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Abstract—In real clustering applications, proximity data, in
which only pairwise similarities or dissimilarities are known,
is more general than object data, in which each pattern is
described explicitly by a list of attributes. Medoid-based clus-
tering algorithms, which assume the prototypes of classes are
objects, are of great value for partitioning relational data sets.
In this paper a new prototype-based clustering method, named
Evidential C-Medoids (ECMdd), which is an extension of Fuzzy
C-Medoids (FCMdd) on the theoretical framework of belief
functions is proposed. In ECMdd, medoids are utilized as the
prototypes to represent the detected classes, including specific
classes and imprecise classes. Specific classes are for the data
which are distinctly far from the prototypes of other classes,
while imprecise classes accept the objects that may be close
to the prototypes of more than one class. This soft decision
mechanism could make the clustering results more cautious and
reduce the misclassification rates. Experiments in synthetic and
real data sets are used to illustrate the performance of ECMdd.
The results show that ECMdd could capture well the uncertainty
in the internal data structure. Moreover, it is more robust to the
initializations compared with FCMdd.

Index Terms—Credal partitions; Relational clustering; Eviden-
tial c-medoids; Imprecise classes.

I. INTRODUCTION

Clustering is a useful technique to detect the underlying
cluster structure of the data set. The goal of clustering is
to partition a set of objects X = {x1, x2, · · · , xn} into
c small subgroups Ω = {ω1, ω2, · · · , ωc} based on a well
defined measure of similarities between patterns. To measure
the similarities (or dissimilarities), the objects are described by
either object data or relational data. Object data are described
explicitly by a feature vector, while relational data arise
from the pairwise similarities or dissimilarities. Among the
existing approaches to clustering, the objective function-driven
or prototype-based clustering such as C-Means (CM) and
Fuzzy C-Means (FCM) is one of the most widely applied
paradigms in statistical pattern recognition. These methods are
based on a fundamentally very simple, but nevertheless very
effective idea, namely to describe the data under consideration
by a set of prototypes. They capture the characteristics of the
data distribution (like location, size, and shape), and classify
the data set based on the similarities (or dissimilarities) of the
objects to their prototypes.

The above mentioned clustering algorithms, CM and FCM
are for object data. The prototype of each class in these
methods is the center of gravity of all the included patterns.
But for relational data set, it is difficult to determine the
centers of objects. In this case, one of the objects which is
most similar to the center could be the most rational choice

to be setting as the prototype. This is the idea of clustering
using medoids. Some clustering methods, such as Partitioning
Around Medoids (PAM) [1] and Fuzzy C-Medoids (FCMdd)
[2], produce hard and soft clusters where each of them is
represented by a representative object (medoid).

Belief functions have already been applied in many fields,
such as data classification [3], data clustering [4], [5], social
network analysis [6], [7] and statistical estimation [8], [9].
Evidential C-means (ECM) [4] is a newly proposed clustering
method to get credal partitions for object data. The credal par-
tition is a general extension of the crisp (hard) and fuzzy ones
and it allows the object to belong to not only single clusters,
but also any subsets of the set of clusters Ω = {ω1, · · · , ωc}
by allocating a mass of belief for each object in X over the
power set 2Ω. The additional flexibility brought by the power
set provides more refined partitioning results than those by the
other techniques allowing us to gain a deeper insight into the
data [4]. In this paper, we introduce an extension of FCMdd
on the framework of belief functions. The evidential clustering
algorithm for relational data sets, named ECMdd, using a
medoid which is assumed to belong to the original data set to
represent a class are proposed to produce the optimal credal
partition. The experimental results show the effectiveness of
the methods and illustrate the advantages of credal partitions.

The rest of this paper is organized as follows. In Section
II, some basic knowledge and the rationale of our method
are briefly introduced. In Section III the proposed ECMdd
clustering approach is presented in detail. In Section IV we
test ECMdd using various data sets and compare it with several
other classical methods. Finally, we conclude and present some
perspectives in Section V.

II. BACKGROUND

A. Theory of belief functions
Let Ω = {ω1, ω2, . . . , ωc} be the finite domain of X , called

the discernment frame. The belief functions are defined on the
power set 2Ω = {A : A ⊆ Ω}.

The function m : 2Ω → [0, 1] is said to be the Basic Belief
Assignment (bba) on 2Ω, if it satisfies:∑

A⊆Ω

m(A) = 1. (1)

Every A ∈ 2Ω such that m(A) > 0 is called a focal element.
The credibility and plausibility functions are defined as in
Eq. (2) and Eq. (3).

Bel(A) =
∑

B⊆A,B 6=∅

m(B) ∀A ⊆ Ω, (2)



Pl(A) =
∑

B∩A6=∅

m(B), ∀A ⊆ Ω. (3)

Each quantity Bel(A) measures the total support given to A,
while Pl(A) represents potential amount of support to A.

