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1. Introduction

1.1. Overview

This article addresses a novel linear Cosserat model involving the grid framework model assumption [1,2]. We have inves-

tigated another interesting case (case 4) in which identical micro-rotation constants are used a ¼ b ¼ c ¼ lL2
c or W ¼ 2

3

� �
.

The numerical outcomes show that all mentioned cases are bounded whatever Lc values [3–5]. Furthermore, the curvature
stiffness torque is bounded as well as stiffness torque including the Dirichlet boundary conditions for displacements and
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Nomenclature

Constants
a first micro-rotation or micro-rotation constant in [N]
b second micro-rotation or micro-rotation constant in [N]
‘1, ‘2 and ‘3 first, second and third characteristic length scale [m]
‘t characteristic length scale for torsion in [m]
c third micro-rotation or micro-rotation constant in [N]
j Cosserat couple modulus in accordance with the Eringen’s notation in [Pa]
k first Lamé’s constant in [Pa]
l second Lamé’s constant in [Pa]
l⁄ Pseudo-Lamé’s constant in accordance with the Eringen’s notation in [Pa]
lc Cosserat couple modulus in [Pa or N/m2]
m Poisson’s ratio in [–]
W polar ratio in [–]
E Young’s modulus in [Pa]
Lc Cosserat characteristic length scale in [m]
N coupling number in [–]

Third-rank tensor quantities
e antisymmetrical permutation tensor or Levi–Civita tensor in [–]

Sets
M3�3 or R3 � R3 set of real 3 � 3 second-rank tensors
N natural set
R real set

Second-rank tensor quantities
�A dual tensor of the micro-rotation vector [rad.]
�e non-symmetric first Cosserat stretch tensor in [–]
�r unsymmetrical stress tensor in [Pa]
�rexact

ij exact stress components corrected by deformation gradient tensor on @X1 in [Pa]
�k micropolar curvature tensor in [m�1]
�kskew

ij skew symmetric counterpart components of the micropolar curvature tensor in [m�1]
�ksym

ij symmetric counterpart components of the micropolar curvature tensor in [m�1]

d�e virtual first Cosserat stretch tensor in [–]
d�k virtual micropolar curvature tensor in [m�1]
l ¼ dijêi � êj identity matrix [–]
ru gradient of displacement vector in [–]
B initial couple stress tensor or so-called stress moment tensor [N m/m2 or Pa m]
S initial stress tensor in [Pa]
mexact

ij exact couple stress components corrected by deformation gradient tensor on @X1 in [Pa m]
S1 first Piola–Kirchhoff or 1st P–K stress tensor in [Pa]
T1 so-called first Piola–Kirchhoff or 1st P–K couple stress tensor in [N m/m2 or Pa m]
X and Y arbitrary second-rank tensors
F deformation gradient tensor in [–]
m unsymmetrical couple stress or stress moment tensor in [N m/m2 or Pa m]

Scalar quantities
DA infinitesimal area in [m2]
q density in [kg/m3]
# Geometrically exact angle of rotation in [rad.]
J = det[F] determinant of deformation gradient tensor in [–]
W �e; �k
� �

total energy density function in [J/m3]
Wcs �e; �k

� �
centrosymmetrical energy density in [J/m3]

W0
cs initial centrosymmetrical energy density in [J/m3]

Wcurv �e; �k
� �

curvature energy density in [J/m3]
W0

curv initial curvature energy density in [J/m3]
Wmp �e; �k

� �
strain energy density in [J/m3]

W0
mp initial strain energy density in [J/m3]
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Fourth-rank tensor quantities
C Centrosymmetrical fourth-rank tensor [N/m]
D stiffness fourth-rank tensor [Pa]
E curvature stiffness fourth-rank tensor [N]

Vector quantities
�x macro-rotation in [rad.]
Q ðnÞ total surface couple in [N m/m2 or Pa m]
DF infinitesimal force in [N]
DM infinitesimal moment in [N m]
êi Cartesian unit base vector [–]
/ micro-rotation or micro-rotation vector in [rad.]
qb body force in [N/m3]
qc body couple in [N m/m3]
a, b and x arbitrary vectors
Mexact

Tcurv curvature stiffness-based torque on the top of circular bar on @X1 in [N m]

Mexact
Tmp stiffness-based torque on the top of circular bar on @X1 in [N m]

M1, M2, M3 external concentrated moment vector in [N m]
m1, m2, m3 external uniform moment vector in [N m]
MT total torque on the top of circular bar on @ X1 in [N m]
n unit outward vector normal to the surface in [–]
P1, P2, P3 external concentrated force vector in [N]
p1, p2, p3 external uniform force vector in [N]
Q(n) surface couple in [N m/m2 or Pa m]
r position vector in [m]
t(n) surface traction in [Pa]
r � DF moment provided by position vector r and DF in [N m]
r � t(n) surface couple induced by surface traction in [N m/m2 or Pa m]
u displacement vector in [m]
micro-rotations. We have also found a missing part of Cosserat formulation (5) under weak form or so-called virtual work
framework whose application substantiates the presence of m33 on the top of Cosserat circular bar (Fig. 2), whereas we did
not apply any couple traction on the surface for the torsion tests:
MT :¼ Mexact
Tmp þMexact

Tcurv: ð1Þ
This sustains some moments on the top of specimen under pure torsion test. The achieved numerical experiments give us
some ideas about the intrinsic features of Cosserat theory. Indeed, the Lc values cannot be directly link to the micro-structure
size or pore size for geo-materials. It handles the relative curvature rigidity comparing to the stiffness rigidity. For the con-
crete case, Lc parameter is generally defined as a minimum possible homogeneous region through heterogeneous media. This
avoids the strain localization instabilities phenomenon during strain softening behavior [6,7]. The Cosserat model has been
widely applied to regularize these kinds of problems for the heterogeneous materials, e.g. sand, soil and high porous rocks.
This has been achieved by Vardoulakis and co-workers [8], de Borst and co-workers [9,10], Bardet and Proubet [11], Iordache
and William [12], Bauer [13], Tejchman and Gudehus [14], Manzari [15], Maier [16] and more recently by Alsaleh and co-
workers [17], Riahi and Curran [18], Riahi and co-workers [19] and Jeong and Ramézani [20]. The evaluation of material
parameters in Cosserat theory, the analysis of simple shear problem in Cosserat theory, and an enriched Cosserat FEM model
can be also addressed in [21–23]. Hence, very large Lc value means that we have a very small specimen or the specimen
dimension is less than grid framework or so-called sub-grid state. Very small Lc value signifies that we have a very large spec-
imen, so there is no size effects either. The intermediate zone (zone II) is the most interesting state in which size effect occurs
(Fig. 8(a)–(c)). This interpretation would transform the Cosserat theory to an explicit multi-scale tool like those done using
micromorphic approach [24,25] and even using multi-length scale assumption [26]. Therefore, we can take into account
three different scales, e.g. macro, meso and micro. In this case, we can consider the force equilibrium equation (18a) which
prepares the macro-scale stresses and macro-displacements and moment of momentum equilibrium (18b) which provides
the micro-scale couple stresses. In this case, we can separately consider the torques for our pure torsion test. Therefore, it is
quite reasonable to call the stiffness torque as macro-torque and curvature stiffness torque as micro-torque, respectively.
Moreover, their summation will not have a sense either. By assuming the Cosserat theory as an explicit multi-scale approach,
we distinguish that it is necessary to achieve the material characterization in macro-scale and micro-scale as well. Hence, the
major attempts should be focused on the micro-structural material characterization by means of the modern tools, e.g. nano-
indentation for cement paste materials.
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1.2. The development of Cosserat models, motivation and applications: An historical overview

This article addresses general continuum models involving independent rotations, which were introduced by the Coss-
erat’s brothers at the beginning of the last century. The basic idea of the Cosserat theory has been proposed by Eugène
and François Cosserat in their landmark publication in 1908 [27]. Their original nonlinear and geometrically exact develop-
ment has been widely forgotten for decades to be only rediscovered by Günther [28], Mindlin and Tiersten [29], Mindlin [30]
and Eringen and Suhubi [31], Eringen [32] in a restricted linearized setting in the early sixties. Since then, the original Coss-
erat concept has been generalized in various directions, notably by Eringen and his coworkers who extended the Cosserat
concept to include also micro-inertia effects called micromorphic theory [33,34].2 The Cosserat theory has been also devel-
oped in the fluid mechanics branch [32] and some fresh studies are available in the open literature [38]. The further simplified
micropolar theory can be obtained assuming that the macro-rotations are not independent rotations, i.e., they can be related to
the displacements, which is named couple stress theory [29,39,40] or so-called ‘‘indeterminate couple stress’’.

