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Abstract: Sampling distribution over high-dimensional state-space is a problem which has
recently attracted a lot of research efforts; applications include Bayesian non-parametrics,
Bayesian inverse problems and aggregation of estimators. All these problems boil down
to sample a target distribution π having a density w.r.t. the Lebesgue measure on Rd,
known up to a normalisation factor (see [9] for details) x 7→ e−U(x)/

∫
Rd e−U(y)dy where

U is continuously differentiable with Lipschitz gradient. In this paper, we study a sampling
technique based on the Euler discretization of the Langevin stochastic differential equation.
Contrary to the Metropolis Adjusted Langevin Algorithm (MALA), we do not apply a
Metropolis-Hastings correction. We obtain for both constant and decreasing step sizes in the
Euler discretization, non-asymptotic bounds for the convergence to the target distribution
π in total variation distance. A particular attention is paid on the dependence on the
dimension of the state space, to demonstrate the applicability of this method in the high
dimensional setting, at least when U is convex. These bounds improve and extend the
results of [10].

AMS 2000 subject classifications: primary 65C05, 60F05, 62L10; secondary 65C40,
60J05,93E35.
Keywords and phrases: total variation distance, Langevin diffusion, Markov Chain
Monte Carlo, Metropolis Adjusted Langevin Algorithm, Rate of convergence.

1. Introduction

We study the sampling over Rd of a target distribution π with density x 7→ e−U(x)/
∫
Rd e

−U(y)dy
w.r.t. the Lebesgue measure, where U is a continuously differentiable function. We consider
a sampling method based on the Euler discretization of the Langevin stochastic differential
equation (SDE)

dY L
t = −∇U(Y L

t )dt+
√
2 dBd

t , (1)

where (Bd
t )t≥0 is a d-dimensional Brownian motion. It is well-known that the Markov semi-group

associated with the Langevin diffusion (Y L
t )t≥0 is reversible w.r.t. π. Under suitable conditions,

the convergence to π takes place at geometrical rate. Precise quantitative estimates of the rate of
convergence with explicit dependence on the dimension d of the state space have been recently
obtained using either functional inequalities (such as Poincaré and log-Sobolev inequalities; see [2,
7] [3]) or by coupling techniques (see [12]). The Euler-Maruyama discretization scheme associated
to the Langevin diffusion defines the discrete time-Markov chain given by

Xk+1 = Xk − γk+1∇U(Xk) +
√
2γk+1Zk+1 (2)

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian random variables and (γk)k≥1 is a
sequence of step sizes, which can either be held constant or be chosen to decrease to 0. The
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idea of using the Markov chain (Xn)n≥0 to sample (approximately) from the target π has been
first introduced in the physics literature by [30] and popularized in the computational statis-
tics community by [14] and [15]. It has been studied in depth by [31], which proposed to use a
Metropolis-Hastings step at each iteration to enforce reversibility w.r.t. π leading to the Metropo-
lis Adjusted Langevin Algorithm (MALA). They coin the term unadjusted Langevin algorithm
(ULA) when the Metropolis-Hastings step is avoided.

The purpose of this paper is to study the convergence of the ULA algorithm. The emphasis
is put on non-asymptotic computable bounds; we pay a particular attention to the way these
bounds scale with the dimension d and constants characterizing the smoothness and curvature
at infinity of the potential U . Our study covers both the constant and decreasing step sizes and
we analyse both the ”finite horizon” (where the total number of simulations is specified before
running the algorithm) and ”any-time” settings (where the algorithm can be stopped after any
iteration).

When the step size γk = γ is constant, under appropriate conditions related to [31], the
Markov chain (Xn)n≥0 is V -uniformly geometrically ergodic with stationary distribution πγ .
With few exceptions, the stationary distribution πγ is no longer equal to the target π. It is of
course sensible to expect that if the step size γ is small enough, then the stationary distribution
of this chain is in some sense close to π. We provide non-asymptotic bounds of the V -total
variation distance between πγ and π, with explicit dependence on the step size γ, the dimension
d and the number of simulations. Our results complete and extend the recent works by [11] and
[10]. We first consider the case of densities which are super-exponential in the tails, for which we
prove convergence in total variation. We also address the case where π is globally log-concave
and strongly log-concave outside a ball.

When (γk)k≥1 decreases to zero, then (Xn)n≥0 is a non-homogeneous Markov chain. If in
addition

∑∞
k=1 γk = ∞, we show that the marginal distribution of this non-homogeneous chain

converges, under some mild additional conditions, to the target distribution π. We also provide
explicit expression for the convergence rate, emphasizing the role of the dimension and the rate
of decrease of the sequence (γk)k≥1. Compared to the related works by [20], [21], [22] and [23],
we establish not only the weak convergence of the weighted empirical measure of the path to
the target distribution, but establish a much stronger convergence in total variation, similarly to
[10], where the strongly log-concave case is considered.

The paper is organized as follows. In Section 2, the main convergence results are stated
under abstract assumptions. We then specialize these results to different classes of densities; in
Section 2.1, these results are stated for a class of densities which are superexponential in the
tails. In Section 2.2 these results are sharpened by considering densities which are log-concave.
Finally, in Section 2.3, densities which are log-concave and strongly log-concave in the tails are
dealt with. The proofs are gathered in Section 3. Some general convergence results for diffusion
based on reflection coupling, which are of independent interest, are stated in Section 4.

Notations and conventions

Denote by B(Rd) the Borel σ-field of Rd and by F(Rd) the set of all Borel measurable functions
on R

d and for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. Denote by M(Rd) the space of finite signed
measure on (Rd,B(Rd)) and M0(R

d) = {µ ∈ M(Rd) | µ(Rd) = 0}. For µ ∈ M(Rd) and f ∈ F(Rd)
a µ-integrable function, denote by µ(f) the integral of f w.r.t. µ. Let V : Rd → [1,∞) be a
measurable function. For f ∈ F(Rd), the V -norm of f is given by ‖f‖V = supx∈Rd |f(x)|/V (x).
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For µ ∈ M(Rd), the V -total variation distance of µ is defined as

‖µ‖V = sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣
∫

Rd

f(x)dµ(x)

∣∣∣∣

If V ≡ 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.
For p ≥ 1, denote by Lp(π) the set of measurable functions such that π(|f |p) < ∞. For

f ∈ L2(π), the variance of f under π is denoted by Varπ {f}. For all function f such that
f log(f) ∈ L1(π), the entropy of f with respect to π is defined by

Entπ (f) =

∫

Rd

f(x) log(f(x))dπ(x) .

Let µ and ν be two probability measures on R
d. If µ ≪ ν, we denote by dµ/dν the Radon-

Nikodym derivative of µ w.r.t. ν. For k ≥ 0, denote by Ck(Rd), the set of k-times continuously
differentiable functions. For f ∈ C2(Rd), denote by ∇f the gradient of f and ∆f the Laplacian
of f . For all x ∈ R

d and M > 0, we denote by B(x,M), the ball centered at x of radius M . In
the sequel, we take the convention that for n, p ∈ N, n < p then

∑n
p = 0 and

∏n
p = 1.

2. Main results

In this Section, we will present our main results. We also outline the main ideas underlying the
proofs. Consider the following assumption on the potential U :

L 1. The function U is continuously differentiable on R
d and is gradient Lipschitz, i.e. there

exists L ≥ 0 such that for all x, y ∈ R
d,

‖∇U(x) −∇U(y)‖ ≤ L ‖x− y‖ .

Under L1, by [17, Theorem 2.4-3.1] for every initial point x ∈ R
d, there exists a unique strong

solution (Y L
t (x))t≥0 to the Langevin SDE (1). Define for all t ≥ 0, x ∈ R

d and A ∈ B(Rd),
PL
t (x,A) = P

(
Y L
t (x) ∈ A

)
. The semi-group (PL

t )t≥0 is reversible w.r.t. π, and hence admits π
as its (unique) invariant measure. In the sequel, we consider the case where (PL

t )t≥0 is uniformly
geometrically ergodic, i.e. there exists κ ∈ [0, 1) such that for any initial distribution µ0 and
t > 0, ∥∥µ0P

L
t − π

∥∥
TV

≤ C(µ0)κ
t , (3)

for some computable constant C(µ0) ∈ [0,+∞]. Denote by A L the generator associated with
the Langevin diffusion (1), given for all f ∈ C2(Rd) by

A
Lf = −〈∇U,∇f〉+∆f . (4)

A twice continuously differentiable function V : Rd → [1,∞) is a Lyapunov function for the
generator A L if there exists θ > 0, β ≥ 0 and a measurable set E such that,

A
LV ≤ −θV + β1E . (5)

By [31, Theorem 2.2], if V is a Lyapunov function for A L, the Langevin diffusion is uniformly
geometrically ergodic, with constants C(µ0) and the rate κ which can be made explicit, but are in
general pessimistic and depends exponentially on the dimension. We will see in the sequel other
methods to obtain (3) to obtain tighter control on C(µ0) and κ. These upper bounds depend
crucially on the assumptions that we are ready to make on the potential U and also on the
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methods of proofs (functional inequalities and coupling techniques yield different values for this
constant). The dependence in the dimension d is of primary interest in all the derivations that
follow.

Consider now the Euler discretization of the diffusion (2). Let (γk)k≥1 be a sequence of positive
and non-increasing step sizes and for n, p ∈ N, denote by

Γn,p
def
=

p∑

k=n

γk , Γn = Γ1,n . (6)

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈ R
d by

Rγ(x,A) =

∫

A

(4πγ)−d/2 exp
(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy . (7)

The discretized Langevin diffusion (Xn)n≥0 given in (2) is a time-inhomogeneous Markov chain,
for p ≥ n ≥ 1 and f ∈ F+(R

d), EFn [f(Xp)] = Qn,p
γ f(Xn) where Fn = σ(Xℓ, 0 ≤ ℓ ≤ n) and

Qn,p
γ = Rγn · · ·Rγp , Qn

γ = Q1,n
γ , (8)

with the convention that for n, p ≥ 0, n < p, Qp,n
γ is the identity operator. Under L 1, the

Markov kernel Rγ is strongly Feller, irreducible, strongly aperiodic. We will say that a function
V : Rd → [1,∞] satisfies a Foster-Lyapunov drift condition for Rγ if there exist constants γ̄ > 0,
λ ∈ [0, 1) and c > 0 such that, for all γ ∈ (0, γ̄], we get

RγV ≤ λγV + γc . (9)

Note the specific form of the Foster-Lyapunov condition as a function of γ > 0. It reflects
how the mixing rate of the Markov chain depends upon the step size γ > 0. If γ = 0, then
R0(x,A) = δx(A) for x ∈ R

d and A ∈ B(Rd), the Markov chain is not mixing. Intuitively, as γ
get larger, then the step sizes are larger and the mixing of Rγ increases. If Rγ satisfies a Foster-
Lyapunov condition for some γ > 0, then Rγ admits a unique stationary distribution πγ and that
the Markov kernel is V -uniformly geometrically ergodic, i.e. there exist constants C(γ) < ∞ and
λ ∈ [0, 1), such that for all x ∈ R

d,

∥∥Rk
γ(x, ·)− πγ

∥∥
V
≤ C(γ)λγ kV (x) . (10)

The constants C(γ) and λ depend once again on the assumptions on the potential U . For reason
that will become obvious in the sequel, we will not use estimates of the form (10) but rather
use the Foster-Lyapunov drift to control quantitatively the moments of the time-inhomogeneous
chain. The types of bounds which are needed, are summarised in the following elementary Lemma.