A belief function on the credal level can be transformed
into a probability function by Smets method [10]. In this
algorithm, each mass of belief m(A) is equally distributed
among the elements of A. This leads to the concept of pignistic
probability, BetP , defined by

BetP (ωi) =
∑

ωi∈A⊆Ω

m(A)

|A|(1−m(∅))
, (4)

where |A| is the number of elements of Ω in A.

B. Evidential c-means

Evidential c-means [4] is a direct generalization of FCM
in the framework of belief functions based on the concept
of credal partitions. The credal partition takes advantage of
imprecise (meta) classes to express partial knowledge of
class memberships. In ECM, the evidential membership of an
object xi is represented by a bba mi = (mi (Ak) : Ak ⊆ Ω)
(i = 1, 2, · · · , n) over the given frame of discernment Ω. The
set {Ak | Ak ⊆ Ω, k = 1, 2, · · · , 2c} contains all the focal ele-
ments. The optimal credal partition is obtained by minimizing
the following objective function:

JECM =

n∑
i=1

∑
Ak⊆Ω,Ak 6=∅

|Ak|αmi(Ak)βd2
ik +

n∑
i=1

δ2mi(∅)β

(5)
constrained on ∑

Ak⊆Ω,Ak 6=∅

mi(Ak) +mi(∅) = 1, (6)

and
mi (Ak) ≥ 0, mi (∅) ≥ 0, (7)

where mi(Ak) , mik is the bba of xi given to the nonempty
set Ak, while mi(∅) , mi∅ is the bba of xi assigned to
the empty set. Parameter α is a tuning parameter allowing
to control the degree of penalization for subsets with high
cardinality, parameter β is a weighting exponent and δ is
an adjustable threshold for detecting the outliers. Here dik
denotes the distance (generally Euclidean distance) between xi
and the barycenter (i.e. prototype, denoted by vk) associated
with Ak:

d2
ik = ‖xi − vk‖2, (8)

where vk is defined mathematically by

vk =
1

|Ak|

c∑
h=1

shkvh, with shk =

{
1 if ωh ∈ Ak
0 else

. (9)

The notation vh is the geometrical center of points in cluster
h. The update process with Euclidean distance is given by the
following two alternating steps.

• Assignment update, ∀i, ∀k/Ak ⊆ Ω, Ak 6= ∅:

mik =
|Ak|−α/(β−1)d

−2/(β−1)
ik∑

Ah 6=∅
|Ah|−α/(β−1)d

−2/(β−1)
ih + δ−2/(β−1)

,

(10)

and for Ak = ∅

mi∅ = 1−
∑
Ak 6=∅

mik, ∀i = 1, 2, · · · , n. (11)

• Prototype update: The prototypes (centers) of the classes
are given by the rows of the matrix vc×p, which is the
solution of the following linear system:

HV = B, (12)

where H is a matrix of size (c× c) given by

Hlk =
∑
i

∑
Akk{ωk,ωl}

|Ak|α−2mβ
ik, (13)

and B is a matrix of size (c× p) defined by

Blq =

n∑
i=1

xiq
∑
Ak3ωl

|Ak|α−1mβ
ik. (14)

C. Fuzzy c-medoids
Fuzzy C-Medoids (FCMdd) is a variation of classical

c-means clustering designed for relational data [2]. Let
X = {xi | i = 1, 2, · · · , n} be the set of n objects and
τ(xi, xj) , τij denote the dissimilarity between objects xi and
xj . Each object may or may not be represented by a feature
vector. Let V = {v1, v2, · · · , vc}, vi ∈ X represent a subset
of X . The objective function of FCMdd is given as

JFCMdd =

n∑
i=1

c∑
j=1

uβijτ(xi, vj) (15)

subject to
c∑
j=1

uij = 1, i = 1, 2, · · · , n, (16)

and
uij ≥ 0, i = 1, 2, · · · , n, j = 1, 2, · · · , c. (17)

In fact, the objective function of FCMdd is similar to that of
FCM. The main difference lies in that the prototype of a class
in FCMdd is defined as the medoid, i.e., one of the object in
the original data set, instead of the centroid (the average point
in a continues space) for FCM. FCMdd is preformed by the
following alternating update steps:
• Assignment update:

uij =
τ
−1/(β−1)
ij

c∑
k=1

τ
−1/(β−1)
ik

. (18)

• Prototype update: the new prototype of cluster j is set to
be vj = xl∗ with

xl∗ = arg min
{vj :vj=xl(∈X)}

n∑
i=1

uβijτ(xi, vj). (19)



III. EVIDENTIAL c-MEDOIDS CLUSTERING

Here we introduce evidential c-medoids clustering algorithm
using medoids in order to take advantages of both medoid-
based clustering and credal partitions. This partitioning ev-
idential clustering algorithm is mainly related to fuzzy c-
medoids. Like all the prototype-based clustering methods, for
ECMdd, an objective function should first be found to provide
an immediate measure of the quality of partitions. Hence our
goal can be characterized as the optimization of the objective
function to get the best credal partition.