The Cosserat theory has been also applied to the human bone [41,42] in the biomechanics branch, foams [43–45] (Lakes’
benchmark papers) for the man-made materials or so-called synthetic materials, cellular solids [46] and composites [47].
Some particular applications can be addressed to the metallic foams for energy saving purposes and Voronoi cells [48,49].
Some quite related and outstanding works have been given by Zhang et al. [50] and Providas and Kattis [51] focusing on
the analysis of Cosserat materials for contact analysis using 2D-solid and analysis of the structures using 3D-shell elements,
respectively. Forest et al. made benchmark contributions in the incremental analysis, finite deformation, strain gradient the-
ory and homogenization aspects for the polycrystalline materials [52–54]. There are also some studies pertaining to the elas-
to-plasticity of the Cosserat-based media, e.g. Ristinmaa et al. for the couple stress plasticity [55] and Neff and Münch [56]
and Jeong–Ramézani [20] based on an original Cosserat concept (geometrically exact Cosserat or non-linear Cosserat).3

The infinitesimal and finite elastic–plastic Cosserat theory have been fully investigated [65,20]. It is helpful to mention
that the most generalized case, i.e., micromorphic case is also treated and some analytical and 2D numerical analyses are
available in the open literature [66,24].

Regardless of kind of materials, most of the available studies have been carried out under 2D-FEM considerations, e.g.,
[11,67]. This assumption removes some interesting features of Cosserat. Nevertheless, it is usually helpful to get rid of
two additional Cosserat material constants comparing to 3D cases. Consequently, it is needed to obtain only one micro-rota-
tion. We turn back and talk about it later in the next sections. Unfortunately, the direct measurements of micro-rotations of
particles are not achievable with high accuracy but we can measure the micro-rotation in the diagonal fracture plane by
means of the stereophotometric method [68].4

Over the years, a variety of boundary value problems have been analytically solved which are then used for the determi-
nation of material moduli in the infinitesimal linear Cosserat model [71]. Notably, the solution of the pure torsion problem
with prescribed torque at the end faces has been given by Gauthier [72,73] and used for the determination of the length
scales of different materials. Other attempts have been done by taking advantage of the energy minimization between
homogenized Cauchy and Cosserat media. Despite the huge effort spent in investigating the Cosserat model, two main draw-
backs still controversially remain. These two points are: the problem of physical meaningful boundary or side-condition for
the micro-rotation and physically consistent determination of the Cosserat parameters. Our goal is to establish the physical
meaningful Cosserat moduli and boundary conditions for Cosserat theory.

1.3. Paper organization

In the present work, we concentrate solely on the Cosserat-based materials using solid mechanics point of view. The
determination of the Cosserat parameters micropolar theory, notably case 4 (a = b = c) is focused on the present work. Fur-
thermore, the most realistic boundary conditions for the micro-rotations involving the grid framework analogy [1,2] are ap-
plied into the numerical computations. It is numerically substantiated that the case 4 as like as other cases (case 1, case 2 and
conformal case 3) is bounded [4] and the size effects are still revealed.

Our contribution is organized as following: First, we present the linearized Cosserat or so called micropolar mathematical
model (the virtual work approach has been redeemed carefully in order to better understand true coupled nature of Cosserat the-
ory). We discover a forgotten term or so called missing term which represents the coupling between the surface traction and
couple traction.5 Second, we focus on the problem of torsion test of the isotropic brittle material with different cases (cases 1–
4). Moreover, the numerical results of Cosserat theory will be compared to the classical continuum media with the identical
2 Some of Eringen’s notations have been revised and corrected later on by Cowin [35] and by Eringen himself [36,37]. The original notations make some flaws
and it should be carefully taken into account by the relevant Cosserat moduli or Cosserat material constants.

3 It is well worth mentioning that the geometrically exact Cosserat non-linear has been recently investigated and some new natural Lagrangian definitions
have been proposed in the open literature [57,58] based on Altman’s work [59] and Atluri–Cazzani’s study [60]. The authors have taken into account these
kinematical relations in providing a very robust and highly parallel non-linear 3D-FEM Cosserat models [20]. Some relevant works pertaining to the non-linear
Cosserat can be also addressed in [56,58,61–64].

4 Some benchmark experimental efforts have been made by Lakes [43,44,69,45] for extracting the material unknowns (four supplementary material
parameters, i.e., lc, a, b and c). His landmark experiments are still the main experimental reference in the Cosserat society, particularly for the foams. However,
his proposed experimental test is not easy to achieve [70].

5 It can be easily extended to the virtual power approach for the incremental analysis purposes.
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loading, geometry and mechanical properties. Some conclusions and outlooks have been provided at the end of the present
work whose applications make the Cosserat theory as an explicit multi-scale tool [74]. This equally provides some fresh depar-
tures in extracting the Cosserat moduli based upon the subjects, which are discussed in the current study. The last matter prob-
ably creates some experimental procedures by means of nano-technology.

2. Linear elastic cosserat theory: fundamental formulations

2.1. Virtual work framework for Cosserat media

For a linear elastic anisotropic Cosserat solid, a total energy density function W �e; �k
� �

can be expressed as a polynomial in
function of �e and �k based on the expansion power series theory [75–77]:
6 The
ð12 ðuj;i �
W �e; �k
� �

¼W mp �e; �k
� �

þW cs �e; �k
� �

þW curv �e; �k
� �

; ð2aÞ

Wmp �e; �k
� �

¼W0
mp þ S : �eþ 1

2
�e : D : �e; ð2bÞ

Wcs �e; �k
� �

¼W0
cs þ

1
2

�e : C : �kþ 1
2

�k : C : �e ¼W0
cs þ �e : C : �k where �e : C : �k ¼ �k : C : �e; ð2cÞ

Wcurv �e; �k
� �

¼W0
curv þ B : �kþ 1

2
�k : E : �k; ð2dÞ
where �e is the infinitesimal non-symmetric first Cosserat stretch tensor (�e ¼ ðruÞT þ A ¼ ðuj;i � eijk/kÞêi � êj, where,
ru :¼ ðr� uÞT ¼ ui;jêi � êj and A :¼ anti/ ¼ �e � / ¼ �eijk/kêi � êj). 6

�k is the micropolar curvature tensor or wryness tensor (�k :¼ r/, wherer/ :¼ ðr� /ÞT ¼ /i;jêi � êj). In the absence of ini-
tial energy densities, stress and couple stress (W0

mp ¼W0
cs ¼W0

curv ¼ 0 and S = B = 0) and the hypothesis of centrosymmetry
effects for the Cosserat media (C = 0), we can find the following constitutive equations:
�r ¼
@W �e; �k

� �
@�e

¼ D : �e; ð4aÞ

m ¼
@W �e; �k

� �
@�k

¼ E : �k; ð4bÞ
where, the fourth order stiffness tensors D :¼ Dijklêi � êj � êk � êl and E :¼ Eijklêi � êj � êk � êl deal with the stiffness and cur-
vature stiffness of the material, respectively.