Lemma 1. Let γ̄ > 0. Assume that for all x ∈ R
d and γ ∈ [0, γ̄], (9) holds for some constants

λ ∈ (0, 1) and c > 0. Let (γk)k∈N be a sequence of nonincreasing step sizes such that γk ∈ [0, γ̄]
for all k ∈ N

∗. Then for all n ≥ 0, Qn
γV (x) ≤ F (λ,Γ1,n, c, γ1, V (x)) where

F (λ, a, c, γ, w) = λaw + c(−λγ log(λ))−1 . (11)

Proof. The proof is postponed to Section 3.1.

Note that Lemma 1 implies that supk≥0{Qk
γV (x)} ≤ G(λ, c, γ1, V (x)) where

G(λ, c, γ, w) = w + c(−λγ log(λ))−1 . (12)
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We give below the main ingredients which are needed to obtain a quantitative bound for ‖δxQp
γ−

π‖TV for all x ∈ R
d. This quantity is decomposed as follows: for all 0 ≤ n < p,

‖δxQp
γ − π‖TV ≤ ‖δxQn

γQ
n+1,p
γ − δxQ

n
γP

L
Γn+1,p

‖TV + ‖δxQn
γP

L
Γn+1,p

− π‖TV . (13)

To control the first term on the right hand side, we use a method borrowed from [11]. For
0 ≤ s ≤ t, let C([s, t] ,Rd) be the space of continuous function on [s, t] taking values in R

d.
For all y ∈ R

d, denote by µy
n,p and µ̄y

n,p the laws on C([Γn,Γp] ,R
d) of the Langevin diffusion

(Y L
t (y))Γn≤t≤Γp and of the continuously-interpolated Euler discretization (Ȳ L

t (y))Γn≤t≤Γp both

started at y at time Γn. Denote by (Yt(y), Y t(y))t≥0 the unique strong solution started at (y, y)
at time t = Γn of the time-inhomogeneous diffusion defined for t ≥ 0 by

{
dY L

t = −∇U(Y L
t )dt+

√
2dBt

dȲ L
t = −∇U(Ȳ L, t)dt+

√
2dBt ,

(14)

where (Γn)n≥1 is given in (6) and for any continuous function w : R+ → R
d, s 7→ ws, and t ≥ 0

∇U(w, t) =

∞∑

k=0

∇U(wΓk
)1[Γk,Γk+1)(t) . (15)

Girsanov’s Theorem [18, Theorem 5.1, Corollary 5.16, Chapter 3] shows that µy
n,p and µ̄y

n,p

are mutually absolutely continuous and in addition, µ̄y
n,p-almost surely

dµy
n,p

dµ̄y
n,p

= exp

(
1

2

∫ Γp

Γn

〈
∇U(Ȳ L

s (y))−∇U(Ȳ L(y), s), dȲ L
s (y)

〉

−1

4

∫ Γp

Γn

{∥∥∇U(Ȳ L
s (y))

∥∥2 −
∥∥∇U(Ȳ L(y), s)

∥∥2
}
ds

)
. (16)

Under L1, for all y ∈ R
d it yields

KL(µy
n,p|µ̄y

n,p) ≤ 4−1

∫ Γp

Γn

E

[∥∥∇U(Ȳ L
s (y))−∇U(Ȳ L(y), s)

∥∥2
]
ds

≤ 4−1L

p−1∑

k=n

{
(γ3

k+1/3)

∫

Rd

‖∇U(z)‖2 Qn+1,k
γ (y, dz) + dγ2

k+1

}
. (17)

In addition, by the Pinsker inequality, ‖δyQn+1,p
γ − δyP

L
Γn+1,p

‖TV ≤
√
2{KL(µy

n,p|µ̄y
n,p)}1/2. So,

combining (3) and (17) in (13), we have for all x ∈ R
d, n ≥ 0, p ≥ 1, n < p,

‖δxQp
γ − π‖TV ≤ 2−1/2L

(
p−1∑

k=n

{
(γ3

k+1/3)A(γ, x) + dγ2
k+1

}
)1/2

+ C(δxQ
n
γ )κ

Γn+1,p , (18)

where κ,C(δxQ
n
γ ) are defined in (3) and

A(γ, x) = sup
k≥0

∫

Rd

‖∇U(z)‖2 Qk
γ(y, dz) . (19)

In the sequel, depending on the assumption and the technique of proof, for any given x ∈ R
d,

C(δxQ
n
γ) can have two kinds a upper bound, either of the form − log(γn)W (x), or exp(aΓn)W (x),
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for some function W : Rd → R and a > 0. In both cases, as shown in Proposition 2, it is possible
to choose n as a function of p, so that limp→+∞ ‖δxQp

γ − π‖TV = 0 under appropriate conditions
on the sequence of step sizes (γk)k≥1.

Proposition 2. Assume L1. Let (γk)k≥1 be a nonincreasing sequence such that limk→+∞ Γk =
+∞ and limk→∞ γk = 0. Then, limn→∞ ‖δxQn

γ − π‖TV = 0 for any x ∈ R
d for which one of the

two following conditions holds:

(i) A(γ, x) < ∞ and lim supn→+∞ C(δxQ
n
γ )/(− log(γn)) < +∞.

(ii)
∑∞

k=1 γ
2
k < +∞, A(γ, x) < ∞ and lim supn→+∞ log{C(δxQ

n
γ )}/Γn < +∞.

Proof. (i) There exists p0 ≥ 1 such that for all p ≥ p0, κ
γp > γp and κΓp ≤ γ1. Therefore, we

can define for all p ≥ p0,

n(p)
def
= min

{
k ∈ {0, · · · , p− 1} |κΓk+1,p > γk+1

}
. (20)

and n(p) ≥ 1. We first show that lim infp→∞ n(p) = ∞. The proof goes by contradiction. If
lim infp→∞ n(p) < ∞ we could extract a bounded subsequence (n(pk))k≥1. For such sequence,
(γn(pk)+1)k≥1 is bounded away from 0, but limk→+∞ κΓn(pk)+1,pk = 0 which yields to a contra-

diction. The definition of n(p) implies that κΓn(p),p ≤ γn(p), showing that

lim sup
p→+∞

C(δxQ
n(p)
γ )κΓn(p),p ≤ lim sup

p→+∞

C(δxQ
n(p)
γ )

− log(γn(p))
lim sup
p→+∞

{
γn(p)(− log(γn(p)))

}
= 0 .

On the other hand, since (γk)k≥1 is nonincreasing, for any ℓ ≥ 2,

p∑

k=n(p)+1

γℓ
k ≤ γℓ−1

n(p)+1Γn(p)+1,p ≤ γℓ−1
n(p)+1 log(γn(p)+1)/ log(κ) .

The proof follows from (18) using limp→∞ γn(p) = 0.
(ii) For all p ≥ 1, define n(p) = max(0, ⌊log(Γp)⌋). Note that limk→+∞ Γk = +∞ implies

that limp→+∞ n(p) = +∞. Since by assumption,
∑+∞

k=1 γ
2
k < +∞ and (γk)k≥1 is a nonincreasing

sequence, we get for all ℓ ≥ 2, limp→+∞

∑p
k=n(p) γ

ℓ
k = 0, which shows that the first term in the

right side of (18) goes to 0 as p goes to infinity. As for the second term, under the condition
lim supn→+∞ log{C(δxQ

n
γ )}/Γn < +∞, we get using that (γk)k≥1 is nonincreasing and n(p) ≤

log(Γp),

C(δxQ
n(p)
γ )κΓn(p),p ≤ exp

(
log(κ)Γp +

[
{log(C(δxQ

n(p)
γ ))/Γn(p)}+ − log(κ)

]
Γn(p)

)

≤ exp

(
log(κ)Γp +

[
sup
k≥1

{log(C(δxQ
k
γ))/Γk}+ − log(κ)

]
γ1 log(Γp)

)
.

Using κ < 1 and again limk→+∞ Γk = +∞, we have limp→+∞ C(δxQ
n(p)
γ )κΓn(p),p = 0, which

concludes the proof.

Using (18), we can also assess the convergence of the algorithm for constant step sizes γk = γ
for all k ≥ 1. Two different kinds of results can be derived. First, for a given precision ε > 0, we
can try to optimize the step size γ to minimize the number of iterations p required to achieve
‖δxQp

γ −π‖TV ≤ ε. Second if the total number of iterations is fixed p ≥ 1, we may determine the
stepsize γ > 0 which minimizes ‖δxQp

γ − π‖TV.
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Lemma 3. Assume that there exists γ̄ > 0 such that for any γ ∈ (0, γ̄] (18) holds for γk =
γ for all k ≥ 1. In addition, assume that C̄(x) = supγ∈(0,γ̄] supn≥1 C(δxQ

n
γ ) < +∞ and

supγ∈(0,γ̄]A(γ, x) ≤ Ā(x). Then for all ε > 0, we get ‖δxQp
γ − π‖TV ≤ ε if

p > Tγ−1 and γ =
−d+

√
d2 + (2/3)Ā(x)ε2(L2T )−1

2Ā(x)/3
∧ γ̄ , (21)

where

T =

(
sup
n≥0

log{C̄(x)} − log(ε/2)

)/
(− log(κ)) .

Proof. For p > Tγ−1, set n = p−
⌊
Tγ−1

⌋
. Then using the stated expressions of γ and T in (18)

concludes the proof.

Lemma 4. Assume that there exists γ̄ > 0 such that for any γ ∈ (0, γ̄] (18) holds for γk = γ for
all k ≥ 1. In addition, assume that there exists n > 0 such that C̄n(x) = supγ∈(0,γ̄]C(δxQ

n
γ ) <

+∞ and supγ∈(0,γ̄]A(γ, x) ≤ Ā(x). For all p > n and all x ∈ R
d, if γ = log(p − n){(p −

n)(− log(κ))}−1 ≤ γ̄, then

‖δxQp
γ − π‖TV ≤ (p− n)−1/2{C̄n(x)(p− n)−1/2 + log(p− n)(d+ Ā(x) log(p− n)(p− n)−1)1/2} .

Proof. The proof is a straightforward calculation using (18).

To get quantitative bounds for the total variation distance ‖δxQp
γ − π‖TV it is therefore

required to get bounds on κ, A(γ, x) and to control C(δxQ
n
γ ). We will consider in the sequel

two different approaches, one based on functional inequalities, the other on coupling techniques.
We will consider also increasingly stringent assumptions for the potential U . Whereas we will
qualitatively obtain always the same type of exponential bounds, the dependence of the constants
in the dimension will be markedly different. In the worst case, the dependence is exponential. It
is polynomial when U is convex.