A. The objective function

As before, let X = {xi | i = 1, 2, · · · , n} be the set of n
objects and τ(xi, xj) , τij denote the dissimilarity between
objects xi and xj . The pairwise dissimilarity is the only
information required for the analyzed data set. The objective
function of ECMdd is similar to that in ECM:

JECMdd(M ,V ) =

n∑
i=1

∑
Aj⊆Ω,Aj 6=∅

|Aj |αmβ
ijdij +

n∑
i=1

δ2mβ
i∅,

(20)
constrained on ∑

Aj⊆Ω,Aj 6=∅

mij +mi∅ = 1, (21)

where mij , mi(Aj) is the bba of xi given to the nonempty
set Aj , mi∅ , mi(∅) is the bba of xi assigned to the empty
set, and dij , d(xi, Aj) is the dissimilarity between xi and
focal set Aj . Parameters α, β, δ are adjustable with the same
meanings as those in ECM. Note that JECMdd depends on the
credal partition M and the set V of all prototypes.

Let vΩ
k be the prototype of specific cluster (whose focal

element is a singleton) Aj = {ωk} (k = 1, 2, · · · , c) and as-
sume that it must be one of the objects in X . The dissimilarity
between object xi and cluster (focal set) Aj can be defined
as follows. If |Aj | = 1, i.e., Aj is associated with one of the
singleton clusters in Ω (suppose to be ωk with prototype vΩ

k ,
i.e., Aj = {ωk}), then the dissimilarity between xi and Aj is
defined by

dij = d(xi, Aj) = τ(xi, v
Ω
k ). (22)

When |Aj | > 1, it represents an imprecise (meta) cluster.
If object xi is to be partitioned into a meta cluster, two
conditions should be satisfied [7]. One condition is the dissim-
ilarity values between xi and the included singleton classes’
prototypes are small. The other condition is the object should
be close to the prototypes of all these specific clusters. The
former measures the degree of uncertainty, while the latter
is to avoid the pitfall of partitioning two data objects irrele-
vant to any included specific clusters into the corresponding
imprecise classes. Therefore, the medoid (prototype) of an
imprecise class Aj could be set to be one of the objects
locating with similar dissimilarities to all the prototypes of
the specific classes ωk ∈ Aj included in Aj . The variance
of the dissimilarities of object xi to the medoids of all the
included specific classes of Aj could be taken into account to

express the degree of uncertainty. The smaller the variance is,
the higher uncertainty we have for object xi. Meanwhile the
medoid should be close to all the prototypes of the specific
classes. This is to distinguish the outliers, which may have
equal dissimilarities to the prototypes of some specific classes,
but obviously not a good choice for representing the associated
imprecise classes. Let v2Ω

j denote the medoid of class Aj1.
Based on the above analysis, the medoid of Aj should set to
v2Ω

j = xp with

p = arg min
i:xi∈X

{
f
(
{τ(xi, v

Ω
k );ωk ∈ Aj}

)
+η

1

|Aj |
∑
ωk∈Aj

τ(xi, v
Ω
k )
}
, (23)

where ωk is the element of Aj , vΩ
k is its corresponding

prototype and f denotes the function describing the variance
among the corresponding dissimilarity values. The variance
function could be used directly:

Varij =
1

|Aj |
∑
ωk∈Aj

[
τ(xi, v

Ω
k )− 1

|Aj |
∑
ωk∈Aj

τ(xi, v
Ω
k )

]2

.

(24)
In this paper, we use the following function to describe the
variance ρij of the dissimilarities between object xi and the
medoids of the involved specific classes in Aj :

ρij =
1

choose(|Aj |, 2)

∑
ωx,ωy∈Aj

√(
τ(xi, vΩ

x )− τ(xi, vΩ
y )
)2
,

(25)
where choose(a, b) is the number of combinations of the given
a elements taken b at a time.

The dissimilarity between objects xi and class Aj can be
defined as

dij =

τ(xi, v
2Ω

j ) + γ 1
|Aj |

∑
ωk∈Aj

τ(xi, v
Ω
k )

1 + γ
. (26)

As we can see from the above equation, the dissimilarity
between object xi and meta class Aj (|Aj | > 1) is the
weighted average of dissimilarities of xi to the all involved
singleton cluster medoids and to the prototype of the imprecise
class Aj with a tuning factor γ. If Aj is a specific class with
Aj = {ωk} (|Aj | = 1), the dissimilarity between xj and Aj
degrades to the dissimilarity between xi and vΩ

k as defined
in Eq. (22), i.e., v2Ω

j = vΩ
k . And if |Aj | > 1, its medoid is

decided by Eq. (23).
It is remarkable that although ECMdd is similar to Median

Evidential C-Means (MECM) [7] algorithm in principle, but
they are very different in dealing with the imprecise classes
and the way of calculating the dissimilarities between objects
and imprecise classes. Although both MECM and ECMdd