According to the virtual work principle (Fig. 1), the relation between the virtual elastic strain energy density and the po-
tential energy function on the body having volume X and surface @X in the case of the Cosserat framework can be derived as
below [76,78]:
Z

X

�rT : d�edV þ
Z

X
mT : d�kdV ¼

Z
@Xt

tðnÞ � dudSþ
Z

X
qb � dudV þ

Z
@Xc

Q ðnÞ � d/dSþ
Z
@Xt

ðr � tðnÞÞ � d/dSþ
Z

X
qc � d/dV ;

ð5Þ
where, t(n) and Q ðnÞ are the surface traction and total surface couple, respectively:
�rT � n ¼ tðnÞ or �rjinj ¼ tðnÞi for i; j ¼ 1;2;3 ð6aÞ
and
mT � n ¼ Q ðnÞ or mjinj ¼ Q ðnÞi for i; j ¼ 1;2;3 where Q ðnÞ ¼ Q ðnÞ þ r � tðnÞ; ð6bÞ
where, n is the unit outward vector normal to the surface S. In (5), we have an additional term at the right hand sideR
@Xt
ðr � tðnÞÞ � d/dS

� �
. This missing term represents the impact of the applied surface traction on the couple traction and it

plays an important role in the coupling.
Let’s take (5), the integration over @Xt can be replaced by @X due to the fact that dui = 0 on @Xu and tðnÞij ¼ 0 on

@X0 [ @Xc. The integration over @Xc can be similarly substituted by @X due to the fact that d/i = 0 on @Xu and
Cosserat first stretch tensor composes the symmetrical sym�e ¼ symru ¼ 1
2 ðuj;i þ ui;jÞêi � êj

� �
and antisymmetrical skew�e ¼ skewru� e � / ¼ð

ui;jÞ � eijk/kÞêi � êjÞ counterparts:

�e ¼ sym�eþ skew�e ¼ ðruÞT þ A ¼ ðruÞT � e � / ¼ ðuj;i � eijk/kÞêi � êj for i; j ¼ 1;2;3: ð3Þ
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Fig. 1. Typical illustration of a solid body subjected to surface traction and surface couple.
Q ðnÞij ¼ 0 on @ X0 [ @Xt. We use also the same procedure for
R
@Xt
ðr � tðnÞÞ � d/dS by considering d/i = 0 on @Xu and

r � t(n) = 0 on @X0 [ @Xc:
Z
X

�rT : d�edV þ
Z

X
mT : d�kdV ¼

Z
@X

tðnÞ � dudSþ
Z

X
qb � dudV þ

Z
@X

Q ðnÞ � d/dSþ
Z
@X
ðr � tðnÞÞ � d/dSþ

Z
X
qc � d/dV ;

ð7Þ
or
Z
X

�rT : d�edV þ
Z

X
mT : d�kdV ¼

Z
@X

tðnÞ � dudSþ
Z

X
qb � dudV þ

Z
@X
ðQ ðnÞ þ ðr � tðnÞÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Q ðnÞ :¼Q ðnÞþr�tðnÞ

�d/dSþ
Z

X
qc � d/dV ð8Þ
By applying divergence theorem and some absolute notation operations, the following relations could be inferred (see
Appendix (A)):
Z

@X
tðnÞ � dudS ¼

Z
X
ðDiv �r � duþ �rT : rduÞdV ; ð9aÞ

Z
@X

Q ðnÞ � d/dS ¼
Z

X
ðDivm � d/þmT : rd/ÞdV : ð9bÞ
The term
R

X
�rT : d�edV can be denoted in function of ru and / using dui,j = duj,i as:
Z

X

�rT : d�edV ¼
Z

X

�rT : dððruÞT � e � /ÞdV ¼
Z

X

�rT : ðdðruÞT � e � d/ÞdV ¼
Z

X
ð�rT : dru� �rT : ðe � d/ÞÞdV : ð10Þ
We can easily verify that �rT : ðe � d/Þ ¼ ðe � d/Þ : �rT ¼ �ðe : �rÞ � d/, so,
R

X
�rT : d�edV can be further simplified as below:
Z
X

�rT : d�edV ¼
Z

X
ð�rT : rduþ ðe : �rÞ � d/ÞdV : ð11Þ
Another term or curvature virtual work
R

X mT : d�k
� �

is written:

Z

X
mT : d�kdV ¼

Z
X

mT : dr/dV ¼
Z

X
mT : rd/dV : ð12Þ
By substituting (9a), (9b), (11) and (12) into (8), we extract the following equation:

Z

X

�rT : rduþ ðe : �rÞ � d/
� �

dV þ
Z

X
mT : rd/dV

¼
Z

X
ðDiv �r � duþ �rT : rduÞdV þ

Z
X
qb � dudV þ

Z
X
ðDivm � d/þmT : rd/ÞdV þ

Z
X
qc � d/dV : ð13Þ
The above equation would be further simplified and some terms get canceled:
Z
X

e : �rð Þ � d/dV ¼
Z

X
Div �r � dudV þ

Z
X
qb � dudV þ

Z
X

Divm � d/dV þ
Z

X
qc � d/dV ð14Þ
and, we have got the final weak form:
Z
X
ðDiv �rþ qbÞ � dudV þ

Z
X
ðDivm� e : �rþ qcÞ � d/dV ¼ 0: ð15Þ
The concept of virtual work within virtual displacements and micro-rotations leads to the following relations:
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Div �rþ qb ¼ 0 and Divm� e : �rþ qc ¼ 0 in X; ð16aÞ

�rT � n ¼ tðnÞ on @Xt and �rT � n ¼ 0 on @X0 [ @Xc; ð16bÞ

mT � n ¼ Q ðnÞ ¼ Q ðnÞ þ 0 on @Xc; mT � n ¼ Q ðnÞ ¼ 0þ 0 on @X0 ð16cÞ

and

mT � n ¼ Q ðnÞ ¼ 0þ r � tðnÞ on @Xt: ð16dÞ

It should be notified that Q ðnÞ or so called total couple traction can be defined as below:

Q ðnÞ ¼ Q ðnÞ þ r � tðnÞ: ð17Þ

The term r � t(n) deals with the additional couple traction due to the presence of surface traction t(n).
According to the above-mentioned procedure, the total couple traction Q ðnÞ contains well-known couple traction vector and

the impact of surface traction. Hence, for pure torsion test, though we did not apply any couple traction, the total couple trac-
tion does not vanish due to the presence of Dirichlet boundary conditions using exact angle (Fig. 2).

We show later on the effect of this term in calculating of torsion tests via m33.
As pointed out before, the presence of the surface traction induces some surface couples. This principle can be equally

extended into the micromorphic medium.7 In the absence of macro, micro-accelerations, body force and body couple, the equi-
librium equations of the Cosserat theory are given as:

Div �r ¼ 0 or �rji;j ¼ 0 for i; j ¼ 1;2;3; ð18aÞ

Divm� e : �r ¼ 0 or mji;j � eijk �rjk ¼ 0 for i; j ¼ 1;2;3: ð18bÞ

(18a) and (18b) imply that stress tensor �rij is not necessarily symmetric and its antisymmetrical part is determined by the
divergence of the couple stress tensor mij. In order to quantify the nature of the internal distribution of forces and moments
within a continuum solid, a general body subject to arbitrary (concentrated and distributed) external loadings is considered
(Fig. 3).

To investigate the internal forces, a section is made through the body as shown. On this section consider an infinitesimal
area DA with outward unit normal vector n. The resultant surface force and surface couple acting on DA is defined by DF and
DM. As illustrated in Fig. 3, the surface traction, surface couple and total surface couple are defined. As illustrated in Fig. 3,
the presence of DF creates an r � DF that it yields r � t(n). Assuming isotropy properties, the fourth order stiffness tensors in
the constitutive equations, (4a) and (4b) can be rewritten and simplified as below:

�r ¼ 2l sym�eþ 2lcskew�eþ k tr ½�e�l or �r ¼ ðlþ lcÞ�eþ ðl� lcÞ�eT þ ktr½�e�l ð19Þ
and

m ¼ b�kþ c�kT þ atr½�k�l ¼ br/þ cr/T þ atr½r/�l; ð20aÞ

or

m ¼ ðcþ bÞdevsymr/þ ðc� bÞ skewr/þ 3aþ ðbþ cÞ
2

tr½r/�l ð20bÞ

k and l, are the classical Lamé’s constants and lc, a, b and c are new additional material parameters introduced into Cosserat
theory. The classical macro-rotations �x can be described as below:

�x :¼ axlðskewruÞ ¼ 1
2
r� u or �x :¼ �1

2
e : x ¼ �1

2
eijkxjkêi where x :¼ skewru ¼ 1

2
ðui;j � uj;iÞêi � êj ð21Þ

It is assumed that the micro-rotation vector field (micro-rotation or micro-rotation) is kinematically independent from the
displacement vector field, u and macro-rotation, �x. In the Cosserat continuum theory not only forces but also moments can
be transmitted across the surface of a material element. The concept of Cosserat theory involves the micro-structures into
the continuum media by the micro-rotation effect (Fig. 4).

In the next section, we focus on case 4 and some physical meaningful boundary conditions or side-conditions for the inde-
pendent micro-rotations.

2.2. Evaluation of the material parameters in Cosserat theory and micro-rotation boundary conditions

In this section, we attempt to handle two salient problems of the Cosserat-based continuum, i.e. material parameters
determination and physically meaningful boundary conditions for the micro-rotations. Let us take the first subject. Accord-
ing to (19) and (20a), it is easy to conclude that when, lc, a, b and c vanish, the solid becomes classically elastic. By taking

7 The micromorphic continuum is out of scope of this paper and it is needed to be considered as a whole by another study.
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Fig. 2. Torsion test geometry and boundary conditions.

