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Abstract: : Sampling distribution over high-dimensional state-space is a problem which has
recently attracted a lot of research efforts; applications include Bayesian non-parametrics,
Bayesian inverse problems and aggregation of estimators. All these problems boil down to
sample a target distribution π having a density w.r.t. the Lebesgue measure on R

d, known
up to a normalisation factor (see [9] for details) x 7→ e−U(x)/

∫

Rd
e−U(y)dy where U is con-

tinuously differentiable and smooth. In this paper, we study a sampling technique based
on the Euler discretization of the Langevin stochastic differential equation. Contrary to the
Metropolis Adjusted Langevin Algorithm (MALA), we do not apply a Metropolis-Hastings
correction. We obtain for both constant and decreasing step sizes in the Euler discretiza-
tion, non-asymptotic bounds for the convergence to stationarity in both total variation and
Wasserstein distances. A particular attention is paid on the dependence on the dimension
of the state space, to demonstrate the applicability of this method in the high dimensional
setting, at least when U is convex. These bounds are based on recently obtained estimates
of the convergence of the Langevin diffusion to stationarity using Poincaré and log-Sobolev
inequalities. These bounds improve and extend the results of [10]. We also investigate the
convergence of an appropriately weighted empirical measure and we report sharp bounds for
the mean square error and exponential deviation inequality for Lipschitz functions. A limited
Monte Carlo experiment is carried out to support our findings.

AMS 2000 subject classifications: primary 65C05, 60F05, 62L10; secondary 65C40, 60J05,93E35.
Keywords and phrases: Wasserstein distance, Langevin diffusion, Markov Chain Monte
Carlo, Metropolis Adjusted Langevin Algorithm, Rate of convergence.

1. Introduction

We study the sampling over R
d of a target distribution π with density x 7→ e−U(x)/

∫

Rd
e−U(y)dy

w.r.t. the Lebesgue measure, where U is a smooth function. We consider a sampling method based
on the Euler discretization of the Langevin stochastic differential equation

dYt = −∇U(Yt)dt+
√

2dBt , (1)

where (Bt)t≥0 is a d-dimensional Brownian motion. It is well-known that the Markov semi-group
associated with the Langevin diffusion (Yt)t≥0 is reversible w.r.t. π. Under suitable conditions,
the convergence to π takes place at geometrical rate. Precise quantitative estimates of the rate
of convergence with a generally mild dependence on the dimension of the state space have been
recently obtained using Poincaré and log-Sobolev inequalities; see [3, 7] [4]. The Euler-Maruyama
dicsretization scheme associated to the Langevin diffusion is the discrete time-Markov chain given
by

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Zk+1 (2)

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian random variables and (γk)k≥1 is a sequence
of stepsizes, which can either be held constant or be chosen to decrease to 0. The idea of using the
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A. Durmus, É. Moulines/Non-asymptotic convergence analysis for the ULA 2

Markov chain (Xn)n≥0 to sample (approximately) from the target π has been first introduced in the
physics literature by [27] and popularized in the computational statistics community by [15] and
[16]. It has been studied in depth by [29], which proposed to use a Metropolis-Hastings step at each
iteration to enforce reversibility w.r.t. π leading to the Metropolis Adjusted Langevin Algorithm
(MALA). They coin the term unadjusted Langevin algorithm (ULA) when the Metropolis-Hastings
step is avoided.

The purpose of this paper is to study the convergence of the ULA algorithm. The emphasis is
put on non-asymptotic computable bounds; we pay a particular attention to the way these bounds
scale with the dimension d and constants characterizing the smoothness and tail behavior of the
potential U . Our study covers both the constant and decreasing step sizes and we analyse both the
”finite horizon” (where the total number of simulations is specified before running the algorithm)
and ”any-time” settings (where the algorithm can be stopped after any iteration).

When the stepsize γk = γ is constant, under appropriate conditions related to [29], the Markov
chain (Xn)n≥0 is V -uniformly geometrically ergodic with stationary distribution πγ (the function
V being taken to be π−δ for some appropriate value of δ > 0). With few exceptions, the stationary
distribution πγ is no longer equal to the target π. It is of course sensible to expect that if the
stepsize γ is small enough, then the stationary distribution of this chain is in some sense close to
π. We provide non-asymptotic bounds of the V -total variation distance between the law of the
iterates and the target distribution π, with explicit dependence on the stepsize γ, the dimension d
and the number of simulations. Our results complete and extend the recent works by [11] and [10].
We first consider the case of densities which are super-exponential in the tails, for which we prove
convergence in total variation. We also address the case where π is globally log-concave for which
we find ergodicity constants growing only linearly in the dimension d, for both the total variation
and the Wasserstein distances.

When (γk)k≥1 decreases to zero, then (Xn)n≥0 is a non-homogeneous Markov chain. If in addition
∑∞

k=1 γk = ∞, we show that the marginal distribution of this non-homogeneous chain converges,
under some mild additional conditions, to the target distribution π. We also provide explicit ex-
pression for the convergence rate, emphasizing the role of the dimension and the rate of decrease of
the sequence (γk)k≥1. Compared to the related works by [21], [22], [23] and [24], we establish not
only the weak convergence of the weighted empirical measure of the path to the target distribution,
but establish a much stronger convergence in total variation and Wasserstein distances.

Assuming that the target distribution is globally log-concave, we also provide explicit mean-
square error and exponential deviation bounds for a class of estimators of π(f) where f is a Lipshitz
function satisfying some appropriate moment conditions. We show that these bounds depend only
linearly in the dimension d and in the sample size.

The paper is organized as follows. In Section 2, we summarize the existing results on the rate of
convergence of the Langevin diffusion to its stationary distribution. In Section 3, we then study the
convergence in total variation and Wasserstein distances of the Euler discretization for constant and
decreasing stepsizes. In Section 4 we provide non-asymptotic bounds of convergence of the weighted
empirical measure. Some numerical illustrations are given Section 5 to support our claims. The
proofs are given in Section 6. Some technical derivations are carried out in a supplementary paper
[12].
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Notations and conventions

Denote by B(Rd) the Borel σ-field of Rd. Denote by F(Rd) the set of all Borel measurable functions
on R

d and for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a probability measure on (Rd,B(Rd)) and
f ∈ F(Rd) a µ-integrable function, denote by µ(f) the integral of f w.r.t. µ. Let V : Rd → [1,∞) be
a measurable function. For f ∈ F(Rd), the V -norm of f is given by ‖f‖V = supx∈Rd |f(x)|/V (x).
For two probability measures µ and ν on (Rd,B(Rd)), the V -total variation distance of µ and ν is
defined as

‖µ− ν‖V = sup
f∈F(Rd),‖f‖V ≤1

∣

∣

∣

∣

∫

Rd

f(x)dµ(x) −
∫

Rd

f(x)dν(x)

∣

∣

∣

∣

If V ≡ 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.
For p ≥ 1, denote by Lp(π) the set of measurable functions such that π(|f |p) < ∞. For f ∈ L2(π),

the variance of f under π is denoted by Varπ {f}. For all function f such that f log(f) ∈ L1(π),
the entropy with respect to π for f is defined by

Entπ (f) =

∫

Rd

f(x) log(f(x))dπ(x) . (3)

Let µ and ν be two probability measures on R
d. If µ ≪ ν, we denote by dµ/dν the Radon-Nikodym

derivative of µ w.r.t. ν. We say that ζ is a transference plan of µ and ν if it is a probability
measure on (Rd ×R

d,B(Rd ×R
d)) such that for all measurable set A of Rd, ζ(A ×R

d) = µ(A) and
ζ(Rd × A) = ν(A). We denote by Π(µ, ν) the set of transference plans of µ and ν. Furthermore, we
say that a couple of Rd-random variables (X,Y ) is a coupling of µ and ν if there exists ζ ∈ Π(µ, ν)
such that (X,Y ) are distributed according to ζ. For two probability measures µ and ν, we define
the Wasserstein distance of order p ≥ 1 as

Wp(µ, ν)
def
=

(

inf
ζ∈Π(µ,ν)

∫

R×R

‖x− y‖p dζ(x, y)

)1/p

.

By [31, Theorem 4.1], for all µ, ν probability measure on R
d, there exists a transference plan ζ⋆ ∈

Π(µ, ν) such that for any coupling (X,Y ) distributed according to ζ⋆, Wp(µ, ν) = E[‖X − Y ‖p]1/p.
This kind of transference plan (respectively coupling) will be called an optimal transference plan
(respectively optimal coupling) associated with Wp. We denote by Pp(Rd) the set of probability
measures with finite p-moment: for all µ ∈ Pp(Rd),

∫

Rd
‖x‖p µ(dx) < +∞. By [31, Theorem 6.16],

Pp(Rd) equipped with the Wasserstein distance Wp of order p is a complete separable metric space.
Let f : Rd → R be a Lipschitz function, namely there exists C ≥ 0 such that for all x, y ∈ R

d,
|f(x) − f(y)| ≤ C ‖x− y‖. Then we denote ‖f‖Lip = inf{|f(x) − f(y)| ‖x− y‖−1 | x, y ∈ R

d, x 6=
y}. The Monge-Kantorovich theorem (see [31, Theorem 5.9]) implies that for all µ, ν probabilities
measure on R

d,

W1(µ, ν) = sup

{∫

Rd

f(x)µ(dx) −
∫

Rd

f(x)ν(dx) | f : Rd → R ; ‖f‖Lip ≤ 1

}

. (4)

For all x ∈ R
d and M > 0, we denote by B(x,M), the ball centered at x of radius M . In the sequel,

we take the convention that for n, p ∈ N, n < p then
∑n

p = 0 and
∏n
p = 1.
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2. Ergodicity of the Langevin diffusion

Consider the following assumption on the potential U :

H 1. The function U is lower-bounded, twice continuously differentiable on R
d and is gradient

Lipschitz, i.e. there exists L ≥ 0 such that such that for all x, y ∈ R
d,

‖∇U(x) − ∇U(y)‖ ≤ L ‖x− y‖ .

Under H1, if µ0 is a probability measure satisfying
∫

‖x‖2µ0(dx) < ∞ then by [20, Theorem 2.5,
Theorem 2.9 Chapter 5] there exists a unique strong solution (Yt)t≥0 to (1) with initial distribution
µ0. Define for all t ≥ 0, x ∈ R

d and A ∈ B(Rd), (Ys)s≥0, Pt(x,A) = Px [Yt ∈ A]. The semi-group
(Pt)t≥0 is reversible w.r.t. π, and hence admits π as its (unique) invariant measure. By [29, Theorem
2.1], under H1 the diffusion is irreducible, aperiodic, strong Feller and all compact sets are small
which implies, for any initial distribution µ0, that

lim
t→+∞

‖µ0Pt − π‖TV = 0 . (5)

The generator A and the carré du champ operator (see [4, Definition 1.4.2]) associated with the
Langevin diffusion (1) are given for all (f, g) ∈ C2(Rd) by

A f = − 〈∇U,∇f〉 + ∆f , (6)

G (f, g) = 2−1(A fg − fA g − gA f) = 〈∇f,∇g〉 ,

where ∆ denote the Laplacian. We will use the short-hand notation G (f) = G (f, f).
We are interested in when the convergence in (5) is exponential. A function V ∈ C2(Rd) is a

Lyapunov function for (Pt)t≥0, if V ≥ 1 and if there exists θ > 0, b ≥ 0 and K > 0 such that,

A V ≤ −θV + b1B(0,K) . (7)

It is shown in [29, Theorem 2.2] that, for any Lyapunov function V , the Langevin diffusion is V -
uniformly geometrically ergodic. [29, Theorem 2.3] shows that if there exists a ∈ (0, 1), c > 0, and

K ≥ 0 such that a ‖∇U(x)‖2 − ∆U(x) ≥ c for all ‖x‖ ≥ K, then (7) is satisfied with constants that
can be computed explicitly. Another condition is that π is (super)-exponential in the tails.

H2 (α). The potential U is differentiable and there exist ρ > 0, α ≥ 1 and Mρ ≥ 0 such that for
all y ∈ R

d, ‖y‖ ≥ Mρ, 〈∇U(y), y〉 ≥ ρ ‖y‖α

Proposition 1. Assume H1 and H2(α). Then,

(i) Under H2(1), the drift condition (7) is satisfied with the Lyapunov function W (x) = exp((ρ/4)(‖x‖2+
1)1/2), θ1 = ρ2/8, K = Kρ,1 = max(Mρ, 4d/ρ) and

bρ,1 = (ρ/4)(ρ/4 + d+ sup{‖y‖≤Kρ,1}{‖∇U(y)‖}) max(1, (K2
ρ,1 + 1)−1/2 exp(ρ(K2

ρ,1 + 1)1/2/4)) .

(ii) Under H 2(α) with α > 1, the drift condition (7) is satisfied with the Lyapunov func-
tion Vs(x) = exp(sU(x)), for s ∈ (0, 1), θα,s = sdL, K = Kρ,α,s = max({2dL/(ρ(1 −
s))}1/(2(α−1)),Mρ) and bρ,α,s = sdL sup{‖y‖≤Kρ,α,s}{VU (y)}.