1The notation vΩ
k denotes the prototype of specific class ωk , thus it is

in the framework of Ω. Similarly, v2Ω

j is defined on the power set 2Ω,
representing the prototype of the focal set Aj ∈ 2Ω. It is easy to see
{vΩ

k : k = 1, 2, · · · , c} ⊆ {v2Ω

j : j = 1, 2, · · · , 2c − 1}.



consider the dissimilarities of objects to the prototypes for
specific clusters, the strategy adopted by ECMdd is more
simple and intuitive. Moreover, there is no representative
medoid for imprecise classes in MECM.

B. The optimization

To minimize JECMdd, an optimization scheme via an
Expectation-Maximization (EM) algorithm can be designed,
and the alternate update steps are as follows:
Step 1. Credal partition (M ) update.

The bbas of objects’ class membership for any subset
Aj ⊆ Ω and the empty set ∅ representing the outliers are
updated identically to ECM [4]:
• ∀Aj ⊆ Ω, Aj 6= ∅,

mij =
|Aj |−α/(β−1)d

−1/(β−1)
ij∑

Ak 6=∅
|Ak|−α/(β−1)d

−1/(β−1)
ik + δ−1/(β−1)

(27)

• If Aj = ∅,
mi∅ = 1−

∑
Aj 6=∅

mij (28)

Step 2. Prototype (V ) update.
The prototype vΩ

i of a specific (singleton) cluster
ωi (i = 1, 2, · · · , c) can be updated first and then the
prototypes of imprecise (meta) classes could be determined
by Eq. (23). For singleton clusters ωk (k = 1, 2, · · · , c), the
corresponding new prototype vΩ

k (k = 1, 2, · · · , c) could be
set to xl ∈ X such that

xl = arg min
v
′
k


n∑
i=1

∑
Aj={ωk}

mβ
ijdij(v

′

k) : v
′

k ∈ X

 . (29)

The dissimilarity between object xi and cluster Aj , dij , is a
function of v

′

k, which is the potential prototype of class ωk.
The bbas of the objects’ class assignment are updated

identically to ECM [4], but it is worth noting that dij has
different meanings as that in ECM although in both cases it
measures the dissimilarity between object xi and class Aj . In
ECM dij is the distance between object i and the centroid
point of Aj , while in ECMdd, it is the dissimilarity between
xi and the most “possible” medoid. For the prototype updating
process the fact that the prototypes are assumed to be one of
the data objects is taken into consideration. Therefore, when
the credal partition matrix M is fixed, the new prototype
of each cluster can be obtained in a simpler manner than
in the case of ECM application. The ECMdd algorithm is
summarized as Algorithm 1.

We discuss here about the convergence of ECMdd. The
assignment update process will not increase JECMdd since
the new mass matrix is determined by differentiating of the
respective Lagrangian of the cost function with respect to M .
Also JECMdd will not increase through the medoid-searching
scheme for prototypes of specific classes. If the prototypes of
specific classes are fixed, the medoids of imprecise classes
determined by Eq. (23) are likely to locate near to the

“centroid” of all the prototypes of the included specific classes.
If the objects are in Euclidean space, the medoids of imprecise
classes are near to the centroids found in ECM. Thus it will
not increase the value of the objective function also. Moreover,
the bba M is a function of the prototypes V and for given
V the assignment M is unique. Because ECMdd assumes
that the prototypes are original object data in X , so there is
a finite number of different prototype vectors V and so is the
number of corresponding credal partitions M . Consequently
we can conclude that the ECMdd algorithm converges in a
finite number of steps.

Algorithm 1 : ECMdd algorithm
Input: Dissimilarity matrix [τ(xi, xj)]n×n for the n objects
{x1, x2, · · · , xn}.
Parameters:
c: number clusters 1 < c < n
α: weighing exponent for cardinality
β > 1: weighting exponent
δ > 0: dissimilarity between any object to the empty set
η > 0: to distinguish the outliers from the possible medoids
γ ∈ [0, 1]: balance of the contribution for imprecise classes
Initialization:
Choose randomly c initial prototypes from the object set
repeat

(1). t← t+ 1
(2). Compute Mt using Eq. (27), Eq. (28) and Vt−1

(3). Compute the new prototype set Vt using Eq. (29)
and (23)

until the prototypes remain unchanged.
Output: The optimal credal partition.