Fig. 3. Typical presentation of surface and couple traction for a solid body subjected to arbitrary external loadings, top: Externally loaded body, bottom-left:
Sectioned body for Cauchy–Boltzmann’s media (Description of the surface traction t(n) vector on a sectioned area), bottom right: Sectioned body for
micropolar media (Description of the surface couple Q(n) and r � t(n) vectors on a sectioned area (r is the position vector)).
advantage of the mathematical points of view, the strain energy density Wmpð�e; �kÞ and the curvature energy density
Wcurvð�e; �kÞ would have the local positivity condition. But that is not sufficed and the positive definiteness of stiffness of con-
stitutive laws would be also required (see. Appendix B) [3]:
l P 0; ;3kþ 2l P 0 ;lc P 0; bþ c P 0 ;3aþ ðbþ cÞP 0 ; c� b P 0 ; c P 0: ð22Þ
Traditionally, the four supplementary material parameters, i.e., lc, a, b and c can be expressed by the other terms, ‘b, ‘t, N,
W [43,70,80]. They represent the characteristic length scale for bending, characteristic length scale for torsion, coupling
number and polar ratio, respectively.
8



Fig. 4. Top: Modeling of heterogeneous materials with microstructure, bottom left: Components of stress and couple stress tensors for micropolar solids,
bottom right: Micro-rotation comparing to the macro-rotation [79].
The above-defined so-called material parameters have been substantially applied for determining the Cosserat
material constants, notably by Lakes. The previously indicated Cosserat moduli (lc, a, b and c) could be denoted as below
[77]:8
8 To
Cowin [
‘2
b :¼ c

2ð2l� þ jÞ and ‘2
t :¼ bþ c

2l� þ j
; ð23aÞ

N2 :¼ lc

lþ lc
¼ j

2ðl� þ jÞ where 0 6 N2
6 1; ð23bÞ

W :¼ bþ c
aþ bþ c

where 0 6 W 6
3
2
; ð23cÞ
where, j and l⁄ are the Cosserat couple modulus and Pseudo-Lamé’s constant in accordance with the Eringen’s notation. If lc

tends to infinity, the Cosserat media becomes the couple stress theory or so-called indeterminate couple stress theory and
then the coupling number becomes one (N = 1) [29,39,40]. The indeterminate couple stress case could be also found out for
very large values of Lc via the analytical and numerical methods [4,5]. According to the thermodynamical and mathematical
considerations the polar ratio cannot exceed the value of 3

2 [37,43,77].
Let us take into account two relevant constitutive laws of the Cosserat theory (19) and (20a). As pointed out before, there

are two distinct sets of parameters: (k, l and lc) which relate the traditional stresses and strains and have a dimension of
force per unit area ([Pa]), and (a, b and c) which relate to the higher-order couple stresses to micropolar curvature tensor,
with a dimension of force ([N]). Due to the dimensional difference between the two sets of parameters, at least three intrinsic
characteristic lengths can be then defined for an isotropic elastic Cosserat material. These characteristic length scales can be
generalized based upon the studies which have done earlier [39,81,47] as below:
‘2
1 :¼ a

l
; ‘2

2 :¼ b
l

and ‘2
3 :¼ c

l
; ð24Þ
where, ‘1, ‘2 and ‘3 are new characteristic length scales corresponding to the trace counterpart of micropolar curvature ten-
sor tr½�k�

� �
, curvature tensor itself �k

� �
and its transposed �kT

� �
, respectively. As indicated before, six Cosserat parameters

should be taken into account for 3D isotropic Cosserat elasticity, i.e. (k, l, lc, a, b, c) ´ (k, l, lc, ‘1, ‘2, ‘3). Using the definition
of W and (24), the polar ratio and coupling number can be inferred as:
W ¼ bþ c
aþ bþ c

¼ ‘2
2 þ ‘

2
3

‘2
1 þ ‘

2
2 þ ‘

2
3

and N2 ¼ lc

lþ lc
: ð25Þ
avoid any conflict among the available Cosserat moduli, we use the state-of-the-art formulations [4,5,77] which contain some corrections provided by
35].
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If three characteristic length scales become identical, this violates the positive definiteness of curvature energy density as
well as lack of control on skew symmetric counterpart of the curvature energy density (see Appendix C):9
9 The

where
Wcurvð�e; �kÞ ¼
1
2
ðatr½�k�2 þ ðbþ cÞsym�k : sym�kþ ðc� bÞskew�k : skew�kÞ; ð29aÞ
or
Wcurvð�e; �kÞ ¼
1
2

a�kii
�kjj þ ðbþ cÞ�ksym

ij
�ksym

ij þ ðb� cÞ�kskew
ij

�kskew
ij

� �
; ð29bÞ
where �ksym
ij and �kskew

ij are symmetric and skew symmetric parts of the micropolar curvature tensor, respectively.
The positive definiteness of the second constitutive law (couple stress-micropolar curvature relation) is traditionally

important in the classical solid mechanics. Nevertheless, the main question is that ‘‘Is it necessary to take this strong condition
on every constitutive law or not?’’. In the classical theory of continuum mechanics, we require to satisfy two conditions: first
condition is positive definiteness of the constitutive law and second is the local positivity of strain energy density. The local
positivity of strain energy density is automatically fulfilled by the fact that there is linear elasticity property (The linear
elasticity property provides a quadratic form of strain energy density and it is always local positive). But, in the Cosserat-
based continuum media, we have two constitutive laws and two kinds of energy density excluding the centrosymmetrical
energy density, i.e., strain energy density and curvature energy density. So, it is quite possible to have the local positivity
of total energy density (the sum of strain energy density, Wmp �e; �k

� �
and curvature strain energy, Wcurv �e; �k

� �
is positive,

i.e. W �e; �k
� �

:¼W mp �e; �k
� �

þW curv �e; �k
� �

> 0) when one constitutive law between the available constitutive laws becomes
semi-positive definite. This case is the weakest possible case in which the problem is still well-posed. The above-mentioned
case has been analytically investigated by Neff and Jeong in [3]. We have numerically investigated it in the following numer-
ical models. From recent analytical investigations, the following classification has been extracted:

� Case (1) a = b = 0 and c ¼ lL2
c [82,5,83],
Wcurv :¼ lL2
c

2
ðr/ : r/Þ ¼ lL2

c

2
kr/k2 ð30Þ
� Case (2) a = 0 and b ¼ c ¼ 1
2 lL2

c [4,5],
Wcurv :¼ lL2
c

2
ðsymr/ : symr/Þ ¼ lL2

c

2
ksymr/k2 ð31Þ
� Case (3) a ¼ � 1
3 lL2

c and b ¼ c ¼ 1
2 lL2

c [3–5,84–86],
Wcurv :¼ lL2
c

2
ðdevsymr/ : devsymr/Þ ¼ lL2

c

2
ðsymr/ : symr/� 1

3
tr½r/�2Þ

¼ lL2
c

2
ðksymr/k2 � 1

3
tr½r/�2Þ: ð32Þ
� Case (4) a ¼ b ¼ c ¼ lL2
c [20].
Wcurv :¼ lL2
c

2
ðr/ : r/þr/T : r/þ tr½r/�2Þ ¼ lL2

c

2
ðkr/k2 þr/T : r/þ tr½r/�2Þ

¼ lL2
c

2
ðkr/k2 þ tr½ðr/Þ2� þ tr½r/�2Þ: ð33Þ
All cases apart from ‘‘case 1’’ reveal the independency properties. Hence, the recently developed relations (cases 2–4)
not only remove the well-known problem of dependency but also they reduce the Cosserat moduli to only four (k, l, lc

and Lc) for the 3D-FEM models. The aforementioned hypothesis about the equality of the Cosserat models covers neatly
the Cosserat redundant material constants and independency drawback dilemmas and probably gives one physical mean-
ingful idea about the characteristic length scales. It also satisfies the required conditions for bending and torsion [77]. In
the next section, we take advantage of the shown Cosserat moduli and we trigger to analyze some familiar loadings par-
ticularly, pure torsion.
symmetric and skew symmetric part of the micropolar curvature density can be defined as below:
�k :¼ sym �kþ skew�k ¼ �ksym

ij êi � êj þ �kskew
ij êi � êj; ð26Þ

sym�k :¼ �ksym
ij êi � êj ¼

1
2
ð�kij þ �kjiÞêi � êj; ð27Þ

skew�k :¼ �kskew
ij êi � êj ¼

1
2
ð�kij � �kjiÞêi � êj: ð28Þ
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2.3. Physically meaningful micro-rotation boundary conditions or side-conditions for boundary value problem

In this sub-section, we focus on the physically meaningful micro-rotation boundary conditions. As pointed out before,
many analytical solutions have been made for determining the Lc values using the torsion tests [72,73,44]. It is evident
that this case provides the most micro-rotations magnitude. Nevertheless, it is not unique way to obtain the micro-
rotations [87]!

