damental weight. In case of An , we have θ = ̟1 +̟n , so up to a permutation, ω1 = ̟1 and ω2 = ̟n .
Since the Weyl group orbits of both ̟1 and ̟n have n +1 elements, it follows that dim M1 ≥ n +1 and
dim M2 ≥ n+1. This implies that dim H 0(G/P, T (G/P)) ≥ (n+1)2 which is a contradiction. In case of Cn ,
we have θ = 2̟1, so similarly we get ω1 = ω2 = ̟1, and dim H 0(G/P, T (G/P)) ≥ (2n)2. This is again a
contradiction. �

3. THE MAIN RESULT

We now impose the following assumptions on the characteristic of k :

Working assumption.

• The characteristic char(k) of k is positive, and

• char(k) is bigger than all the coefficients 〈α∨ ,β〉 for all roots α ,β of G with α 6= β.

In other words, if the root system of G is simply-laced, then char(k) is only assumed to be positive; if
G is any of Bn , Cn and F4, we assume that char(k) > 2; if G = G2, we assume that char(k) > 3.

Main Theorem. Under the previous assumption, the tangent bundle T (G/P) is Frobenius stable with re-

spect to the anticanonical polarization on G/P.

We will divide the proof into several steps. The question of stability will be reduced to characteristic
zero. The reduction to characteristic zero is achieved using the following construction: Let GZ be the
split simply-connected Chevalley group scheme over Z having the same root system as G . By the theory
of reductive algebraic group schemes, as the root system characterizes simply-connected groups up to
isomorphism, we have G ≃ GZ⊗Spec k . On the other hand, we denote GZ⊗SpecC by GC. There exists a
parabolic group PZ ⊂ GZ such that PZ⊗Spec k is conjugate to P . The parabolic subgroup P ⊗SpecC of
GC will be denoted by PC.

Fix a maximal torus T ⊂ G and a Borel subgroup B . Assume T ⊂ B ⊂ P . Let R denote the set of roots
of g. The set of positive (respectively, negative) roots of g will be denoted by R+ (respectively, R−). The
eigenspace corresponding to any α ∈ R will be denoted by gα.

A subsheaf E ⊂ T (G/P) is called G-stable if it is preserved by the left action of G on T (G/P). Since the
left translation action of G on G/P is transitive, any G-stable subsheaf of T (G/P) is a subbundle.

The anticanonical line bundles of G/P and GC/PC are ample. Fix the anticanonical polarization on
G/P and also on GC/PC.

Proposition 3.1. Let E ⊂ T (G/P) be a G-stable subbundle of T (G/P). There exists a subbundle EC ⊂

T (GC/PC) such that rk(EC) = rk(E ) and deg(EC) = deg(E ).
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Proof. Let x0 = eP/P ∈ G/P be the base point. The set of roots α such that gα ⊂ p will be denoted by
I (P). We have

Tx0 (G/P) ≃ g/p ≃
⊕

α∈R\I (P )
gα .

Sending a G-stable subbundle V ⊂ T (G/P) to the P-module Vx0 an equivalence between G-stable sub-
bundles of T (G/P) and P-submodules of Tx0 (G/P) is obtained. Let M be the P-submodule of Tx0 (G/P)
corresponding to E . Since M is a T -stable subspace of

⊕
α6∈I (P )g

α, there is a subset I (M ) ⊂ R \ I (P) such
that M =

⊕
α∈I (M) g

α. By the following Lemma 3.2, we have

∀ β ∈ I (P) , ∀ α ∈ I (M ) , α+β ∈ R \ I (P) =⇒ α+β ∈ I (M ) .

Thus, MC :=
⊕

α∈I (M) g
α
C

is a PC-submodule of Tx0 (GC/PC) and the subbundle EC ⊂ T (GC/PC) corre-
sponding to MC satisfies the conditions in the proposition. �

In the following Lemma, we consider the vector space
⊕

α∈R\I (P )g
α. This is isomorphic as a vector

space to g/p, and therefore has a natural P-module structure.

Lemma 3.2. Let I ⊂ R \ I (P) be a set of negative roots. Then the sum M (I ) :=
⊕

α∈I g
α is a P-stable sub-

module of
⊕

α∈R\I (P )g
α if, and only if,

∀ β ∈ I (P) , ∀ α ∈ I , α+β ∈ R \ I (P) =⇒ α+β ∈ I . (2)

Proof. Take α ∈ I and β ∈ I (P) such that α+β ∈ R \ I (P). In particular, we have β 6= ±α. Since G is
simply-connected, g is the Lie algebra defined by Serre’s relations (this is explained for example in [CR10,
Remark 2.2.3]), so we can choose a basis of g such that the coefficients of the Lie bracket are those of the
Chevalley basis [Ca72]. Consider the biggest integer p such that α−pβ ∈ R . This p is smaller than the
length of the β-string of roots through α minus 1 (since α+β ∈ R), and thus, by the working Assumption,
we have p ≤ char(k)−2. This implies that p +1 < char(k). It now follows from [Ca72, Theorem 4.2.1]
that [gβ,gα] = gα+β. Assuming that M (I ) is P-stable, we have it to be p-stable, and therefore α+β ∈ I .