C. The parameters of the algorithm

As in ECM, before running ECMdd, the values of the
parameters have to be set. Parameters α, β and δ have the
same meanings as those in ECM. The value β can be set to
be β = 2 in all experiments for which it is a usual choice. The
parameter α aims to penalize the subsets with high cardinality
and control the amount of points assigned to imprecise clusters
for credal partitions. The higher α is, the less mass belief is
assigned to the meta clusters and the less imprecise will be
the resulting partition. However, the decrease of imprecision
may result in high risk of errors. For instance, in the case of
hard partitions, the clustering results are completely precise
but there is much more intendancy to partition an object to
an unrelated group. As suggested in [4], a value can be used
as a starting default one but it can be modified according to
what is expected from the user. The choice δ is more difficult
and is strongly data dependent [4]. In ECMdd, parameter
γ weighs the contribution of uncertainty to the dissimilarity
between objects and imprecise clusters. Parameter η is used
to distinguish the outliers from the possible medoids when
determining the prototypes of meta classes. It could be set 1
by default and it has little effect on the final partition results.



For determining the number of clusters, the validity index
of a credal partition defined by [4] could be utilised:

N∗(c) ,
1

n log2(c)
×

n∑
i=1

[ ∑
A∈2Ω\∅

mi(A) log2 |A|

+mi(∅) log2(c)

]
, (30)

where 0 ≤ N∗(c) ≤ 1. This index has to be minimized to get
the optimal number of clusters.

IV. EXPERIMENTS

In this section some experiments on various data sets
will be performed to show the effectiveness of ECMdd. The
results are compared with FCMdd and MECM to illustrate the
effectiveness and merits of the proposed method.

The c-means type clustering algorithms are sensitive to the
initial prototypes. In this work, we follow the initialization
procedure as the one used in [2] and [11] to generate a set
of c initial prototypes one by one. The first medoid, σ1, is
randomly picked from the data set. The rest of medoids are
selected successively one by one in such a way that each one
is most dissimilar to all the medoids that have already been
picked. Suppose σ = {σ1, σ2, · · · , σj} is the set of the first
chosen j (j < c) medoids. Then the j + 1 medoid, σj+1, is
set to the object xp with

p = arg max
1≤i≤n;xi /∈σ

{
min
σk∈σ

τ(xi, σk)

}
. (31)

This selection process makes the initial prototypes evenly
distributed and locate as far away from each other as possible.
The popular measures, Precision (P), Recall (R) and Rand In-
dex (RI), which are typically used to evaluate the performance
of hard clusterings are also used here. Precision is the fraction
of relevant instances (pairs in identical groups in the clustering
benchmark) out of those retrieved instances (pairs in identical
groups of the discovered clusters), while recall is the fraction
of relevant instances that are retrieved. Then precision and
recall can be calculated by

P =
a

a+ c
and R =

a

a+ d
(32)

respectively, where a (respectively, b) be the number of
pairs of objects simultaneously assigned to identical classes
(respectively, different classes) by the stand reference partition
and the obtained one. Similarly, values c and d are the
numbers of dissimilar pairs partitioned into the same cluster,
and the number of similar object pairs clustered into different
clusters respectively. The rand index measures the percentage
of correct decisions and it can be defined as

RI =
2(a+ b)

n(n− 1)
, (33)

where n is the number of data objects.
For fuzzy and evidential clusterings, objects may be par-

titioned into multiple clusters with different degrees. In such
cases precision would be consequently low [12]. Usually the

fuzzy and evidential clusters are made crisp before calculating
the measures, using for instance the maximum membership
criterion [12] and pignistic probabilities [4]. Thus in this work
we will harden the fuzzy and credal clusters by maximizing
the corresponding membership and pignistic probabilities and
calculate precision, recall and RI for each case.

The introduced imprecise clusters can avoid the risk to
group a data into a specific class without strong belief. In other
words, a data pair can be clustered into the same specific group
only when we are quite confident and thus the misclassification
rate will be reduced. However, partitioning too many data
into imprecise clusters may cause that many objects are not
identified for their precise groups. In order to show the
effectiveness of the proposed method in these aspects, we
use the indices for evaluating credal partitions, Evidential
Precision (EP), Evidential Recall (ER) and Evidential Rank
Index (ERI) [7] defined as:

EP =
ner
Ne

, ER =
ner
Nr

, ERI =
2(a∗ + b∗)

n(n− 1)
. (34)

In Eq. (34), the notation Ne denotes the number of pairs par-
titioned into the same specific group by evidential clusterings,
and ner is the number of relevant instance pairs out of these
specifically clustered pairs. The value Nr denotes the number
of pairs in the same group of the clustering benchmark, and
ER is the fraction of specifically retrieved instances (grouped
into an identical specific cluster) out of these relevant pairs.
Value a∗ (respectively, b∗) is the number of pairs of objects
simultaneously clustered to the same specific class (i.e., single-
ton class, respectively, different classes) by the stand reference
partition and the obtained credal one. When the partition
degrades to a crisp one, EP, ER and ERI equal to the classical
precision, recall and rand index measures respectively. EP and
ER reflect the accuracy of the credal partition from different
points of view, but we could not evaluate the clusterings from
one single term. For example, if all the objects are partitioned
into imprecise clusters except two relevant data object grouped
into a specific class, EP = 1 in this case. But we could not say
this is a good partition since it does not provide us with any
information of great value. In this case ER ≈ 0. Thus ER could
be used to express the efficiency of the method for providing
valuable partitions. ERI is like the combination of EP and
ER describing the accuracy of the clustering results. Note that
for evidential clusterings, precision, recall and RI measures
are calculated after the corresponding hard partitions are got,
while EP, ER and ERI are based on hard credal partitions [4].