Proof. The proof is postponed to Section 6.1.
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Corollary 2 ([25, Theorem 6.1]). Assume H1 and H2(α) for some α ≥ 1. Set V (x) = W (x) if
α = 1 and V (x) = Vs(x), for s ∈ (0, 1) if α > 1. Then, there exists constant Cα < ∞ and υα > 0
such that for all probability measures µ0 and ν0 on (Rd,B(Rd)), satisfying µ0(V ) + ν0(V ) < +∞,
and t ∈ R+,

‖µ0Pt − ν0Pt‖V ≤ Cαe−υαt‖µ0 − ν0‖V , ‖µ0Pt − π‖V ≤ Cαe−υαtµ0(V ) .

The constants Cα and υα depends on the drift and minorization conditions. Computable bounds
under H2(α) have been developed in the literature but these estimates are in general very conser-
vative. Much better rates of convergence can be obtained using either Poincaré (or spectral gap)
and log-Sobolev inequalities; see [3], [7] and [4, Chapter 4] and the references therein. We follow
here [7]. The starting point is the following extension of the Pinsker inequality.

Lemma 3 ([7, Lemma 1.1]). Let ψ be a C2 convex function defined on R+. Assume that ψ is
uniformly convex on all bounded intervals, ψ(1) = 0 and limu→∞ ψ(u)/u = +∞. Then, for all
probability measures (µ, ν) on (Rd,B(Rd)) such that µ ≪ ν,

‖µ− ν‖TV ≤ cψI
1/2
ψ (µ|ν) , where Iψ(µ, ν) =

∫

ψ

(

dµ

dν

)

dν ,

and cψ is a universal constant.

If ψ(u) = (u − 1)2, then Iψ(µ, ν) is the chi-square distance, cψ = 1 and Lemma 3 shows that

‖µ − ν‖TV ≤ Var1/2
ν {dµ/dν}. If ψ(u) = u ln(u), then Iψ(µ, ν) is the Kullback-Leibler divergence,

cψ =
√

2 and Lemma 3 implies ‖µ− ν‖TV ≤ (2 KL(µ|ν))
1/2

.

Proposition 4 ([7, Proposition 1.8]). Let ψ be a function satisfying the conditions of Lemma 3.
Assume that there exists a constant Cψ such that for any density function h in the extended domain
of the generator satisfying

∫

ψ(h)dπ < ∞,

∫

ψ (h) dπ ≤ Cψ

∫

ψ′′ (h) G (h) dπ . (8)

Then, for all t ≥ 0, and any initial distribution µ0 such that µ0 ≪ π,

‖µ0Pt − π‖TV ≤ cψe−t/CψI
1/2
ψ (µ0|π) .

If we choose ψ(u) = (u− 1)2, (8) boils down to the Poincaré inequality. If there exists a constant
CP such that, for any density h ∈ D(A ) Varπ {h} ≤ CP

∫

G (h)dπ, then Proposition 4 implies that
for all t ≥ 0,

‖µ0Pt − π‖TV ≤ exp(−t/CP) (Varπ {dµ0/dπ})
1/2

. (9)

The best constant CP for which this inequality holds is referred to as the Poincaré constant. To
determine upper bounds of the Poincaré constants, some additional conditions are required.

Proposition 5 ([2, Theorem 1.4]). Assume H1 and that there exists a Lyapunov function satisfying
(7). Then π satisfies a Poincaré inequality with constant

Clyap = θ−1
{

1 + (4bK2/π
2)eoscK(U)

}

(10)

where oscK(U) = supB(0,K)(U) − infB(0,K)(U) is the oscillation of U on B(0,K).
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Combining (10) with Proposition 1 and Proposition 4 yields explicit convergence bounds for
target distribution with exponential tails. Typically, the term eoscR(U) scales exponentially with
the dimension. Better Poincaré constant may be obtained by assuming stronger conditions on the
distribution π.

Proposition 6 ([5, Theorem 2.1]). Assume H1 and U is convex. Then, π satisfies a Poincaré
inequality with constant Ccvx given by

Ccvx = 432

∫

Rd

{

x−
∫

Rd

ydπ(y)

}2

dπ(x) .

Applying Proposition 4 with ψ(u) = u log(u), (8) leads to the log-Sobolev inequality. If there
exists some constant CLS such that, for any density h ∈ D(A ), Entπ (h) ≤ CLS

∫

h−1G (h)dπ then
for all t ≥ 0,

‖µ0Pt − π‖TV ≤ exp(−t/CLS) (2Entπ (dµ0/dπ))
1/2

. (11)

To successfully use the Log-Sobolev inequality, it is required to strengthen the conditions on the
potential U .

H3. U is strongly convex, i.e. there exists m > 0 such that for all x, y ∈ R
d,

U(y) ≥ U(x) + 〈∇U(x), y − x〉 + (m/2) ‖x− y‖2 .

Under H3, by [26, Theorem 2.1.8], there exists a unique x⋆ ∈ R
d such that x⋆

def
= arg minRd U .

By [26, Theorem 2.1.12, Theorem 2.1.9], condition H3 implies that for all x, y ∈ R
d:

〈∇U(y) − ∇U(x), y − x〉 ≥ (κ/2) ‖y − x‖2
+

1

m+ L
‖∇U(y) − ∇U(x)‖2

, (12)

〈∇U(y) − ∇U(x), y − x〉 ≥ m ‖y − x‖2
, (13)

where

κ =
2mL

m+ L
. (14)

Note that H1 and (13) imply that L ≥ m.

Theorem 7. Assume H1 and H3. Then for all probability measure µ0 ≪ π such that dµ0/dπ log(dµ0/dπ) ∈
L1(π), we have

‖µ0Pt − π‖TV ≤ e−mt

(

2Entπ

(

dµ0

dπ

))1/2

. (15)

It is worthwhile to note that, in such case, the convergence rate does not depend on the dimension
d but only on the convexity constants m. In such case, is also possible to devise convergence in
Wasserstein distance. This type of convergence will prove to be very important to obtain precise
estimates in the deviation inequalities. Here again, the rate of convergence does not depend on the
dimension.

Theorem 8. Assume H1 and H3.

(i) The stationary distribution π satisfies
∫

Rd

‖x− x⋆‖2
π(dx) ≤ d/m . (16)
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(ii) For all probability measures µ0 and ν0 ∈ P2(Rd) and t ≥ 0,

W2(µ0Pt, ν0Pt) ≤ e−mtW2(µ0, ν0)

Proof. The proof is postponed to Section 6.2.

3. Euler approximations of the Langevin equation

Let (γk)k≥1 be a sequence of positive and non-increasing step sizes and for n, p ∈ N, denote by

Γn,p
def
=

p
∑

k=n

γk , Γn = Γ1,n . (17)

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈ R
d by

Rγ(x,A) =

∫

A

(4πγ)−d/2 exp
(

−(4γ)−1 ‖y − x+ γ∇U(x)‖2
)

dy . (18)

The sequence (Xn)n≥0 given in (2) is a Markov chain with respect to the sequence of Markov kernels
(Rγn)n≥1. For p, n ≥ 1, p ≥ n, define

Qn,pγ = Rγn · · ·Rγp , Qnγ = Q1,n
γ (19)

with the convention that for n, p ≥ 0, n < p, Qp,nγ is the identity operator. The stability of the Euler
discretization of a one-dimensional Langevin diffusion with constant step size has been studied in
[29, Section 3]; We generalize these results to multidimensional diffusions and decreasing stepsizes.
We first establish a geometric drift condition for Rγ with explicit constants.

Proposition 9. Assume H1 and H2(α) with α > 1. Then for all γ̄ ∈
(

0, L−1
)

, we have for all
γ ∈ (0, γ̄] and x ∈ R

d,

RγV1/2(x) ≤ e−sγ̄γV1/2(x) + γcγ̄,ρ,α1B(0,Kγ̄,ρ,α) ,

where V1/2(x) = exp(U(x)/2), sγ̄ = dL(2(1 − Lγ̄))−1, Kγ̄,ρ,α = max(Mρ, (8sγ̄/ρ)1/(2(α−1))) and

cγ̄,ρ,α = 2sγ̄esγ̄ γ̄ sup{‖y‖≤Kγ̄,ρ,α} V1/2(y) .

Proof. The proof is postponed to Section 6.3.

Corollary 10. Assume H1 and H2(α) with α > 1. Let (γk)k≥1 be a nonincreasing sequence with
γ1 < L−1. Then for all n ≥ 1

QnγV1/2(x) ≤ e−sγ1 Γ1,nV1/2(x) + cγ1,ρ,αs
−1
γ1

esγ1γ1 .

Proof. The proof is postponed to Section 6.3.
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The total variation distance of the target probability measure π with the sequence (µ0Q
n
γ)n≥0,

where µ0 is the initial distribution, is decomposed as follows: for all n ≥ 0, p ≥ 1 and n < p,

‖µ0Q
p
γ − π‖TV ≤ ‖µ0Q

n
γQ

n+1,p
γ − µ0Q

n
γPΓn+1,p‖TV + ‖µ0Q

n
γPΓn+1,p − π‖TV . (20)

To control the first term on the right hand side, we use a method borrowed from [11]. For 0 ≤ s ≤ t,
let C([s, t] ,Rd) be the space of continuous function on [s, t] taking values in R

d. For all x ∈ R
d,

denote by µxn,p and µ̄xn,p the laws on C([Γn,Γp] ,R
d) of the Langevin diffusion (Yt)Γn≤t≤Γp and

of the continuously-interpolated Euler discretisation (Ȳt)Γn≤t≤Γp both started at x at time Γn.

In the sequel, we use the synchronous coupling (Yt, Ȳt)Γn≤t≤Γp of these two processes. For any

ζ0 ∈ P2(Rd × R
d), consider the diffusion (Yt, Y t)t≥0 with initial distribution equals to ζ0, and

defined for t ≥ 0 by
{

dYt = −∇U(Yt)dt+
√

2dBt

dȲt = −∇U(Ȳt)dt+
√

2dBt
(21)

where (Γn)n≥1 is given in (17) and for any continuous function y : R+ → R
d, t 7→ yt

∇U(y) =

∞
∑

k=0

∇U(yΓn)1[Γn,Γn+1)(t) (22)

The Girsanov theorem [20, Theorem 5.1, Corollary 5.16, Chapter 3] shows that µxn,p and µ̄xn,p
are mutually absolutely continuous and in addition,

dµxn,p
dµ̄xn,p

(Ȳ ) = exp

(

1

2

∫ Γp

Γn

〈

∇U(Ȳs) − ∇U(Ȳs), dȲs
〉

−1

4

∫ Γp

Γn

{

∥

∥∇U(Ȳs)
∥

∥

2 −
∥

∥∇U(Ȳs)
∥

∥

2
}

ds

)

(23)

where ∇U is defined in (22). The Pinsker inequality implies that for all x ∈ R
d

‖δxQn+1,p
γ − δxPΓn+1,p‖TV ≤ 2−1/2

(

∫ Γp

Γn

Ex

[

∥

∥∇U(Ȳs) − ∇U(Ȳs)
∥

∥

2
]

ds

)1/2

.

Under H1, we get

‖δxQn+1,p
γ − δxPΓn+1,p‖TV ≤ 2−1/2L

(

p−1
∑

k=n

{

(γ3
k+1/3)Ex

[

‖∇U(Xk)‖2
]

+ dγ2
k+1

}

)1/2

. (24)

Therefore, the first term of (20) goes to 0 as p goes to +∞ provided that the remainder
∑p
k=n γ

2
k

goes to 0 as n, p goes to +∞. If a bound for supk≥0 Ex[‖∇U(Xk)‖2
] is known then the convergence

given by (24) is quantitative. Such a bound is implied by drift conditions for the kernels (Rγk)k≥1;
see Corollary 10. On the other hand, under weak additional conditions, the second term on the
right hand side of (20), ‖µ0Q

n
γPΓn+1,p − π‖TV, goes to 0 if Γn+1,p goes to +∞ as n, p → ∞.
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Theorem 11. Assume H1 and H2(α) for some α > 1. Let (γk)k≥1 be a nonincreasing sequence
with γ1 < L−1. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d

‖δxQpγ − π‖TV ≤ Cαe−υαΓn+1,p{e−sγΓ1,nV1/2(x) + cγ,ρ,αs
−1
γ eγ1sγ} +Bn,p(x; γ) ,

where Cα and υα are given by Corollary 2, sγ and cγ,ρ,α by Proposition 9 and

Bn,p(x; γ) = 2−1/2L

(

p−1
∑

k=n

{

(γ3
k+1/3)‖∇U‖2

V
1/2

1/2

(V1/2(x) + cγ,ρ,αs
−1
γ eγ1sγ ) + dγ2

k+1

}

)1/2

. (25)

If in addition limk→∞ γk = 0 and limn→+∞ Γn = +∞, then for all x ∈ R
d, we get limn→∞ ‖δxQnγ −

π‖TV = 0.

Proof. The proof is postponed to Section 6.4.

When π satisfies a Poincaré inequality an explicit bound for ‖δxQpγ − π‖TV for all p ≥ 1 and

x ∈ R
d can be obtained.

Theorem 12. Assume H1 and π satisfies a Poincaré inequality with constant CP. Let (γk)k≥1 be
a non increasing sequence with γ1 < L−1.

