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Abstract: : In this paper, we study a method to sample from a target dis-
tribution π over Rd having a positive density with respect to the Lebesgue
measure, known up to a normalisation factor. This method is based on
the Euler discretization of the overdamped Langevin stochastic differential
equation associated with π. For both constant and decreasing step sizes in
the Euler discretization, we obtain non-asymptotic bounds for the conver-
gence to the target distribution π in total variation distance. A particular
attention is paid to the dependency on the dimension d, to demonstrate the
applicability of this method in the high dimensional setting. These bounds
improve and extend the results of [12].
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1. Introduction

Sampling distributions over high-dimensional state-spaces is a problem which
has recently attracted a lot of research efforts in computational statistics and
machine learning (see [11] and [1] for details); applications include Bayesian
non-parametrics, Bayesian inverse problems and aggregation of estimators. All
these problems boil down to sample a target distribution π having a den-
sity w.r.t. the Lebesgue measure on R

d, known up to a normalisation factor
x 7→ e−U(x)/

∫
Rd e

−U(y)dy where U is continuously differentiable. We consider a
sampling method based on the Euler discretization of the overdamped Langevin
stochastic differential equation (SDE)

dYt = −∇U(Yt)dt+
√
2 dBd

t , (1)

where (Bd
t )t≥0 is a d-dimensional Brownian motion. It is well-known that the

Markov semi-group associated with the Langevin diffusion (Yt)t≥0 is reversible
w.r.t. π. Under suitable conditions, the convergence to π takes place at geomet-
ric rate. Precise quantitative estimates of the rate of convergence with explicit
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dependency on the dimension d of the state space have been recently obtained
using either functional inequalities such as Poincaré and log-Sobolev inequali-
ties (see [3, 9] [4]) or by coupling techniques (see [15]). The Euler-Maruyama
discretization scheme associated to the Langevin diffusion yields the discrete
time-Markov chain given by

Xk+1 = Xk − γk+1∇U(Xk) +
√
2γk+1Zk+1 (2)

where (Zk)k≥1 is an i.i.d. sequence of standard Gaussian d-dimensional random
vectors and (γk)k≥1 is a sequence of step sizes, which can either be held constant
or be chosen to decrease to 0. The idea of using the Markov chain (Xk)k≥0 to
sample approximately from the target π has been first introduced in the physics
literature by [34] and popularised in the computational statistics community
by [17] and [18]. It has been studied in depth by [35], which proposed to use
a Metropolis-Hastings step at each iteration to enforce reversibility w.r.t. π
leading to the Metropolis Adjusted Langevin Algorithm (MALA). They coin
the term unadjusted Langevin algorithm (ULA) when the Metropolis-Hastings
step is skipped.

The purpose of this paper is to study the convergence of the ULA algorithm.
The emphasis is put on non-asymptotic computable bounds; we pay a particular
attention to the way these bounds scale with the dimension d and constants
characterizing the smoothness and curvature of the potential U . Our study
covers both constant and decreasing step sizes and we analyse both the ”finite
horizon” (where the total number of simulations is specified before running the
algorithm) and ”any-time” settings (where the algorithm can be stopped after
any iteration).

When the step size γk = γ is constant, under appropriate conditions (see
[35]), the Markov chain (Xn)n≥0 is V -uniformly geometrically ergodic with a
stationary distribution πγ . With few exceptions, the stationary distribution πγ is
different from the target π. If the step size γ is small enough, then the stationary
distribution of this chain is in some sense close to π. We provide non-asymptotic
bounds of the V -total variation distance between πγ and π, with explicit depen-
dence on the step size γ and the dimension d. Our results complete and extend
the recent works by [13] and [12].

When (γk)k≥1 decreases to zero, then (Xk)k≥0 is a non-homogeneous Markov
chain. If in addition

∑∞
k=1 γk = ∞, we show that the marginal distribution of

this non-homogeneous chain converges, under some mild additional conditions,
to the target distribution π, and provide explicit bounds for the convergence.
Compared to the related works by [23], [24], [25] and [26], we establish not
only the weak convergence of the weighted empirical measure of the path to the
target distribution but a much stronger convergence in total variation, similarly
to [12], where the strongly log-concave case is considered.

The paper is organized as follows. In Section 2, the main convergence results
are stated under abstract assumptions. We then specialize in Section 3 these
results to different classes of densities. The proofs are gathered in Section 4.
Some general convergence results for diffusions based on reflection coupling,
which are of independent interest, are stated in Section 5.

imsart-generic ver. 2014/10/16 file: main.tex date: December 19, 2016
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Notations and conventions

B(Rd) denotes the Borel σ-field of Rd and F(Rd) the set of all Borel measur-
able functions on R

d. For f ∈ F(Rd) set ‖f‖∞ = supx∈Rd |f(x)|. Denote by
M(Rd) the space of finite signed measure on (Rd,B(Rd)) and M0(R

d) = {µ ∈
M(Rd) | µ(Rd) = 0}. For µ ∈ M(Rd) and f ∈ F(Rd) a µ-integrable function, de-
note by µ(f) the integral of f w.r.t. µ. Let V : Rd → [1,∞) be a measurable func-
tion. For f ∈ F(Rd), the V -norm of f is given by ‖f‖V = supx∈Rd |f(x)|/V (x).
For µ ∈ M(Rd), the V -total variation distance of µ is defined as

‖µ‖V = sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣
∫

Rd

f(x)dµ(x)

∣∣∣∣ .

If V ≡ 1, then ‖ · ‖V is the total variation denoted by ‖ · ‖TV.
For p ≥ 1, denote by Lp(π) the set of measurable functions such that π(|f |p) <

∞. For f ∈ L2(π), the variance of f under π is denoted by Varπ {f}. For all
functions f such that f log(f) ∈ L1(π), the entropy of f with respect to π is
defined by

Entπ (f) =

∫

Rd

f(x) log(f(x))dπ(x) .

Let µ and ν be two probability measures on R
d. If µ≪ ν, we denote by dµ/dν

the Radon-Nikodym derivative of µ w.r.t. ν. Denote for all x, y ∈ R
d by 〈x, y〉

the scalar product of x and y and ‖x‖ the Euclidean norm of x. For k ≥ 0, denote
by Ck(Rd), the set of k-times continuously differentiable functions f : Rd → R.
For f ∈ C2(Rd), denote by ∇f the gradient of f and ∆f the Laplacian of f .
For all x ∈ R

d and M > 0, we denote by B(x,M), the ball centered at x of
radiusM . Denote for K ≥ 0, the oscillation of a function f ∈ C0(Rd) in the ball
B(0,K) by oscK(f) = supB(0,K)(f) − infB(0,K)(f). Denote the oscillation of a

bounded function f ∈ C0(Rd) on R
d by oscRd(f) = sup

Rd(f)− infRd(f). In the
sequel, we take the convention that

∑n
p = 0 and

∏n
p = 1, for n, p ∈ N, n < p.

2. General conditions for the convergence of ULA

In this section, we derive a bound on the convergence of the ULA to the target
distribution π when the Langevin diffusion is geometrically ergodic and the
Markov kernel associated with the EM discretization satisfies a Foster-Lyapunov
drift inequality.

Consider the following assumption on the potential U :

L1. The function U is continuously differentiable on R
d and gradient Lipschitz,

i.e. there exists L ≥ 0 such that for all x, y ∈ R
d,

‖∇U(x)−∇U(y)‖ ≤ L ‖x− y‖ .

Under L1, by [20, Theorem 2.4-3.1] for every initial point x ∈ R
d, there exists

a unique strong solution (Yt(x))t≥0 to the Langevin SDE (1). Define for all
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t ≥ 0, x ∈ R
d and A ∈ B(Rd), Pt(x,A) = P (Yt(x) ∈ A). The semigroup (Pt)t≥0

is reversible w.r.t. π, and hence admits π as its (unique) invariant distribution.
In this section, we consider the case where (Pt)t≥0 is geometrically ergodic,
i.e. there exists κ ∈ [0, 1) such that for any initial distribution µ0 and t > 0,

‖µ0Pt − π‖TV ≤ C(µ0)κ
t , (3)

for some constant C(µ0) ∈ [0,+∞]. Denote by A
L the generator associated

with the semigroup (Pt)t≥0, given for all f ∈ C2(Rd) by

A
Lf = −〈∇U,∇f〉+∆f .