2.1. Superexponential densities

The first condition that we consider is that the potential is superexponential outside a ball.
This is a rather weak assumption (we do not assume convexity here). The price to pay will be
constants which are exponential in the dimension. In this section, the potential U is unbounded
off compact set. Since U is continuous, it has a global minimizer x⋆, which is a point at which
∇U(x⋆) = 0. Without loss of generality, it is assumed that U(x⋆) = 0.

H1. The potential U is twice continuously differentiable and there exist ρ > 0, α ∈ (1, 2] and
Mρ ≥ 0 such that for all x ∈ R

d, ‖x− x⋆‖ ≥ Mρ, 〈∇U(x), x − x⋆〉 ≥ ρ ‖x− x⋆‖α.
Lemma 5. Assume L1 and H1. Then for all x ∈ R

d,

U(x) ≥ ρ ‖x− x⋆‖α /(α+ 1)− aα with aα = ρMα
ρ /(α+ 1) +M2

ρL/2 . (22)

Proof. The elementary proof is postponed to Section 3.2.

Following [31, Theorem 2.3], we first establish a drift condition for the diffusion.
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Proposition 6. Assume L1 and H1. For any ς ∈ (0, 1), the drift condition (5) is satisfied with
the Lyapunov function Vς(x) = exp(ςU(x)), θς = ςdL, Eς = B(x⋆,Kς), Kς = max({2dL/(ρ(1−
ς))}1/(2(α−1)),Mρ) and βς = ςdL sup{y∈Eς}{Vς(y)}. Moreover, there exists constant Cς < ∞ and

υς > 0 such that for all probability measures µ0 and ν0 on (Rd,B(Rd)), satisfying µ0(Vς) +
ν0(Vς) < +∞, and t ∈ R+,

‖µ0P
L
t − ν0P

L
t ‖Vς ≤ Cςe

−υςt‖µ0 − ν0‖Vς , ‖µ0P
L
t − π‖Vς ≤ Cςe

−υςtµ0(Vς) .

Proof. The proof, adapted from [31, Theorem 2.3] and [27, Theorem 6.1], is postponed to Sec-
tion 3.3.

The constants Cς and υς depend on the drift and minorization conditions. Under H1, explicit
expressions for these constants have been developed in the literature but these estimates are in
general very conservative. We now turn to establish a Foster-Lyapunov condition for the Euler
discretization.

Proposition 7. Assume L1 and H1. Let γ̄ ∈
(
0, L−1

)
. For all γ ∈ (0, γ̄] and x ∈ R

d, Rγ satisfies

the drift condition (9) with V (x) = exp(U(x)/2), λ = e−dL/{2(1−Lγ̄)}, c = −2 log(λ)λ−γ̄ sup{y∈B(x⋆,K)} V (y)

and K = max(Mρ, (8 log(λ)/ρ
2)1/(2(α−1))).

Proof. The proof is postponed to Section 3.4.

Theorem 8. Assume L1 and H1. Let (γk)k≥1 be a nonincreasing sequence with γ1 < γ̄, γ̄ ∈(
0, L−1

)
. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d, (18) holds with log(κ) = −υ1/2 and

A(γ, x) ≤ L2

(
α+ 1

ρ

[
aα +

4(2− α)(α + 1)

αρ
+ 2 log {G(λ, c, γ1, V (x))}

])2/α

(23)

C(δxQ
n
γ ) ≤ C1/2F (λ,Γ1,n, c, γ1, V (x)) , (24)

where C1/2, υ1/2 are given by Proposition 6, F by (11), V , λ, c in Proposition 7, G by (12), aα
in (22).

Proof. The proof is postponed to Section 3.5.

Equation (24) implies that for all x ∈ R
d, we have supn≥0 C(δxQ

n
γ ) ≤ G(λ, c, γ1, V (x)), so

Proposition 2-(i) shows that limp→+∞ ‖Qp
γ − π‖TV = 0, if limk→+∞ γk = 0 and limk→+∞ Γk =

+∞. In addition, for the case of constant step size γk = γ for all k ≥ 1, Lemma 3 and Lemma 4
can be applied.

By Proposition 6, (PL
t )t≥0 is a contraction operator on the space of bounded signed measure

µ ∈ M0, µ(V1/4) < +∞, endowed with ‖ ·‖V1/4
. It is therefore possible to control ‖δxQp

γ −π‖V1/4
.

To simplify the notations, we limit our discussion to constant step sizes.

Theorem 9. Assume L1 and H1. Then, for all p ≥ 1, x ∈ R
d and γ ∈

(
0, L−1

)
, we have

‖δxRp
γ − π‖V 1/2 ≤ C1/4κ

γpV 1/2(x) +B(V (x), γ) , (25)

where log(κ) = −υ1/4, C1/4, υ1/4, θ1/2, β1/2 are defined in Proposition 6, V, λ, c in Proposition 7,
G in (12) and

B2(v, γ) = L2max(1, C2
1/4)(1 + γ)(1− κ)−2

(
2G(λ, c, γ, v) + β1/2/θ1/2

)

×
(
γd+ 3−1γ2‖∇U‖2V 1/2 G(λ, c, γ, v)

)
. (26)

Moreover, Rγ has a unique invariant distribution πγ and ‖π − πγ‖V 1/2 ≤ B(1, γ).
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Proof. The proof of (25) is postponed to Section 3.6. The bound for ‖π − πγ‖V 1/2 is an easy
consequence of (25). By Proposition 13 and [26, Theorem 16.0.1], Rγ is V 1/2-uniformly ergodic:
limp→+∞ ‖δxRp

γ − πγ‖V 1/2 = 0 for all x ∈ R
d. (25) shows that for all x ∈ R

d,

‖π − πγ‖V 1/2 ≤ lim
p→+∞

{
‖δxRp

γ − π‖V 1/2 + ‖δxRp
γ − πγ‖V 1/2

}
≤ B(V (x), γ) .

Taking the minimum over x ∈ R
d concludes the proof.

Remark 10. It is shown in [33, Theorem 4] that for φ ∈ C∞(Rd) with polynomial growth,
πγ(φ) − π(φ) = b(φ)γ + O(γ2), for some constant b(φ) ≥ 0, provided that U ∈ C∞(Rd). Our
result does not match this bound since B(1, γ) = O(γ1/2), but holds for a larger class of function
φ, which can be only measurable. Our result also strengthens and completes [25, Corollary 7.5],
which states that under H1 with α = 2, for any measurable φ : Rd → R, belonging to the function
space {

φ : Rd → R |∀x, y ∈ R
d , |φ(x) − φ(y)| ≤ C ‖x− y‖ {1 + ‖x‖k + ‖y‖k}

}
,

for some C ≥ 0, k ≥ 1, |πγ(φ)− π(φ)| ≤ Cγχ for some constants C ≥ 0 and χ ∈ (0, 1/2), which
does not depend on φ.

The bounds in Theorem 8 and Theorem 9 depend upon the constants appearing in Proposi-
tion 6 which are computable but are are known to be extremely pessimistic in general; see [32].
More explicit rates of convergence for the semigroup can be obtained using Poincaré (or spectral
gap); see [2], [7] and [3, Chapter 4] and the references therein. The probability measure π is said
to satisfy a Poincaré inequality with the constant CP if for every locally Lipschitz function h,

Varπ {h} ≤ CP

∫

Rd

‖∇h(x)‖2 π(dx) . (27)

This inequality implies by [7, Theorem 2.1] that for any initial distribution µ0 such that µ0 ≪ π
for all t ≥ 0, ∥∥µ0P

L
t − π

∥∥
TV

≤ exp(−t/CP) (Varπ {dµ0/dπ})1/2 . (28)

[1, Theorem 1.4] shows that if the Lyapunov condition (5) is satisfied, then the Poincaré inequality
(27) holds with constant depending explicitly on the Foster-Lyapunov constants and the oscil-
lation of the function U in the ball B(0,K) defined by oscK(U) = supB(0,K)(U) − infB(0,K)(U).
Denote by

Dn(γ)
def
=



4π

{
n∏

k=1

(1− Lγk)

}2 n∑

i=1

γi(1 − Lγi)
−1




−d/2

. (29)

Theorem 11. Assume L1 and H1. Let (γk)k≥1 be a non increasing sequence. Then for all n ≥ 1
and x ∈ R

d, Equation (3) holds with

log(κ) =
(
−θ−1

1/2

{
1 + (4β1/2K

2
1/2/π

2)e
oscK1/2

(U)
})−1

,

C(δxQ
n
γ ) ≤

(α+ 1)d(2π)(d+1)/2(d− 1)!

ρdΓ((d+ 1)/2)
Dn(γ)e

aα eU(x) ,

where Γ is the Gamma function and the constants β1/2, θ1/2,K1/2, aα are given in Proposition 6
and (22) respectively.

Proof. The proof consists in giving a bound on Varπ{dδxQn
γ/dπ} and is postponed to Section 3.7.

Note that for all x ∈ R
d, C(δxQ

n
γ ) satisfies the conditions of Proposition 2-(ii). Therefore, if

limn→+∞ Γn = +∞ and limn→+∞

∑n
k=1 γ

2
k < +∞, we get limk→+∞ ‖δxQp

γ − π‖TV = 0.

imsart-generic ver. 2014/10/16 file: main.tex date: March 7, 2016
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2.2. Log-concave densities

We now derive non-asymptotic bounds under the following additional assumption.

H2. U is convex and there exists a minimizer x⋆ for U and for some η > 0 and Mη ≥ 0, for all
x ∈ R

d, ‖x− x⋆‖ ≥ Mη,
U(x)− U(x⋆) ≥ η ‖x− x⋆‖ . (30)

It is shown in [1, Lemma 2.2] that if U satisfies L1 and is convex, then (30) holds for some con-
stants η,Mη which depend in an intricate way on U . Since the constants η,Mη appear explicitly
in the bounds that we derive, we must assume that these constants are explicitly computable.
We still assume in this section that U(x⋆) = 0. Define the function Wc : Rd → [1,+∞) for all
x ∈ R

d by
Wc(x) = exp((η/4)(‖x− x⋆‖2 + 1)1/2) . (31)

Proposition 12. Assume L1 and H2. Then the drift condition (5) is satisfied with the Lyapunov
function Wc, θ = η2/8, E = B(x⋆,K), K = max(1,Mη, 4d/η) and

β = (η/4)

[
η/4 + d+ sup

y∈B(x⋆,K)

{‖∇U(y)‖}
]
max

{
1, (K2 + 1)−1/2 exp(η(K2 + 1)1/2/4)

}
.

Proof. The proof is adapted from [1, Corollary 1.6] and is postponed to Section 3.8.

We now derive a drift inequality for Rγ in the case of U is convex.