We took into account the beam-based structure or grid frameworks models assumptions (see top of Fig. 4) in [1,2,78]. It is
well-known that the micro-rotations would be assimilated as the rotations at the nodes of a beam-based structures. Regard-
less, whether the loading type is torsional or not, it is quite possible to acquire the rotation vector by taking advantage of grid
frameworks model. The major difference is nothing else than the value of this vector!

The above-indicated beam-structure assumption automatically allows us to consider the same boundary conditions for
the micro-rotation vector. This issue drastically changes the solution form of a boundary value problem and the convergence
problem gets better, particularly for very large Lc values (boundedness property of the Cosserat theory).10

It is of great importance to recall that the open literatures try to relax the Dirichlet boundary conditions for micro-rota-
tions and these kinds of boundary conditions are called the artificial boundary conditions.

As a matter of fact, in the Cosserat theory, the stiffness comes from two sources, i.e. the ‘‘displacement’’-based stiffness or
so-called stiffness and the ‘‘micro-rotation’’-based stiffness or so-called curvature stiffness. The original Cosserat idea links
them via micro-rotations but they have their own distinct boundary conditions corresponding to the displacements for solid
elements and beam elements, respectively.

Now, we attempt to put into practice these proposed solutions for the salient Cosserat dilemmas. To achieve this goal, we
get started with some interesting loadings, specially, pure torsion.

3. 3D-FEM of linear Cosserat elasticity

In this work, we will discuss the finite-element simulation of the linear Cosserat model with the new micropolar con-

stants a ¼ b ¼ c ¼ lL2
c

� �
in which the above-described drawback does not take place (lc and Lc dependency). The finite

element analysis of Cosserat materials has been already studied in the literature. Early works on the finite element anal-
ysis based on the Cosserat theory are those done by Baluch et al. [88] and Nakamura et al. [89] in which a simple three-
node triangle element with three degrees of freedom at each node is used for a two-dimensional problem. A higher-order
triangle element again for a two-dimensional analysis based on Cosserat elasticity has been recently proposed by Providas
and Kattis [51], and Trovalusci and Masiani [90] treats the 2D-nonlinear case. The Cosserat theory has also been em-
ployed by Nadler and Rubin to formulate a three-dimensional finite element for dynamic analysis in nonlinear elasticity
[91]. In addition, higher-order elements for elastic analysis of shells have been proposed by Jog [92]. An example calcu-
lation of the linear isotropic Cosserat model for two-dimensional finite elements has been performed by Li and Xie [93].
There are also some studies in the literature for foams [94–96]. Huang et al. [97], Zastrau and co-workers [98,99] have
done very early attempts based on the Cosserat curvature parameter choice a = b = 0, c > 0 and b = c > 0, a P 0,
respectively.

Though several numerical studies have been done for Cosserat materials only few of them treat the full three-dimensional
case [100,62]. The two-dimensional Cosserat setting automatically removes two material parameters and the altogether re-
quired Cosserat material moduli reduce to only four (the two-dimensional problem is much simpler because of a fixed axis of
rotations). Moreover, the 2D assumptions yield case 1 (a = b = 0 and c ¼ lL2

c ) in which there is one of the Cosserat dilemmas!
Furthermore, the size effect that is explicitly embedded in the Cosserat-based continuum media, does not entirely happen by
neglecting the effect of the other dimensions and their interactions. Consequently, we did not provide any numerical exper-
iment pertaining to case 1 throughout this study.

While we have a geometrically exact 3D-code successfully running we present here only the ‘‘linear’’ version for mainly
two reasons:11 first, other groups do not necessarily have access to a 3D-geometrically exact code, making comparison impos-
sible, and second, we investigate a novel situation (case 4) where already the linear response shows interesting features. More-
over, we solely concentrate on fully three-dimensional finite element models. Particularly, we focus on the torsion test of the
circular bars.

In the next sub-sections, we are motivated to achieve the 3D numerical experiments including the proposed solutions.

3.1. Linear Cosserat elasticity implementations

The finite element method has been chosen as a relevant numerical method for the linear elastic Cosserat model. All
computations are provided by a user-written code within the general purpose FEM software COMSOL MP. We have used
10 The solution of a boundary value problem radically depends on the applied Dirichlet boundary conditions, whereas the Neumann boundary conditions are
not capable of changing the general form of solution.

11 The non-linear Cosserat simulation has been already handled by Sansour [63] and Münch [62].
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Fig. 5. Presentation of high-order 28-node solid hexahedral element involving 20 nodes for displacements and 8 nodes for micro-rotations.
a parallelized iterative solver making it possible to reduce the computation runtime: here an Intel-System with 32 GB mem-
ory and 8 core 3.2 GHz processor has been used. An isotropic linear Cosserat computation with 4.34 Mi DOFs12 would last
17 min for case 4 including lc = l assumption.

We use iso-parametric Lagrange shape functions in our study. Moreover, we use quadratic Lagrange shape function for the
displacement vector u and linear Lagrange shape function for the entries of the dual tensor of micro-rotation vector
�A 2 soð3Þ (Fig. 5).

This choice leads to the same order of magnitude forru and / in �e ¼ ðruÞT þ A ¼ ðuj;i � eijk/kÞêi � êj which is very impor-
tant to find out the mesh-independency feature for the numerical outcomes [62]. As will be seen later, in altogether numer-
ical simulations, the hexagonal solid elements with appropriate mesh density have been utilized.

As illustrated in Fig. 5, the 28-node brick elements are used for the numerical simulation using reduced integration. Con-
sequently, each element prepares 28 � 3 DOFs, this is why the 3D-FEM analysis of Cosserat-based media is rather expensive
in terms of numerical computation. This matter does not end here because the FEM analyses entail also the unsymmetrical
solver algorithms and some parallelism issues.

According to the discussed balance equations, there are six available state variables (three for the displacement vector

u and three for the micro-rotation vector axl A
� �

) whose computations need to be done via the coupled linear partial dif-

ferential system of equations using the momentum and angular momentum balance equations based upon the weak
form. It is of importance to note that the Cosserat couple modulus lc is assumed to be equal to l throughout this paper
(lc = l).

3.2. 3D-FEM analysis of torsion test

We consider a cylindrical bar (diameter = 2 mm, height = 10 mm) submitted to the torsion angle # at the end and choose
the ê3-axis to coincide with the axis in Fig. 2. The assumed classical, size-independent parameters E, m as well as size-depen-
dent parameters can be found in Table 1.

In this subsection, we apply the beam network postulate for micro-rotations as a relevant boundary condition for the cur-
vature stiffness computations as well as the classical boundary conditions for stiffness computations in the followed numer-
ical experiments (Fig. 2). As illustrated in Fig. 2, we apply an exact angle on the top of circular bar and only micro-rotation in
x3 is released by analogy with the beam network or grid frameworks model. The main advantage of the above-mentioned
boundary conditions on the top of Cosserat circular bar is that we can apply exact angle of rotation whether it is small or
large without any lack of precision (geometrically exact rotation). This entails some computations in conjunction with
the deformation gradient tensor F :¼ lþru, particularly for large rotations.

We would like to be as close as possible to the exact rotation concept. As will be seen later, the grid framework model
assumption for micro-rotations provides more convergent models for all cases and the models are completely bounded
whatever the value of Lc. By taking advantage of the numerical calculations, we substantiate the presence of so-called miss-

ing term
R
@Xt
ðr � tðnÞÞ � d/dS

� �
in (5) which could be emphasized by m33. In fact, the value of m33 is not negligible for Cosserat

circular bar, whereas we did not apply any couple traction (Q(n)) on the top of circular bar! In according to the extracted re-
sults, both stiffness torque MTmp or curvature stiffness torque MTcurv are bounded and the value of the second term is high
enough comparing to the first term regarding large and very large Lc values.