(i) Under H2(α), then for all n ≥ 0, p ≥ 1, n < p and x ∈ R
d,

‖δxQpγ − π‖TV ≤ An,p(x; γ)e−Γn+1,p/CP +Bn,p(x; γ)

where Bn,p(x; γ) is given by (25),

An,p(x; γ) = 2d/4



eU(0)

(

8
√
d

3ρ

)d

+ ‖ exp {−U} ‖∞
π
d/2(2 max(1,Mρ))

d

Γ(d/2 + 1)





1/2

×



4π

{

n
∏

k=1

(1 − Lγk)

}2 n
∑

i=1

γi(1 − Lγi)
−1





−d/2

V1/2(x) ,

and Γ : R∗
+ → R+ is the Gamma function defined for t > 0 by Γ(t) =

∫ +∞

0
st−1esds.

(ii) If ∇U is bounded, then then for all n ≥ 0, p ≥ 1, n < p and x ∈ R
d,

‖δxQpγ − π‖TV ≤ An,p(x; γ)e−Γn+1,p/CP + 2−1/2L

(

p−1
∑

k=n

{

(γ3
k+1/3)‖∇U‖2

∞ + dγ2
k+1

}

)1/2

,

Proof. The proof is postponed to Section 6.5.

Corollary 2 shows that (Pt)t≥0 is a contraction operator on the space of probability measure µ,
µ(V1/4) < +∞, endowed with ‖·‖V1/4

. It is therefore possible to control ‖δxQpγ−π‖V1/4
. To simplify

the notations, we limit our discussion to constant stepsizes.
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Theorem 13. Assume H 1 and H 2(α) for some α > 1 and that γk = γ for all k ≥ 1, where
γ < L−1. Then, for all n ≥ 1 and x ∈ R

d

‖δxQpγ − π‖V1/4
≤ Cαe−υαγnV1/4(x)

+ 21/2Lmax(1, Cα)(1 − e−υα)−1
(

2(V1/2(x) + cγ,ρ,αs
−1
γ eγsγ ) + bρ,α,1/2/θα,1/2

)1/2

×
(

(γ + γ2)d+ 3−1(γ2 + γ3)‖∇U‖2

V
1/2

1/2

(V1/2(x) + cγ,ρ,αs
−1
γ eγsγ )

)1/2

,

where Cα, υα are defined in Corollary 2, sγ , cγ,ρ,α in Proposition 9, and bρ,α,1/2, θα,1/2 in Proposi-
tion 1-(ii).

Proof. The proof is postponed to Section 6.6.

This result gives a bound of order O(γ1/2) as n goes to infinity. If we assume that the total
number of iterations is fixed (finite horizon setting), a straightforward optimization in γ leads to a
bound of order O((log(n)n−1)1/2). Using the ”doubling trick” (see [18]) this can be converted to an
anytime algorithm with a bound on ‖δxQnγ − π‖TV of order O((log(n)n−1)1/2) for all x ∈ R

d and
n ≥ 1.

Under H3, much better estimates can be obtained. We show that discretization (for fixed as well
as vanishing step sizes) is stable as soon as the stepsize is small enough. We then obtain explicit
computable bounds for these moments.

Theorem 14. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Let x⋆ be the unique minimizer of U . Then for all n, p ≥ 1, n ≤ p

∫

Rd

‖x− x⋆‖2
µ0Q

n,p
γ (dx) ≤

p
∏

k=n

(1 − κγk)

∫

Rd

‖x− x⋆‖2
µ0(dx) + 2dκ−1 ,

where κ is defined in (14)

Proof. The proof is postponed to Section 6.7.

As seen in Theorem 7, H3 implies exponential convergence of (µ0Pt)t≥0 to π for a suitable initial
probability measure µ0, with explicit constant independent of the dimension. We now deal with case
when π satisfies H3, and deduce some new bounds for ‖δxQnγ − π‖TV. In particular, the obtained
bounds are now linear in the dimension. We use again the decomposition given by (20), but use the
log-Sobolev inequality instead.

Theorem 15. Assume H1 and H3. Let (γk)k≥1 be a non increasing sequence with γ1 ≤ 2/(m+L).
Let x⋆ be the unique minimizer of U . Then for all n ≥ 0, p ≥ 1, n < p and x ∈ R

d,

‖δxQpγ − π‖TV ≤ Cn,p(x, γ)e−Γn+1,p/m +Dn,p(x, γ)
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where

Cn,p(x, γ) = (L/2)

{

n
∏

k=1

(1 − κγk)

}

‖x− x⋆‖2
+ dLκ−1(1 − κγn)

− (d/2)(1 + log(2γn/m) − 2Lγn)

Dn,p(x, γ) = 2−1/2L

(

p−1
∑

k=n

(γ3
k+1L

2/3)

{

k
∏

i=1

(1 − κγi) ‖x− x⋆‖2
+ 2dκ−1

}

+ dγ2
k+1

)1/2

.

Proof. The proof is postponed to Section 6.8.

We now proceed to establish explicit bounds for W2(µ0Q
n
γ , π), with µ0 ∈ P2(Rd). Since π is

invariant for Pt for all t ≥ 0, it suffices to get some bounds on W2(µ0Q
n
γ , ν0PΓn), with ν0 ∈ P2(Rd)

and take ν0 = π. To do so, we construct a coupling. In the strongly convex case, an obvious
candidate is the synchronous coupling (21).

Therefore since for all n ≥ 0, W 2
2 (µ0PΓn , ν0Q

n
γ ) ≤ E[‖YΓn − ȲΓn‖2], where µ0 and ν0 are the

marginals of ζ0, we compute an explicit bound of the Wasserstein distance between the sequence of
distributions (µ0Q

n
γ )n≥0 and the stationary measure π of the Langevin diffusion (1).

Theorem 16. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m+L).
Then for all µ0 ∈ P2(Rd) and n ≥ 1,

W 2
2 (µ0Q

n
γ , π) ≤ u(1)

n (γ)W 2
2 (µ0, π) + u(2)

n (γ) , (26)

where

u(1)
n (γ)

def

=

n
∏

k=1

(1 − κγk/2) (27)

and

u(2)
n (γ)

def

= L2
n
∑

i=1

γ2
i

{

κ−1 + γi
}

(2d+ dL2γi/m+ dL2γ2
i /6)

n
∏

k=i+1

(1 − κγk/2) , (28)

where κ is defined in (14) .

Proof. The proof is postponed to Section 6.9.

Let x⋆ be the unique minimizer of U . Since for all y ∈ R
d ‖x− y‖2 ≤ 2(‖x− x⋆‖2

+ ‖x⋆ − y‖2
),

using (16), we get:

W 2
2 (δx, π) ≤ 2(‖x− x⋆‖2

+ d/m) . (29)

If µ0 ∈ P2(Rd), we have W 2
2 (µ0, π) ≤

∫

µ0(dx)W 2
2 (δx, π). Hence, the right hand side of (26) scales

linearly with the dimension d. When γk = γ for all k ≥ 1, (27) and (28) imply

u(1)
n (γ) = (1 − κγ/2)n , u(2)

n (γ) ≤ 2κ−1γ
{

κ−1 + γ
}

(2d+ dL2γ/m+ dL2γ2/6) . (30)

Using this bound, given ǫ > 0, we may determine the smallest number of iterations and an associated
step-size γ, starting from x, to approach the stationary distribution in the Wasserstein distance
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W2(δxQ
γ
n, π) with a precision ǫ. Details and further discussions are included in the supplementary

paper [12].
We now consider decreasing stepsizes. Under this additional assumption, we may establish the

convergence of the sequence (µ0Q
n
γ )n≥0 to π.

Corollary 17. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m+L).
Assume that limk→∞ γk = 0 and limn→+∞ Γn = +∞. Then for all µ0 ∈ P2(Rd), limn→∞ W2(µ0Q

n
γ , π)

= 0.

Proof. The proof is postponed to Section 6.9.

Based on Theorem 16, we can obtain explicit bounds for W 2
2 (δxQ

n
γ , π) for all x ∈ R

d. For
simplicity, we consider sequences (γk)k≥1 defined for all k ≥ 1 by γk = γ1k

−α, for γ1 < 1/(m+ L)
and α ∈ (0, 1]. The order of these bounds is given in Table 1, see [12] for details. Two regimes can be
observed as in stochastic approximation. When α ∈ (0, 1), the rate of convergence is of order n−α;
for α = 1, the rate of convergence is n−1, for γ1 > 2κ−1, see [12, Section 2]. We now consider the

α ∈ (0, 1) α = 1

Order of convergence 22+ακ−2γ1L
2dn−α O(n−1) for γ1 > 2κ−1

Table 1

Order of convergence of W2(δxQ
n
γ , π) for γk = γ1k

−α

fixed horizon setting. Assuming here that the step sizes (γk)k≥1 are defined for k ≥ 1 by γk = γ1k
−α

for α ∈ [0, 1), we determine the value of γ1 minimizing the upper bound u
(1)
n (γ)W 2

2 (µ0, π)+u
(2)
n (γ).

The results are summarized in Table 2, see [12] for details. In essence, this result shows that choosing

Optimal choice of γ1 Bound on W 2
2 (δxQ

n
γ , π)

α ∈ [0, 1) 2(1 − α)κ−1(2/n)1−α log(κn/(2(1 − α))) 16(1 − α)L2κ−3dn−1 log(κn/(2(1 − α)))

Table 2

Order of the optimal choice of γ1 for the fixed horizon setting and implied bound on W 2
2 (δxQ

n
γ , π)

γ1 of order log(n)nα−1 leads a bound for W 2
2 (δxQ

n
γ , π) of order log(n)/n. Moreover, these bounds

for a fixed number of iterations implies using the doubling trick (see [18]) an anytime algorithm
which guarantees for all n ≥ 1 and x ∈ R

d that W2(δxQ
n
γ , π) is O((log(n)n−1)1/2).

4. Mean square error and concentration for strongly log-concave distribution

Let be f : Rd → R and (Xn)n≥0 the Euler discretization of the Langevin diffusion. In this section
we study the approximation of

∫

Rd
f(y)π(dy) by the weighted average estimator

π̂Nn (f) =

N+n
∑

k=N+1

ωNk,nf(Xk) , ωNk,n = γk+1Γ−1
N+2,N+n+1 . (31)

where N ≥ 0 is the length of the burn-in period, n ≥ 1 is the number of samples, and for n, p ∈ N,
Γn,p is given by (17). We restrict the discussion to Lipschitz functions f . In all this section, Px
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and Ex denote the probability and the expectation respectively, induced on ((Rd)N,B(Rd)N) by
the Markov chain (Xn)n≥0 started at x ∈ R

d. We first compute an explicit bounds for the Mean
Squared Error (MSE) of this estimator defined by:

MSEf (N,n) = Ex

[

∣

∣π̂Nn (f) − π(f)
∣

∣

2
]

=
{

Ex[π̂Nn (f)] − π(f)
}2

+ Varx
{

π̂Nn (f)
}

. (32)

We first obtain an elementary bound for the bias. For all k ∈ {N + 1, . . . , N + n}, let ξk be the
optimal transference plan between δxQ

k
γ and π for W2. Then by the Jensen inequality and because

f is Lipschitz, we have:

(

Ex[π̂Nn (f)] − π(f)
)2

=

(

N+n
∑

k=N+1

ωNk,n

∫

Rd×Rd

{f(z) − f(y)}ξk(dz, dy)

)2

≤ ‖f‖2
Lip

N+n
∑

k=N+1

ωNk,n

∫

Rd×Rd

‖z − y‖2 ξk(dz, dy) .

Using Theorem 16, we end up with the following bound.

Proposition 18. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m+L).
Let x⋆ be the unique minimizer of U . Let (Xn)n≥0 be given by (2) and started at x ∈ R

d. Then for
all n,N ≥ 0 and Lipschitz function f : Rd → R:

{

Ex[π̂Nn (f)] − π(f)
}2 ≤ ‖f‖2

Lip

N+n
∑

k=N+1

ωNk,n

{

2(‖x− x⋆‖2
+ d/m)u

(1)
k (γ) + u

(2)
k (γ)

}

,

where u
(1)
n (γ) and u

(2)
n (γ) are given in (27) and (28), respectively.

Consider now the variance term. Our main tool is the Gaussian Poincaré inequality [6, Theo-
rem 3.20] (see also [4, Theorem 4.1.1]) which states that if Z = (Z1, . . . , Zd) is a Gaussian vector

with identity covariance matrix, then Var {g(Z)} ≤ ‖g‖2
Lip. The Gaussian Poincaré inequality may

be applied to Rγ defined by (18) noticing that for all y ∈ R
d, Rγ(y, ·) is a Gaussian distribution

with mean y − γ∇U(y) and covariance matrix 2γ Id.

Lemma 19. Assume H1. Let g : Rd → R be a Lipschitz function. Then for all γ > 0, y ∈ R
d,

0 ≤ Rγ {g(·) −Rγg(y)}2 (y) =

∫

Rγ(y, dz) {g(z) −Rγg(y)}2 ≤ 2γ ‖g‖2
Lip .