On the other hand, let Uβ ⊂ G be the one-parameter additive subgroup corresponding to the root β.

Since Uβ ·g
α ⊂

⊕
k≥0g

α+kβ, from (2) it follows that M (I ) is Uβ-stable for any root β in I (P), and thus M (I )
is P-stable. �

Lemma 3.3. The tangent bundle T (G/P) is polystable.

Proof. Let E be the first term of the Harder-Narasimhan filtration of T (G/P). First assume E 6= T (G/P),
so

µ(E ) > µ(T (G/P)) , (3)

where µ denotes the slope, namely the quotient of the degree by the rank. Since the anticanonical po-
larization of G/P is fixed by G , from the uniqueness of the Harder-Narasimhan filtration it follows that E

is G-stable. By Proposition 3.1 and stability of T (GC/PC) in characteristic 0 [AB10, Theorem 2.1], we thus
have µ(E ) < µ(T (G/P)) which contradicts (3). So T (G/P) is semistable.

We can then similarly argue with the polystable socle (cf. [HL97, page 23, Lemma 1.5.5]) of T (G/P) to
deduce that T (G/P) is polystable. �

Since T (G/P) is polystable there are non-isomorphic stable vector bundles E1 , . . . ,Er of same slope
such that the natural map

r⊕

i=1
Hom(Ei , T (G/P))⊗Ei −→ T (G/P) (4)

is an isomorphism. We note that E1 , . . . ,Er are unique up to permutations of {1, . . . ,r }.

Lemma 3.4. Take any g ∈ G and integer 1 ≤ j ≤ r . Then g∗E j ≃ E j as vector bundles on G/P.
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Proof. Let φ : G × (G/P) −→ G/P be the left-translation action. Let p2 : G × (G/P) −→ G/P be the pro-
jection to the second factor. The action φ produces an isomorphism of vector bundles

Φ :
r⊕

i=1
Hom(Ei , T (G/P))⊗φ∗Ei = φ∗T (G/P) −→ p∗

2 T (G/P) =
r⊕

i=1
Hom(Ei , T (G/P))⊗p∗

2 Ei . (5)

For i 6= ℓ, as Ei and El are stable of the same slope, we have

Hom((φ∗Ei )|{e}×G/P , (p∗
2 Eℓ)|{e}×G/P ) = Hom(Ei ,Eℓ) = 0.

Hence, using semi-continuity,
Hom(φ∗Ei , p∗

2 Eℓ) = 0. (6)

From (6) it follows immediately that Φ in (5) takes Hom(Ei , T (G/P))⊗φ∗Ei to itself for every 1 ≤ i ≤ r .
In particular, we have Hom(E j , T (G/P))⊗φ∗E j ≃ Hom(E j , T (G/P))⊗ p∗

2 E j . Fix g ∈ G : restricting to
{g }×G/P , we get

Hom(E j , T (G/P))⊗ g∗E j ≃ Hom(E j , T (G/P))⊗E j . (7)

Since E j is stable, we know that g∗E j is indecomposable. Now in view of the uniqueness of the decom-
position into a direct sum of indecomposable vector bundles (see [At56, p. 315, Theorem 2]), from (7) we
conclude that g∗E j ≃ E j . �

Lemma 3.5. For all j ∈ [1,r ], the vector bundle E j is G-equivariant.

Proof. Fix an integer 1 ≤ j ≤ r . We now introduce the group of symmetries of the vector bundle E j : Let
G̃ denote the set of pairs (g ,h), where g ∈ G and h ∈ Aut (E j ), such that the diagram

E j
h

//

��

E j

��

G/P
g

// G/P

commutes. Since E j is simple, AutG/P (E j ) ≃ Gm , and therefore we get a central extension

1 −→ Gm −→ G̃
pr1
−→ G −→ 1.

By Lemma 3.4, the above homomorphism pr1 is surjective. This G̃ is an algebraic group. To see this,
consider the direct image p2∗Iso(φ∗E j , p∗

2 E j ), whereφ and p2 are the projections in the proof of Lemma
3.4, and Iso(φ∗E j , p∗

2 E j ) is the sheaf of isomorphisms between the two vector bundles φ∗E j and p∗
2 E j .

This direct image is a principal Gm-bundle over G/P . The total space of this principal Gm-bundle is
identified with G̃ .

We consider the derived subgroup [G̃ ,G̃]. Since G is simple and not abelian, we have [G ,G] = G , so
π([G̃ , G̃]) = G . The unipotent radical of G̃ is trivial. Indeed, the unipotent radical is mapped to the trivial
subgroup of G since G is simple. Therefore it is included in Gm and so the unipotent radical is trivial.
Since G̃ is reductive, [G̃ ,G̃] is semi-simple, hence a proper subgroup of G̃ (the radical of G̃ contains
Gm hence G̃ is not semi-simple). Thus the restriction of pr1 to [G̃ ,G̃] is an isogeny. Since G is simply-
connected, the restriction of pr1 to [G̃ ,G̃] is an isomorphism. Consequently, the tautological action of
[G̃ ,G̃] on E j makes it a G-equivariant bundle. �

Lemma 3.6. The integer r in (4) is 1.