Proposition 13. Assume L1 and H2. Let γ̄ ∈
(
0, L−1

]
. Then for all γ ∈ (0, γ̄], Rγ satisfies (9)

with the Lyapunov function Wc, λ = e−2−4η2(21/2−1), Rc = max(1, 2d/η,Mη),

c = {(η/4)(d+ (ηγ̄/4))− log(λ)} eη(R2
c+1)1/2/4+(ηγ̄/4)(d+(ηγ̄/4)) . (32)

Proof. The proof is postponed to Section 3.9

If U is convex, [4, Theorem 1.2] shows that π satisfies a Poincaré inequality with a constant
depending only on the variance of the stationary distribution.

Theorem 14. Assume L 1 and H 2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ γ̄,
γ̄ ∈

(
0, L−1

)
. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d, (18) holds with

log(κ) =

(
−432

∫

Rd

∥∥∥∥x−
∫

Rd

yπ(dy)

∥∥∥∥
2

π(dx)

)−1

(33a)

C(δxQ
n
γ ) =

(
(2π)(d+1)/2(d− 1)!

ηdΓ((d + 1)/2)
+

π
d/2Md

η

Γ(d/2 + 1)

)
Dn(γ) exp(U(x)) (33b)

A(γ, x) =
(
4η−1 [1 + log {G(λ, c, γ1,Wc(x))}]

)2
, (33c)

where Dn(γ), G, Wc, λ, c, are given in (29), (12), (31), Proposition 13 respectively.

Proof. The proof is postponed to Section 3.10.

For all x ∈ R
d, C(δxQ

n
γ ) satisfies the conditions of Proposition 2-(ii). Therefore, if limn→+∞ Γn =

+∞ and limn→+∞

∑n
k=1 γ

2
k < +∞, we get limk→+∞ ‖δxQp

γ − π‖TV = 0.
There are two difficulties when applying Theorem 14. First the Poincaré constant (33a) is in

closed form but is not computable, although it can be bounded by a O(d2) . Second, the control of
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d ε L
γ O(d−4) O(ε2/ log(ε−1)) O(L−2)

p O(d7) O(ε−2 log2(ε−1)) O(L2)

Table 1

For constant step sizes, dependence of γ and p in d, ε and parameters of U to get ‖δxQ
p
γ − π‖TV ≤ ε using

Theorem 17

the variance Varπ{dδxQn
γ/dπ} is difficult and yields to bounds which are likely to be suboptimal

yet difficult to improve. To circumvent this two issues, we now give new quantitative results on
the convergence of (PL

t )t≥0 to π in total variation. Instead of using functional inequality, we use in
the proof the coupling by reflection, introduced in [24]. Define the function ω : (0, 1)×R

∗
+ → R+

by for all ǫ ∈ (0, 1) and R ≥ 0,

ω(ǫ, R) = R2/
{
2Φ−1(1− ǫ/2)

}2
, (34)

where Φ is the cumulative distribution function of the standard Gaussian and Φ−1 is the asso-
ciated quantile function.

Theorem 15. Assume L1 and H2. Then for all x ∈ R
d, Equation (3) is satisfied with

log(κ) = −2 log(2)θ
[
log
{
β
(
2 + 2θ−1e2θ

−1ω(2−1,(8/η) log(4θ−1β))
)}

+ log(2)
]−1

, (35a)

C(δxQ
n
γ ) ≤ 4 + (1/2)

{
βθ−1 + F (λ,Γ1,n, c, γ1,Wc(x))

}
, (35b)

where the functions F and Wc are defined in (11) and (31), the constants θ, β, λ, c in Proposi-
tion 12 and Proposition 13 respectively.

Proof. The proof is postponed to Section 4.1.

Contrary to (33b), (35b) is uniformly bounded in n and we can apply Proposition 2-(i), which
implies the convergence to 0 of ‖δxQp

γ − π‖TV as p goes to infinity, if limk→+∞ γk = 0 and
limk→+∞ Γk = +∞. On the other hand, the expression of the rate (35a) is less concise and
explicit than (33a). Nevertheless, since log(β) in Proposition 12 is of order d, we get that the
rate of convergence log(κ) is of order d−2 as d goes to infinity (note indeed that the leading term
when d is large is 2θ−1ω

(
2−1, (8/η) log(4θ−1β)

)
which is of order d2). In the case of constant step

sizes γk = γ for all k ≥ 0, we can apply both Lemma 3 and Lemma 4. In particular, we summarise
in Table 1 the dependence of the step size γ > 0 and the minimum number of iterations p ≥ 0,
given by Lemma 3, to achieve ‖δxQp

γ − π‖TV ≤ ε for ε > 0.

2.3. Strongly log-concave densities

More precise bounds can be obtained in the case where U is assumed to be strongly convex
outside some ball; this assumption has been considered by [12] for convergence in the Wasserstein
distance; see also [5].

H3 (Ms). U is convex and there exist Ms ≥ 0 and m > 0, such that for all x, y ∈ R
d, ‖x− y‖ ≥

Ms,
〈∇U(x)−∇U(y), x− y〉 ≥ m ‖x− y‖2 .

We will see in the sequel that under this assumption the convergence rate does not depend on
the dimension d but only on the constants m and Ms.
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d ε L m Ms

γ O(d−1) O(ε2/ log(ε−1)) O(L−2) O(m) O(M−4
s )

p O(d log(d)) O(ε−2 log2(ε−1)) O(L2) O(m−2) O(M8
s )

Table 2

For constant step sizes, dependence of γ and p in d, ε and parameters of U to get ‖δxQ
p
γ − π‖TV ≤ ε using

Theorem 17

Proposition 16. Assume L1 and H3(Ms). Let γ̄ ∈
(
0, 2mL−2

)
. For all γ ∈ (0, γ̄], the Markov

kernel Rγ satisfies the Foster-Lyapunov condition (9) with V (x) = ‖x− x⋆‖2, λ = e−2m+γ̄L2

and
c = 2(d+mM2

s ).

Proof. The proof is postponed to Section 3.11.

Theorem 17. Assume L1 and H3(Ms). Let (γk)k∈N∗ be a nonincreasing sequence with γ1 ≤ γ̄,
γ̄ ∈

(
0, 2mL−2

)
. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d, (18) holds with

log(κ) = −(m/2) log(2)
[
log
{(

1 + emω(2−1,max(1,Ms))/4
)
(1 + max(1,Ms))

}
+ log(2)

]−1

C(δxQ
n
γ ) ≤ 5 +

(
d/m+M2

s

)1/2
+ F 1/2(λ,Γ1,n, c, γ1, ‖x− x⋆‖2)

A(γ, x) ≤ L2 G(λ, c, γ1, ‖x− x⋆‖2) ,

where λ, c are given in Proposition 16.

Proof. The proof is postponed to Section 4.1.

Note that the conditions of Proposition 2-(i) are fulfilled. For constant step sizes γk = γ for
all k ≥ 1, Lemma 3 and Lemma 4 can be applied. We give in Table 2 the dependence of the step
size γ > 0 and the minimum number of iterations p ≥ 0, provided in Lemma 3, on the dimension
d and the other constants related to U , to get ‖δxQp

γ − π‖TV ≤ ε, for a target precision ε > 0.
We can see that the dependence on the dimension is milder than for the convex case.

We now consider the case where U is a bounded perturbation of a strongly convex potential.

H4. The potential U may be expressed as U = U1 + U2, where

(a) U1 : Rd → R satisfies H3(0) (i.e. is strongly convex) and there exists L1 ≥ 0 such that for
all x, y ∈ R

d,
‖∇U1(x) −∇U1(y)‖ ≤ L1 ‖x− y‖ .

(b) U2 : Rd → R is continuously differentiable and supx∈Rd{|U2(x)|+ ‖∇U2(x)‖} < +∞ .

The probability measure π is said to satisfy a log-Sobolev inequality with constant CLS > 0 if
for all locally Lipschitz function h : Rd → R, we have

Entπ
(
h2
)
≤ 2CLS

∫
‖∇h‖2 dπ .

Then [7, Theorem 2.7] shows that for any probability measure µ0 ≪ π satisfying dµ0/dπ log(dµ0/dπ) ∈
L1(π), for all t ≥ 0, we have

‖µ0P
L
t − π‖TV ≤ e−t/CLS

{
2Entπ

(
dµ0

dπ

)}1/2

. (36)
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Under H4, [3, Corollary 5.7.2] and the Holley-Stroock perturbation principle [16, p. 1184], π
satisfies a log-Sobolev inequality with a constant which only depends on the strong convexity
constant m of U1 and the oscillation of U2 on R

d, supx∈Rd U2(x)−infx∈Rd U2(x). By [29, Theorem
2.1.12, Theorem 2.1.9], H4-(b) implies that for all x, y ∈ R

d:

〈∇U1(y)−∇U1(x), y − x〉 ≥ (̟/2) ‖y − x‖2 + 1

m+ L1
‖∇U1(y)−∇U1(x)‖2 , (37)

where

̟ =
2mL1

m+ L1
. (38)

Denote by x⋆
1 the minimizer of U1.

Proposition 18. Assume H4. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+ L1).
Then for all p ≥ 1 and x ∈ R

d,

∫

Rd

‖y − x⋆
1‖2 Qp

γ(x, dy) ≤
p∏

k=1

(1 −̟γk/2) ‖x− x⋆
1‖2 + 2̟−1(2d+ (γ1 + 2̟−1) ‖∇U2‖2∞) .

Proof. The proof is postponed to Section 3.12.

Theorem 19. Assume L1 and H4. Let (γk)k∈N∗ be a nonincreasing sequence with γ1 ≤ 2/(m+
L1). Then, for all n, p ≥ 1, n < p, and x ∈ R

d, (18) holds with

− log(κ) = m exp{−oscRd(U2)}
C2(δxQ

n
γ ) ≤ L1e

−̟Γn/2 ‖x− x⋆
1‖

2
+ L1γn(γn + 2̟−1) ‖∇U2‖2∞ + 2oscRd(U2) (39)

+ 2L1̟
−1(1−̟γn)(2d+ (γ1 + 2̟−1) ‖∇U2‖2∞)− d(1 + log(2γnm)− 2L1γn)

A(γ, x) ≤ 2L2
1

{
‖x⋆

1 − x⋆‖2 + 2̟−1(2d+ (γ1 + 2̟−1) ‖∇U2‖2∞)
}
+ 2 ‖∇U2‖2∞ ,

where ̟ is defined in (38).

Proof. The proof is postponed to Section 3.13.

Note that by (39), supn≥1{C(δxQ
n
γ )/(− log(γn))} < +∞, therefore Proposition 2-(i) can be

applied and limp→+∞ ‖δγQp
γ − π‖TV = 0 if limk→+∞ γk = 0 and limk→+∞ Γk = +∞.

3. Proofs

3.1. Proof of Lemma 1

By a straightforward induction, we get for all n ≥ 0 and x ∈ R
d,

Qn
γV (x) ≤ λΓ1,nV (x) + c

n∑

i=1

γiλ
Γi+1,n . (40)
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Note that for all n ≥ 1, we have since (γk)k≥1 is nonincreasing and for all t ≥ 0, λt = 1 +∫ t

0 λs log(λ)ds,

n∑

i=1

γiλ
Γi+1,n ≤

n∑

i=1

γi

n∏

j=i+1

(1 + λγ1 log(λ)γj)

≤ (−λγ1 log(λ))−1
n∑

i=1

γi





n∏

j=i+1

(1 + λγ1 log(λ)γj)−
n∏

j=i

(1 + λγ1 log(λ)γj)





≤ (−λγ1 log(λ))−1 .