To go further, we decompose π̂Nn (f) − Ex[π̂Nn (f)] as the sum of martingale increments,

π̂Nn (f) − Ex[π̂Nn (f)] =

N+n−1
∑

k=N

{

E
Gk+1
x

[

π̂Nn (f)
]

− E
Gk
x

[

π̂Nn (f)
]}

+ E
GN
x

[

π̂Nn (f)
]

− Ex[π̂Nn (f)] , (33)

where (Gn)n≥0 here is the natural filtration associated with Euler approximation (Xn)n≥0. This
implies that the variance may be expressed as the following sum

Varx
{

π̂Nn (f)
}

=

N+n−1
∑

k=N

Ex

[

(

E
Gk+1
x

[

π̂Nn (f)
]

− E
Gk
x

[

π̂Nn (f)
])2
]

+ Ex

[

(

E
GN
x

[

π̂Nn (f)
]

− Ex[π̂Nn (f)]
)2
]

. (34)
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Because π̂Nn (f) is an additive functional, the martingale increment E
Gk+1
x

[

π̂Nn (f)
]

− E
Gk
x

[

π̂Nn (f)
]

has a simple expression. For k = N + n− 1, . . . , N + 1, define backward in time the function

ΦNn,k : xk 7→ ωNk,nf(xk) +Rγk+1
ΦNn,k+1(xk) , (35)

where ΦNn,N+n : xN+n 7→ ΦNn,N+n(xN+n) = ωNN+n,nf(xN+n). Denote finally

ΨN
n : xN 7→ RγN+1ΦNn,N+1(xN ) . (36)

Note that for k ∈ {N, . . . , N + n− 1}, by the Markov property,

ΦNn,k+1(Xk+1) −Rγk+1
ΦNn,k+1(Xk) = E

Gk+1
x

[

π̂Nn (f)
]

− E
Gk
x

[

π̂Nn (f)
]

, (37)

and ΨN
n (XN ) = E

GN
x

[

π̂Nn (f)
]

. With these notations, (34) may be equivalently expressed as

Varx
{

π̂Nn (f)
}

=

N+n−1
∑

k=N

Ex

[

E
Gk
x

[

{ΦNn,k+1(Xk+1) −Rγk+1
ΦNn,k+1(Xk)}2

]]

+ Varx
{

ΨN
n (XN )

}

=

N+n−1
∑

k=N

Ex

[

Rγk+1

{

ΦNn,k+1(·) −Rγk+1
ΦNn,k+1(Xk)

}2
(Xk)

]

+ Varx
{

ΨN
n (XN )

}

. (38)

Now for k = N + n, . . . , N + 1, we will use the Gaussian Poincaré inequality (Lemma 19) to the
sequence of function ΦNn,k to prove that x 7→ Rγk+1

{ΦNn,k+1(·) − Rγk+1
ΦNn,k+1(x)}2(x) is uniformly

bounded. It is required to bound the Lipshitz constant of ΦNn,k . For k ∈ {N, . . . , N + n− 1} and

for all y, z ∈ R
d, we have

∣

∣ΦNn,k+1(y) − ΦNn,k+1(z)
∣

∣ =

∣

∣

∣

∣

∣

ωNk+1,n {f(y) − f(z)} +
N+n
∑

i=k+2

ωNi,n
{

Qk+2,i
γ f(y) −Qk+2,i

γ f(z)
}

∣

∣

∣

∣

∣

. (39)

To bound
∥

∥Qn,pγ f
∥

∥

Lip
for all n, p ∈ N

∗, we will bound for all initial distribution µ0, ν0 ∈ P2(Rd),

W2(µ0Q
n,p
γ , ν0Q

n,p
γ ). This can be done using the discrete time-version of the synchronous coupling.

Proposition 20. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Then

(i) for all µ0, ν0 ∈ P2(Rd) and p ≥ n ≥ 1,

W 2
2 (µ0Q

n,p
γ , ν0Q

n,p
γ ) ≤

p
∏

k=n

(1 − κγk)W 2
2 (µ0, ν0) ;

(ii) for all Lipshitz functions f : Rd → R and p ≥ n ≥ 1, Qn,pγ f is a Lipschitz function with

∥

∥Qn,pγ f
∥

∥

Lip
≤

p
∏

k=n

(1 − κγk)1/2 ‖f‖Lip .

Proof. The proof is postponed to Section 6.10.
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Corollary 21. Assume H1 and H3. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+ L).
Let N ≥ 0 and n ≥ 1. Then for all y ∈ R

d, Lipschitz function f and k ∈ {N, . . . , N + n− 1},

Rγk+1

{

ΦNn,k+1(·) −Rγk+1
ΦNn,k+1(y)

}2
(y) ≤ 8γk+1 ‖f‖2

Lip (κΓN+2,N+n+1)−2 ,

where ΦNn,k+1 is given by (35).

Proof. The proof is postponed to Section 6.10.

Also to control the last term in right hand side of (38), we need to control the variance of ΨN
n (XN )

under δxQ
N
γ . But similarly to the sequence of functions ΦNn,k, ΨN

n is Lipschitz by Proposition 20

since for all y, z ∈ R
d, we have

∣

∣ΨN
n (y) − ΨN

n (z)
∣

∣ =

∣

∣

∣

∣

∣

N+n
∑

i=N+1

ωNi,n
{

QN+1,i
γ f(y) −QN+1,i

γ f(z)
}

∣

∣

∣

∣

∣

. (40)

Therefore it suffices to find some bound for the variance of g under δyQ
n,p
γ , for g : R

d → R a

Lipschitz function, y ∈ R
d and γ > 0, which is done in the following Lemma.

Lemma 22. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+ L).
Let g : Rd → R be a Lipschitz function. Then for all n, p ≥ 1, n ≤ p and y ∈ R

d

0 ≤
∫

Rd

Qn,pγ (y, dz)
{

g2(z) −Qn,pγ g(y)
}2 ≤ 2κ−1 ‖g‖2

Lip ,

where Qn,pγ is given by (19).

Proof. The proof is postponed to Section 6.10.

Corollary 23. Assume H1 and H3. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+ L).
Then for all Lipschitz function f ,

Varx
{

ΨN
n (XN )

}

≤ 8κ−3 ‖f‖2
Lip Γ−2

N+2,N+n+1 ,

where ΨN
n is given by (36).

Proof. The proof is postponed to Section 6.10

Finally, we have:

Theorem 24. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m +
L). Then for all N ≥ 0, n ≥ 1 and Lipschitz functions f : R

d → R, we get Varx
{

π̂Nn (f)
}

≤
8κ−2 ‖f‖2

Lip Γ−1
N+2,N+n+1u

(3)
N,n(γ) where

u
(3)
N,n(γ)

def

=
{

1 + Γ−1
N+2,N+n+1(κ−1 + 2/(m+ L))

}

. (41)

Proof. Plugging the bounds given by Corollary 21 and Corollary 23 in (38), we have

Varx
{

π̂Nn (f)
}

≤ 8κ−2 ‖f‖2
Lip

{

Γ−2
N+2,N+n+1ΓN+1,N+n + κ−1Γ−2

N+2,N+n+1

}

≤ 8κ−2 ‖f‖2
Lip

{

Γ−1
N+2,N+n+1 + Γ−2

N+2,N+n+1(γN+1 + κ−1)
}

.

Using that γN+1 ≤ 2/(m+ L) concludes the proof.
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It is worth to observe that this bound is independent from the dimension. We may now discuss
the bounds on the MSE (obtained by combining the bounds for the squared bias Proposition 18
and the variance Theorem 24) for step sizes given for k ≥ 1 by γk = γ1k

−α where α ∈ [0, 1]
and γ1 < 1/(m + L). Details of these calculations are included in the supplementary paper [12].
The order of the bounds (up to numerical constants) of the MSE are summarized in Table 3 as a
function of γ1, n and N . If the total number of iterations n+N is held fixed (fixed horizon setting),

Bound for the MSE

α = 0 γ1 + (γ1n)−1 exp(−κγ1N/2)

α ∈ (0, 1/2) γ1n
−α + (γ1n

1−α)−1 exp(−κγ1N
1−α/(2(1 − α)))

α = 1/2 γ1 log(n)n−1/2 + (γ1n
1/2)−1 exp(−κγ1N

1/2/4)

α ∈ (1/2, 1) nα−1
{

γ1 + γ−1
1 exp(−κγ1N

1−α/(2(1 − α)))
}

α = 1 log(n)−1
{

γ1 + γ−1
1 N−γ1κ/2

}

Table 3

Bound for the MSE for γk = γ1k
−α for fixed γ1 and N

as in Section 3, we may optimize the value of the step size γ1 but also of the burn-in period N
to minimize the upper bound of the MSE. The order (in n) for different values of α ∈ [0, 1] are
summarized in Table 4 (we display the order in n but not the constants, which are quite involved
and not overly informative). It appears that, for any α ∈ [0, 1/2), we can always achieved the order
n−1/2 by choosing appropriately γ1 and N (for α = 1/2 we have only log(n)n−1/2). The worst case
is for α ∈ (1/2, 1], where in fact the best strategy is to take N = 0 and the largest possible value
for γ1 = 1/(m + L). Finally, we note that from the explicit expression of the bound in [12], that
constant step sizes (α = 0) are optimal. Finally, we mention that the bounds for α ∈ [0, 1/2) for a
fixed number of iterations implies using the doubling trick (see [18]) an anytime algorithm which
guarantees for all n ≥ 1, a MSE of order O(n−1/2).

Optimal choice of γ1 Optimal choice of N Bound for the MSE

α = 0 n−1/2 n1/2 n−1/2

α ∈ (0, 1/2) nα−1/2 n(1/2−α)/(1−α) n−1/2

α = 1/2 (log(n))−1/2 log(n) log(n)n−1/2

α ∈ (1/2, 1) 1/(m+ L) 0 n1−α

α = 1 1/(m+ L) 0 log(n)

Table 4

Bound for the MSE for γk = γ1k
−α for fixed n

In this part, we establish an exponential deviation inequality for π̂Nn (f) − Ex[π̂Nn (f)] given by
(31), with N ≥ 0, n ≥ 1, x ∈ R

d and f a Lipschitz function. To that purpose, we derive an upper
bound of the Laplace transform of π̂Nn (f) − Ex[π̂Nn (f)]. Using the decomposition by martingale
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increments (33)

Ex

[

eλ{π̂Nn (f)−Ex[π̂Nn (f)]}
]

= Ex

[

exp

(

λ{EGN
x

[

π̂Nn (f)
]

− Ex[π̂Nn (f)]} +

N+n−1
∑

k=N

λ{EGk+1
x

[

π̂Nn (f)
]

− E
Gk
x

[

π̂Nn (f)
]

}
)]

.

Now using (37) with the sequence of functions (ΦNn,k) and ΨN
n given by (35) and (36), respectively,

we have by the Markov property

Ex

[

eλ{π̂Nn (f)−Ex[π̂Nn (f)]}
]

= Ex

[

eλ{ΨNn (Xn)−Ex[ΨNn (Xn)]}
N+n−1
∏

k=N

Rγk+1

{

exp
(

λ{ΦNn,k+1(·) −Rγk+1
ΦNn,k+1(Xk)}

)}

(Xk)

]

(42)

where Rγ is given by (18) for γ > 0. We use the same strategy to get concentration inequalities
than to bound the variance term in the previous section, replacing the Gaussian Poincaré inequality
by the log-Sobolev inequality to get uniform bound for Rγk+1

{exp(λ
{ΦNn,k+1(·)−Rγk+1

ΦNn,k+1(Xk)})}(Xk) w.r.t.Xk, for all k ∈ {N+1, . . . , N+n}. Indeed for all x ∈ R
d,

recall that Rγ(x, ·) is a Gaussian distribution with mean x− γ∇U(x) and covariance matrix 2γ Id.
The log-Sobolev inequality provides a bound for the the Laplace transform of Lipschitz function
g(Z) −Rγg(x) where Z is distributed under Rγ(x, ·).
Lemma 25 ([6, Theorem 5.5]). Assume H1. Then for all Lipschitz function g, γ > 0, x ∈ R

d and
λ > 0,

∫

Rγ(x, dy) {exp (λ{g(y) −Rγg(x)})} ≤ exp
(

γλ2 ‖g‖2
Lip

)

.

where Rγ is given by (18).

We deduced from this lemma, (39) and Proposition 20-(ii), an equivalent of Corollary 21 for the
Laplace transform of ΦNn,k+1 under δyRγk+1

for k ∈ {N + 1, . . . , N + n} and all y ∈ R
d.

Corollary 26. Assume H1 and H3. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+ L).
Let N ≥ 0 and n ≥ 1. Then for all k ∈ {N + 1, . . . , N + n}, y ∈ R

d and λ > 0,

Rγk+1

{

exp
(

λ{ΦNn,k+1(·) −Rγk+1
ΦNn,k+1(y)}

)}

(y) ≤ exp
(

4γk+1λ
2 ‖f‖2

Lip (κΓN+2,N+n+1)−2
)

,

where ΦNn,k is given by (35).

It remains to control the Laplace transform of ΨN
n under δxQ

N
γ , where δxQ

N
γ is defined by (19).

For this, using again that by (40) and Proposition 20-(ii), ΨN
n is a Lipschitz function, we iterate

Lemma 25 to get bounds on the Laplace transform of Lipschitz function g under Qn,pγ (y, ·) for all

y ∈ R
d and n, p ≥ 1, since for all n, p ≥ 1, Qn,pγ g is a Lipschitz function by Proposition 20-(ii).

Lemma 27. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+ L).
Let g : Rd → R be a Lipschitz function, then for all n, p ≥ 1, n ≤ p, y ∈ R

d and λ > 0:

Qn,pγ
{

exp
(

λ{g(·) −Qn,pγ g(y)}
)}

(y) ≤ exp
(

κ−1λ2 ‖g‖2
Lip

)

, (43)
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where Qγn,p is given by (19).

Proof. The proof is postponed to Section 6.10.