A. Karate Club network

Graph visualization is commonly used to visually model
relations in many areas. For graphs such as social networks, the
prototype of one group is likely to be one of the persons (i.e.,
nodes in the graph) playing the leader role in the community.
Moreover, a graph (network) of vertices and edges usually
describes the interactions between different agents of the
complex system and the pair-wise relationships between nodes
are often implied in the graph data sets. Thus medoids-based



relational clustering algorithms could be directly applied. In
this section we will evaluate the effectiveness of the proposed
methods applied on community detection problems. Here we
test on a widely used benchmark in detecting community
structures, “Karate Club”, studied by Wayne Zachary. The
network consists of 34 nodes and 78 edges representing the
friendship among the members of the club (see Figure 1.a).

There are many similarity and dissimilarity indices for net-
works, using local or global information of graph structure. In
this experiment, different similarity metrics will be compared
first. The similarity indices considered here are listed in Table
I. It is notable that the similarities by these measures are from
0 to 1, thus they could be converted into dissimilarities simply
by dissimilarity = 1 − similarity. The comparison results
for different dissimilarity indices by FCMdd and ECMdd are
shown in Table II and Table III respectively. As we can
see, for all the dissimilarity indices, for ECMdd, the value
of evidential precision is higher than that of precision. This
can be attributed to the introduced imprecise classes which
enable us not to make a hard decision for the nodes that
we are uncertain and consequently guarantee the accuracy of
the specific clustering results. From the table we can also see
that the performance using the dissimilarity measure based on
signal prorogation is better than those using local similarities
in the application of both FCMdd and ECMdd. This reflects
that global dissimilarity metric is better than the local ones for
community detection. Thus in the following experiments, we
only consider the signal dissimilarity index.

TABLE I
DIFFERENT LOCAL AND GLOBAL SIMILARITY INDICES.

Index Global metric Ref. Index Global metric Ref.
Jaccard No [13] Zhou No [14]

Pan No [15] Signal Yes [16]

TABLE II
COMPARISON OF DIFFERENT SIMILARITY INDICES BY FCMDD.

Index P R RI EP ER ERI
Jaccard 0.6364 0.7179 0.6631 0.6364 0.7179 0.6631

Pan 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866
Zhou 0.4866 1.0000 0.4866 0.4866 1.0000 0.4866

Signal 0.8125 0.8571 0.8342 0.8125 0.8571 0.8342

TABLE III
COMPARISON OF DIFFERENT SIMILARITY INDICES BY ECMDD.

Index P R RI EP ER ERI
Jaccard 0.6458 0.6813 0.6631 0.7277 0.5092 0.6684

Pan 0.6868 0.7070 0.7005 0.7214 0.6923 0.7201
Zhou 0.6522 0.6593 0.6631 0.7460 0.3443 0.6239

Signal 1.0000 1.0000 1.0000 1.0000 0.6190 0.8146

The detected community structures by different methods
are displayed in Figure 1.b – 1.d. FCMdd could detect the
exact community structure of all the nodes except nodes 3,
14, 20. As we can see from the figures, these three nodes
have connections with both communities. They are partitioned
into imprecise class ω12 , {ω1, ω2}, which describing the
uncertainty on the exact class labels of the three nodes, by the
application of ECMdd. The medoids found by FCMdd of the

two specific communities are node 5 and node 29, while by
ECMdd node 5 and node 33. The uncertain nodes found by
MECM are node 3 and node 9.

From this experiment we can see that the introduced im-
precise classes by credal partitions could help us make soft
decisions for the uncertain objects which may lie in the
overlapped area. This could avoid the risk of making errors
simply by hard partitions.

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω22

1

●

1

2

3

4

5
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω22

1

●

a. Original network b. Results by FCMdd

1

2

4

5
6

7

8

10

11

12

13

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω2

3

14

20

ω
112

9

●

1

2

4

5
6

7

8

10

11

12

13

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

●

●

ω
1

ω2

ω
1

ω2

3

14

20

ω
112

9

●

c. Results by MECM d. Results by ECMdd

Fig. 1. The Karate Club network. The parameters of MECM are α =
1.5, β = 2, δ = 100, η = 0.9, γ = 0.05. In ECMdd, α = 0.05, β =
2, δ = 100, η = 1, γ = 1, while in FCMdd, β = 2.