The proof is then completed using this inequality in (40).

3.2. Proof of Lemma 5

By L1, H1, the Cauchy-Schwarz inequality and ∇U(x⋆) = 0, for all x ∈ R
d, ‖x‖ ≥ Mρ, we have

U(x)− U(x⋆) =

∫ 1

0

〈∇U(x⋆ + t(x− x⋆)), x− x⋆〉dt

≥
∫ Mρ

‖x−x⋆‖

0

〈∇U(x⋆ + t(x− x⋆)), x− x⋆〉dt+
∫ 1

Mρ
‖x−x⋆‖

〈∇U(x⋆ + t(x− x⋆)), t(x− x⋆)〉dt

≥ −M2
ρL/2 + ρ ‖x− x⋆‖α (α+ 1)−1

{
1− (Mρ/ ‖x− x⋆‖)α+1

}
,

On the other hand using again L1, the Cauchy-Schwarz inequality and ∇U(x⋆) = 0, for all
x ∈ B(x⋆,Mρ),

U(x)− U(x⋆) =

∫ 1

0

〈∇U(x⋆ + t(x − x⋆)), x − x⋆〉dt ≥ −M2
ρL/2 ,

which concludes the proof.

3.3. Proof of Proposition 6

For all x ∈ R
d, we have

A
LVς(x) = ς(1− ς)

{
−‖∇U(x)‖2 + (1− ς)−1∆U(x)

}
Vς(x)

If α > 1, by the Cauchy-Schwarz inequality, under L1-H1 for all x ∈ R
d, ∆U(x) ≤ dL and

‖∇U(x)‖ ≥ ρ ‖x− x⋆‖α−1 for ‖x− x⋆‖ ≥ Mρ. Then, for all x 6∈ Eς ,

A
LVς(x) ≤ ς(1− ς)

{
−ρ ‖x− x⋆‖2(α−1)

+ (1− ς)−1dL
}
Vς(x) ≤ −ςdLVς(x) ,

and sup{x∈Eς} A LVς(x) ≤ ςdL sup{y∈Eς}{Vς(y)}.
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3.4. Proof of Proposition 7

By H1, for all x 6∈ B(x⋆,Mρ),

‖∇U(x)‖ ≥ ρ ‖x− x⋆‖α−1 . (41)

Since under L1, for all x, y ∈ R
d, U(y) ≤ U(x) + 〈∇U(x), y − x〉 + (L/2)‖y − x‖2, we have for

all γ ∈ (0, γ̄) and x ∈ R
d,

RγV (x)/V (x) = (4πγ)−d/2

∫

Rd

exp
(
{U(y)− U(x)} /2− (4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy

≤ (4πγ)−d/2

∫

Rd

exp
(
−4−1γ ‖∇U(x)‖2 − (4γ)−1(1− γL) ‖y − x‖2

)
dy

≤ (1− γL)−d/2 exp(−4−1γ ‖∇U(x)‖2) , (42)

where we used in the last line that γ < L−1. Since log(1 − Lγ) = −L
∫ γ

0
(1 − Lt)−1dt, for all

γ ∈ (0, γ̄], log(1− Lγ) ≥ −Lγ(1− Lγ̄)−1. Using this inequality, (42) becomes

RγV (x)/V (x) ≤ λ−γ exp
(
−4−1γ ‖∇U(x)‖2

)
. (43)

By (41), for all x ∈ R
d, ‖x− x⋆‖ ≥ K, we have

RγV (x) ≤ λγV (x) . (44)

Also by (43) and since for all t ≥ 0, et − 1 ≤ tet, we get for all x ∈ R
d

RγV (x)− λγV (x) ≤ λγ(λ−2γ − 1)V (x) ≤ −2γ log(λ)λ−γ̄V (x) .

The proof is completed combining the last inequality and (44).

3.5. Proof of Theorem 8

We first consider (23). By L1, we have

Ex[‖∇U(Xk)‖2] ≤ L2
Ex[‖Xk − x⋆‖2] . (45)

Consider now the function φα : R+ → R+ defined for all t ≥ 0 by φα(t) = exp(Aα(t + Bα)
α/2)

where Aα = ρ/(2(α + 1)) and Bα = {(2− α)/(αAα)}2/α. Since φα is convex on R+ and is
invertible on R+, we get using the Jensen inequality and Lemma 5 for all k ≥ 0:

Ex[‖Xk − x⋆‖2] ≤ φ−1
α

(
Ex[φα

(
‖Xk − x⋆‖2

)
]
)
≤ φ−1

α

(
eaα/2+Bα/2

α Ex[V (Xk)]
)

,

where V (x) = exp(U(x)/2). Using that for all t ≥ 0, φ−1
α (t) ≤ (A−1

α log(t))2/α and Lemma 1, we
get

sup
k≥0

Ex[‖Xk − x⋆‖2] ≤
(
A−1

α

[
aα/2 +Bα/2

α + log {G(λ, c(γ1), V (x))}
])2/α

.

Eq. (24) follows from Proposition 6, Proposition 7 and Lemma 1.
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3.6. Proof of Theorem 9

Lemma 20. Let µ and ν be two probability measures on (Rd,B(Rd)) and V : Rd → [1,∞) be a
measurable function. Then

‖µ− ν‖V ≤
√
2
{
ν(V 2) + µ(V 2)

}1/2
KL1/2(µ|ν) .

Proof. Without losing any generality, we assume that µ ≪ ν. For all t ∈ [0, 1], t log(t)− t+ 1 =∫ 1

t (u − t)u−1du ≥ 2−1(1 − t)2, and on [1,+∞), t 7→ 2(1 + t)(t log(t) − t + 1) − (1 − t)2 is
nonincreasing. Therefore, for all t ≥ 0,

|1− t| ≤ (2(1 + t)(t log(t)− t+ 1))1/2 . (46)

Then, we have:

‖µ− ν‖V = sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣
∫

Rd

f(x)dµ(x) −
∫

Rd

f(x)dν(x)

∣∣∣∣

= sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣
∫

Rd

f(x)

{
dµ̄

dµ
− 1

}
dν(x)

∣∣∣∣ ≤
∫

Rd

V (x)

∣∣∣∣
dµ̄

dµ
− 1

∣∣∣∣dν(x) .

Using (46) and the Cauchy-Schwarz inequality in the previous inequality concludes the proof.

Proof of Theorem 9. First note that by the triangle inequality and Proposition 6, for all p ≥ 1

‖π − δxQ
p
γ‖V 1/2 ≤ C1/4κ

pγV 1/2(x) + ‖δxPL
Γp

− δxQ
p
γ‖V 1/2 . (47)

We now bound the second term of the right hand side. Let kγ =
⌈
γ−1

⌉
and qγ and rγ be

respectively the quotient and the remainder of the Euclidean division of p by kγ . The triangle
inequality implies ‖δxPL

Γp
− δxQ

p
γ‖V 1/2 ≤ A+B with

A =
∥∥∥δxQ(qγ−1)kγ

γ PL
Γ(qγ−1)kγ,p

− δxQ
(qγ−1)kγ
γ Q(qγ−1)kγ+1,p

γ

∥∥∥
V 1/2

B =

qγ∑

i=1

∥∥∥δxQ(i−1)kγ
γ PL

Γ(i−1)kγ+1,p
− δxQ

ikγ
γ PL

Γikγ+1,p

∥∥∥
V 1/2

.

It follows from Proposition 6 and kγ ≥ γ−1 that

B ≤
qγ∑

i=1

C1/4κ
qγ−i

∥∥∥δxQ(i−1)kγ
γ PL

Γ(i−1)kγ+1,ikγ
− δxQ

ikγ
γ

∥∥∥
V 1/2

. (48)

We now bound each term of the sum in the right hand side. For all initial distribution ν0 on
(Rd,B(Rd)) and i, j ≥ 1, i < j, it follows from Lemma 20, [19, Theorem 4.1, Chapter 2] and (17):

‖ν0Qi,j
γ − ν0PΓi,j‖V 1/2 ≤ 2−1/2

(
ν0Q

i,j
γ (V ) + ν0PΓi,j (V )

)1/2 {KL(ν0Q
i,j
γ |ν0PΓi,j )}1/2

≤ 2−1/2L
(
ν0Q

i,j
γ (V ) + ν0PΓi,j (V )

)1/2

× (j − i)1/2

(
γ2d+ (γ3/3) sup

k∈{i,··· ,j}

ν0Q
i,k−1
γ (‖∇U‖2)

)1/2

.
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Proposition 6 implies by the proof of [27, Theorem 6.1] that for all y ∈ R
d and t ≥ 0: PL

t V (y) ≤
V (y) + β1/2/θ1/2. Then, using Proposition 7, Lemma 1 and kγ ≥ γ−1 in (48), we get

sup
i∈{1,··· ,qγ}

∥∥∥δxQ(i−1)kγ
γ PL

Γ(i−1)kγ+1,ikγ
− δxQ

ikγ
γ

∥∥∥
2

V 1/2

≤ 2−1(1 + γ)L2
{
2G(λ, c, V (x)) + β1/2/θ1/2

} {
γd+ 3−1γ2‖∇U‖2V 1/2 G(λ, c, V (x))

}
.

Finally, A can be bounded along the same lines.

3.7. Proof of Theorem 11

Denote for γ > 0, rγ : Rd × R
d → R

d the transition density of Rγ defined for x, y ∈ R
d by

rγ(x, y) = (4πγ)−1 exp(−(4γ)−1 ‖y − x+ γ∇U(x)‖2) . (49)

For all n ≥ 1, we denote by qnγ : Rd×R
d → R

d the transition density associated with Qn
γ defined

by induction by: for all x, y ∈ R
d

q1γ(x, y) = rγ1(x, y) , qn+1
γ (x, y) =

∫

Rd

qnγ (x, z)rγn+1(z, y)dz for n ≥ 1 . (50)

Lemma 21. Assume L1. Let (γk)k≥1 be a nonincreasing sequence with γ1 < L. Then for all
n ≥ 1 and x, y ∈ R

d,

qnγ (x, y) ≤
exp

(
2−1(U(x) − U(y))− (2σγ,n)

−1 ‖y − x‖2
)

(2πσγ,n

∏n
i=1(1− Lγi))d/2

,

where σγ,n =
∑n

i=1 2γi(1− Lγi)
−1.