A twice continuously differentiable function V : R
d → [1,∞) is a Lyapunov

function for the generator A L if there exist θ > 0, β ≥ 0 and E ⊂ B such that,

A
LV ≤ −θV + β1E . (4)

By [35, Theorem 2.2], if E in (4) is a non-empty compact set, then the Langevin
diffusion is geometrically ergodic.

Consider now the EM discretization of the diffusion (2). Let (γk)k≥1 be a
sequence of positive and nonincreasing step sizes and for 0 ≤ n ≤ p, denote by

Γn,p =

p∑

k=n

γk , Γn = Γ1,n . (5)

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈ R
d

by

Rγ(x,A) =

∫

A

(4πγ)−d/2 exp
(
−(4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy .

The discretized Langevin diffusion (Xn)n≥0 given in (2) is a time-inhomogeneous
Markov chain, for p ≥ n ≥ 1 and f ∈ F+(R

d), EFn [f(Xp)] = Qn,p
γ f(Xn) where

Fn = σ(Xℓ, 0 ≤ ℓ ≤ n) and

Qn,p
γ = Rγn · · ·Rγp , Qn

γ = Q1,n
γ ,

with the convention that for n, p ≥ 0, n < p, Qp,n
γ is the identity operator. Under

L1, the Markov kernel Rγ is strongly Feller, irreducible and strongly aperiodic.
We will say that a function V : Rd → [1,∞) satisfies a Foster-Lyapunov drift
condition for Rγ if there exist constants γ̄ > 0, λ ∈ [0, 1) and c > 0 such that,
for all γ ∈ (0, γ̄]

RγV ≤ λγV + γc . (6)

The particular form of (6) reflects how the mixing rate of the Markov chain
depends upon the step size γ > 0. If γ = 0, then R0(x,A) = δx(A) for x ∈ R

d and
A ∈ B(Rd). A Markov chain with transition kernel R0 is not mixing. Intuitively,
as γ gets larger, then it is expected that the mixing of Rγ increases. If for some
γ > 0, Rγ satisfies (6), then Rγ admits a unique stationary distribution πγ .
We use (6) to control quantitatively the moments of the time-inhomogeneous
chain. The types of bounds which are needed, are summarised in the following
elementary Lemma.
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Lemma 1. Let γ̄ > 0. Assume that for all x ∈ R
d and γ ∈ (0, γ̄], (6) holds for

some constants λ ∈ (0, 1) and c > 0. Let (γk)k≥1 be a sequence of nonincreasing
step sizes such that γk ∈ (0, γ̄] for all k ∈ N

∗. Then for all n ≥ 0 and x ∈ R
d,

Qn
γV (x) ≤ F (λ,Γn, c, γ1, V (x)) where

F (λ, a, c, γ, w) = λaw + c(−λγ log(λ))−1 . (7)

Proof. The proof is postponed to Section 4.1.

Note that Lemma 1 implies that supk≥0{Qk
γV (x)} ≤ G(λ, c, γ1, V (x)) where

G(λ, c, γ, w) = w + c(−λγ log(λ))−1 . (8)

We give below the main ingredients which are needed to obtain a quantitative
bound for ‖δxQp

γ −π‖TV for all x ∈ R
d. This quantity is decomposed as follows:

for all 0 ≤ n < p,

‖δxQp
γ − π‖TV

≤ ‖δxQn
γQ

n+1,p
γ − δxQ

n
γPΓn+1,p‖TV + ‖δxQn

γPΓn+1,p − π‖TV . (9)

To control the first term on the right hand side, we use a method introduced in
[13] and elaborated in [12]. The second term is bounded using the convergence
of the semi-group to π, see (3).

Proposition 2. Assume that L1 and (3) hold. Let (γk)k≥0 be a sequence of
nonnegative step sizes. Then for all x ∈ R

d, n ≥ 0, p ≥ 1, n < p,

‖δxQp
γ − π‖TV

≤ 2−1/2L

(
p−1∑

k=n

{
(γ3k+1/3)A(γ, x) + dγ2k+1

}
)1/2

+ C(δxQ
n
γ )κ

Γn+1,p , (10)

where κ,C(δxQ
n
γ ) are defined in (3) and

A(γ, x) = sup
k≥0

∫

Rd

‖∇U(z)‖2Qk
γ(y, dz) . (11)

Proof. The proof follows the same lines as [12, Lemma 2] but is given for com-
pleteness. For 0 ≤ s ≤ t, let C([s, t] ,Rd) be the space of continuous func-
tions on [s, t] taking values in R

d. For all y ∈ R
d, denote by µy

n,p and µ̄y
n,p

the laws on C([Γn,Γp] ,R
d) of the Langevin diffusion (Yt(y))Γn≤t≤Γp and of the

continuously-interpolated Euler discretization (Ȳt(y))Γn≤t≤Γp , both started at

y at time Γn. Denote by (Yt(y), Y t(y))t≥Γn the unique strong solution started
at (y, y) at time t = Γn of the time-inhomogeneous diffusion defined for t ≥ Γn,
by {

dYt = −∇U(Yt)dt+
√
2dBd

t

dȲt = −∇U(Ȳ, t)dt+
√
2dBd

t ,
(12)
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where for any continuous function w : R+ → R
d and t ≥ Γn

∇U(w, t) =
∞∑

k=n

∇U(wΓk
)1[Γk,Γk+1)(t) . (13)

Girsanov’s Theorem [21, Theorem 5.1, Corollary 5.16, Chapter 3] shows that
µy
n,p and µ̄y

n,p are mutually absolutely continuous and in addition, µ̄y
n,p-almost

surely

dµy
n,p

dµ̄y
n,p

= exp

(
1

2

∫ Γp

Γn

〈
∇U(Ȳs(y))−∇U(Ȳ (y), s), dȲs(y)

〉

−1

4

∫ Γp

Γn

{∥∥∇U(Ȳs(y))
∥∥2 −

∥∥∇U(Ȳ (y), s)
∥∥2
}
ds

)
. (14)

Under L1, (14) implies for all y ∈ R
d:

KL(µy
n,p|µ̄y

n,p) ≤ 4−1

∫ Γp

Γn

E

[∥∥∇U(Ȳs(y))−∇U(Ȳ (y), s)
∥∥2
]
ds

≤ 4−1

p−1∑

k=n

∫ Γk+1

Γk

E

[∥∥∇U(Ȳs(y))−∇U(ȲΓk
(y))

∥∥2
]
ds

≤ 4−1L2

p−1∑

k=n

{
(γ3k+1/3)

∫

Rd

‖∇U(z)‖2Qn+1,k
γ (y, dz) + dγ2k+1

}
.

(15)

By the Pinsker inequality, ‖δyQn+1,p
γ − δyPΓn+1,p‖TV ≤

√
2{KL(µy

n,p|µ̄y
n,p)}1/2.

The proof is concluded by combining this inequality, (15) and (3) in (9).

In the sequel, depending on the conditions on the potential U and the tech-
niques of proof, for any given x ∈ R

d, C(δxQ
n
γ ) can have two kinds of upper

bounds, either of the form − log(γn)W (x), or exp(aΓn)W (x), for some function
W : Rd → R and a > 0. In both cases, as shown in Proposition 3, it is possi-
ble to choose n as a function of p, so that limp→+∞ ‖δxQp

γ − π‖TV = 0 under
appropriate conditions on the sequence of step sizes (γk)k≥1.

Proposition 3. Assume that L1 and (3) hold. Let (γk)k≥1 be a nonincreasing
sequence satisfying limk→+∞ Γk = +∞ and limk→∞ γk = 0. Then, limn→∞ ‖δxQn

γ−
π‖TV = 0 for any x ∈ R

d for which one of the two following conditions holds:

(i) A(γ, x) <∞ and lim supn→+∞ C(δxQ
n
γ)/(− log(γn)) < +∞, where A(γ, x)

is defined in (11).
(ii)

∑∞
k=1 γ

2
k < +∞, A(γ, x) < ∞ and lim supn→+∞ log{C(δxQn

γ )}/Γn <
+∞.