Combining this result with (40) and Proposition 20-(ii), we get an analogue of Corollary 23 for
the Laplace transform of ΨN

n :

Corollary 28. Assume H1 and H3. Let (γk)k≥1 be nonincreasing sequence with γ1 ≤ 2/(m+ L).
Let N ≥ 0 and n ≥ 1. Then for all λ > 0,

Ex

[

eλ{ΨNn (Xn)−Ex[ΨNn (Xn)]}
]

≤ exp
(

4κ−3λ2 ‖f‖2
Lip Γ−2

N+2,N+n+1

)

,

where ΨN
n is given by (36).

The Laplace transform of π̂Nn (f) can be explicitly bounded using Corollary 26 and Corollary 28
in (42).

Proposition 29. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Then for all N ≥ 0, n ≥ 1, Lipschitz functions f : Rd → R and λ > 0:

Ex

[

eλ{π̂Nn (f)−Ex[π̂Nn (f)]}
]

≤ exp
(

4κ−2λ2 ‖f‖2
Lip Γ−1

N+2,N+n+1u
(3)
N,n(γ)

)

,

where u
(3)
N,n(γ) is given by and (41).

Theorem 30. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L).
Let (Xn)n≥0 be given by (2) and started at x ∈ R

d. Then for all N ≥ 0, n ≥ 1, r > 0 and Lipschitz
functions f : Rd → R:

Px

[

π̂Nn (f) ≥ Ex[π̂Nn (f)] + r
]

≤ exp

(

− r2κ2ΓN+2,N+n+1

16 ‖f‖2
Lip u

(3)
N,n(γ)

)

.

Proof. Using the Markov inequality and Proposition 29, for all λ > 0, we have:

Px

[

π̂Nn (f) ≥ Ex[π̂Nn (f)] + r
]

≤ exp
(

−λr + 4κ−2λ2 ‖f‖2
Lip Γ−1

N+2,N+n+1u
(3)
N,n(γ)

)

.

Then the result follows from taking λ = (rκ2ΓN+2,N+n+1)/(8 ‖f‖2
Lip u

(3)
N,n(γ)).

If we apply this result to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α, for α ∈ [0, 1],

we end up with a concentration of order exp(−n1−α) for α ∈ [0, 1) and n−1 for α = 1.

5. Numerical experiments

Consider a binary regression set-up in which the binary observations (responses) (Y1, . . . , Yp) are
conditionally independent Bernoulli random variables with success probability ̺(βββTXi), where ̺ is
the logistic function defined for z ∈ R by ̺(z) = ez/(1+ez) and Xi and βββ are d dimensional vectors
of known covariates and unknown regression coefficient, respectively. The prior distribution for the
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parameter βββ is a zero-mean Gaussian distribution with covariance matrix Σ. The posterior density
distribution of βββ is up to a proportionality constant given by

πβββ(βββ|((Xi, Yi))1≤i≤p) ∝ exp

(

p
∑

i=1

Yiβββ
TXi − log(1 + eβββ

TXi) − (1/2)βββTΣ−1βββ

)

.

Bayesian inference for the logistic regression model has long been recognized as a numerically
involved problem, due to the analytically inconvenient form of the model’s likelihood function.
Several algorithms have been proposed, trying to mimick the data-augmentation (DA) approach
of [1] for probit regression; see [19], [13] and [14]. Recently, a very promising DA algorithm has
been proposed in [28], using the Polya-Gamma distribution in the DA part. This algorithm has
been shown to be uniformly ergodic for the total variation by [8, Proposition 1], which provides an
explicit expression for the ergodicity constant. This constant is exponentially small in the dimension
of the parameter space and the number of samples (it is likely however that this constant is very
conservative). Moreover, the complexity of the augmentation step is cubic in the dimension, which
prevents from using this algorithm when the dimension of the regressor is large.

We apply ULA to sample from the posterior distribution πβββ(·|(Xi, Yi)1≤i≤p). The gradient of its
log-density may be expressed as

∇ log{πβββ(βββ|(Xi, Yi)1≤i≤p)} =

p
∑

i=1

YiXi − Xi

1 + e−βββTXi
− Σ−1βββ ,

Therefore − logπβββ(·|(Xi, Yi)1≤i≤p) is strongly convex H3 with m = λ−1
max(Σ) and satisfies H1 with

L = (1/4) max1≤i≤p{‖Xi‖ + λ−1
min(Σ)}, where λmin(Σ) and λmax(Σ) are the minimal and maximal

eigenvalues of Σ, respectively. To assess the proposed algorithm, we first compare the histograms
given by ULA and the Pòlya-Gamma Gibbs sampling from [28]. For this, we take d = 5, p = 100,
generate synthetic data (Yi)1≤i≤p and (Xi)1≤i≤p, and set Σβββ = (

∑p
i=1 ‖Xi‖2)(dp)−1 Id. We produce

107 samples from the Pòlya-Gamma sampler using the R package BayesLogit [32]. Next, we make
103 runs of the Euler approximation scheme with n = 106 effective iterations, with a constant
sequence (γk)k≥1, γk = 10(κn1/2)−1 for all k ≥ 0 and a burn-in period N = n1/2. The plot of
the histogram of the Pólya-Gamma Gibbs sampler for one component, the corresponding mean of
the obtained histograms for ULA and the quantiles at 95% can be found in Figure 1. The same
procedure is also applied with the decreasing step size sequence (γk)k≥1 defined by γk = γ1k

−1/2,
with γ1 = 10(κ log(n)1/2)−1, and for the burn in period N = log(n), see also Figure 1. In addition,
we also compare the Pólya-Gamma Gibbs sampler, MALA and ULA on four real data sets, which
are summarized in Table 5. Note that for the Australian credit data set, the ordinal covariates
have been stratified by dummy variables. Furthermore, we normalized the data sets and consider
the Zellner prior setting Σ−1 = (π

2p/3)Σ−1
X where ΣX = p−1

∑p
i=1 XiX

T
i ; see [30], [17] and the

references therein. Also, we apply a pre-conditionned version of MALA and ULA, targetting the

probability density π̃βββ(·) ∝ πβββ(Σ
1/2
X ·). Then, we obtain samples from πβββ by post-multiplying the

obtained draws by Σ
1/2
X . For each data sets, 100 runs of the Polya-Gamma Gibbs sampler (105

iterations per run), and 100 runs of MALA and ULA (106 iterations per run) have been performed.
Despite the fact that longer runs are carried out, the computational time of ULA is still two orders
of magnitude lower than the Pólya-Gamma simulator. For MALA, the step-size is chosen so that the
acceptance probability in stationarity is approximately equal to 0.5. For ULA, we choose constant
step-sizes γ = 5 × 10−3 for all the data sets. We display the boxplots of the estimators for the mean
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Figure 1: Empirical distribution comparison between the Polya-Gamma Gibbs Sampler

and ULA. Left panel: constant step size γk = γ1 for all k ≥ 1; right panel: decreasing

step size γk = γ1k
−1/2 for all k ≥ 1
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Data set
Dimensions

Observations p Covariates d

German credit 1 1000 25

Heart disease 2 270 14

Australian credit3 690 35

Prima indian diabetes4 768 9

Table 5

Dimension of the data sets

of one component of βββ in Figure 2. Note that there are some discrepancies between the posterior
mean estimators obtained using either the DA, MALA and ULA. These differences are of order
10−3 and are likely to be due to accumulations of numerical errors. These differences are negligible
compared to the posterior variance of these estimators, which is of order 10−1. These results all
imply that ULA is a much simpler and faster alternative to the Polya-Gamma Gibbs sampler and
MALA algorithm.

6. Proofs

6.1. Proof of Proposition 1

(i) For all x ∈ R
d, we have

AW (x) = (ρ/4)(‖x‖2
+ 1)−1/2W (x)(− 〈∇U(x), x〉 + (ρ/4)(‖x‖2

+ 1)−1/2 ‖x‖2

− (‖x‖2
+ 1)−1 ‖x‖2

+ d)

Then, for all x, ‖x‖ ≥ Kρ,1 = max(Mρ, 4d/ρ, 1), since 1 + ‖x‖2 ≥ ‖x‖2 and 〈∇U(x), x〉 ≥ ρ ‖x‖
under H2(1), AW (x) ≤ −(ρ2/8)W (x), and sup{‖x‖≤Kρ,1} AW (x) ≤ bρ,1.

1http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
2http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
3http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
4http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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0.675

0.68
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−0.28

−0.275

Polya−Gamma MALA ULA

−0.54

−0.53

−0.52
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−0.253
−0.252
−0.251

−0.25
−0.249

Polya−Gamma MALA ULA

Figure 2: Upper left: German credit data set. Upper right: Australian credit data set.

Lower left: Heart disease data set. Lower right: Prima indian diabetes data set

(ii) For all x ∈ R
d, we have

A Vs(x) = s(1 − s)(− ‖∇U(x)‖2
+ (1 − s)−1∆U(x))Vs(x)

If α > 1, then by the Cauchy-Schwarz inequality, under H1, for all x ∈ R
d, ∆U(x) ≤ dL and

‖∇U(x)‖ ≥ ρ ‖x‖α−1
for ‖x‖ ≥ Mρ. Therefore,

A Vs(x) ≤ s(1 − s)(−ρ ‖x‖2(α−1)
+ (1 − s)−1dL)Vs(x) ≤ −sdLVs(x) , for ‖x‖ ≥ Kρ,α,s ,

and sup{‖x‖≤Kρ,α,s} A Vs(x) ≤ bρ,α.

6.2. Proof of Theorem 8

(i) Set V⋆(x) = ‖x− x⋆‖2. By Jensen’s inequality, for all c > 0 and t > 0, we get

π(V⋆ ∧ c) = πPt(V⋆ ∧ c) ≤ π(PtV⋆ ∧ c) =

∫

π(dx)

{

‖x− x∗‖2e−2mt +
d

m
(1 − e−2mt) ∧ c

}

≤ π(V⋆ ∧ c)e−2mt + (1 − e−2mt)d/m .

Taking the limit as t → +∞, we get π(V⋆ ∧ c) ≤ d/m. Using the monotone convergence theorem,
taking the limit as c → +∞, we finally obtain (16).

(ii) Consider the following SDE in R
d × R

d:

{

dYt = −∇U(Yt)dt+
√

2dBt ,

dỸt = −∇U(Ỹt)dt+
√

2dBt ,
(44)

where (Y0, Ỹ0) is some coupling between µ and ν. Since µ and ν are in P2(Rd) and ∇U is Lipschitz,
then by [20, Theorem 2.5, Theorem 2.9, Chapter 5], this SDE has a unique strong solution (Yt, Ỹt)t≥0

associated with (Bt)t≥0. Moreover since (Yt, Ỹt)t≥0 is a solution of (44),

∥

∥Yt − Ỹt
∥

∥

2
=
∥

∥Y0 − Ỹ0

∥

∥

2 − 2

∫ t

0

〈

(∇U(Ys) − ∇U(Ỹs)), Ys − Ỹs
〉

ds ,
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which implies using (13) and Grönwall’s inequality that

∥

∥Yt − Ỹt
∥

∥

2 ≤
∥

∥Y0 − Ỹ0

∥

∥

2 − 2m

∫ t

0

∥

∥Ys − Ỹs
∥

∥

2
ds ≤

∥

∥Y0 − Ỹ0

∥

∥

2
e−2mt .

For all t ≥ 0, the law of (Yt, Ỹt) is a coupling between µPt and νPt. Therefore by definition of W2,
W2(µPt, νPt) ≤ E[‖Yt − Ỹt‖2]1/2 showing (ii).

6.3. Proof of Proposition 9 and Corollary 10

Proof of Proposition 9. Let γ̄ ∈
(

0, L−1
)

. First note by H2(α) and the Cauchy-Schwarz inequality,
we have for all x ∈ R

d, ‖x‖ ≥ Mρ,

‖∇U(x)‖ ≥ ρ ‖x‖α−1
. (45)

Since under H1, for all x, y ∈ R
d, U(y) ≤ U(x) + 〈∇U(x), y − x〉 + (L/2)‖y − x‖2, we have for all

γ ∈ (0, γ̄) and x ∈ R
d,

RγV1/2(x)/V1/2(x) = (4πγ)−d/2

∫

Rd

exp
(

(U(y) − U(x))/2 − (4γ)−1 ‖y − x+ γ∇U(x)‖2
)

dy

≤ (4πγ)−d/2

∫

Rd

exp
(

−4−1γ ‖∇U(x)‖2 − (4γ)−1(1 − γL) ‖y − x‖2
)

dy

≤ (1 − γL)−d/2 exp(−4−1γ ‖∇U(x)‖2) , (46)

where we used for the last line that γ < L−1. Since log(1 − Lγ) = −L
∫ γ

0 (1 − Lt)−1dt, for all
γ ∈ (0, γ̄], log(1 − Lγ) ≥ −Lγ(1 − Lγ̄)−1. Using this inequality, (46) becomes

RγV1/2(x)/V1/2(x) ≤ exp
(

γ
{

sγ̄ − 4−1 ‖∇U(x)‖2
})

. (47)

By (45), for all x ∈ R
d, ‖x‖ ≥ Kγ̄,α,ρ = max(Mρ, (8sγ̄/ρ)1/(2(α−1))), we have

RγV1/2(x) ≤ e−sγ̄γV1/2(x) . (48)

Also by (47) and since for all t ≥ 0, et − 1 ≤ tet, we get for all x ∈ R
d

RγV1/2(x) − e−sγ̄γV1/2(x) ≤ e−sγ̄γ(e2γsγ̄ − 1)V1/2(x) ≤ 2sγ̄γesγ̄ γ̄V1/2(x) .