Proof. Under L1, we have for all x, y ∈ R
d, U(y) ≤ U(x) + 〈∇U(x), y − x〉 + (L/2) ‖y − x‖2,

which implies that for all γ ∈
(
0, L−1

)

rγ(x, y) ≤ (4πγ)−d/2 exp
(
2−1(U(x)− U(y))− (1− Lγ)(4γ)−1 ‖y − x‖2

)
. (51)

Then, the proof of the claimed inequality is by induction. By (51), the inequality holds for n = 1.
Now assume that it holds for n ≥ 1. By induction hypothesis and (51) applied for γ = γn+1, we
have

qn+1
γ (x, y) ≤ (4πγn+1)

−d/2

{
2πσγ,n

n∏

i=1

(1− Lγi)

}−d/2

exp
(
2−1(U(x) − U(y))

)

×
∫

Rd

exp
(
−(2σγ,n)

−1 ‖z − x‖2 − (1− Lγn+1)(4γn+1)
−1 ‖z − y‖2

)
dz

≤ (4πγn+1)
−d/2

{
2πσγ,n

n∏

i=1

(1 − Lγi)

}−d/2

(2π)d/2(σ−1
γ,n + (1− Lγn+1)/(2γn+1))

−d/2

× exp
(
2−1(U(x)− U(y))− (2σγ,n+1)

−1 ‖y − x‖2
)

.

Rearranging terms in the last inequality concludes the proof.
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Lemma 22. Assume L1 and H1. Then
∫
Rd e

−U(y)dy ≤ ϑU where

ϑU
def

= eaα
(2π)(d+1)/2(d− 1)!

ηdΓ((d + 1)/2)
, (52)

where aα is given in (22).

Proof. By Lemma 5, for all x ∈ R
d, U(x) ≥ ρ ‖x− x⋆‖ /(α + 1) − aα. Using the spherical

coordinates, we get

∫

Rd

e−U(y)dy ≤ eaα

{
(2π)(d+1)/2/Γ((d+ 1)/2)

}∫ +∞

0

e−ρt/(α+1)td−1dt .

Then the proof is concluded by a straightforward calculation.

Corollary 23. Assume L1 and H1. Let (γk)k≥1 be a nonincreasing sequence with γ1 < L. Then
for all n ≥ 1 and x ∈ R

d,

Varπ

{
dδxQ

n
γ

dπ

}
≤ (ϑU exp(U(x)))



4π

{
n∏

k=1

(1− Lγk)

}2 n∑

i=1

γi(1 − Lγi)
−1




−d/2

,

where ϑU is given by (52).

Proof of Theorem 11. We bound the two terms of the right hand side of (18). The first term is
dealt with the same reasonning as for the proof of Theorem 8. Regarding the second term, by [1,
Theorem 1.4], π satisfies a Poincaré inequality with constant log−1(κ). Then, the claimed bound
follows from (28) and Corollary 23.

3.8. Proof of Proposition 12

For all x ∈ R
d, we have

A
LWc(x) = (η/4)(‖x− x⋆‖2 + 1)−1/2Wc(x){(η/4)(‖x− x⋆‖2 + 1)−1/2 ‖x− x⋆‖2

− 〈∇U(x), x − x⋆〉 − (‖x− x⋆‖2 + 1)−1 ‖x− x⋆‖2 + d}

By (30), 〈∇U(x), x− x⋆〉 ≥ η ‖x− x⋆‖ for all x ∈ R
d, ‖x− x⋆‖ ≥ Mη. Then, for all x, ‖x− x⋆‖ ≥

K = max(Mη, 4d/η, 1), A LWc(x) ≤ −(η2/8)Wc(x), and sup{x∈E} A LWc(x) ≤ β.

3.9. Proof of Proposition 13

Set χ = η/4 and for all x ∈ R
d, φ(x) = (‖x− x⋆‖2 + 1)1/2 . Since φ is 1-Lipschitz, we have by

the log-Sobolev inequality [6, Theorem 5.5] for all x ∈ R
d,

RγWc(x) ≤ eχRγφ(x)+χ2γ ≤ eχ
√

‖x−γ∇U(x)−x⋆‖2+2γd+1+χ2γ . (53)

Under L1 since U is convex and x⋆ is a minimizer of U , [29, Theorem 2.1.5 Equation (2.1.7)]
shows that for all x ∈ R

d,

〈∇U(x), x − x⋆〉 ≥ (2L)−1 ‖∇U(x)‖2 + η ‖x− x⋆‖ 1{‖x−x⋆‖≥Mη} ,
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A. Durmus, É. Moulines/Non-asymptotic convergence analysis for the ULA 19

which implies that for all x ∈ R
d and γ ∈

(
0, L−1

]
, we have

‖x− γ∇U(x)− x⋆‖2 ≤ ‖x− x⋆‖2 − 2γη ‖x− x⋆‖ 1{‖x−x⋆‖≥Mη} . (54)

Using this inequality and for all u ∈ [0, 1], (1−u)1/2−1 ≤ −u/2, we have for all x ∈ R
d, satisfiyng

‖x− x⋆‖ ≥ Rc = max(1, 2dη−1,Mη),

(
‖x− γ∇U(x)− x⋆‖2 + 2γd+ 1

)1/2
− φ(x)

≤ φ(x)
{(

1− 2γφ−2(x)(η ‖x− x⋆‖ − d)
)1/2 − 1

}

≤ −γφ−1(x)(η ‖x− x⋆‖ − d) ≤ −(ηγ/2) ‖x− x⋆‖φ−1(x) ≤ −2−3/2ηγ .

Combining this inequality and (53), we get for all x ∈ R
d, ‖x− x⋆‖ ≥ Rc,

RγWc(x)/Wc(x) ≤ eγχ(χ−2−3/2η) = λ .

By (54) and and the inequality for all a, b ≥ 0,
√
a+ 1 + b−

√
1 + b ≤ a/2, we get for all x ∈ R

d,

√
‖x− γ∇U(x)− x⋆‖2 + 2γd+ 1− φ(x) ≤ γd .

Then using this inequality in (53), we have for all x ∈ R
d,

RγWc(x) ≤ λγWc(x) +
(
eχγ(d+χ) − λγ

)
eη(R

2
c+1)1/2/41B(x⋆,Rc)(x) ,

Using the inequality for all t ≥ 0, et − 1 ≤ tet concludes the proof.

3.10. Proof of Theorem 14

We preface the proof by two Lemmas.

Lemma 24. Assume L1 and that U is convex. Let (γk)k∈N∗ be a nonincreasing sequence with
γ1 ≤ L−1. For all n ≥ 0 and x ∈ R

d,
∫

Rd

‖y − x⋆‖2 Qn
γ (x, dy) ≤

{
4η−1 [1 + log {G(λ, c(γ1),Wc(x))}]

}2
,

where Wc, λ, c are given in (31) and Proposition 13 respectively.

Proof. Let n ≥ 0 and x ∈ R
d. Consider the function φ : R → R defined by for all t ∈ R,

φ(t) = exp
{
(η/4)(t+ (4/η)2)1/2

}
. Since this function is convex on R+, we have by the Jensen

inequality and the inequality for all t ≥ 0, φ(t) ≤ e1+(η/4)(t+1)1/2 ,

φ

(∫

Rd

‖y − x⋆‖2 Qn
γ (x, dy)

)
≤ e1Qn

γWc(x) .

The proof is then completed using Proposition 13, Lemma 1 and that φ is ono-to-one with for

all t ≥ 1, φ−1(t) ≤
(
4η−1 log(t)

)2
.

Lemma 25. Assume L1 and that U is convex. Then

∫

Rd

e−U(y)dy ≤
(
(2π)(d+1)/2(d− 1)!

ηdΓ((d + 1)/2)
+

π
d/2Md

η

Γ(d/2 + 1)

)
. (55)
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Proof. By (30) and U(x⋆) = 0, we have

∫

Rd

e−U(y)dy ≤
∫

Rd

e−η‖y−x⋆‖dy +

∫

Rd

1{‖y−x⋆‖≤Mη}dy .

Then the proof is concluded using the spherical coordinates.

Proof of Theorem 14. By [4, Theorem 1.2], π satisfies a Poincaré inequality with constant log−1(κ).
Therefore, the second term in (18) is dealt as in the proof of Theorem 11 using (28), Lemma 25
and Lemma 22. It remains to bound A(γ, x). Using ∇U(x⋆) = 0, L1 and Lemma 24, we have for
all k ≥ 0, ∫

Rd

‖∇U(y)‖2 Qk
γ(x, dy) ≤ L2

(
4η−1 {1 + log {G(λ, c,Wc(x))}}

)2
.

3.11. Proof of Proposition 16

Under L1, using that ∇U(x⋆) = 0, we get for all x ∈ R
d,

∫

Rd

‖y − x⋆‖2 Rγ(x, dy) = ‖x− x⋆ + γ(∇U(x⋆)−∇U(x))‖2 + 2γd

≤ (1 + (Lγ)2) ‖x− x⋆‖2 − 2γ 〈∇U(x)−∇U(x⋆), x− x⋆〉+ 2γd . (56)

Then for all x ∈ R
d, ‖x− x⋆‖ ≥ Ms, we get using for all t ≥ 0, 1− t ≤ e−t

∫

Rd

‖y − x⋆‖2 Rγ(x, dy) ≤ λ
γ ‖x− x⋆‖2 + 2γd .

Using again (56) and the convexity of U , it yields for all x ∈ R
d, ‖x− x⋆‖ ≤ Ms,

∫

Rd

‖y − x⋆‖2 Rγ(x, dy) ≤ γc ,

which concludes the proof.

3.12. Proof of Proposition 18

We preface the proof by a lemma.

Lemma 26. Assume H4. Then, for all x ∈ R
d,

‖x− γ∇U(x)− x⋆
1‖2 ≤ (1−̟γ/2) ‖x− x⋆

1‖2 + γ(γ + 2̟−1) ‖∇U2‖2∞ .

Proof. Using that for all y, z ∈ R
d, ‖y + z‖2 ≤ (1 + ̟γ/2) ‖y‖2 + (1 + 2(̟γ)−1) ‖z‖2, we get

under H4-(b):

‖x− γ∇U(x)− x⋆
1‖

2 ≤ (1 +̟γ/2) ‖x− γ∇U1(x) − x⋆
1‖

2
+ γ(γ + 2̟−1) ‖∇U2‖2∞ .

Using that ∇U1(x
⋆
1) = 0 and (37) in this inequality concludes the proof.
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Proof of Proposition 18. For any γ ∈ (0, 2/(m+ L1)), we have for all x ∈ R
d:

∫

Rd

‖y − x⋆
1‖

2
Rγ(x, dy) = ‖x− γ∇U(x)− x⋆

1‖
2
+ 2γd . (57)

By Lemma 26, it yields:

∫

Rd

‖y − x⋆
1‖

2
Rγ(x, dy) ≤ (1 −̟γ/2) ‖x− x⋆

1‖
2
+ γ

{
(γ + 2̟−1) ‖∇U2‖2∞ + 2d

}
.