3.2.1. Torsion test numerical experiments: mesh density, mesh-independency and convergence issue
As previously explained, the Cosserat theory takes into account automatically the size effect through the additional mate-

rials constants, i.e. lc, a, b and c. The main important issue is the mesh-dependency subject. As a matter of fact, the numerical
12 In all computations through this study, DOFs in conjunction with Lagrange multipliers are accounted for our numerical statistics.
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Table 1
Representative material properties for Cosserat circular bar for Lc values between 0 and 1 � 107 mm (0 6 Lc 6 1 � 107 mm) including all cases (case 1, case 2,
conformal case 3 and case 4).

Cases E [MPa] m [–] l [MPa] k [MPa] lc [MPa] a [N] b [N] c [N] W [–] N2 [–]

Case 1 1 � 106 0.3 E
2ð1þmÞ

mE
ð1þmÞð1�2mÞ l 0 0 lL2

c
1 1

2

Case 2 1 � 106 0.3 E
2ð1þmÞ

mE
ð1þmÞð1�2mÞ l 0 1

2 lL2
c

1
2 lL2

c
1 1

2

Case 3 1 � 106 0.3 E
2ð1þmÞ

mE
ð1þmÞð1�2mÞ l � 1

3 lL2
c

1
2 lL2

c
1
2 lL2

c
3
2

1
2

Case 4 1 � 106 0.3 E
2ð1þmÞ

mE
ð1þmÞð1�2mÞ l lL2

c lL2
c lL2

c
2
3

1
2

results should be independent on the mesh density. In the current study, we held the aspect ratio as close as possible near
unity and we gradually reduced the element volume. Consequently, more DOFs are expected for very fine meshes. This en-
ables us to compare the numerical results in an identical manner under the same loading using torque-DOFs diagram. To per-
form this, we need to address the definition of total torque on @X1:
MT :¼ Mexact
Tmp þMexact

Tcurv; ð34aÞ
where
Mexact
Tmp :¼

Z
@X1

ðx1 �rexact
32 � x2 �rexact

31 ÞdS ¼
Z
@X0

1

x1 �r32 � x2 �r31ð ÞdS0 ð34bÞ
and
Mexact
Tcurv :¼

Z
@X1

mexact
33 dS ¼

Z
@X0

1

m33dS0 ð34cÞ
In (34b) and (34c), the superscript ‘‘0’’ indicates reference position. The exact stress and exact couple stress could be written
as below:
�rexact ¼ 1
det½F� S1FT and only for linear Cosserat elasticity S1 ¼ �r; ð35aÞ

mexact ¼ 1
det½F� T1FT and only for linear Cosserat elasticity T1 ¼ m: ð35bÞ
In Fig. 6, the integrated torque on the top of Cosserat circular bar versus DOFs is displayed for case 4 including lc = l and
Lc = 1 � 107 mm. Hence, besides of the convergence issue for each computation, we observe also the mesh-independency fea-
ture, which is extremely important for the size effect-based models, notably Cosserat models. As shown in Fig. 6, MTmp and
MTcurv approach to their asymptotes but the curvature stiffness-based torque is approaching to its asymptote slower than
stiffness torque. This is an unwilling consequence of the application of linear shape functions for the micro-rotations as ex-
plained earlier in the paper.

By using the results obtained in Fig. 6, we have chosen one suitable and rather precise mesh density for the followed cal-
culations, which are provided in this work. The mesh statistics and some convergence criteria have been made for the torsion
test in Table 2.

In next sub-section, the boundedness properties of the aforementioned cases (case 1–4) altogether regarding the grid
frameworks model assumption for the micro-rotation boundary conditions will be considered. As exhibited in Fig. 2, we
fixed all micro-rotations on the bottom of the circular bar and we released only /3 on the top. The comparison among these
cases in a semi-logarithmic diagram (Torque-Log (Lc)) will be equally treated in next sub-section.

3.2.2. Torsion test numerical experiments: boundedness and size effects comparison among all available cases
In this sub-section, we will present that the proposed micro-rotation boundary conditions or so-called artificial boundary

conditions, yield the boundedness properties for all discussed cases. To achieve this, we used a fairly precise model (Table 2).
We also show the outcomes in Torque-Log (Lc) diagram. In Fig. 7(a)–(c), stiffness-based torque MTmp and curvature stiffness-
based torque MTcurv are plotted versus # as a computation history diagram. Indeed, each peak deals with one torsion test (#
between 0 and 13 degree) corresponding to a Lc value. The Lc values get started with zero and they attain 1 � 107 mm at the
end of computation (0 mm, 0.001 mm, 0.01 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 1 mm, 5 mm, 10 mm, 100 mm,
1000 mm, 1 � 104 mm, 1 � 105 mm,1 � 106 mm,1 � 107 mm). Therefore, the first peak handles # between 0 and 13 degree
and Lc = 0 mm and second peak for Lc = 0.001 mm and so on. According to Fig. 7(a)–(c), we always find out the boundedness
for very large Lc values. It means that the smaller specimens (large Lc values) are stiffer than bigger specimens (small Lc val-
ues). It is of importance to note that the total torque (MT = MTmp + MTcurv) would be also computed but it is trivial that it is
bounded as like as MTmp and MTcurv. The outcomes of case 1 have not brought in this paper due to two facts, first, cases 1 and
13



Fig. 6. Mesh-independency issue for linear Cosserat elasticity involving unit mesh aspect ratio assumption for case 4
Lc ¼ 1� 107 mm; lc ¼ l and # ¼ 13p

180

� �
.

Table 2
Mesh statistics and relative error for the 3D-FEM analysis of torsion test.

Element type No. of nodes No. of elements DOFs Elements aspect ratio Relative error

28-node brick 6655 5832 169,404 1 1 � 10�6
2 are identical, second, case 1 suffers from some numerical convergences (it is necessary to switch to a direct solver rather
than an iterative solver (consequently, it drastically increases runtime)) and lc and Lc dependency problem. Furthermore,
case 1 coincides with the 2D Cosserat models whose considerations are less valuable due to the fact that we solely use gra-
dient of micro-rotation (r/) in the second constitutive law.

We readily distinguish the boundedness property for all cases involving grid framework assumption for micro-rotations.
The comparison among all cases nearly represents the same global behavior for cases 1, 2 and 4 but conformal case 3 is quite
different. The major difference arises from the fact that it can bear more curvature torque for the same Lc values comparing to
the others.

In Fig. 8(a)–(c), all cases are equally compared in a semi-logarithmic diagram or so-called Torque-Log (Lc) diagram. The
global behavior of cases 2 and 4 are approximately identical and conformal case 3 behaves differently.13

We can distinct three zones in Torque-Log (Lc) diagram:

� Zone I: Model behaves as like as classical Cauchy-Boltzmann’s media, i.e. no size effects,
� Zone II: Model is completely size dependent,
� Zone III: Lack of size effects for very large Lc values was observed.

As illustrated in Fig. 8a(a)–(c), three zones appear in the semi-logarithmic diagram. The first and last zones are non-
size effect affected zones, whereas, zone II is entirely a size effect affected zone. Cases 2 and 4 as well as case 1 display
identical Lc values for the start point (Lc = 0.1 mm) and end point of zone II (Lc = 100 mm). Alternatively, conformal case 3
enlarges the size effect affected zone. Accordingly, more size effects must be expected for this case. It is well worth seri-
ous consideration and is named Conformal case in which we can expect the heterogeneous deformations [4]. Surprisingly,
MTcurv attains the values greater than those found for stiffness torque MTmp in case 2, case 4 and conformal case 3 by
itself! Indeed, it takes place due to the intrinsic feature of conformality and heterogeneous deformation concept whose
utilization for the heterogeneous media looks like very interesting and it should be followed by a comprehensive study.
13 It is straightforward to emphasize that case 1 makes some numerical problems using iterative solver, especially for the values less than 0.5 mm. To
overcome this disadvantage, we used a direct solver. The same phenomenon was found out by an independent user-written FEM code either [62].
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Fig. 7. (a) Computation history results for case 2 a ¼ 0 and b ¼ c ¼ lL2
c

2

� �
: MTmp and MTcurv versus solution number. Every peak represents the angle of

torsion between 0 and 13 degree, i.e. 0 6 # 6 13p
180 for a specific Lc value (0 mm, 0.001 mm, 0.01 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 1 mm, 5 mm,

10 mm, 100 mm, 1000 mm, 1 � 104 mm, 1 � 105 mm, 1 � 106 mm, 1 � 107 mm), (b) Computation history results for conformal case 3

a ¼ � lL2
c

3 and b ¼ c ¼ lL2
c

2

� �
: MTmp and MTcurv versus solution number. Every peak represents the angle of torsion between 0 and 13 degree, i.e.