The proof is completed combining the last inequality and (48).

Proof of Corollary 10. By a straightforward induction of Proposition 9, we have for all x ∈ R
d and

n ≥ 1,

QnγV1/2(x) ≤ e−sγ1 Γ1,nV1/2(x) + cγ1,ρ,α

n
∑

i=1

γie
−sγ1 Γi+1,n . (49)

In addition, since for all t ≥ 0, e−t = 1 −
∫ t

0 e−udu ≤ 1 − te−t, we have

n
∑

i=1

γie
−sγ1 Γi+1,n ≤

n
∑

i=1

γi

n
∏

k=i+1

(1 − e−sγ1γ1sγ1γk)

≤ s−1
γ1

esγ1γ1

n
∑

i=1

{

n
∏

k=i+1

(1 − e−sγ1γ1sγ1γk) −
n
∏

k=i

(1 − e−sγ1γ1sγ1γk)

}

≤ s−1
γ1

esγ1γ1 .

Plugging this inequality in (49) gives the desired result.
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6.4. Proof of Theorem 11

Proof of Theorem 11. Let n ≥ 0, p ≥ 1 with n < p. We separately bound the two terms of the right
hand side of (20). By Corollary 10, we get that for all k ≥ 1,

Ex[‖∇U(Xk)‖2] ≤ ‖∇U‖2

V
1/2

1/2

QkγV1/2(x) ≤ ‖∇U‖2

V
1/2

1/2

(V1/2(x) + cγ,ρ,αs
−1
γ eγ1sγ ) .

This inequality and (24) imply that for all x ∈ R
d,

‖δxQn+1,p
γ − δxPΓn+1,p‖TV

≤ 2−1/2L

(

p−1
∑

k=n

{

(γ3
k+1/3)‖∇U‖2

V
1/2

1/2

(V1/2(x) + cγ,ρ,αs
−1
γ eγ1sγ ) + dγ2

k+1

}

)1/2

.

We now deal with the second term of (20). By Corollary 2, (Pt)t≥0 is V1/2-geometrically ergodic,

which implies with Corollary 10 that for all x ∈ R
d,

‖δxQnγPΓn+1,p − π‖TV ≤ Cαe−υαΓn+1,p{e−sγV1/2(x) + cγ,ρ,αs
−1
γ eγ1sγ} . (50)

We now show the second part of the statement. Without loss of generality, since (γk)k≥1 converges
to 0 and is nonincreasing, we can assume that for all k ≥ 1, γk + log(γk)/υα < 0, where υα is
given by Theorem 11. Since (Γk)k≥1 goes to infinity, there exists P ≥ 1 such that for all p ≥ P,
Γp ≥ − log(γ1)/υα. Then, we can define for all p ≥ P,

n(p)
def
= min {k ∈ {0, · · · , p− 1} |Γk+1,p + log(γk+1)/υα < 0} . (51)

Note that Γn(p)+1,p < − log(γn(p)+1,p)/υα. So,
∑p−1

k=n γ
2
k+1 ≤ −γn(p)+1 log(γn(p)+1)/υα. We deduce

from the last inequality and since (γk)k≥1 is nonincreasing, that there exists C ≥ 0, such that for
all p ≥ P,

Bn(p),p(x; γ) ≤ C(− log(γn(p)+1)γn(p)+1)1/2 (52)

Also by (51) and definition of P, n(p) > 0 and Γn(p),p ≥ − log(γn(p))/υα. It follows that

e−υαΓn(p),p ≤ γn(p) . (53)

Using again Γn(p),p < − log(γn(p)+1,p)/υα, we have limp→∞ n(p) = ∞. By this result, limk→+∞ γk =
0 and plugging (52)-(53) in the bound of Theorem 11 completes the proof.

6.5. Proof of Theorem 12

Denote for γ > 0, rγ : Rd × R
d → R

d the transition density of Rγ defined for x, y ∈ R
d by

rγ(x, y) = (4πγ)−1 exp(−(4γ)−1 ‖y − x+ γ∇U(x)‖2
) . (54)

Then, for all n ≥ 1, we denote by qnγ : Rd × R
d → R

d the transition density associated with Qnγ
defined by induction by: for all x, y ∈ R

d

q1
γ(x, y) = rγ1 (x, y) , qn+1

γ (x, y) =

∫

Rd

qnγ (x, z)rγn+1(z, y)dz for n > 1 . (55)
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In the proof of the Theorem, we need to have a bound on Varπ
{

dδxQ
n
γ/dπ

}

for all n ≥ 1, For this,

we need some estimates for qnγ for all n and for the normalizing constant
∫

Rd
e−U(y)dy, which are

given in the following two lemmas.

Lemma 31. Assume H1. Let (γk)k≥1 be a nonincreasing sequence with γ1 < L. Then for all n ≥ 1
and x, y ∈ R

d,

qnγ (x, y) ≤
exp

(

2−1(U(x) − U(y)) − (2σγ,n)−1 ‖y − x‖2
)

(2πσγ,n
∏n
i=1(1 − Lγk))d/2

,

where σγ,n =
∑n

i=1 2γi(1 − Lγi)
−1.

Proof. First under H1, we have for all x, y ∈ R
d, U(y) ≤ U(x) − 〈∇U(x), y − x〉 + (L/2) ‖y − x‖2,

so for all γ ∈
(

0, L−1
)

rγ(x, y) ≤ (4πγ)−d/2 exp
(

2−1(U(x) − U(y)) − (1 − Lγ1)(4γ1)−1 ‖y − x‖2
)

. (56)

Then, the proof of the claimed inequality is by induction. By (56), the inequality holds for n = 1.
Now assume that it holds for n ≥ 1. By induction hypothesis and (56) applied for γ = γn+1, we
have

qn+1
γ (x, y) ≤ (4πγn+1)−d/2

{

2πσγ,n

n
∏

i=1

(1 − Lγk)

}−d/2

exp
(

2−1(U(x) − U(y))
)

×
∫

Rd

exp
(

−(2σγ,n)−1 ‖z − x‖2 − (1 − Lγn+1)(4γn+1)−1 ‖z − y‖2
)

dz

≤ (4πγn+1)−d/2

{

2πσγ,n

n
∏

i=1

(1 − Lγk)

}−d/2

(4π(2σ−1
γ,n + (1 − Lγn+1)(2γn+1)−1)−1)d/2

× exp
(

2−1(U(x) − U(y)) − (2σγ,n+1)−1 ‖y − x‖2
)

.

Rearranging terms in the last inequality concludes the proof.

Lemma 32. Assume H1 and H2(1). Then
∫

Rd
e−U(y)dy ≤ ϑU where

ϑU
def

=

(

eU(0)
(

8
√
d/(3ρ)

)d

+ ‖ exp {−U} ‖∞
π
d/2(2Mρ)

d

Γ(d/2 + 1)

)

. (57)

Proof. First, if H2(1) is satisfied, then for all y ∈ R
d, ‖y‖ ≥ 2Mρ, we have:

U(y) − U(0) =

∫ 1

0

〈∇U(ty), y〉 dt ≥
∫ 1

1/2

t 〈∇U(ty), y〉 dt ≥ (3/8)ρ ‖y‖ .

Therefore by the Cauchy-Schwarz inequality, we get for all y ∈ R
d, ‖y‖ ≥ 2Mρ

U(y) − U(0) ≥ (3/8)ρ ‖y‖ ≥ (3/8)d−1/2 ‖y‖1 ,

where for z ∈ R
d, ‖z‖1 =

∑d
i=1 |zi| and (zi)1≤i≤d are the components of z. Therefore, using this

result we have
∫

Rd

e−U(y)dy ≤ eU(0)

∫

Rd

e−(3/8)d−1/2ρ‖y−x‖1 dy + e‖−U‖
∞

∫

Rd

1{‖y‖≤2Mρ}dy .
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Then the proof is concluded by a straightforward calculation and using that the volume of a ball
of radius M in R

d is given by π
d/2Md/Γ(d/2 + 1).

Corollary 33. Assume H1 and H2(1). Let (γk)k≥1 be a nonincreasing sequence with γ1 < L. Then
for all n ≥ 1 and x ∈ R

d,

Varπ

{

dδxQ
n
γ

dπ

}

≤ (ϑU exp(U(x)))



2π

{

n
∏

k=1

(1 − Lγk)

}2 n
∑

i=1

γi(1 − Lγi)
−1





−d/2

,

where ϑU is given by (57).

Proof of Theorem 12. For the two cases, we bound the two terms of the right hand side of (20).
(i) The first term is dealt with the same reasonning than for the proof of Theorem 11. As for the
second term, the claimed bound follows from (9) and Corollary 33. (ii) The second term of (20) is
bounded as in the first point, but the bound for the first term is given by (24) and the assumption
on ∇U .

6.6. Proof of Theorem 13

We preface the proof by the following preliminary lemma.

Lemma 34. Assume H 1. Let V : R
d → [1,+∞) be a measurable function. Let (γk)k≥1 be a

nonincreasing sequence. Then for any probability measure ν0 ∈ P2(Rd) on (Rd,B(Rd)) and n ≥ 1,

‖ν0Q
n
γ − ν0PΓn‖V ≤ 2−1/2L

(

ν0Q
n
γ (V 2) + ν0PΓn(V 2)

)1/2

×
(

n−1
∑

k=0

γ2
k+1d+ (γ3

k+1/3)ν0Q
k
γ(‖∇U‖2

)

)1/2

.

Proof. For all t ∈ [0, 1], t log(t) − t + 1 =
∫ 1

t (u − t)u−1du ≥ 2−1(1 − t)2, and on [1,+∞), t 7→
2(1 + t)(t log(t) − t+ 1) − (1 − t)2 is nonincreasing. Therefore, for all t ≥ 0,

|1 − t| ≤ (2(1 + t)(t log(t) − t+ 1))1/2 . (58)

Now consider the synchronous coupling (Yt, Ȳt)0≤t≤Γn defined by (21) with intial distribution ν0.
For ease of notation denote by µ and µ̄ the law of (Yt)0≤t≤Γn and (Ȳt)0≤t≤Γn on C([0,Γn] ,Rd),
respectively. Equation (23) implies

‖ν0Q
n
γ − ν0PΓn‖V = sup

f∈F(Rd),‖f‖V ≤1

∣

∣E
[

f(ȲΓn) − f(YΓn)
]∣

∣

= sup
f∈F(Rd),‖f‖V ≤1

∣

∣

∣

∣

E

[

f(YΓn)

{

dµ̄

dµ
(Y ) − 1

}]∣

∣

∣

∣

≤ E

[

V (YΓn)

∣

∣

∣

∣

dµ̄

dµ
(Y ) − 1

∣

∣

∣

∣

]

. (59)

Using (58) and the Cauchy-Schwarz inequality, we have

‖ν0Q
n
γ − ν0PΓn‖V ≤

(

2E
[

V 2(YΓn) + V 2(ȲΓn)
]

KL(µ|µ̄)
)1/2

.

Combining this result and (24) in (59) completes the proof
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Proof of Theorem 13. First note that by the triangle inequality and Corollary 2, for all n ≥ 1

‖π − δxQ
n
γ‖V1/4

≤ Cαe−υαnγV1/4(x) + ‖δxPΓn − δxQ
n
γ‖V1/4

. (60)

We now bound the second term of the right hand side. Let kγ =
⌈

γ−1
⌉

and qγ and rγ be respectively
the quotient and the remainder of the Euclidean division of n by kγ . The triangle inequality implies
‖δxPΓn − δxQ

n
γ‖V1/4

≤ A+B with

A =
∥

∥

∥δxQ
(qγ−1)kγ
γ PΓ(qγ−1)kγ,n

− δxQ
(qγ−1)kγ
γ Q(qγ−1)kγ+1,n

γ

∥

∥

∥

V1/4

B =

qγ−1
∑

i=1

∥

∥

∥δxQ
(i−1)kγ
γ PΓ(i−1)kγ+1,n

− δxQ
ikγ
γ PΓikγ+1,n

∥

∥

∥

V1/4

.

Proposition 1-(ii) implies by the proof of [25, Theorem 6.1] that δyPt(V1/2) ≤ V1/2(y)+bρ,α,1/2/θα,1/2.
It follows from Corollary 2, this inequality, Lemma 34, Corollary 10 and kγ ≥ γ−1 that

B ≤
qγ−1
∑

i=1

Cαe−υα(qγ−i)
∥

∥

∥δxQ
(i−1)kγ
γ PΓ(i−1)kγ+1,ikγ

− δxQ
ikγ
γ

∥

∥

∥

V1/4

≤
qγ−1
∑

i=1

Cαe−υα(qγ−i)
{

(

2(V1/2(x) + cγ,ρ,αs
−1
γ eγsγ ) + bρ,α,1/2/θα,1/2

)1/2

2−1/2L

(

(γ + γ2)d+ 3−1(γ2 + γ3)‖∇U‖2

V
1/2

1/2

(V1/2(x) + cγ,ρ,αs
−1
γ eγsγ )

)−1/2
}

(61)

Finally, A can be bounded using the same technique.