Since γ1 ≤ 2/(m+ L1) and (γk)k≥1 is nonincreasing, by a straightforward induction, for p ≥ 1
and x ∈ R

d,

∫

Rd

‖y − x⋆
1‖2 Qp

γ(x, dy) ≤
p∏

k=1

(1 −̟γk/2) ‖x− x⋆
1‖2

+ ((γ1 + 2̟−1) ‖∇U2‖2∞ + 2d)

p∑

i=n

p∏

k=i+1

(1−̟γk/2)γi , (58)

Consider the second term in the right hand side of (58). Since γ1 ≤ 2/(m + L1), m ≤ L1 and
(γk)k≥1 is nonincreasing, maxk≥1 γk ≤ ̟−1 and therefore:

p∑

i=n

p∏

k=i+1

(1 −̟γk/2)γi ≤ ̟−1

p∑

i=n

{
p∏

k=i+1

(1−̟γk/2)−
p∏

k=i

(1−̟γk/2)

}
≤ 2̟−1 .

3.13. Proof of Theorem 19

We preface the proof of the Theorem by a preliminary lemma.

Lemma 27. Assume H4. Let γ ∈ (0, 2/(m+ L1)), then for all x ∈ R
d,

Entπ (dδxRγ/dπ) ≤ (L1/2)
{
(1−̟γ/2) ‖x− x⋆

1‖2 + γ(γ + 2̟−1) ‖∇U2‖2∞
}

+ oscRd(U2)− (d/2)(1 + log(2γm)− 2L1γ) .

Proof. Let γ ∈ (0, 2/(m+ L1)) and rγ be the transition density of Rγ given by (49). Under H

4-(a) by [29, Theorems 2.1.8-2.1.9], we have for all x ∈ R
d,

U1(x) ≤ U1(x
⋆
1) + (L1/2) ‖x− x⋆

1‖
2
. (59)

Therefore we have for all x ∈ R
d

Entπ (dδxRγ/dπ) =

∫

Rd

log(rγ(x, y)/π(y))rγ(x, y)dx ≤ A− (d/2)(1 + log(4πγ)) , (60)

where

A =

∫

Rd

{
U2(y) + U1(x

⋆
1) + (L1/2) ‖y − x⋆

1‖2 + log

(∫

Rd

e−U(z)dz

)}
rγ(x, y)dy .
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By H4-(b) and Lemma 26, we get:

A ≤ (L1/2) ‖x− γ∇U(x)− x⋆
1‖2 + log

(∫

Rd

e−U1(z)+U1(x
⋆
1)dz

)
+ oscRd(U2) + dL1γ

≤ (L1/2)
{
(1−̟γ/2) ‖x− x⋆

1‖
2
+ γ(γ + 2̟−1) ‖∇U2‖2∞

}
+ oscRd(U2) + dL1γ ,

Plugging this bound in (60) gives the desired result.

Proof of Theorem 19. We first deal with the second term in the right hand side of (18). Under
H4, [3, Corollary 5.7.2] and the Holley-Stroock pertubation principle [16, p. 1184] show that π
satisfies a log-Sobolev inequality with constant CLS = − log−1(κ). So by (36) we have

‖δxQn
γP

L
t − π‖TV ≤ κt

{
2Entπ

(
dδxQ

n
γ

dπ

)}1/2

.

We now bound Entπ
(
dδxQ

n
γ/dπ

)
which will imply the upper bound of C(δxQ

n
γ ). We proceed by

induction. For n = 1, it is Lemma 27. For n ≥ 2, by (50) and the Jensen inequality applied to
the convex function t 7→ t log(t), we have for all x ∈ R

d and n ≥ 1,

Entπ
(
dδxQ

n
γ/dπ

)

=

∫

Rd

log

{
π−1(y)

∫

Rd

qn−1
γ (x, z)rγn(z, y)dz

}∫

Rd

qn−1
γ (x, z)rγn(z, y)dzdy

≤
∫

Rd

∫

Rd

log
{
rγn(z, y)π

−1(y)
}
qn−1
γ (x, z)rγn(z, y)dzdy . (61)

Using Fubini’s theorem, Lemma 27, Proposition 18, and the inequality t ≥ 0, 1− t ≤ e−t in (61)
concludes the proof of (39).

Finally, A(γ, x) is bounded using the inequality for all y, z ∈ R
d, ‖y + z‖2 ≤ 2(‖y‖2 + ‖z‖2),

H4 and Proposition 18.

4. Quantitative convergence bounds in total variation for diffusions

In this part, we derived quantitative convergence results in total variation norm for d-dimensional
SDEs of the form

dXt = b(Xt)dt+ dBd
t , (62)

started at X0, where (Bd
t )t≥0 is a d-dimensional standard Brownian motion and b : Rd → R

d

satisfies the following assumptions.

G1. b is Lipschitz and for all x, y ∈ R
d, 〈b(x)− b(y), x− y〉 ≤ 0.

Under G1, [17, Theorems 2.4-3.1-6.1, Chapter IV] imply that there exists a unique solution
(Xt)t≥0 to (62) for all initial point x ∈ R

d, which is strongly Markovian. Denote by (Pt)t≥0 the
transition semigroup associated with (62). To derive explicit bound for ‖Pt(x, ·)−Pt(y, ·)‖TV, we
use the coupling by reflection, introduced in [24] to show convergence in total variation norm for
solution of SDE, and recently used by [12] to obtain exponential convergence in the Wasserstein
distance of order 1. This coupling is defined as (see [8, Example 3.7]) the unique strong Markovian
process (Xt,Yt)t≥0 on R

2d, solving the SDE:
{
dXt = b(Xt)dt+ dBd

t

dYt = b(Yt)dt+ (Id−2ete
T
t )dB

d
t ,

where et = e(Xt −Yt) (63)
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with e(z) = z/ ‖z‖ for z 6= 0 and e(0) = 0 otherwise. Define the coupling time

τc = inf{s ≥ 0 | Xs 6= Ys} . (64)

By construction Xt = Yt for t ≥ τc. We denote in the sequel by P̃(x,y) and Ẽ(x,y) the probability

and the expectation associated with the SDE (63) started at (x, y) ∈ R
2d on the canonical space

of continuous function from R+ to R
2d. We denote by (F̃t)t≥0 the canonical filtration. Since

B̄d
t =

∫ t

0 (Id−2ese
T
s )dB

d
s is a d-dimensional Brownian motion, the marginal processes (Xt)t≥0

and (Yt)t≥0 are under P̃(x,y) weak solutions to (62) started at x and y respectively. The results
in [24] are derived under less stringent conditions than G1, but do not provide quantitative
estimates.

Proposition 28 ([24, Example 5]). Assume G1 and let (Xt,Yt)t≥0 be the solution of (63).
Then for all t ≥ 0 and x, y ∈ R

d, we have

P̃(x,y) (τc > t) = P̃(x,y) (Xt 6= Yt) ≤ 2

(
Φ

{(
2t1/2

)−1

‖x− y‖
}
− 1/2

)
.

Proof. For t < τc, Xt −Yt is the solution of the SDE

d{Xt −Yt} = {b(Xt)− b(Yt)} dt+ 2etdB
1
t ,

where B1
t =

∫ t

0
1{s<τc}e

T
s dB

d
s . Using the Itô’s formula and G1, we have for all t < τc,

‖Xt −Yt‖ = ‖x− y‖+
∫ t

0

〈b(Xs)− b(Ys), es〉ds+ 2B1
t ≤ ‖x− y‖+ 2B1

t .

Therefore, for all x, y ∈ R
d and t ≥ 0, we get

P̃(x,y) (τc > t) ≤ P̃(x,y)

(
min
0≤s≤t

B1
s ≥ ‖x− y‖ /2

)

= P̃(x,y)

(
max
0≤s≤t

B1
s ≤ ‖x− y‖ /2

)
= P̃(x,y)

(
|B1

t | ≤ ‖x− y‖ /2
)
.

where we have used the reflection principle in the last identity.

Define for R > 0 the set ∆R = {x, y ∈ R
d | ‖x− y‖ ≤ R}. Proposition 28 and Lindvall’s

inequality give that, for all ǫ ∈ (0, 1) and t ≥ ω(ǫ, R),

sup
(x,y)∈∆R

‖Pt(x, ·) −Pt(y, ·)‖TV ≤ (1− ǫ) , (65)

where ω is defined in (34). To obtain quantitative exponential bounds in total variation for any
x, y ∈ R

d, it is required to control some exponential moments of the successive return times to
∆R. This is first achieved by using a drift condition for the generator A associated with the SDE
(62) defined for all f ∈ C2(Rd) by

A f = 〈b,∇f〉+ (1/2)∆f .

Consider the following assumption:

G2. (i) There exist a twice continuously differentiable function V : Rd 7→ [1,∞) and constants
θ > 0, β ≥ 0 such that

A V ≤ −θV + β . (66)
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(ii) There exists δ > 0 and R > 0 such that Θ ⊂ ∆R where

Θ = {(x, y) ∈ R
2d | V (x) + V (y) ≤ 2θ−1β + δ} . (67)

For t > 0, and G a closed subset of R2d, define by TG,t
1 the first return time to G delayed by

t:
TG,t

1 = inf {s ≥ t | (Xs,Ys) ∈ G} .

For j ≥ 2, define recursively the j-th return times to G delayed by t by

TG,t
j = inf{s ≥ TG,t

j−1 + t | (Xs,Ys) ∈ G} = TG,t
j−1 +TG,t

1 ◦ STG,t
j−1

, (68)

where S is the shift operator on the canonical space. By [13, Proposition 1.5 Chapter 2], the

sequence (TG,t
j )j≥1 is a sequence of stopping time with respect to (F̃t)t≥0.

Proposition 29. Assume G1 and G2. For all x, y ∈ R
d, ǫ ∈ (0, 1) and j ≥ 1, we have

Ẽ(x,y)

[
eθ̃T

Θ,ω(ǫ,R)
j

]
≤ {K(ǫ)}j−1

{
(1/2)(V (x) + V (y)) + eθ̃ω(ǫ,R)θ̃−1β

}
,

θ̃ = θ2δ(2β + θδ)−1 , K(ǫ) = θ̃−1β
(
1 + eθ̃ω(ǫ,R)

)
+ δ/2 , (69)

where ω is defined in (34).

Proof. For notational simplicity, set Tj = T
Θ,ω(ǫ,R)
j . Note that for all x, y ∈ R

d,

A V (x) + A V (y) ≤ −θ̃(V (x) + V (y)) + 2β1Θ(x, y)
Then by the Dynkin formula (see e.g. [28, Eq. (8)]) the process

t 7→ (1/2)eθ̃(T1∧t) {V (XT1∧t) + V (YT1∧t)} , t ≥ ω(ǫ,R) ,

is a positive supermartingale. Using the optional stopping theorem and the Markov property, we

have, using that for all t ≥ 0 Ẽ(x,y)

[
eθ̃tV (Xt)

]
≤ V (x) + βθ̃−1eθ̃t,

Ẽ(x,y)

[
eθ̃T1

]
≤ (1/2)(V (x) + V (y)) + eθ̃ω(ǫ,R)θ̃−1β .

The result then follows from this inequality and the strong Markov property.