0 6 # 6 13p
180 for a specific Lc value (0 mm, 0.001 mm, 0.01 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 1 mm, 5 mm, 10 mm, 100 mm, 1000 mm,

1 � 104 mm, 1 � 105 mm, 1 � 106 mm, 1 � 107 mm), (c) Computation history results for case 4 a ¼ b ¼ c ¼ lL2
c

� �
: MTmp and MTcurv versus solution number.

Every peak represents the angle of torsion between 0 and 13 degree, i.e. 0 6 # 6 13p
180 for a specific Lc value (0 mm, 0.001 mm, 0.01 mm, 0.1 mm, 0.2 mm,

0.3 mm, 0.4 mm, 0.5 mm, 1 mm, 5 mm, 10 mm, 100 mm, 1000 mm, 1 � 104 mm, 1 � 105 mm, 1 � 106 mm, 1 � 107 mm).

Fig. 8. (a) Semi-logarithmic diagram of Torque versus Log (Lc) including stiffness torque (MTmp) and curvature stiffness torque (MTcurv) for case 2

a ¼ 0 and b ¼ c ¼ lL2
c

2

� �
and # ¼ 13p

180, (b) Semi-logarithmic diagram of Torque versus Log (Lc) including stiffness torque (MTmp) and curvature stiffness torque

(MTcurv) for conformal case 3 a ¼ � lL2
c

3 and b ¼ c ¼ lL2
c

2

� �
and # ¼ 13p

180, (c) Semi-logarithmic diagram of Torque versus Log (Lc) including stiffness torque

(MTmp) and curvature stiffness torque (MTcurv) for case 4 a ¼ b ¼ c ¼ lL2
c

� �
and # ¼ 13p

180.
Comparison among Fig. 8a, b and c, reveals that only the end point of zone II has been shifted toward higher Lc values and
the start point of zone II is untouched.

The global behavior of the above-mentioned semi-logarithmic diagrams could be interpreted by the combination of ma-
trix and grid framework assumptions. While we take into account a very large specimen, the grid frameworks cannot manip-
ulate the global mechanical behavior (zone I), whereas the size effect can be seen when the specimen is getting smaller and
smaller (zone II). When the specimen is smaller than the grid frameworks, we will miss size effects again (zone III) [5] and we
obtain the constant micro-rotations. This zone is coincided with the couple stress theory or so-called indeterminate couple stress
theory. It means that the micro-rotation is no longer independent variable [4,5].

4. Conclusions and outlooks

We can summarize some interesting conclusions and outlooks as below:

1. We can also find out the stiffness boundedness for case 4 as well as other cases (case 1, case 2, conformal case 3) involving
the grid framework models assumptions for micro-rotations,

2. The boundedness property has been observed for the stiffness as well as curvature stiffness whatever case number (case
1, case 2, conformal case 3 and case 4),

3. An interesting missing part which was neglected in the Cosserat theory, has been introduced into the Cosserat theory
under virtual work framework,

4. The above-mentioned term can explicitly describe the presence of m33 on the top of specimen, whereas we did not apply
any surface couple (Q(n)),
15



5. The physical interpretation of couple stress or so called stress moment m ¼ mijêi � êj
� �

must be revised due to the fact that it
contains not only the surface couple (Q(n)) but also r � t(n). Hence, stress moment second-rank tensor is affected by anti-
symmetrical counterpart of stress tensor e : �rð Þ as well as the impact of applied forces on the moments on the boundaries,
e.g. r � t(n) on Xt in our case (Fig. 1),

6. The semi-logarithmic diagram has been used and three specific zones based on the Lc values have been found out. This
diagram makes it possible to use Cosserat theory as a multi-scale tool due to the presence of three zones including dif-
ferent Lc values by considering the Representative Elementary Volume (REV) concept like those done earlier in [74] via
hygro-Cosserat theory using Duhamel–Neumann deformation decomposition for multi-disciplinary studies [101],

7. We can equally find out the three specific zones for stiffness torque MTmp and curvature torque MTcurv as well,
8. Conformal case 3 which was originally proposed by Neff–Jeong [4] is still very interesting so far. It is because of the fact

that the curvature stiffness is several times greater than stiffness and it is substantiated that we attain the heterogeneous
deformations using a continuum model [4,86,102,85],

9. By assuming the Cosserat theory as an explicit multi-scale approach (We can assume that stress tensor handles the
macro-deformations and couple stress or stress moment deals with the micro-deformations under a simplified form, i.e.
micro-rotation), we distinguish that it is necessary to achieve material characterization in macro-scale and micro-scale
as well. Hence, the major attempts should be focused on the micro-structural material characterization by means of
the rather modern tools, e.g. nano-indentation and Electron BackScattered Diffraction (EBSD) or BackScattered Kikuchi
Diffraction (BKD).
Appendix A. Virtual work for Cauchy–Boltzmann’s or so-called classical media

Let’s take the virtual work for Cauchy–Boltzmann’s media, the integration over @Xt can be replaced by @ X due to the fact
that dui = 0 on @Xu and tðnÞij ¼ 0 on @X0 [ @Xc:
Z
X
rT : dedV ¼

Z
@X

tðnÞ � dudSþ
Z

X
qb � dudV ; ðA:1aÞ
where
Z
@X

tðnÞ � dudS ¼
Z
@X
ðrT � nÞ � dudS ¼

Z
@X
ðr � duÞ � ndS ¼

Z
X

Div ðr � duÞdV ¼
Z

X
ðDivr � duþ r : dðruÞTÞdV : ðA:1bÞ
We know that XT : Y = X : YT for 8X;Y 2 R3 � R3, then:
Z
@X

tðnÞ � dudS ¼
Z

X
ðDivr � duþ rT : druÞdV ¼

Z
X
ðDivr � duþ rT : rduÞdV : ðA:2Þ
The term
R

X rT : dedV can be rewritten in function of ru as:
Z
X
rT : dedV ¼ 1

2

Z
X
rT : dðruþruTÞdV ¼ 1

2

Z
X
rT : ðdruþ dðruÞTÞdV ¼ 1

2

Z
X
ðrT : druþ rT : dðruÞTÞdV : ðA:3Þ
We know that XT : YT = X : Y for 8X;Y 2 R3 � R3 and by using the symmetry property for stress tensor, i.e. rT = r then:

Z

X
rT : dedV ¼ 1

2

Z
X
ðrT : druþ r : dðruÞTÞdV ¼ 1

2

Z
X
ðrT : druþ rT : druÞdV ¼

Z
X
rT : rdudV : ðA:4Þ
By substituting (A.2) and (A.4) into (A.1a), we obtain the following equation:
Z
X
rT : dedV ¼

Z
@X

tðnÞ � dudSþ
Z

X
qb � dudV )

Z
X
rT : rdudV ¼

Z
X
ðDivr � duþ rT : rduÞdV þ

Z
X
qb � dudV ; ðA:5Þ
then
 Z
X
ðDivrþ qbÞ � dudV ¼ 0) Divrþ qb ¼ 0 in X: ðA:6Þ
Accordingly, we can describe the governing equations for the Cauchy-Boltzmann’s media as following:
Divrþ qb ¼ 0 in X; ðA:7aÞ
rT � n ¼ tðnÞ on @Xt and rT � n ¼ 0 on @X0 [Xc: ðA:7bÞ
It is of importance to remind that in this case, there is no surface couple Q ðnÞij ¼ 0
� �

.
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Appendix B. Non-negativity of the Cosserat energy density

The positive definiteness property of isotropic Cosserat elasticity can be handled for the fourth-rank stiffness tensor (Dijkl)
leading to the following mathematical expressions:
�rij ¼ ðlþ lcÞ�eij þ ðl� lcÞ�eji þ k�ekkdij; ðB:1aÞ
or
D ¼

kþ 2l k k 0 0 0 0 0 0
k kþ 2l k 0 0 0 0 0 0
k k kþ 2l 0 0 0 0 0 0
0 0 0 lþ lc l� lc 0 0 0 0
0 0 0 l� lc lþ lc 0 0 0 0
0 0 0 0 0 lþ lc l� lc 0 0
0 0 0 0 0 l� lc l� lc 0 0
0 0 0 0 0 0 0 lþ lc l� lc