B. Countries data

In this section we will test on a direct relational data
set, referred as the benchmark data set Countries Data [1],
[11]. The task is to group twelve countries into clusters
based on the pairwise relationships as given in Table IV,
which is in fact the average dissimilarity scores on some
dimensions of quality of life provided subjectively by stu-
dents in a political science class. Generally, these coun-
tries are classified into three categories: Western, Developing
and Communist. We test the performances of FCMdd and
ECMdd with two different sets of initial representative coun-
tries which are ∆1= {C10: USSR; C8: Israel; C7: India} and
∆2 = {C6: France; C4: Cuba; C1: Belgium}. The three coun-
tries in ∆1 are well separated. On the contrary, for the
countries in ∆2, Belgium is similar to France, which makes
two initial medoids of three are very close in terms of the given
dissimilarities. The parameters are set as β = 2 for FCMdd,
and β = 2, α = 0.95, η = 1, γ = 1 for ECMdd.

The results of FCMdd and ECMdd are given in Table V
and Table VI respectively. It can be seen that FCMdd is very
sensitive to initializations. When the initial prototypes are well



TABLE IV
COUNTRIES DATA: DISSIMILARITY MATRIX.

Countries C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
1 C1: Belgium: 0.00 5.58 7.00 7.08 4.83 2.17 6.42 3.42 2.50 6.08 5.25 4.75
2 C2: Brazil 5.58 0.00 6.50 7.00 5.08 5.75 5.00 5.50 4.92 6.67 6.83 3.00
3 C3: China 7.00 6.50 0.00 3.83 8.17 6.67 5.58 6.42 6.25 4.25 4.50 6.08
4 C4: Cuba 7.08 7.00 3.83 0.00 5.83 6.92 6.00 6.42 7.33 2.67 3.75 6.67
5 C5: Egypt 4.83 5.08 8.17 5.83 0.00 4.92 4.67 5.00 4.50 6.00 5.75 5.00
6 C6: France 2.17 5.75 6.67 6.92 4.92 0.00 6.42 3.92 2.25 6.17 5.42 5.58
7 C7: India 6.42 5.00 5.58 6.00 4.67 6.42 0.00 6.17 6.33 6.17 6.08 4.83
8 C8: Israel 3.42 5.50 6.42 6.42 5.00 3.92 6.17 0.00 2.75 6.92 5.83 6.17
9 C9: USA 2.50 4.92 6.25 7.33 4.50 2.25 6.33 2.75 0.00 6.17 6.67 5.67
10 C10: USSR 6.08 6.67 4.25 2.67 6.00 6.17 6.17 6.92 6.17 0.00 3.67 6.50
11 C11: Yugoslavia 5.25 6.83 4.50 3.75 5.75 5.42 6.08 5.83 6.67 3.67 0.00 6.92
12 C12: Zaire 4.75 3.00 6.08 6.67 5.00 5.58 4.83 6.17 5.67 6.50 6.92 0.00

set (the case of ∆1), the obtained partition is reasonable.
However, the clustering results become worse when the initial
medoids are not ideal (the case of ∆2). In fact two of the
three medoids are not changed during the update process of
FCMdd when using initial prototype set ∆2. This example
illustrates that FCMdd is quite easy to be stuck in a local
minimum. For ECMdd, the credal partitions are the same with
different initializations. The pignistic probabilities are also
displayed in Table VI, which could be regarded as membership
values in fuzzy partitions. The country Egypt is clustered into
imprecise class {1, 2}, which indicating that Egypt is not so
well belongs to Developing or Western alone, but belongs to
both categories. This result is consistent with the fact shown
from the dissimilarity matrix: Egypt is similar to both USA
and India, but has the largest dissimilarity to China. From this
experiment we could conclude that ECMdd is more robust to
the initializations than FCMdd.

From Table VI we can also see the medoid of each class.
For instance, China is the medoid of its cluster (Communist
countries) no matter which initial prototype set is used. This
reflects the important role of China in communist countries
and it has significant communist characters.

C. UCI data sets

Finally the clustering performance of different methods
will be compared on two benchmark UCI relational data
sets: “Cat cortex” data set and “Protein” data set. The given
information for these data sets is pair-wise relationship values.
For the former it is a matrix of connection strengths between
65 cortical areas of the cat brain, while for the latter is
a dissimilarity matrix measuring the structural proximity of
213 proteins sequences. The comparison results by different
evaluation indices are displayed in Figure 2. For ECMdd
and MECM, the classical Precision (P), Recall (R) and Rand
Index (RI) are calculated based on the pignistic probabilities,
and the corresponding evidential indices are obtained from
the hard credal partition [4]. As it can be seen, the three
classical measures are almost the same for all the methods.
This reflects that pignistic probabilities play a similar role
as fuzzy membership. But we can see that for ECMdd and
MECM, EP is significantly high. Such effect can be attributed
to the introduced imprecise clusters which enable us to make a

compromise decision between hard ones. But as many points
are clustered into imprecise classes, the evidential recall value
is low. The performance of ECMdd is slightly better than
MECM. But we know the expression of imprecise classes
of ECMdd is more simple than that of MECM and from the
experiment it proves that ECMdd is more efficient than MECM
in terms of executing time.
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Fig. 2. The clustering results for two UCI data sets.