Proof. (i) There exists p0 ≥ 1 such that for all p ≥ p0, κ
γp > γp and κ

Γp ≤ γ1.
Therefore, we can define for all p ≥ p0,

n(p)
def
= min

{
k ∈ {0, · · · , p− 1} |κΓk+1,p > γk+1

}
. (16)

imsart-generic ver. 2014/10/16 file: main.tex date: December 19, 2016
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and n(p) ≥ 1. We first show that lim infp→∞ n(p) = ∞. The proof goes by con-
tradiction. If lim infp→∞ n(p) < ∞ we could extract a bounded subsequence
(n(pk))k≥1. For such sequence, (γn(pk)+1)k≥1 is bounded away from 0, but

limk→+∞ κΓn(pk)+1,pk = 0 which yields to a contradiction. The definition of
n(p) implies that κΓn(p),p ≤ γn(p), showing that

lim sup
p→+∞

C(δxQ
n(p)
γ )κΓn(p),p

≤ lim sup
p→+∞

C(δxQ
n(p)
γ )

− log(γn(p))
lim sup
p→+∞

{
γn(p)(− log(γn(p)))

}
= 0 .

On the other hand, since (γk)k≥1 is nonincreasing, for any ℓ ≥ 2,

p∑

k=n(p)+1

γℓk ≤ γℓ−1
n(p)+1Γn(p)+1,p ≤ γℓ−1

n(p)+1 log(γn(p)+1)/ log(κ) .

The proof follows from (10) using limp→∞ γn(p) = 0.
(ii) For all p ≥ 1, define n(p) = max(0, ⌊log(Γp)⌋). Note that since limk→+∞ Γk =

+∞, we have limp→+∞ n(p) = +∞. Using
∑+∞

k=1 γ
2
k < +∞ and (γk)k≥1 is a

nonincreasing sequence, we get for all ℓ ≥ 2,

lim
p→+∞

p∑

k=n(p)

γℓk = 0 ,

which shows that the first term in the right side of (10) goes to 0 as p goes to
infinity. As for the second term, since lim supn→+∞ log{C(δxQn

γ )}/Γn < +∞,
we get using that (γk)k≥1 is nonincreasing and n(p) ≤ log(Γp),

C(δxQ
n(p)
γ )κΓn(p),p

≤ exp
(
log(κ)Γp +

[
{log(C(δxQn(p)

γ ))/Γn(p)}+ − log(κ)
]
Γn(p)

)

≤ exp

(
log(κ)Γp +

[
sup
k≥1

{log(C(δxQk
γ))/Γk}+ − log(κ)

]
γ1 log(Γp)

)
.

Using κ < 1 and limk→+∞ Γk = +∞, we have limp→+∞ C(δxQ
n(p)
γ )κΓn(p),p = 0,

which concludes the proof.

Using (10), we can also assess the convergence of the algorithm for constant
step sizes γk = γ for all k ≥ 1. Two different kinds of results can be derived.
First, for a given precision ε > 0, we can try to optimize the step size γ to
minimize the number of iterations p required to achieve ‖δxQp

γ − π‖TV ≤ ε.
Second if the total number of iterations is fixed p ≥ 1, we may determine the
step size γ > 0 which minimizes ‖δxQp

γ − π‖TV.
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Lemma 4. Assume that (10) holds. Assume that there exists γ̄ > 0 such that
C̄(x) = supγ∈(0,γ̄] supn≥1 C(δxR

n
γ ) < +∞ and supγ∈(0,γ̄]A(γ, x) ≤ Ā(x), where

C(δxR
n
γ ) and A(γ, x) are defined in (3) and (11) respectively. Then for all ε > 0,

we get ‖δxRp
γ − π‖TV ≤ ε if

p > Tγ−1 and γ ≤ −d+
√
d2 + (2/3)Ā(x)ε2(L2T )−1

2Ā(x)/3
∧ γ̄ , (17)

where
T =

(
log{C̄(x)} − log(ε/2)

)/
(− log(κ)) .

Proof. For p > Tγ−1, set n = p−
⌊
Tγ−1

⌋
. Then using the stated expressions of

γ and T in (10) concludes the proof.

Note that an upper bound for γ defined in (17) is ǫ2(L2Td)−1. The depen-
dency of T on the dimension d will be addressed in Section 3.

Lemma 5. Assume that L1 and (3) hold. In addition, assume that there exist
γ̄ > 0 and n ∈ N, n > 0, such that C̄n(x) = supγ∈(0,γ̄]C(δxR

n
γ ) < +∞ and

supγ∈(0,γ̄]A(γ, x) ≤ Ā(x). For all p > n and all x ∈ R
d, if γ = log(p− n){(p−

n)(− log(κ))}−1 ≤ γ̄, then

‖δxRp
γ − π‖TV

≤ (p−n)−1/2{C̄n(x)(p−n)−1/2+log(p−n)(d+Ā(x) log(p−n)(p−n)−1)1/2} .

Proof. The proof is a straightforward calculation using (10).

To get quantitative bounds for the total variation distance ‖δxQp
γ − π‖TV it

is therefore required to get bounds on κ, A(γ, x) and to control C(δxQ
n
γ ). We

will consider in the sequel two different approaches to get (3), one based on
functional inequalities, the other on coupling techniques. We will consider also
increasingly stringent assumptions for the potential U . Whereas we will always
obtain the same type of exponential bounds, the dependency of the constants
on the dimension will be markedly different. In the worst case, the dependency
is exponential. It is polynomial when U is convex.

3. Practical conditions for geometric ergodicity of the Langevin

diffusion and their consequences for ULA

3.1. Superexponential densities

Assume first that the potential is superexponential outside a ball. This is a
rather weak assumption (we do not assume convexity here).

H1. The potential U is twice continuously differentiable and there exist ρ > 0,
α ∈ (1, 2] andMρ ≥ 0 such that for all x ∈ R

d, ‖x− x⋆‖ ≥Mρ, 〈∇U(x), x − x⋆〉 ≥
ρ ‖x− x⋆‖α.
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The price to pay will be constants which are exponential in the dimension.
Under H1, the potential U is unbounded off compact set. Since U is continuous,
it has a global minimizer x⋆, which is a point at which ∇U(x⋆) = 0. Without
loss of generality, it is assumed that U(x⋆) = 0.

Lemma 6. Assume L1 and H1. Then for all x ∈ R
d,

U(x) ≥ ρ ‖x− x⋆‖α /(α+ 1)− aα with aα = ρMα
ρ /(α+ 1) +M2

ρL/2 . (18)

Proof. The elementary proof is postponed to Section 4.2.

Following [35, Theorem 2.3], we first establish a drift condition for the diffu-
sion.

Proposition 7. Assume L 1 and H 1. For any ς ∈ (0, 1), the drift condi-
tion (4) is satisfied with the Lyapunov function Vς(x) = exp(ςU(x)), θς =
ςdL, Eς = B(x⋆,Kς), Kς = max({2dL/(ρ(1 − ς))}1/(2(α−1)),Mρ) and βς =
ςdL sup{y∈Eς}{Vς(y)}. Moreover, there exist constants Cς <∞ and υς > 0 such

that for all t ∈ R+ and probability measures µ0 and ν0 on (Rd,B(Rd)), satisfying
µ0(Vς) + ν0(Vς) < +∞,

‖µ0Pt − ν0Pt‖Vς ≤ Cςe
−υςt‖µ0 − ν0‖Vς , ‖µ0Pt − π‖Vς ≤ Cςe

−υςtµ0(Vς) .

Proof. The proof, adapted from [35, Theorem 2.3] and [31, Theorem 6.1], is
postponed to Section 4.3.

Under H1, explicit expressions for Cς and υς have been developed in the
literature but these estimates are in general very conservative. We now turn to
establish (6) for the Euler discretization.

Proposition 8. Assume L 1 and H 1. Let γ̄ ∈
(
0, L−1

)
. For all γ ∈ (0, γ̄]

and x ∈ R
d, Rγ satisfies the drift condition (6) with V (x) = exp(U(x)/2),

K = max(Mρ, (8 log(λ)/ρ
2)1/(2(α−1))), c = −2 log(λ)λ−γ̄ sup{y∈B(x⋆,K)} V (y)

and λ = e−dL/{2(1−Lγ̄)}.

Proof. The proof is postponed to Section 4.4.

Theorem 9. Assume L1 and H1. Let (γk)k≥1 be a nonincreasing sequence with
γ1 < γ̄, γ̄ ∈

(
0, L−1

)
. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d, (10) holds
with log(κ) = −υ1/2 and

A(γ, x) ≤ L2

(
α+ 1

ρ

[
aα +

4(2− α)(α + 1)

αρ
+ 2 log {G(λ, c, γ1, V (x))}

])2/α

C(δxQ
n
γ ) ≤ C1/2F (λ,Γ1,n, c, γ1, V (x)) , (19)

where C1/2, υ1/2 are given by Proposition 7, F by (7), V , λ, c in Proposition 8,
G by (8), aα in (18).