6.7. Proof of Theorem 14

For any γ ∈ (0, 2/(m+ L)), we have for all x ∈ R
d:

∫

Rd

‖y − x⋆‖2
Rγ(x, dy) = ‖x− γ∇U(x) − x⋆‖2

+ 2γd .

Using that ∇U(x⋆) = 0, and (12), we get from the previous inequality:

∫

Rd

‖y − x⋆‖2
Rγ(x, dy)

≤ (1 − κγ) ‖x− x⋆‖2
+ γ

(

γ − 2

m+ L

)

‖∇U(x) − ∇U(x⋆)‖2
+ 2γd

Since γ1 ≤ 2/(m + L) and (γk)k≥1 is nonincreasing, by a straightforward induction, we have by
definition (19) of Qn,pγ for p, n ≥ 1, p ≤ n,

∫

Rd

‖x− x⋆‖2 µ0Q
n,p
γ (dx) ≤

p
∏

k=n

(1 − κγk)

∫

Rd

‖x− x⋆‖2 µ0(dx) + (2d)

p
∑

i=n

p
∏

k=i+1

(1 − κγk)γi , (62)
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Consider the second term in the right hand side of (62). Since γ1 ≤ 2/(m+L), m ≤ L and (γk)k≥1

is nonincreasing, maxk≥1 γk ≤ κ−1 and therefore:

p
∑

i=n

p
∏

k=i+1

(1 − κγk)γi ≤ κ−1

p
∑

i=n

{

p
∏

k=i+1

(1 − κγk) −
p
∏

k=i

(1 − κγk)

}

≤ κ−1 . (63)

6.8. Proof of Theorem 15

We preface the proof of the theorem by a preliminary lemma.

Lemma 35. Assume H1 and H3.

(i) Let γ ∈ (0, 2/(m+ L)), then for all x ∈ R
d,

Entπ (dδxRγ/dπ) ≤ (L/2)(1 − κγ) ‖x− x⋆‖2 − (d/2)(1 + log(2γ/m) − 2Lγ) .

(ii) Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 2/(m+L). Then for all x ∈ R
d and n ≥ 1,

Entπ
(

dδxQ
n
γ/dπ

)

≤ (L/2)

{

n
∏

k=1

(1 − κγk)

}

‖x− x⋆‖2

+ dLκ−1(1 − κγn) − (d/2)(1 + log(2γn/m) − 2Lγn) .

Proof. (i) Let γ ∈ (0, 2/(m+ L)) and rγ be the transition density of Rγ given by (54). Under

H1 and using ∇U(x⋆) = 0, for all y ∈ R
d, U(y) ≤ U(x⋆) + (L/2) ‖y − x⋆‖2

. Therefore, by (3), we
have for all x ∈ R

d

Entπ (dδxRγ/dπ) =

∫

Rd

log(rγ(x, y)/π(y))rγ(x, y)dx

=

∫

Rd

{

U(y) + log

(∫

Rd

e−U(z)dz

)

− (4γ)−1 ‖y − x+ γ∇U(x)‖2 − (d/2) log(4πγ)

}

rγ(x, y)dy

≤
∫

Rd

{

U(x⋆) + (L/2) ‖y − x⋆‖2 + log

(∫

Rd

e−U(z)dz

)

− (d/2)(1 + log(4πγ))

}

rγ(x, y)dy

≤ (L/2) ‖x− γ∇U(x) − x⋆‖2
+ log

(∫

Rd

e−U(z)+U(x⋆)dz

)

− (d/2)(1 + log(4πγ) − 2Lγ) . (64)

Using H3 and (12), we have for all z ∈ R
d

U(z) ≥ U(x⋆) + (m/2) ‖z − x⋆‖2
and ‖z − γ∇U(z) − x⋆‖2 ≤ (1 − κγ) ‖z − x⋆‖2

.

Plugging these two inequalities in (64) gives the desired result.
(ii) For n = 1 the result is just a consequence of (i). For n ≥ 2, by (3), (55) and the Jensen

inequality applied to the convex function t 7→ t log(t), we have for all x ∈ R
d and n ≥ 1,

Entπ
(

dδxQ
n
γ/dπ

)

=

∫

Rd

log

{

π−1(y)

∫

Rd

qn−1
γ (x, z)rγn(z, y)dz

}∫

Rd

qn−1
γ (x, z)rγn(z, y)dzdy

≤
∫

Rd

∫

Rd

log
{

rγn(z, y)π−1(y)
}

qn−1
γ (x, z)rγn(z, y)dzdy .
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Using Fubini’s theorem, (i) and Theorem 14 in the last inequality concludes the proof.

Proof of Theorem 15. Let n ≥ 0, p ≥ 1 with n < p. We separately bound the two terms of the right
hand side of (20). Using H1, ∇U(x⋆) = 0 and Theorem 14, we get that for all k ≥ 1,

Ex[‖∇U(Xk)‖2] ≤ L2
Ex[‖Xk − x⋆‖2] ≤ L2

(

k
∏

i=1

(1 − κγi) ‖x− x⋆‖2
+ 2dκ−1

)

.

Combining this inequality and (24) gives the bound for the first term of (20). Then, the bound for
the second term is a direct consequence of Theorem 7 and Lemma 35-(ii).

6.9. Proof of Theorem 16 and Corollary 17

We preface the proof by two technical Lemmas. Recall that x⋆ is the unique minimizer of U .

Lemma 36. Assume H1 and H3. Then, for all t ≥ 0 and x ∈ R
d,

Ex

[

‖Yt − x⋆‖2
]

≤ ‖x− x⋆‖2
e−2mt +

d

m
(1 − e−2mt) , (65)

Ex

[

‖Yt − x‖2
]

≤ dt(2 + L2t2/3) + (3/2)t2L2 ‖x− x⋆‖2
. (66)

Proof. Denote for all x ∈ R
d by V⋆(x) = ‖x− x⋆‖2

. The process
(

V⋆(Yt) − V⋆(x) −
∫ t

0 A V⋆(Ys)ds
)

t≥0

is a (Ft)t≥0-martingale under Px. Since ∇U(x⋆) = 0 and using (13), we have

A V⋆(x) = 2 (− 〈∇U(x) − ∇U(x⋆), x− x⋆〉 + d) ≤ 2 (−mV⋆(x) + d) . (67)

Denote for all t ≥ 0 and x ∈ R
d by v(t, x) = PtV⋆(x). Then using Dynkin’s formula, ∂v(t, x)/∂t =

PtA V⋆(x). Using (67), we get

∂v(t, x)

∂t
= PtA V⋆(x) ≤ −2mPtV⋆(x) + 2d = −2mv(t, x) + 2d ,

and by the the Grönwall inequality, the previous equation shows (65).

Denote for all x, y ∈ R
d, Ṽx(y) = ‖y − x‖2

. Then under H1, for all T ≥ 0, supt∈[0,T ] Ex[‖Yt‖2
] <

+∞, therefore the process (Ṽx(Yt) − Ṽx(x) −
∫ t

0 A Ṽx(Ys)ds)t≥0, is a (Ft)t≥0-martingale under Px.

Denote for all t ≥ 0 and x ∈ R
d by ṽ(t, x) = PtṼx(x). Then using Dynkin’s formula,

∂ṽ(t, x)

∂t
= PtA Ṽx(x) . (68)

By (13), we have for all y ∈ R
d,

A Ṽx(y) = 2 (− 〈∇U(y), y − x〉 + d) ≤ 2
(

−mṼx(y) + d− 〈∇U(x), y − x〉
)

. (69)

Using (68), this inequality and that Ṽx is positive, we get

∂ṽ(t, x)

∂t
= PtA Ṽx(x) ≤ 2

(

d−
∫

Rd

〈∇U(x), y − x〉Pt(x, dy)

)

. (70)
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By the Cauchy-Schwarz inequality, ∇U(x⋆) = 0, (1) and the Jensen inequality, we have,

|Ex [〈∇U(x), Yt − x〉]| ≤ ‖∇U(x)‖ ‖Ex [Yt − x]‖

≤ ‖∇U(x)‖
∥

∥

∥

∥

Ex

[∫ t

0

{∇U(Ys) − ∇U(x⋆)} ds

]∥

∥

∥

∥

≤
√
t ‖∇U(x) − ∇U(x⋆)‖

(∫ t

0

Ex

[

‖∇U(Ys) − ∇U(x⋆)‖2
]

ds

)1/2

.

Furthermore, by H1 and (65), we have

∣

∣

∣

∣

∫

Rd

〈∇U(x), y − x〉Pt(x, dy)

∣

∣

∣

∣

≤
√
tL2 ‖x− x⋆‖

(∫ t

0

Ex

[

‖Ys − x⋆‖2
]

ds

)1/2

≤
√
tL2 ‖x− x⋆‖

(

1 − e−2mt

2m
‖x− x⋆‖2

+
2tm+ e−2mt − 1

2m
(d/m)

)1/2

≤ L2 ‖x− x⋆‖ (t ‖x− x⋆‖ + t3/2d1/2) , (71)

where we used for the last line that by the Taylor theorem with remainder term, for all s ≥ 0,
(1 − e−2ms)/(2m) ≤ s and (2ms+ e−2ms − 1)/(2m) ≤ ms2, and the inequality

√
a+ b ≤ √

a+
√
b.

Plugging (71) in (70), and since 2 ‖x− x⋆‖ t3/2d1/2 ≤ t ‖x− x⋆‖2
+ t2d, we get

∂ṽ(t, x)

∂t
≤ 2d+ 3L2t ‖x− x⋆‖2

+ L2t2d

Since ṽ(0, x) = 0, the proof is completed by integrating this result.

Lemma 37. Assume H1 and H3. Let (γk)k≥1 be a nonincresing sequence with γ1 ≤ 1/(m+ L).
Let ζ0 ∈ P2(Rd × R

d), (Yt, Y t)t≥0 such that (Y0, Y 0) is distributed according to ζ0 and given by
(21). Let (Ft)t≥0 be the filtration associated with (Bt)t≥0 with F0, the σ-field generated by (Y0, Y 0).
Then for all n ≥ 0 and ǫ > 0,

E
FΓn

[

∥

∥YΓn+1 − Y Γn+1

∥

∥

2
]

≤ {1 − γn+1 (κ− 2ǫ)}
∥

∥YΓn − Y Γn

∥

∥

2

+ L2γ2
n+1(1/(4ǫ) + γn+1)

(

2d+ L2γn+1 ‖YΓn − x⋆‖2 + dL2γ2
n+1/6

)

.

Proof. Let n ≥ 0 and ǫ > 0, and set ∆n = YΓn − Y Γn by definition we have:

E
FΓn

[

‖∆n+1‖2
]

= ‖∆n‖2 + E
FΓn





∥

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys) − ∇U(Y Γn)
}

ds

∥

∥

∥

∥

∥

2




− 2γn+1

〈

∆n,∇U(YΓn) − ∇U(Y Γn)
〉

− 2

∫ Γn+1

Γn

E
FΓn [〈∆n, {∇U(Ys) − ∇U(YΓn)}〉 ds] .
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Using the two inequalities | 〈a, b〉 | ≤ ǫ‖a‖2 + (4ǫ)−1‖b‖2 and (12), we get

E
FΓn

[

‖∆n+1‖2
]

≤ {1 − γn+1(κ− 2ǫ)} ‖∆n‖2 − 2γn+1/(m+ L)
∥

∥∇U(YΓn) − ∇U(Y Γn)
∥

∥

2

+ E
FΓn





∥

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys) − ∇U(Y Γn)
}

ds

∥

∥

∥

∥

∥

2


+
1

2ǫ

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys) − ∇U(YΓn)‖2
]

ds .

(72)

The Young’s inequality and the Jensen’s inequality imply

E
FΓn





∥

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys) − ∇U(Y Γn)
}

ds

∥

∥

∥

∥

∥

2




≤ 2γ2
n+1

∥

∥∇U(YΓn) − ∇U(Y Γn)
∥

∥

2
+ 2γn+1E

FΓn

[

∫ Γn+1

Γn

‖∇U(Ys) − ∇U(YΓn)‖2
ds

]

Using this inequality, that γ1 ≤ 1/(m+ L) and (γk)k≥1 is nonincreasing in (72), imply,

E
FΓn

[

‖∆n+1‖2
]

≤ {1 − γn+1(κ− 2ǫ)} ‖∆n‖2

+ (2γn+1 + (2ǫ)−1)

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys) − ∇U(YΓn)‖2
]

ds . (73)

By H1, the Markov property of (Yt)t≥0 and (66), we have

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys) − ∇U(YΓn)‖2
]

ds

≤ L2
(

dγ2
n+1 + dL2γ4

n+1/12 + (1/2)L2γ3
n+1 ‖YΓn − x⋆‖2

)

.

Plugging this bound in (73) concludes the proof.