0 0 0 0 0 0 0 l� lc lþ lc

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ðB:1bÞ
To obtain the bounds of the material constants, we should verify the determinant of diagonal matrices as:
detðDÞ1�1 > 0) kþ 2l > 0; ðB:2aÞ

detðDÞ2�2 > 0) 4lðlþ kÞ > 0; ðB:2bÞ

detðDÞ3�3 > 0) 4l2ð3kþ 2lÞ > 0; ðB:2cÞ

detðDÞ4�4 > 0) 4l2½lð3kþ 2lÞ þ lcðkþ 2lÞ� > 0; ðB:2dÞ

detðDÞ5�5 > 0) 16l3lcð3kþ 2lÞ > 0; ðB:2eÞ

detðDÞ6�6 > 0) 16l3lcð3kþ 2lÞðlþ lcÞ > 0; ðB:2fÞ

detðDÞ7�7 > 0) 64l4l2
c ð3kþ 2lÞ > 0; ðB:2gÞ

detðDÞ8�8 > 0) 64l4l2
c ð3kþ 2lÞðlþ lcÞ > 0; ðB:2hÞ

detðDÞ9�9 > 0) 128l4l3
c ð3kþ 2lÞðlþ lcÞ > 0: ðB:2iÞ
Therefore, the following restrictions could be concluded:
3kþ 2l > 0; lþ lc > 0; lc > 0; l > 0; kþ l > 0; kþ 2l > 0: ðB:3Þ
We can simplify further as:
3kþ 2l > 0; l > 0; lc > 0: ðB:4Þ
The positive definiteness property of isotropic Cosserat elasticity can be handled for the fourth-rank curvature stiffness ten-
sor (Eijkl) leading to the following mathematical expressions:
mij ¼ b�kij þ c�kji þ a�kkkdij ðB:5Þ
and
E :¼

aþ bþ c a a 0 0 0 0 0 0
a aþ bþ c a 0 0 0 0 0 0
a a aþ bþ c 0 0 0 0 0 0
0 0 0 c b 0 0 0 0
0 0 0 b c 0 0 0 0
0 0 0 0 0 c b 0 0
0 0 0 0 0 b c 0 0
0 0 0 0 0 0 0 c b

0 0 0 0 0 0 0 b c

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

: ðB:6Þ
17



We should equally verify the determinant of diagonal matrices as below:
detðEÞ1�1 > 0) aþ bþ c > 0; ðB:7aÞ

detðEÞ2�2 > 0) ðbþ cÞð2aþ bþ cÞ > 0; ðB:7bÞ

detðEÞ3�3 > 0) ð3aþ bþ cÞðbþ cÞ2 > 0; ðB:7cÞ

detðEÞ4�4 > 0) cðbþ cÞ2ð3aþ bþ cÞ > 0; ðB:7dÞ

detðEÞ5�5 > 0) ðbþ cÞ3ð3aþ bþ cÞðc� bÞ > 0; ðB:7eÞ

detðEÞ6�6 > 0) cðbþ cÞ3ð3aþ bþ cÞðc� bÞ > 0; ðB:7fÞ

detðEÞ7�7 > 0) ðbþ cÞ4ð3aþ bþ cÞðc� bÞ2 > 0; ðB:7gÞ

detðEÞ8�8 > 0) cðbþ cÞ4ð3aþ bþ cÞðc� bÞ2 > 0; ðB:7hÞ

detðEÞ9�9 > 0) ðbþ cÞ5ð3aþ bþ cÞðc� bÞ3 > 0: ðB:7iÞ
Hence, the following restrictions could be concluded for the couple stress-micropolar curvature tensor constitutive law:
3aþ bþ c > 0; aþ bþ c > 0; c > 0; ðcþ bÞ3ðc� bÞ > 0: ðB:8Þ
We can rewrite them under the simplified form:
3aþ bþ c > 0; bþ c > 0; c� b > 0; c > 0: ðB:9Þ
Appendix C. Total energy density at a glance

The total energy density excluding the zero-centrosymmetrical part for elastic isotropic materials can be represented as
the following forms:
W �eij;
�kij

� �
:¼Wmp �eij;

�kij
� �

þWcurv �eij;
�kij

� �
¼ 1

2
�rT : �eþ 1

2
mT : �k

¼ 1
2

2lksym�ek2 þ 2lckskew�ek2 þ ktr½�e�2
� �

þ 1
2
ðbþ cÞksym�kk2 þ ðb� cÞkskew�kk2 þ atr½�k�2
� �

¼ 1
2

2lkdevsym�ek2 þ 2lckskew�ek2 þ 2kþ 3l
6

tr �e½ �2
� �

þ 1
2
ðbþ cÞkdevsym�kk2 þ ðb� cÞkskew�kk2 þ 3aþ ðbþ cÞ

6
tr½�k�2

� �
: ðC:1Þ
It is important to note that:
X : X ¼ XijXij ¼ kXk2
R3�R3 ¼ kXk2

; 8X 2 R3 � R3; ðC:2aÞ

kdevsymXk2 ¼ ksymXk2 � 1
3

tr½symX�2 ¼ ksymXk2 � 1
3

tr½X�2; 8X 2 R3 � R3: ðC:2bÞ
Appendix D. Notations

Let X 	 R3 be a bounded domain with Lipschitz boundary.@X and let C be a smooth subset of @X with non-vanishing 2-
dimensional Hausdorff measure. For a; b 2 R3 we let a � b denote the scalar product on R3 with associated vector norm
kak2

R3 ¼ a � b ¼ aibi for i ¼ 1;2;3 where i 2 N. We denote by M3�3 or R3 � R3 the set of real 3 � 3 s order tensors, written
with capital letters and sym denotes symmetric second orders tensors. The standard Euclidean scalar product on M3�3 is gi-
ven by hX;YiM3�3 ¼ X : Y ¼ trXYT ¼ trXT Y ¼ XijYij for i; j ¼ 1;2;3where i; j 2 N, and thus the Frobenius tensor norm is
kXk2 ¼ X : X ¼ hX;XiM3�3 . In the following we omit the index R3;M3�3. The identity tensor on M3�3 will be denoted by l,
so that trX ¼ hX; li ¼ X : l ¼ Xijdij for i; j ¼ 1;2;3 where i; j 2 N. We denote the scalar product of permutation tensor (third-
rank tensor) eijk and a second-rank tensor X, so that e � X ¼ eijkXklêi � êj � êl and e : X ¼ eijkXjkêi. The gradient of a vector
can be denoted so that ra ¼ aj;iêi � êj where ra 2M3�3 We set sym ðXÞ ¼ 1

2 ðX
T þ XÞ and skewðXÞ ¼ 1

2 ðX � XTÞ such that
X = sym (X) + skew (X) where X 2M3�3. For X 2M3�3 we set for the deviatoric part devX ¼ X � 1

3 trXl 2 slð3Þ where slð3Þ
is the Lie-algebra of traceless matrices. The set Sym (n) denotes all symmetric n � n-matrices.

The Lie-algebra of SO (3) :¼ {X 2 GL (3)jXTX ¼ l, detX = 1} is given by the set soð3Þ :¼ fX 2M3�3jXT ¼ �Xg of all skew sym-
metric tensors. The canonical identification of soð3Þ and R3 is denoted by axlA 2 R3 for A 2 soð3Þ. Note that ðaxlAÞ � n ¼ A � n
for all n 2 R3, such that
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axl
0 a b

�a 0 c
�b �c 0

0
B@

1
CA :¼

�c
b

�a

0
B@

1
CA; ðD:1Þ
Aij ¼
X3

k¼1

�eijk � axlAk;

kAk2
M3�3 ¼ 2kaxlAk2

R3 ;

hA;BiM3�3 ¼ 2haxlA; axlBiR3 :
Under the Einstein’s summation convention, the dual vector (axl) and dual tensor (anti) could be shown as below:
X :¼ antix ¼ �xieijkêj � êk ¼ �x � e where x 2 R3 and X 2M3�3; ðD:3aÞ

x :¼ axlX ¼ �1
2

eijkXjkêi ¼ �
1
2

e : X where x 2 R3 and X 2M3�3: ðD:3bÞ
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