Proof. The proof is postponed to Section 4.5.

imsart-generic ver. 2014/10/16 file: main.tex date: December 19, 2016
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Equation (19) implies that for all x ∈ R
d, we have supn≥0 C(δxQ

n
γ ) ≤

G(λ, c, γ1, V (x)), so Proposition 3-(i) shows that limp→+∞ ‖δxQp
γ−π‖TV = 0 for

all x ∈ R
d provided that limk→+∞ γk = 0 and limk→+∞ Γk = +∞. In addition,

for the case of constant step size γk = γ for all k ≥ 1, Lemma 4 and Lemma 5
can be applied.

Let V : Rd → R, defined for all x ∈ R
d by V (x) = exp(U(x)/2). By Propo-

sition 7, (Pt)t≥0 is a contraction operator on the space of finite signed measure
µ ∈ M0, µ(V

1/2) < +∞, endowed with the norm ‖·‖V 1/2 . It is therefore possible
to control ‖δxQp

γ − π‖V 1/2 . To simplify the notations, we limit our discussion to
constant step sizes.

Theorem 10. Assume L 1 and H 1. Then, for all p ≥ 1, x ∈ R
d and γ ∈(

0, L−1
)
, we have

‖δxRp
γ − π‖V 1/2 ≤ C1/4κ

γpV 1/2(x) +B(γ, V (x)) , (20)

where log(κ) = −υ1/4, C1/4, υ1/4, θ1/2, β1/2 are defined in Proposition 7, V, λ, c
in Proposition 8, G in (8) and

B2(γ, v) = L2 max(1, C2
1/4)(1 + γ)(1− κ)−2

(
2G(λ, c, γ, v) + β1/2/θ1/2

)

×
(
γd+ 3−1γ2‖∇U‖2V 1/2 G(λ, c, γ, v)

)
.

Moreover, Rγ has a unique invariant distribution πγ and

‖π − πγ‖V 1/2 ≤ B(γ, 1) .

Proof. The proof of (20) is postponed to Section 4.6. The bound for ‖π−πγ‖V 1/2

is an easy consequence of (20): by Proposition 13 and [30, Theorem 16.0.1], Rγ

is V 1/2-uniformly ergodic: limp→+∞ ‖δxRp
γ−πγ‖V 1/2 = 0 for all x ∈ R

d. Finally,

(20) shows that for all x ∈ R
d,

‖π − πγ‖V 1/2 ≤ lim
p→+∞

{
‖δxRp

γ − π‖V 1/2 + ‖δxRp
γ − πγ‖V 1/2

}
≤ B(γ, V (x)) .

Taking the minimum over x ∈ R
d concludes the proof.

Note that Theorem 10 implies that there exists a constant C ≥ 0 which does
not depend on γ such that ‖π − πγ‖V 1/2 ≤ Cγ1/2.

Remark 11. It is shown in [37, Theorem 4] that for φ ∈ C∞(Rd) with polyno-
mial growth, πγ(φ)−π(φ) = b(φ)γ+O(γ2), for some constant b(φ) ∈ R, provided
that U ∈ C∞(Rd) satisfies L1 and H1. Our result does not match this bound
since B(γ, 1) = O(γ1/2). However the bound B(γ, 1) is uniform over the class
of measurable functions φ satisfying for all x ∈ R

d, |φ(x)| ≤ V 1/2(x). Obtain-
ing such uniform bounds in total variation is important in Bayesian inference,
for example to compute high posterior density credible regions. Our result also
strengthens and completes [29, Corollary 7.5], which states that under H1 with
α = 2, for any measurable functions φ : Rd → R satisfying for all x, y ∈ R

d,

|φ(x) − φ(y)| ≤ C ‖x− y‖ {1 + ‖x‖k + ‖y‖k} ,
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for some C ≥ 0, k ≥ 1, |πγ(φ)− π(φ)| ≤ Cγχ for some constants C ≥ 0 and
χ ∈ (0, 1/2), which does not depend on φ.

The bounds in Theorem 9 and Theorem 10 depend upon the constants ap-
pearing in Proposition 7 which are computable but are known to be pessimistic
in general; see [36]. More explicit rates of convergence for the semigroup can be
obtained using Poincaré inequality; see [3], [9] and [4, Chapter 4] and the refer-
ences therein. The probability measure π is said to satisfy a Poincaré inequality
with the constant CP if for every locally Lipschitz function h,

Varπ {h} ≤ CP

∫

Rd

‖∇h(x)‖2 π(dx) . (21)

This inequality implies by [9, Theorem 2.1] that for all t ≥ 0 and any initial
distribution µ0, such that µ0 ≪ π,

‖µ0Pt − π‖TV ≤ exp(−t/CP) (Varπ {dµ0/dπ})1/2 . (22)

[2, Theorem 1.4] shows that if the Lyapunov condition (4) is satisfied, then the
Poincaré inequality (21) holds with an explicit constant. Denote by

Dn(γ)
def
=


4π

{
n∏

k=1

(1 − Lγk)

}2 n∑

i=1

γi(1− Lγi)
−1




−d/2

. (23)

Theorem 12. Assume L1 and H1. Let (γk)k≥1 be a non increasing sequence.
Then for all n ≥ 1 and x ∈ R

d, Equation (3) holds with

log(κ) =
(
−θ−1

1/2

{
1 + (4β1/2K

2
1/2/π

2)e
oscK1/2

(U)
})−1

,

C(δxQ
n
γ ) ≤

(α+ 1)d(2π)(d+1)/2(d− 1)!

ρdΓ((d + 1)/2)
Dn(γ)e

aα eU(x) ,

where Γ is the Gamma function and the constants β1/2, θ1/2,K1/2, aα are given
in Proposition 7 and (18) respectively.

Proof. The proof is postponed to Section 4.7.

Note that for all x ∈ R
d, C(δxQ

n
γ ) satisfies the conditions of Proposition 3-(ii).

Therefore using in addition the bound on A(γ, x) for all x ∈ R
d and γ ∈

(
0, L−1

)

given in Theorem 9, we get limk→+∞ ‖δxQp
γ − π‖TV = 0 if limn→+∞ Γn = +∞

and limn→+∞

∑n
k=1 γ

2
k < +∞.

3.2. Log-concave densities

We now consider the following additional assumption.

H2. U is convex and admits a minimizer x⋆ for U . Moreover there exist η > 0
and Mη ≥ 0 such that for all x ∈ R

d, ‖x− x⋆‖ ≥Mη,

U(x)− U(x⋆) ≥ η ‖x− x⋆‖ . (24)
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It is shown in [2, Lemma 2.2] that if U satisfies L1 and is convex, then (24)
holds for some constants η,Mη which depend in an intricate way on U . Since
the constants η,Mη appear explicitly in the bounds we derive, we must assume
that these constants are explicitly computable. We still assume in this section
that U(x⋆) = 0. Define the function Wc : R

d → [1,+∞) for all x ∈ R
d by

Wc(x) = exp((η/4)(‖x− x⋆‖2 + 1)1/2) . (25)

We now derive a drift inequality for Rγ under H2.

Proposition 13. Assume L1 and H2. Let γ̄ ∈
(
0, L−1

]
. Then for all γ ∈ (0, γ̄],

Wc satisfies (6) with λ = e−2−4η2(21/2−1), Rc = max(1, 2d/η,Mη),

c = {(η/4)(d+ (ηγ̄/4))− log(λ)} eη(R2
c+1)1/2/4+(ηγ̄/4)(d+(ηγ̄/4)) . (26)

Proof. The proof is postponed to Section 4.8

Corollary 14. Assume L1 and H2. Let (γk)k≥1 be a nonincreasing sequence
with γ1 ≤ γ̄, γ̄ ∈

(
0, L−1

]
. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d,

A(γ, x) = L2
(
4η−1 [1 + log {G(λ, c, γ1,Wc(x))}]

)2
, (27)

where A(γ, x) is defined by (11) and G, Wc, λ, c, are given in (8), (25), Propo-
sition 13 respectively.

Proof. The proof is postponed to Section 4.9.

If U is convex, [5, Theorem 1.2] shows that π satisfies a Poincaré inequality
with a constant depending only on the variance of π.