Theorem 30. Assume G1 and G2. Then for all ǫ ∈ (0, 1), t ≥ 0 and x, y ∈ R
d,

‖Pt(x, ·) −Pt(y, ·)‖TV ≤ ((1− ǫ)−2 + (1/2) {V (x) + V (y)})κt ,

where ω are defined in (34), θ̃,K(ǫ) in (69) and

log(κ) = θ̃ log(1− ǫ){log(K(ǫ))− log(1− ǫ)}−1 .

Proof. Let x, y ∈ R
d and t ≥ 0. For all ℓ ≥ 1 and ǫ ∈ (0, 1),

P̃(x,y) (τc > t) ≤ P̃(x,y) (τc > t,Tℓ ≤ t) + P̃(x,y) (Tℓ > t) , (70)

where Tℓ = T
Θ,ω(ǫ,R)
ℓ . We now bound the two terms in the right hand side of this equation. For

the first term, since Θ ⊂ ∆R, by (65), we have conditioning successively on F̃Tj , for j = ℓ, . . . , 1,
and using the strong Markov property,

P̃(x,y) (τc > t,Tℓ ≤ t) ≤ (1 − ǫ)ℓ . (71)
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For the second term, using Proposition 29 and the Markov inequality, we get

P̃(x,y) (Tℓ > t) ≤ e−θ̃t{K(ǫ)}ℓ−1
{
(1/2)(V (x) + V (y)) + eθ̃ω(ǫ,R)θ̃−1β

}
(72)

Combining (71)-(72) in (70) and taking ℓ =
⌊
θ̃t
/
(log(K(ǫ))− log(1− ǫ))

⌋
concludes the proof.

More precise bounds can be obtained under more stringent assumption on the drift b; see [5]
and [12].

G3. There exist M̃s ≥ 1 and m̃s > 0, such that for all x, y ∈ R
d, ‖x− y‖ ≥ M̃s,

〈b(x)− b(y), x− y〉 ≤ −m̃s ‖x− y‖2 .

Proposition 31. Assume G1 and G3.

(a) For all x, y ∈ R
d and ǫ ∈ (0, 1)

Ẽ(x,y)

[
exp

(
(m̃s/2)

(
τc ∧ T

∆M̃s
,ω(ǫ,M̃s)

1

))]
≤ 1 + ‖x− y‖+ (1 + M̃s)e

m̃sω(ǫ,M̃s)/2 .

(b) For all x, y ∈ R
d, ǫ ∈ (0, 1) and j ≥ 1

Ẽ(x,y)

[
exp

(
(m̃s/2)

(
τc ∧ T

∆M̃s
,ω(ǫ,M̃s)

j

))]

≤ {D(ǫ)}j−1
{
1 + ‖x− y‖+ (1 + M̃s)e

m̃sω(ǫ,M̃s)/2
}

,

D(ǫ) = (1 + em̃sω(ǫ,M̃s)/2)(1 + M̃s) , (73)

where ω is given in (34).

Proof. In the proof, we set Tj = T
∆M̃s

,ω(ǫ,M̃s)

j .

(a) Consider the sequence of increasing stopping time

τk = inf{t > 0 | ‖Xt −Yt‖ 6∈
[
k−1, k

]
} , k ≥ 1 ,

and set ζk = τk ∧ T1. We derive a bound on Ẽ(x,y)[exp{(m̃s/2)ζk}] independent on k. Since
limk→+∞ ↑ τk = τc almost surely, the monotone convergence theorem implies that the same
bound holds for Ẽ(x,y)[exp{(m̃s/2)(τc∧T1)}]. Set now Ws(x, y) = 1+‖x− y‖. Since Ws ≥ 1 and

τc < ∞ a.s by Proposition 28, it suffices to give a bound on Ẽ(x,y)[exp{(m̃s/2)ζk}Ws(Xζk ,Yζk)].
By Itô’s formula, we have for all v, t ≤ τc, v ≤ t

em̃st/2Ws(Xt,Yt) = em̃sv/2Ws(Xv,Yv) + (m̃s/2)

∫ t

v

em̃su/2Ws(Xu,Yu)du

+

∫ t

v

em̃su/2 〈b(Xu)− b(Yu), eu〉du+ 2

∫ t

v

em̃su/2dB1
u . (74)

Using G3(b), we have for all k ≥ 1 and ts = ω(ǫ, M̃s) ≤ v ≤ t

e(m̃s/2)(ζk∧t)Ws(Xζk∧t,Yζk∧t) ≤ e(m̃s/2)(ζk∧v)Ws(Xζk∧v,Yζk∧v) + 2

∫ ζk∧t

ζk∧v

em̃su/2dB1
u .
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So the process
{exp ((m̃s/2)(ζk ∧ t))Ws(Xζk∧t,Yζk∧t)}t≥ts

,

is a positive supermartingale and by the optional stopping theorem, we get

Ẽ(x,y)

[
e(m̃s/2)ζkWs(Xζk ,Yζk)

]
≤ Ẽ(x,y)

[
e(m̃s/2)(τk∧ts)Ws(Xτk∧ts ,Yτk∧ts)

]
, (75)

where we used that ζk ∧ ts = τk ∧ ts. By (74), G1 and G3, we have

Ẽ(x,y)

[
e(m̃s/2)(τk∧ts)Ws(Xτk∧ts ,Yτk∧ts)

]
≤ Ws(x, y) + (1 + M̃s)e

m̃sts/2 ,

and (75) becomes

Ẽ(x,y)

[
e(m̃s/2)ζkWs(Xζk ,Yζk)

]
≤ Ws(x, y) + (1 + M̃s)e

m̃sts/2 .

(b) The proof is by induction. The case j = 1 has been established above. Now let j ≥ 2.
Since on the event {τc > Tj−1}, we have

τc ∧ Tj = Tj−1 + (τc ∧ T1) ◦ STj−1 ,

where S is the shift operator, we have conditioning on F̃Tj−1 , using the strong Markov property,
Proposition 28 and the first part,

Ẽ(x,y)

[1τc>Tj−1 exp ((m̃s/2) (τc ∧ Tj))
]
≤ D(ǫ) Ẽ(x,y)

[1τc>Tj−1 exp ((m̃s/2)Tj−1)
]
,

Then the proof follows since D(ǫ) ≥ 1.

Theorem 32. Assume G1 and G3. Then for all ǫ ∈ (0, 1), t ≥ 0 and x, y ∈ R
d,

‖Pt(x, ·) −Pt(y, ·)‖TV ≤
{
(1− ǫ)−2 + 1+ ‖x− y‖

}
κt ,

log(κ) = (m̃s/2) log(1 − ǫ)(log(D(ǫ)) − log(1− ǫ))−1 .

where D(ǫ) is defined in (73).

Proof. The proof is along the same lines as Theorem 30. Set Tj = T
∆M̃s

,ω(ǫ,M̃s)

j for j ≥ 1. Let

x, y ∈ R
d and t ≥ 0. For all ℓ ≥ 1 and ǫ ∈ (0, 1),

P̃(x,y) (τc > t) ≤ P̃(x,y) (τc > t,Tℓ ≤ t) + P̃(x,y) (Tℓ ∧ τc > t) . (76)

For the first term, by (65) we have conditioning successively on F̃Tj , for j = ℓ, · · · , 1, and using
the strong Markov property,

P̃(x,y) (τc > t,Tℓ ≤ t) ≤ (1 − ǫ)ℓ . (77)

For the second term, using Proposition 31-(b) and the Markov inequality, we get

P̃(x,y) (Tℓ ∧ τc > t) ≤ e−(m̃st/2){D(ǫ)}ℓ−1
{
1 + ‖x− y‖+ (1 + M̃s)e

m̃sω(ǫ,M̃s)/2
}

. (78)

Combining (77)-(78) in (76) and taking ℓ =
⌊
(m̃st/2)

/
(log(D(ǫ)) − log(1− ǫ))

⌋
concludes the

proof.
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4.1. Proof of Theorem 15 and Theorem 17

Recall that (PL
t )t≥0 is the Markov semigroup of the Langevin equation associated with U and let

A L be the corresponding generator. Since (PL
t )t≥0 is reversible with respect to π, we deduce from

Theorem 30 and Theorem 32 quantitative bounds for the exponential convergence of (PL
t )t≥0 to

π in total variation noting that if (Y L
t )t≥0 is a solution of (1), then (Y L

t/2)t≥0 is a weak solution
of the rescaled Langevin diffusion:

dỸ L
t = −(1/2)∇U(Ỹ L

t )dt+ dBd
t . (79)

Proof of Theorem 15. Since the generator associated with the SDE (79) is (1/2)A L, Proposi-
tion 12 shows that (66) holds for Wc with constants θ/2 and β/2. Using that for all a1, a2 ∈ R,
e(a1+a2)/2 ≤ (1/2)(ea1 + ea2), G2-(ii) holds for δ = 2θ−1β and R = (8/η) log(4θ−1β). By Theo-
rem 30 with ǫ = 1/2, we get for all x, y ∈ R

d and t ≥ 0

‖PL
t (x, ·) − PL

t (y, ·)‖TV ≤ κt {4 + (1/2)(Wc(x) +Wc(y))} , (80)

where κ is defined in (35a). By [28, Theorem 4.3-(ii)], (66) implies that
∫
Rd Wc(y)π(dy) ≤ βθ−1.

The proof is then concluded using this bound, (80), that π is invariant for (PL
t )t≥0, we get for

all x ∈ R
d,

‖δxPL
Γn+1,p

− µ‖TV ≤ κΓn+1,p
{
4 + (1/2)(βθ−1 +Wc(x))

}
.

The proof is then concluded by Proposition 13 and Lemma 1.

Proof of Theorem 17. By applying Theorem 32 with ǫ = 1/2, the triangle inequality and using
that π is invariant for (PL

t )t≥0, we have

‖PL
t (x, ·) − π‖TV ≤

{
5 + ‖x− x⋆‖+

∫

Rd

‖y − x⋆‖dπ(y)
}
κt .

It remains to show that
∫
Rd ‖y − x⋆‖dπ(y) ≤ (d/m + M2

s )
1/2. For this, we establish a drift

inequality for the generator A L of the Langevin SDE associated with U . Consider the function
Ws(x) = ‖x− x⋆‖2. For all x ∈ R

d, we have using ∇U(x⋆) = 0,

A
LWs(x) ≤ 2(d− 〈∇U(x) −∇U(x⋆), x− x⋆〉) .

Therefore by G3, for all x ∈ R
d, ‖x− x⋆‖ ≥ Ms, we get

A
LWs(x) ≤ −2mWs(x) + 2d ,

and for all x ∈ R
d,

A
LWs(x) ≤ −2mWs(x) + 2(d+mM2

s ) .

By [28, Theorem 4.3-(ii)], we get
∫
Rd Ws(y)dπ(y) ≤ d/m + M2

s . The bound on C(δxQ
n
γ ) is a

consequence of the Cauchy-Schwarz inequality, Proposition 16 and Lemma 1. The bound for
A(γ, x) similarly follows from L1, Proposition 16 and Lemma 1
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