Proposition 38. Assume H1 and H3. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m+L).
Let ζ0 ∈ P2(Rd×R

d), (Yt, Y t)t≥0 such that (Y0, Y 0) is distributed according to ζ0 and given by (21).
Then for all n ≥ 0 and t ∈ [Γn,Γn+1]:

E

[

∥

∥Yt − Y t
∥

∥

2
]

≤ u(1)
n (γ)E

[

∥

∥Y0 − Y 0

∥

∥

2
]

+ u(4)
n (γ) + u

(5)
t,n(γ) ,

where (u
(1)
n (γ))n≥1 is given by (27), and

u(4)
n (γ)

def

= L2
n
∑

i=1

γ2
i

{

κ−1 + γi
}

(2d+ dL2γ2
i /6)

n
∏

k=i+1

(1 − κγk/2)

+ L4
n
∑

i=1

δiγ
3
i

{

κ−1 + γi+1

}

n
∏

k=i+1

(1 − κγk/2)
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with
δi = e−2mΓi−1E

[

‖Y0 − x⋆‖2
]

+ (1 − e−2mΓi−1)(d/m) ,

and

u
(5)
t,n(γ)

def

=
m+ L

2

(

(t− Γn)3L2

3

{

n
∏

k=1

(1 − κγk)E
[

∥

∥Ȳ0 − x⋆
∥

∥

2
]

+ 2dκ−1

}

+ (t− Γn)2d

)

.

Proof. Lemma 37 with ǫ = κ/4, a straightforward induction and (65) imply for all n ≥ 0

E

[

∥

∥YΓn − Y Γn

∥

∥

2
]

≤ u(1)
n (γ)E

[

∥

∥Y0 − Y 0

∥

∥

2
]

+ u(4)
n (γ) . (74)

Now let n ≥ 0 and t ∈ [Γn,Γn+1]. By (21),

∥

∥Yt − Y t
∥

∥

2
=
∥

∥YΓn − Y Γn

∥

∥

2 − 2

∫ t

Γn

〈

∇U(Ys) − ∇U(Y Γn), Ys − Y s
〉

ds . (75)

Moreover for all s ∈ [Γn,Γn+1], by (12) we get

〈

∇U(Ys) − ∇U(Y Γn), Ys − Y s
〉

=
〈

∇U(Ys) − ∇U(Y Γn), Ys − Y Γn + Y Γn − Y s
〉

≥ (m+ L)−1
∥

∥∇U(Ys) − ∇U(Y Γn)
∥

∥

2
+
〈

∇U(Ys) − ∇U(Y Γn), Y Γn − Y s
〉

. (76)

Since |〈a, b〉| ≤ (m+ L)−1 ‖a‖2
+ (m+ L) ‖b‖2

/4, we have

〈

∇U(Ys) − ∇U(Y Γn), Y Γn − Y s
〉

≥ −(m+ L)−1
∥

∥∇U(Ys) − ∇U(Y Γn)
∥

∥

2 − (m+ L)
∥

∥Y s − Y Γn

∥

∥

2 /
4 .

Using this inequality in (76), we get

〈

∇U(Ys) − ∇U(Y Γn), Ys − Y s
〉

≥ −(m+ L)
∥

∥Y s − Y Γn

∥

∥

2 /
4 ,

and (75) becomes

∥

∥Yt − Y t
∥

∥

2 ≤
∥

∥YΓn − Y Γn

∥

∥

2
+ ((m+ L)/2)

∫ t

Γn

∥

∥Y s − Y Γn

∥

∥

2
ds (77)

Therefore, by the previous inequality, it remains to bound the expectation of
∥

∥Y s − Y Γn

∥

∥

2
. By (21)

and using ∇U(x⋆) = 0,

∥

∥Y s − Y Γn

∥

∥

2
=
∥

∥

∥−(s− Γn)(∇U(Y Γn) − ∇U(x⋆)) +
√

2(Bs −BΓn)
∥

∥

∥

2

.

Then taking the expectation, using the Markov property of (Bt)t≥0 and H1, we have

E

[

∥

∥Y s − Y Γn

∥

∥

2
]

≤ (s− Γn)2L2
E

[

∥

∥Y Γn − x⋆
∥

∥

2
]

+ 2(s− Γn)d . (78)

The proof follows from taking the expectation in (77), combining (74)-(78), and using Theorem 14.
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Proof of Theorem 16. Let ζ0 be an optimal transference plan of µ0 and π. Let (Yt, Y t)t≥0 with
(Y0, Y 0) distributed according to ζ0 and defined by (21). By definition of W2 and since for all t ≥ 0,

π is invariant for Pt, W
2
2 (µ0Q

n, π) ≤ E[‖YΓn −XΓn‖2
]. Then the proof follows from Proposition 38

since Y0 is distributed according to π and by (16), which shows that for all i ∈ {1, · · · , n}, δi ≤
d/m.

Lemma 39. Let (γk)k≥1 be a sequence of nonincreasing real numbers, ̟ > 0 and γ1 < ̟−1. Then
for all n ≥ 0, j ≥ 1 and ℓ ∈ {1, . . . , n+ 1},

n+1
∑

i=1

n+1
∏

k=i+1

(1 −̟γk) γji ≤
n+1
∏

k=ℓ

(1 −̟γk)

ℓ−1
∑

i=1

γji +
γj−1
ℓ

̟
.

Proof. Let ℓ ∈ {1, . . . , n+ 1}. Since (γk)k≥1 is non-increasing and for every t ∈ R, (1 + t) ≤ et,

n+1
∑

i=1

n+1
∏

k=i+1

(1 −̟γk) γji =

ℓ−1
∑

i=1

n+1
∏

k=i+1

(1 −̟γk) γji +

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1 −̟γk) γji

≤
n+1
∏

k=ℓ

(1 −̟γk)

ℓ−1
∑

i=1

γji + γj−1
ℓ

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1 −̟γk) γi

≤
n+1
∏

k=ℓ

(1 −̟γk)
ℓ−1
∑

i=1

γji +
γj−1
ℓ

̟
.

Proof of Corollary 17. By Theorem 16, it suffices to show that u
(1)
n and u

(2)
n , defined by (27) and

(28) respectively, goes to 0 as n → +∞. Using the bound 1 + t ≤ et for t ∈ R, and limn→+∞ Γn =

+∞, we have limn→+∞ u
(1)
n = 0. Now to show that limn→+∞ u

(2)
n = 0, a sufficient condition since

(γk)k≥0 is non-increasing, is that

lim
n→+∞

n
∑

i=1

n
∏

k=i+1

(1 − κγk/2)γ2
i = 0 .

But since (γk)k≥1 is nonincreasing, there exists c ≥ 0 such that cΓn ≤ n − 1 and by Lemma 39
applied with ℓ = ⌊cΓn⌋ the integer part of cΓn:

n
∑

i=1

n
∏

k=i+1

(1 − κγk/2)γ2
i ≤ 2γ⌊cΓn⌋/κ+ exp

(

−κΓn(1 − Γ−1
n Γ⌊cΓn⌋)/2

)

⌊cΓn⌋−1
∑

i=1

γi . (79)

Since limk→+∞ γk = 0, by the Cesáro theorem, limn→+∞(Γn)−1Γ⌊cΓn⌋ = 0, and the conclusion

follows from combining in (79), this limit, limk→+∞ γk = 0, limn→+∞ Γn = +∞ and
∑⌊cΓn⌋−1
i=1 γi ≤

cγ1Γn.
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6.10. Proofs of Proposition 20, Corollary 21, Lemma 22, and Lemma 27

Proof of Proposition 20. (i) Let ζ0 be an optimal transference plan of µ0 and ν0 and (Zk)k≥n−1

be a sequence of i.i.d. d-dimensional Gaussian random variables. We consider the processes (X1
n−1,k, X

2
n−1,k)k≥n−1

with initial distributions equal to ζ0 and defined for k ≥ n− 1 by

Xj
n−1,k+1 = Xj

n−1,k − γk+1∇U(Xj
n−1,k) +

√
2γk+1Zk+1 j = 1, 2 . (80)

Using (80), we get for any p ≥ n ≥ 0. W 2
2 (µ0Q

n,p
γ , ν0Q

n,p
γ ) ≤ E

[

∥

∥X1
n−1,p −X2

n−1,p

∥

∥

2
]

and (12)

implies for k ≥ n− 1,

∥

∥X1
n−1,k+1 −X2

n−1,k+1

∥

∥

2
=
∥

∥X1
n−1,k −X2

n−1,k

∥

∥

2
+ γ2

k+1

∥

∥∇U(X1
n−1,k) − ∇U(X2

n−1,k)
∥

∥

2

− 2γk+1

〈

X1
n−1,k −X2

n−1,k,∇U(X1
n−1,k) − ∇U(X2

n−1,k)
〉

≤ (1 − κγk+1)
∥

∥X1
n−1,k −X2

n−1,k

∥

∥

2
.

Therefore by a straightforward induction we get for all p ≥ n,

∥

∥X1
n−1,p −X2

n−1,p

∥

∥

2 ≤
p
∏

k=n

(1 − κγk)
∥

∥X1
n−1,n−1 −X2

n−1,n−1

∥

∥

2
.

(ii) Recall that for all µ, ν probability measures on R
d and p ≤ q, Wp(µ, ν) ≤ Wq(µ, ν). Hence,

for all y, z ∈ R
d, the Monge-Kantorovich theorem (4):

∣

∣Qn,pγ f(y) −Qn,pγ f(z)
∣

∣ ≤ ‖f‖Lip W1(δyQ
n,p
γ , δzQ

n,p
γ ) ≤ ‖f‖LipW2(δyQ

n,p
γ , δzQ

n,p
γ ) .

The proof then follows from (i).

Proof of Corollary 21. By (39),
∥

∥

∥ΦNn,k

∥

∥

∥

Lip
≤
∑N+n

i=k+1 ω
N
i,n

∥

∥Qk+2,i
γ f

∥

∥

Lip
. Using Proposition 20-(ii),

the bound (1 − t)1/2 ≤ 1 − t/2 for t ∈ [0, 1] and the definition of ωNi,n given by (31), we have

∥

∥ΦNn,k
∥

∥

Lip
≤ ‖f‖Lip

N+n
∑

i=k+1

ωNi,n

i
∏

j=k+2

(1 − κγj/2)

≤ 2 ‖f‖Lip (κΓN+2,N+n+1)−1
N+n
∑

i=k+1







i
∏

j=k+2

(1 − κγj/2) −
i+1
∏

j=k+2

(1 − κγj/2)







≤ 2 ‖f‖Lip (κΓN+2,N+n+1)−1 .

Finally, the proof follows from Lemma 19.

Proof of Lemma 22. By decomposing g(Xp)−E
Gn
y [g(Xp)] =

∑p
k=n+1{EGk

y [g(Xp)]−E
Gk−1
y [g(Xp)]},

and using E
Gk
y [g(Xp)] = Qk+1,p

γ g(Xk), we get

VarGn
y {g(Xp)} =

p
∑

k=n+1

E
Gn
y

[

E
Gk−1
y

[

(

E
Gk
y [g(Xp)] − E

Gk−1
y [g(Xp)]

)2
]]

=

p
∑

k=n+1

E
Gn
y

[

Rγk
{

Qk+1,p
γ g(·) −RγkQ

k+1,p
γ g(Xk−1)

}2
(Xk−1)

]

.
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Lemma 19 implies VarGn
y {g(Xp)} ≤ 2

∑p
k=n+1 γk

∥

∥Qk+1,p
γ g

∥

∥

2

Lip
. The proof follows from Proposi-

tion 20-(ii) and Lemma 39, using the bound (1 − t)1/2 ≤ 1 − t/2 for t ∈ [0, 1].

Proof of Corollary 23. By (40), ΨN
n is Lipschitz function with

∥

∥ΨN
n

∥

∥

Lip
= ‖f‖Lip

N+n
∑

i=N+1

ωNi,n
∥

∥QN+1,i
γ f

∥

∥

Lip
.

Using Proposition 20-(ii), the bound (1 − t)1/2 ≤ 1 − t/2 for t ∈ [0, 1] and the definition of ωNi,n
given by (31), we have

∥

∥ΨN
n

∥

∥

Lip
≤ ‖f‖Lip

N+n
∑

i=N+1

ωNi,n

i
∏

j=N+2

(1 − κγj/2)

≤ 2 ‖f‖Lip (κΓN+2,N+n+1)−1
N+n
∑

i=N+1







i
∏

j=N+2

(1 − κγj/2) −
i+1
∏

j=N+2

(1 − κγj/2)







≤ 2 ‖f‖Lip (κΓN+2,N+n+1)−1 .

The proof follows from Lemma 22.

Proof of Lemma 27. Let (Xn)n≥0 the Euler approximation given by (2) and started at y ∈ R
d. By

decomposing g(Xp)−E
Gn
y [g(Xp)] =

∑p
k=n+1{EGk

y [g(Xp)]−E
Gk−1
y [g(Xp)]}, and using E

Gk
y [g(Xp)] =

Qk+1,p
γ g(Xk), we get

E
Gn
y

[

exp
(

λ
{

g(Xp) − E
Gn
y [g(Xp)]

})]

= E
Gn
y

[

p
∏

k=n+1

E
Gk−1
y

[

exp
(

λ
{

E
Gk
y [g(Xp)] − E

Gk−1
y [g(Xp)]

})]

]

= E
Gn
y

[

p
∏

k=n+1

Rγk exp
(

λ
{

Qk+1,p
γ g(·) −RγkQ

k+1,p
γ g(Xk−1)

})

(Xk−1)

]

.

By the Gaussian log-Sobolev inequality Lemma 25, we get

E
Gn
y

[

exp
(

λ
{

g(Xp) − E
Gn
y [g(Xp)]

})]

≤ exp

(

λ2

p
∑

k=n+1

γk
∥

∥Qk+1,p
γ g

∥

∥

2

Lip

)

.

The proof follows from Proposition 20-(ii) and Lemma 39, using the bound (1 − t)1/2 ≤ 1 − t/2 for
t ∈ [0, 1].
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