Theorem 15. Assume L1 and H2. Let (γk)k≥1 be a nonincreasing sequence
with γ1 ≤ γ̄, γ̄ ∈

(
0, L−1

]
. Then, for all n ≥ 0, p ≥ 1, n < p, and x ∈ R

d, (10)
holds with A(γ, x) given in (27),

log(κ) =

(
−432

∫

Rd

∥∥∥∥x−
∫

Rd

yπ(dy)

∥∥∥∥
2

π(dx)

)−1

(28a)

C(δxQ
n
γ ) =

(
(2π)(d+1)/2(d− 1)!

ηdΓ((d+ 1)/2)
+

π
d/2Md

η

Γ(d/2 + 1)

)
Dn(γ) exp(U(x)) , (28b)

where Dn(γ) is given in (23).

Proof. The proof is postponed to Section 4.10.

For all x ∈ R
d, C(δxQ

n
γ ) satisfies the conditions of Proposition 3-(ii). There-

fore, if limn→+∞ Γn = +∞ and limn→+∞

∑n
k=1 γ

2
k < +∞, we get limk→+∞ ‖δxQp

γ−
π‖TV = 0.

There are two difficulties when applying Theorem 15. First the Poincaré
constant (28a) is in closed form but is not computable, although it can be
bounded by a O(d−2) . Second, the bound of Varπ{dδxQn

γ/dπ} is likely to
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be suboptimal. To circumvent these two issues, we now give new quantitative
results on the convergence of (Pt)t≥0 to π in total variation. Instead of using
functional inequality, we use in the proof the coupling by reflection, introduced
in [27]. Define the function ω : (0, 1)×R

∗
+ → R+ for all ǫ ∈ (0, 1) and R ≥ 0, by

ω(ǫ, R) = R2/
{
2Φ−1(1− ǫ/2)

}2
, (29)

where Φ is the cumulative distribution function of the standard Gaussian distri-
bution and Φ−1 is the associated quantile function. Before stating the theorem,
we first show that (4) holds and provide explicit expressions for the constants
which come into play. These constants will be used to obtain the explicit con-
vergence rate of the semigroup (Pt)t≥0 to π which is derived in Theorem 17.

Proposition 16. Assume L1 and H2. Then Wc satisfies the drift condition
(4) with θ = η2/8, E = B(x⋆,K), K = max(1,Mη, 4d/η) and

β = (η/4) ((η/4)K + d)max
{
1, (K2 + 1)−1/2 exp(η(K2 + 1)1/2/4)

}
.

Proof. The proof is adapted from [2, Corollary 1.6] and is postponed to Sec-
tion 4.11.

Theorem 17. Assume L 1 and H 2. Then for all x ∈ R
d, ‖δxPt − π‖TV ≤

2Λ(x)e−θt/4 + 4̟t, where

log(̟) = − log(2)(θ/4) (30a)

×
[
log
{
θ−1β

(
3 + 4e4

−1θω(2−1,(8/η) log(4θ−1β))
)}

+ log(2)
]−1

,

Λ(x) = (1/2)(Wc(x) + θ−1β) + 2θ−1βe4
−1θω(2−1,(8/η) log(4θ−1β)) , (30b)

the function Wc is defined in (25), the constants θ, β in Proposition 16.

Proof. The proof is postponed to Section 5.1.

Note that the bound, we obtain is a little different from (3). The initial
condition is isolated on purpose to get a better bound. A consequence of this
result is the following bound on the convergence of the sequence (δxQ

n
γ )n≥0 to

π.

Corollary 18. Assume L1 and H2. Let (γk)k≥0 be a sequence of nonnegative
step sizes. Then for all x ∈ R

d, n ≥ 0, p ≥ 1, n < p,

‖δxQp
γ − π‖TV ≤ 2−1/2L

(
p−1∑

k=n

{
(γ3k+1/3)A(γ, x) + dγ2k+1

}
)1/2

+ 2Λ(δxQ
n
γ )e

−θΓn+1,p/4 + 4̟Γn+1,p ,

where A(γ, x), ̟ are given by (27) and (30a) respectively and

Λ(δxQ
n
γ ) = (1/2)(F (λ,Γn, γ1, c,Wc(x)) + θ−1β)

+ 2θ−1βe4
−1θω(2−1,(8/η) log(4θ−1β)) , (31)
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d ε L
γ O(d−3) O(ε2/ log(ε−1)) O(L−2)

p O(d5) O(ε−2 log2(ε−1)) O(L2)

Table 1

For constant step sizes, dependency of γ and p in d, ε and parameters of U to get
‖δxR

p
γ − π‖TV ≤ ε using Corollary 19

the functions F and Wc are defined in (7) and (25), the constants λ, c, θ, β in
Proposition 13 and Proposition 16 respectively.

Proof. By Theorem 17, Proposition 13 and Lemma 1, we have for all x ∈ R
d,

‖δxQn
γPΓn+1,p − π‖TV ≤ 2Λ(δxQ

n
γ )e

−θΓn+1,p/4 + 4̟Γn+1,p .

Finally the proof follows the same line as the one of Proposition 2.

Contrary to (28b), (31) is uniformly bounded in n. By Corollary 18 and
(27), we can apply Proposition 3-(i), which implies the convergence to 0 of
‖δxQp

γ − π‖TV as p goes to infinity, if limk→+∞ γk = 0 and limk→+∞ Γk = +∞.
Since log(β) in Proposition 16 is of order d, we get that the rate of convergence
log(̟) is of order d−2 as d goes to infinity (note indeed that the leading term
when d is large is θω

(
2−1, (8/η) log(4θ−1β)

)
which is of order d2). In the case

of constant step sizes γk = γ for all k ≥ 0, we adapt Lemma 4 to the bound
given by Corollary 18.

Corollary 19. Assume L1 and H2. Let (γk)k≥0 be a sequence of nonnegative
step sizes. Then for all ε > 0, we get ‖δxRp

γ − π‖TV ≤ ε if p and γ satisfy (17)
with

T = max
{
4θ−1 log

(
8ε−1Λ̃(x)

)
, log(16ε−1)

/
(− log(̟))

}

Λ̃(x) = (1/2)(G(λ, γ1, c,Wc(x)) + θ−1β) + 2θ−1βe4
−1θω(2−1,(8/η) log(4θ−1β)) ,

where A(γ, x), ̟ are given by (27), (30a) respectively, the functions G and
Wc are defined in (8) and (25), the constants λ, c, θ, β in Proposition 13 and
Proposition 16 respectively.

Proof. The proof follows the same line as the one of Lemma 4 using Corollary 18
and that supn≥0 Λ(δQ

n
γ ) < Λ̃(x) for all x ∈ R

d.

In particular, with the notation of Corollary 19, since max(log(β), log(c))
and −(log(̟))−1 are of order d and d2 as d goes to infinity respectively, T is of
order d2. Therefore, γ defined by (17) is of order d−3 which implies a number
of iteration p of order d5 to get ‖δxQp

γ − π‖TV ≤ ε for ε > 0; see also Table 1.
Corollary 19 can be compared with the results which establishes the depen-

dency on the dimension for two kinds of Metropolis-Hastings algorithms to sam-
ple from a log-concave density: the random walk Metropolis algorithm (RWM)
and the hit-and-run algorithm. It has been shown in [28, Theorem 2.1] that
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for ε > 0, the hit-and-run and the RWM reach a ball centered at π, of radius
ε for the total variation distance, in a number of iteration p of order d4 as d
goes to infinity. It should be stressed that [28, Theorem 2.1] does not assume
any kind of smoothness about the density π contrary to Theorem 17. However,
this result assumes that the target distribution is near-isotropic, i.e. there exists
C ≥ 0 which does not depend on the dimension such that for all x ∈ R

d,

C−1 ‖x‖2 ≤
∫

Rd

〈x, y〉2 π(dy) ≤ C ‖x‖2 .

Note that this condition implies that the variance of π is upper bounded by Cd.
To conclude our study on convex potential, we also mention [8] which studies

the sampling of the uniform distribution over a convex subset K ⊂ R
d using

coupling techniques. Let C > 0. A convex set K ⊂ R
d is C-well rounded if

B(0, 1) ⊂ K ⊂ B(0, Cd). [8] shows that a number of iteration of order d9 as d
goes to infinity is sufficient to sample uniformly over any C-well rounded convex
set. Comparison with our result is difficult since we assume that π is positive
on R

d, continuously differentiable, while [8] studies the case of uniform distri-
butions over a convex body. An adaptation of our result to non continuously
differentiable potentials will appear in a forthcoming paper [14].