Proof. Since Hom(E1,T (G/P))⊗E1 is a direct summand of T (G/P) (see (4)), from Lemma 3.3 we know
that the slope of Hom(E1,T (G/P))⊗E1 coincides with the slope of T (G/P). In the proof of Lemma 3.5
we saw that Hom(E1,T (G/P))⊗E1 is a G-equivariant direct summand of T (G/P). As T (GC/PC) is stable,
[AB10, Theorem 2.1], from Proposition 3.1 it now follows that Hom(E1,T (G/P))⊗E1 = T (G/P). �

Lemma 3.7. dim Hom(E1 ,T (G/P)) = 1.
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Proof. From Lemma 3.6 we have H 0(G/P, T (G/P)) = Hom(E1, T (G/P))⊗ H 0(G/P, E1). Since T (G/P) is
globally generated, so is E1 and thus dim H 0(G/P, E1) > 1. Thus, as E1 is G-equivariant, the lemma fol-
lows from Proposition 2.1. �

From Lemma 3.3, Lemma 3.6 and Lemma 3.7 it follows that T (G/P) is stable.
The following lemma completes the proof of the main Theorem.

Lemma 3.8. Let E be a semi-stable (respectively, stable) G-equivariant vector bundle on G/P. Then E is

Frobenius semi-stable (respectively, Frobenius stable).

Proof. The absolute Frobenius morphism on G/P will be denoted by F . First assume that E is semi-
stable. Let again W be the first term of the Harder-Narasimhan filtration of F∗E . We use the correspon-
dence between vector bundles on G/P and P-modules. Thus W corresponds to a P-stable subspace of
(F∗E )x0 , the fiber of F∗E at the base point in G/P . This is the same as an F∗P-stable subspace S of Ex0 .
Since F : P −→ P is bijective, this S is also a P-submodule of Ex0 . Thus, there exists a subbundle W ′ ⊂ E

of slope µ(W )
p

≥
µ(F∗E)

p
= µ(E ) such that W = F∗W ′. By semi-stability of E , we have W ′ = E . Thus we get

that W = F∗E .
Assume now that E is stable. So F∗E is semistable. Let W ⊂ F∗E be a subbundle with µ(W ) = µ(F∗E ).

We consider the Cartier connection F∗E −→ F∗E ⊗Ω
1
G/P . The subbundle W is a Frobenius pull-back if

and only if its image under the composition

W −→ F∗E −→ F∗E ⊗Ω
1
G/P

is contained in W ⊗Ω
1
G/P . Since both E and Ω

1
G/P are Frobenius semistable, the tensor product E ⊗

Ω
1
G/P is again semi-stable [RR84, p. 285, Theorem 3.18]. But µ(F∗E ⊗Ω

1
G/P ) < µ(F∗E ) = µ(W ), so this

composition vanishes. Therefore, let W ′ ⊂ E be such that W = F∗W ′. We have µ(W ′) = µ(E ). By stability
of E , we get that W ′ = E and hence W = F⋆E . �

4. AN EXAMPLE IN SMALL CHARACTERISTIC

We give an example of a tangent bundle which is semi-stable but not stable. We do not know if there
are some tangent bundles to homogeneous spaces which are not semi-stable.

The example is that of X = G/P = Gω(n,2n), the Grassmannian of Lagrangian spaces in a symplectic
space of dimension 2n, and we assume that k has characteristic 2. Namely, G is Sp2n and P corresponds
to the long simple root. Let U denote the universal bundle on X , of rank n and degree −1. Then T X is a
subbundle of U∗⊗U∗; in fact if S2U denotes the symmetric quotient of U ⊗U , then T X ≃ (S2U )∗.

We will implicitly use the correspondence between P-modules and G-linearized homogeneous bun-
dles on X . Note that the reductive quotient of P is GL(U ). Since there is an injection F∗U → S2U of
GL(U )-modules (F denotes the Frobenius morphism), this defines an exact sequence of bundles on X :

0 → F∗U → S2U → K → 0 (8)

It follows that there is a subbundle K ∗ ⊂ T X . Since µ(F∗U ) = µ(S2U ) = 2µ(U ), we get µ(K ∗) = µ(T X )
and T X is not stable. However since F∗U is the only GL(U )-invariant subspace in S2U , K ∗ is the only
equivariant subbundle in T X . Thus the semi-stability inequality holds for this subbundle. Arguing as in
the proof of Lemma 3.3, we deduce that T X is semi-stable.

For general homogeneous spaces G/P , we face two difficulties:

• There are equivariant subbundles in T X which do not lift to characteristic 0, and contrary to the
above example, they are numerous in general.

• The stability of T X for characteristic 0 says nothing about µ(E ) of such a subbundle E ⊂ T X . It
is difficult to compute the (dim(G/P)−1)-th power of the anticanonical polarization to be able
to show the semi-stability inequality for E .
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