V. CONCLUSION

In this paper, the evidential c-medoids clustering is proposed
as a new medoid-based clustering algorithm. The proposed
approach is the extensions of crisp c-medoids and fuzzy c-
medoids on the framework of belief function theory. By the
introduced imprecise clusters, we could find some overlapped
and indistinguishable clusters for uncertain patterns. This
results in higher accuracy of the specific decisions. The ex-
perimental results illustrates the advantages of credal partitions



TABLE V
CLUSTERING RESULTS OF FCMDD FOR COUNTRIES DATA. THE PROTOTYPE (MEDOID) OF EACH CLASS IS MARKED WITH *.

FCMdd with ∆1 FCMdd with ∆2

Countries ui1 ui2 ui3 Label Medoids ui1 ui2 ui3 Label Medoids
1 C1: Belgium 0.4773 0.2543 0.2685 1 - 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4453 0.2719 0.2829 1 - 0.0000 1.0000 0.0000 2 *
3 C8: Israel 1.0000 0.0000 0.0000 1 * 0.4158 0.3627 0.2215 1 -
4 C9: USA 0.5319 0.2311 0.2371 1 - 0.4078 0.4531 0.1391 2 -

5 C3: China 0.2731 0.3143 0.4126 3 - 0.2579 0.2707 0.4714 3 -
6 C4: Cuba 0.2235 0.2391 0.5374 3 - 0.0000 0.0000 1.0000 3 *
7 C10: USSR 0.0000 0.0000 1.0000 3 * 0.2346 0.2312 0.5342 3 -
8 C11: Yugoslavia 0.2819 0.2703 0.4478 3 - 0.2969 0.2875 0.4156 3 -

9 C2: Brazil 0.3419 0.3761 0.2820 2 - 0.3613 0.3506 0.2880 1 -
10 C5: Egypt 0.3444 0.3687 0.2870 2 - 0.3558 0.3493 0.2948 1 -
11 C7: India 0.0000 1.0000 0.0000 2 * 0.3257 0.3257 0.3485 3 -
12 C12: Zaire 0.3099 0.3959 0.2942 2 - 0.3901 0.3321 0.2778 1 -

TABLE VI
CLUSTERING RESULTS OF ECMDD FOR COUNTRIES DATA. THE PROTOTYPE (MEDOID) OF EACH CLASS IS MARKED WITH *. THE LABEL {1, 2}

REPRESENTS THE IMPRECISE CLASS EXPRESSING THE UNCERTAINTY ON CLASS 1 AND CLASS 2.

ECMdd with ∆1 ECMdd with ∆2

Countries BetPi1 BetPi2 BetPi3 Label Medoids BetPi1 BetPi2 BetPi3 Label Medoids
1 C1: Belgium 1.0000 0.0000 0.0000 1 * 1.0000 0.0000 0.0000 1 *
2 C6: France 0.4932 0.2633 0.2435 1 - 0.5149 0.2555 0.2297 1 -
3 C8: Israel 0.4144 0.3119 0.2738 1 - 0.4231 0.3051 0.2719 1 -
4 C9: USA 0.4503 0.2994 0.2503 1 - 0.4684 0.2920 0.2396 1 -

5 C3: China 0.2323 0.2294 0.5383 3 * 0.0000 0.0000 1.0000 3 *
6 C4: Cuba 0.2778 0.2636 0.4586 3 - 0.2899 0.2794 0.4307 3 -
7 C10: USSR 0.2509 0.2260 0.5231 3 - 0.3167 0.2849 0.3984 3 -
8 C11: Yugoslavia 0.3478 0.2488 0.4034 3 - 0.3579 0.2526 0.3895 3 -

9 C2: Brazil 0.0000 1.0000 0.0000 2 * 0.0000 1.0000 0.0000 2 *
10 C5: Egypt 0.3755 0.3686 0.2558 {1, 2} - 0.3845 0.3777 0.2378 {1, 2} -
11 C7: India 0.3125 0.3650 0.3226 2 - 0.2787 0.3740 0.3473 2 -
12 C12: Zaire 0.3081 0.4336 0.2583 2 - 0.3068 0.4312 0.2619 2 -

by ECMdd. In real applications, using only one medoid may
not adequately model different types of group structure and
hence limits the clustering performance on complex data
sets. Therefore, we intend to include the feature of multiple
prototype representation of classes in our future research work.
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