3.3. Strongly log-concave densities

More precise bounds can be obtained in the case where U is assumed to be
strongly convex outside some ball; this assumption has been considered by [15]
for convergence in the Wasserstein distance; see also [6].

H3 (Ms). U is convex and there exist Ms ≥ 0 and m > 0, such that for all
x, y ∈ R

d satisfying ‖x− y‖ ≥Ms,

〈∇U(x) −∇U(y), x− y〉 ≥ m ‖x− y‖2 .
We will see in the sequel that under this assumption the convergence rate in

(3) does not depend on the dimension d but only on the constants m and Ms.

Proposition 20. Assume L1 and H3(Ms). Let γ̄ ∈
(
0, 2mL−2

)
. For all γ ∈

(0, γ̄], V (x) = ‖x− x⋆‖2 satisfies (6) with λ = e−2m+γ̄L2

and c = 2(d+mM2
s ).

Proof. The proof is postponed to Section 4.12.

Theorem 21. Assume L1 and H3(Ms). Let (γk)k≥1 be a nonincreasing se-
quence with γ1 ≤ γ̄, γ̄ ∈

(
0, 2mL−2

)
. Then, for all n ≥ 0, p ≥ 1, n < p, and

x ∈ R
d, (10) holds with

log(κ) = −(m/2) log(2)

×
[
log
{(

1 + emω(2−1,max(1,Ms))/4
)
(1 + max(1,Ms))

}
+ log(2)

]−1

C(δxQ
n
γ ) ≤ 6 + 2

(
d/m+M2

s

)1/2
+ 2F 1/2(λ,Γ1,n, c, γ1, ‖x− x⋆‖2)

A(γ, x) ≤ L2G(λ, c, γ1, ‖x− x⋆‖2) ,
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d ε L m Ms

γ O(d−1) O(ε2/ log(ε−1)) O(L−2) O(m) O(M−4
s )

p O(d log(d)) O(ε−2 log2(ε−1)) O(L2) O(m−2) O(M8
s )

Table 2

For constant step sizes, dependency of γ and p in d, ε and parameters of U to get
‖δxQ

p
γ − π‖TV ≤ ε using Theorem 21

where F,G, ω are defined by (7), (8), (29) respectively, and λ, c are given in
Proposition 20.

Proof. The proof is postponed to Section 5.1.

Note that the conditions of Proposition 3-(i) are fulfilled. For constant step
sizes γk = γ for all k ≥ 1, Lemma 4 and Lemma 5 can be applied. We give
in Table 2 the dependency of the step size γ > 0 and the minimum number
of iterations p ≥ 0, provided in Lemma 4, on the dimension d and the other
constants related to U , to get ‖δxQp

γ − π‖TV ≤ ε, for a target precision ε > 0.
We can see that the dependency on the dimension is milder than for the convex
case. The number of iteration requires to reach a target precision ε is just of
order O(d log(d)).

Consider the case where π is the d-dimensional standard Gaussian distribu-
tion. Then for all p ∈ N, γ ∈ (0, 1) and x ∈ R

d, δxR
p
γ is the d-dimensional

Gaussian distribution with mean (1 − γ)px and covariance matrix σγ Id, with
σγ = (1− (1− γ)2(p+1))(1− γ/2)−1. Therefore using the Pinsker inequality, we
get:

‖δxRp
γ − π‖2TV ≤ 2KL

(
δxR

p
γ

∣∣ π
)

≤ d
[
log (σγ)− 1 + σ−1

γ

{
1 + (1− γ)2p ‖x‖2 d−1

}]
.

Using the inequalities for all t ∈ (0, 1), (1 − t)−1 ≤ 1 + t(1 − t)−2 and for all
s ∈ (0, 1/2), − log(1− s) ≤ s+ 2s2, we have:

‖δxRp
γ − π‖2TV ≤ d

{
γ2/2 + (1− γ)2(p+1)(1 − γ/2)(1− (1− γ)2(p+1))−2

}

+ σ−1
γ (1− γ)2p ‖x‖2 .

This inequality implies that in order to have ‖δxRγ − π‖TV ≤ ε for ε > 0, the
step size γ has to be of order d−1/2 and p of order d1/2 log(d). Therefore, the
dependency on the dimension reported in Table 2 does not match this particular
example. However it does not imply that this dependency can be improved.

3.4. Bounded perturbation of strongly log-concave densities

We now consider the case where U is a bounded perturbation of a strongly
convex potential.

imsart-generic ver. 2014/10/16 file: main.tex date: December 19, 2016
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H4. The potential U may be expressed as U = U1 + U2, where

(a) U1 : R
d → R satisfies H 3(0) (i.e. is strongly convex) and there exists

L1 ≥ 0 such that for all x, y ∈ R
d,

‖∇U1(x)−∇U1(y)‖ ≤ L1 ‖x− y‖ .

(b) U2 : Rd → R is continuously differentiable and ‖U2‖∞+ ‖∇U2‖∞ < +∞ .

The probability measure π is said to satisfy a log-Sobolev inequality with
constant CLS > 0 if for all locally Lipschitz function h : Rd → R, we have

Entπ
(
h2
)
≤ 2CLS

∫
‖∇h‖2 dπ .

Then [9, Theorem 2.7] shows that for all t ≥ 0 and any probability measure
µ0 ≪ π satisfying dµ0/dπ log(dµ0/dπ) ∈ L1(π), we have

‖µ0Pt − π‖TV ≤ e−t/CLS

{
2Entπ

(
dµ0

dπ

)}1/2

. (32)

Under H4, [4, Corollary 5.7.2] and the Holley-Stroock perturbation principle
[19, p. 1184], π satisfies a log-Sobolev inequality with a constant which only
depends on the strong convexity constant m of U1 and oscRd(U2). Define

̟ =
2mL1

m+ L1
. (33)

Denote by x⋆1 the minimizer of U1.

Proposition 22. Assume H4. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m+ L1). Then for all p ≥ 1 and x ∈ R

d,

∫

Rd

‖y − x⋆1‖
2
Qp

γ(x, dy) ≤
p∏

k=1

(1−̟γk/2) ‖x− x⋆1‖
2

+ 2̟−1(2d+ (γ1 + 2̟−1) ‖∇U2‖2∞) .

Proof. The proof is postponed to Section 4.13.

Theorem 23. Assume L1 and H4. Let (γk)k∈N∗ be a nonincreasing sequence
with γ1 ≤ 2/(m + L1). Then, for all n, p ≥ 1, n < p, and x ∈ R

d, (10) holds
with − log(κ) = m exp{−oscRd(U2)} and

C2(δxQ
n
γ ) ≤ L1e

−̟Γn/2 ‖x− x⋆1‖2 + L1γn(γn + 2̟−1) ‖∇U2‖2∞ + 2oscRd(U2)

+ 2L1̟
−1(1−̟γn)(2d+ (γ1 + 2̟−1) ‖∇U2‖2∞)− d(1 + log(2γnm)− 2L1γn)

A(γ, x) ≤ 2L2
1

{
‖x⋆1 − x⋆‖2 + 2̟−1(2d+ (γ1 + 2̟−1) ‖∇U2‖2∞)

}
+ 2 ‖∇U2‖2∞ ,

where ̟ is defined in (33).

imsart-generic ver. 2014/10/16 file: main.tex date: December 19, 2016
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Proof. The proof is postponed to Section 4.14.

Note that supn≥1{C(δxQn
γ )/(− log(γn))} < +∞, therefore Proposition 3-

(i) can be applied and limp→+∞ ‖δγQp
γ − π‖TV = 0 if limk→+∞ γk = 0 and

limk→+∞ Γk = +∞.

4. Proofs

4.1. Proof of Lemma 1

By a straightforward induction, we get for all n ≥ 0 and x ∈ R
d,

Qn
γV (x) ≤ λΓnV (x) + c

n∑

i=1

γiλ
Γi+1,n . (34)

Note that for all n ≥ 1, we have since (γk)k≥1 is nonincreasing and for all t ≥ 0,

λt = 1 +
∫ t

0
λs log(λ)ds,

n∑

i=1

γiλ
Γi+1,n ≤

n∑

i=1

γi

n∏

j=i+1

(1 + λγ1 log(λ)γj)

≤ (−λγ1 log(λ))−1
n∑

i=1

γi





n∏

j=i+1

(1 + λγ1 log(λ)γj)−
n∏

j=i

(1 + λγ1 log(λ)γj)





≤ (−λγ1 log(λ))−1 .

The proof is then completed using this inequality in (34).

4.2. Proof of Lemma 6

By L1, H1, the Cauchy-Schwarz inequality and ∇U(x⋆) = 0, for all x ∈ R
d,

‖x‖ ≥Mρ, we have

U(x)− U(x⋆) =

∫ 1

0

〈∇U(x⋆ + t(x− x⋆)), x− x⋆〉dt

≥
∫ Mρ

‖x−x⋆‖

0

〈∇U(x⋆ + t(x − x⋆)), x − x⋆〉dt

+

∫ 1

Mρ
‖x−x⋆‖

〈∇U(x⋆ + t(x− x⋆)), t(x− x⋆)〉dt

≥ −M2
ρL/2 + ρ ‖x− x⋆‖α (α+ 1)−1

{
1− (Mρ/ ‖x− x⋆‖)α+1

}
.

On the other hand using againL1, the Cauchy-Schwarz inequality and∇U(x⋆) =
0, for all x ∈ B(x⋆,Mρ),

U(x)− U(x⋆) =

∫ 1

0

〈∇U(x⋆ + t(x− x⋆)), x− x⋆〉dt ≥ −M2
ρL/2 ,

which concludes the proof.
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4.3. Proof of Proposition 7

For all x ∈ R
d, we have

A
LVς(x) = ς(1− ς)

{
−‖∇U(x)‖2 + (1 − ς)−1∆U(x)

}
Vς(x) .

If α > 1, by the Cauchy-Schwarz inequality, under L 1-H 1 for all x ∈ R
d,

∆U(x) ≤ dL and ‖∇U(x)‖ ≥ ρ ‖x− x⋆‖α−1 for ‖x− x⋆‖ ≥ Mρ. Then, for all
x 6∈ Eς ,

A
LVς(x) ≤ ς(1− ς)

{
−ρ ‖x− x⋆‖2(α−1)

+ (1− ς)−1dL
}
Vς(x) ≤ −ςdLVς(x) ,

and sup{x∈Eς} A LVς(x) ≤ ςdL sup{y∈Eς}{Vς(y)}.

4.4. Proof of Proposition 8

By H1, for all x 6∈ B(x⋆,Mρ),

‖∇U(x)‖ ≥ ρ ‖x− x⋆‖α−1
. (35)

Since under L1, for all x, y ∈ R
d, U(y) ≤ U(x)+〈∇U(x), y − x〉+(L/2)‖y−x‖2,

we have for all γ ∈ (0, γ̄) and x ∈ R
d,

RγV (x)/V (x)

= (4πγ)−d/2

∫

Rd

exp
(
{U(y)− U(x)} /2− (4γ)−1 ‖y − x+ γ∇U(x)‖2

)
dy

≤ (4πγ)−d/2

∫

Rd

exp
(
−4−1γ ‖∇U(x)‖2 − (4γ)−1(1 − γL) ‖y − x‖2

)
dy

≤ (1− γL)−d/2 exp(−4−1γ ‖∇U(x)‖2) ,

where we used in the last line that γ < L−1. Since log(1 − Lγ) = −L
∫ γ

0
(1 −

Lt)−1dt, for all γ ∈ (0, γ̄], log(1− Lγ) ≥ −Lγ(1−Lγ̄)−1. Using this inequality,
we get

RγV (x)/V (x) ≤ λ−γ exp
(
−4−1γ ‖∇U(x)‖2

)
. (36)

By (35), for all x ∈ R
d, ‖x− x⋆‖ ≥ K, we have

RγV (x) ≤ λγV (x) . (37)

Also by (36) and since for all t ≥ 0, et − 1 ≤ tet, we get for all x ∈ R
d

RγV (x) − λγV (x) ≤ λγ(λ−2γ − 1)V (x) ≤ −2γ log(λ)λ−γ̄V (x) .

The proof is completed combining the last inequality and (37).
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4.5. Proof of Theorem 9

We first boundA(γ, x) for all x ∈ R
d. Let x ∈ R

d. By L1, we have Ex[‖∇U(Xk)‖2] ≤
L2

Ex[‖Xk − x⋆‖2]. Consider now the function φα : R+ → R+ defined for
all t ≥ 0 by φα(t) = exp(Aα(t + Bα)

α/2) where Aα = ρ/(2(α + 1)) and

Bα = {(2− α)/(αAα)}2/α. Since φα is convex and invertible on R+, we get
using the Jensen inequality and Lemma 6 for all k ≥ 0:

Ex[‖Xk − x⋆‖2] ≤ φ−1
α

(
Ex[φα

(
‖Xk − x⋆‖2

)
]
)
≤ φ−1

α

(
eaα/2+Bα/2

α Ex[V (Xk)]
)
,

where V (x) = exp(U(x)/2). Using that for all t ≥ 0, φ−1
α (t) ≤ (A−1

α log(t))2/α

and Lemma 1, we get

sup
k≥0

Ex[‖Xk − x⋆‖2] ≤
(
A−1

α

[
aα/2 +Bα/2

α + log {G(λ, c(γ1), V (x))}
])2/α

.

Eq. (19) follows from Proposition 7, Proposition 8 and Lemma 1.

4.6. Proof of Theorem 10

Lemma 24. Let µ and ν be two probability measures on (Rd,B(Rd)) and V :
R

d → [1,∞) be a measurable function. Then

‖µ− ν‖V ≤
√
2
{
ν(V 2) + µ(V 2)

}1/2
KL1/2(µ|ν) .

Proof. Without losing any generality, we assume that µ ≪ ν. For all t ∈ [0, 1],

t log(t) − t + 1 =
∫ 1

t
(u − t)u−1du ≥ 2−1(1 − t)2, and on [1,+∞), t 7→ 2(1 +

t)(t log(t)− t+ 1)− (1− t)2 is nonincreasing. Therefore, for all t ≥ 0,

|1− t| ≤ (2(1 + t)(t log(t)− t+ 1))1/2 . (38)

Then, we have:

‖µ− ν‖V = sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣
∫

Rd

f(x)dµ(x) −
∫

Rd

f(x)dν(x)

∣∣∣∣

= sup
f∈F(Rd),‖f‖V ≤1

∣∣∣∣
∫

Rd

f(x)

{
dµ

dν
− 1

}
dν(x)

∣∣∣∣ ≤
∫

Rd

V (x)

∣∣∣∣
dµ

dν
− 1

∣∣∣∣dν(x) .

Using (38) and the Cauchy-Schwarz inequality in the previous inequality con-
cludes the proof.

Proof of Theorem 10. First note that by the triangle inequality and Proposi-
tion 7, for all p ≥ 1

‖π − δxQ
p
γ‖V 1/2 ≤ C1/4κ

pγV 1/2(x) + ‖δxPΓp − δxQ
p
γ‖V 1/2 . (39)
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We now bound the second term of the right hand side. Let kγ =
⌈
γ−1

⌉
and qγ

and rγ be respectively the quotient and the remainder of the Euclidean division
of p by kγ . The triangle inequality implies ‖δxPΓp − δxQ

p
γ‖V 1/2 ≤ A+B with

A =
∥∥∥δxQ(qγ−1)kγ

γ PΓ(qγ−1)kγ,p
− δxQ

(qγ−1)kγ
γ Q(qγ−1)kγ+1,p

γ

∥∥∥
V 1/2

B =

qγ∑

i=1

∥∥∥δxQ(i−1)kγ
γ PΓ(i−1)kγ+1,p

− δxQ
ikγ
γ PΓikγ+1,p

∥∥∥
V 1/2

.

It follows from Proposition 7 and kγ ≥ γ−1 that

B ≤
qγ∑

i=1

C1/4κ
qγ−i

∥∥∥δxQ(i−1)kγ
γ PΓ(i−1)kγ+1,ikγ

− δxQ
ikγ
γ

∥∥∥
V 1/2

. (40)

We now bound each term of the sum in the right hand side. For all initial
distribution ν0 on (Rd,B(Rd)) and i, j ≥ 1, i < j, it follows from Lemma 24,
[22, Theorem 4.1, Chapter 2] and (15):

‖ν0Qi,j
γ − ν0PΓi,j‖2V 1/2 ≤ 2

(
ν0Q

i,j
γ (V ) + ν0PΓi,j (V )

)
KL(ν0Q

i,j
γ |ν0PΓi,j )

≤ 2L2
(
ν0Q

i,j
γ (V ) + ν0PΓi,j (V )

)

× (j − i)

(
γ2d+ (γ3/3) sup

k∈{i,··· ,j}

ν0Q
i,k−1
γ (‖∇U‖2)

)
.

Proposition 7 implies by the proof of [31, Theorem 6.1] that for all y ∈ R
d and

t ≥ 0: PtV (y) ≤ V (y) + β1/2/θ1/2. Then, using Proposition 8, Lemma 1 and
kγ ≥ γ−1 in (40), we get

sup
i∈{1,··· ,qγ}

∥∥∥δxQ(i−1)kγ
γ PΓ(i−1)kγ+1,ikγ

− δxQ
ikγ
γ

∥∥∥
2

V 1/2

≤ 2−1(1 + γ)L2
{
2G(λ, c, V (x)) + β1/2/θ1/2

}

×
{
γd+ 3−1γ2‖∇U‖2V 1/2 G(λ, c, V (x))

}
.

Finally, A can be bounded along the same lines.

4.7. Proof of Theorem 12

Denote for γ > 0, rγ : Rd × R
d → R

d the transition density of Rγ defined for
x, y ∈ R

d by

rγ(x, y) = (4πγ)−1 exp(−(4γ)−1 ‖y − x+ γ∇U(x)‖2) . (41)

For all n ≥ 1, denote by qnγ : Rd × R
d → R

d the transition density associated

with Qn
γ defined by induction by: for all x, y ∈ R

d

q1γ(x, y) = rγ1(x, y) , qn+1
γ (x, y) =

∫

Rd

qnγ (x, z)rγn+1(z, y)dz for n ≥ 1 .

(42)
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Lemma 25. Assume L1. Let (γk)k≥1 be a nonincreasing sequence with γ1 < L.
Then for all n ≥ 1 and x, y ∈ R

d,

qnγ (x, y) ≤
exp

(
2−1(U(x)− U(y))− (2σγ,n)

−1 ‖y − x‖2
)

(2πσγ,n
∏n

i=1(1 − Lγi))d/2
,

where σγ,n =
∑n

i=1 2γi(1− Lγi)
−1.

Proof. Under L1, we have for all x, y ∈ R
d, U(y) ≤ U(x) + 〈∇U(x), y − x〉 +

(L/2) ‖y − x‖2, which implies that for all γ ∈
(
0, L−1

)

rγ(x, y) ≤ (4πγ)−d/2 exp
(
2−1(U(x) − U(y))− (1 − Lγ)(4γ)−1 ‖y − x‖2

)
.

(43)

Then, the proof of the claimed inequality is by induction. By (43), the inequality
holds for n = 1. Now assume that it holds for n ≥ 1. By induction hypothesis
and (43) applied for γ = γn+1, we have

qn+1
γ (x, y) ≤ (4πγn+1)

−d/2

{
2πσγ,n

n∏

i=1

(1 − Lγi)

}−d/2

exp
(
2−1(U(x)− U(y))

)

×
∫

Rd

exp
(
−(2σγ,n)

−1 ‖z − x‖2 − (1− Lγn+1)(4γn+1)
−1 ‖z − y‖2

)
dz

≤ (4πγn+1)
−d/2

{
2πσγ,n

n∏

i=1

(1− Lγi)

}−d/2

(σ−1
γ,n + (1− Lγn+1)/(2γn+1))

−d/2

× (2π)d/2 exp
(
2−1(U(x)− U(y))− (2σγ,n+1)

−1 ‖y − x‖2
)
.

Rearranging terms in the last inequality concludes the proof.

Lemma 26. Assume L1 and H1. Then
∫
Rd e

−U(y)dy ≤ ϑU where

ϑU
def
= eaα

(2π)(d+1)/2(d− 1)!

ηdΓ((d+ 1)/2)
, (44)

and aα is given in (18).

Proof. By Lemma 6, for all x ∈ R
d, U(x) ≥ ρ ‖x− x⋆‖ /(α+1)− aα. Using the

spherical coordinates, we get

∫

Rd

e−U(y)dy ≤ eaα

{
(2π)(d+1)/2/Γ((d+ 1)/2)

}∫ +∞

0

e−ρt/(α+1)td−1dt .

Then the proof is concluded by a straightforward calculation.
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Corollary 27. Assume L1 and H1. Let (γk)k≥1 be a nonincreasing sequence
with γ1 < L. Then for all n ≥ 1 and x ∈ R

d,

Varπ

{
dδxQ

n
γ

dπ

}
≤ (ϑU exp(U(x)))


4π

{
n∏

k=1

(1− Lγk)

}2 n∑

i=1

γi
1− Lγi




−d/2

,

where ϑU is given by (44).

Proof of Theorem 12. We bound the two terms of the right hand side of (10).
The first term is dealt with the same reasoning as for the proof of Theorem 9.
Regarding the second term, by [2, Theorem 1.4], π satisfies a Poincaré inequal-
ity with constant log−1(κ). Then, the claimed bound follows from (22) and
Corollary 27.

4.8. Proof of Proposition 13

Set χ = η/4 and for all x ∈ R
d, φ(x) = (‖x− x⋆‖2+1)1/2 . Since φ is 1-Lipschitz,

we have by the log-Sobolev inequality [7, Theorem 5.5] for all x ∈ R
d,

RγWc(x) ≤ eχRγφ(x)+χ2γ ≤ eχ
√

‖x−γ∇U(x)−x⋆‖2+2γd+1+χ2γ . (45)

Under L1 since U is convex and x⋆ is a minimizer of U , [33, Theorem 2.1.5
Equation (2.1.7)] shows that for all x ∈ R

d,

〈∇U(x), x − x⋆〉 ≥ (2L)−1 ‖∇U(x)‖2 + η ‖x− x⋆‖ 1{‖x−x⋆‖≥Mη} ,

which implies that for all x ∈ R
d and γ ∈

(
0, L−1

]
, we have

‖x− γ∇U(x)− x⋆‖2 ≤ ‖x− x⋆‖2 − 2γη ‖x− x⋆‖ 1{‖x−x⋆‖≥Mη} . (46)

Using this inequality and for all u ∈ [0, 1], (1 − u)1/2 − 1 ≤ −u/2, we have for
all x ∈ R

d, satisfying ‖x− x⋆‖ ≥ Rc = max(1, 2dη−1,Mη),

(
‖x− γ∇U(x)− x⋆‖2 + 2γd+ 1

)1/2
− φ(x)

≤ φ(x)
{(

1− 2γφ−2(x)(η ‖x− x⋆‖ − d)
)1/2 − 1

}

≤ −γφ−1(x)(η ‖x− x⋆‖ − d) ≤ −(ηγ/2) ‖x− x⋆‖φ−1(x) ≤ −2−3/2ηγ .

Combining this inequality and (45), we get for all x ∈ R
d, ‖x− x⋆‖ ≥ Rc,

RγWc(x)/Wc(x) ≤ eγχ(χ−2−3/2η) = λγ .

By (46) and the inequality for all a, b ≥ 0,
√
a+ 1 + b −

√
1 + b ≤ a/2, we get

for all x ∈ R
d,
√
‖x− γ∇U(x)− x⋆‖2 + 2γd+ 1− φ(x) ≤ γd .
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Then using this inequality in (45), we have for all x ∈ R
d,

RγWc(x) ≤ λγWc(x) +
(
eχγ(d+χ) − λγ

)
eη(R

2
c+1)1/2/41B(x⋆,Rc)(x) .

Using the inequality for all t ≥ 0, et − 1 ≤ tet concludes the proof.

4.9. Proof of Corollary 14

We preface the proof by a Lemma.

Lemma 28. Assume L1 and that U is convex. Let (γk)k∈N∗ be a nonincreasing
sequence with γ1 ≤ L−1. For all n ≥ 0 and x ∈ R

d,
∫

Rd

‖y − x⋆‖2Qn
γ (x, dy) ≤

{
4η−1 [1 + log {G(λ, c, γ1,Wc(x))}]

}2
,

where Wc, λ, c are given in (25) and Proposition 13 respectively.

Proof. Let n ≥ 0 and x ∈ R
d. Consider the function φ : R → R defined by

for all t ∈ R, φ(t) = exp
{
(η/4)(t+ (4/η)2)1/2

}
. Since this function is convex

on R+, we have by the Jensen inequality and the inequality for all t ≥ 0,

φ(t) ≤ e1+(η/4)(t+1)1/2 ,

φ

(∫

Rd

‖y − x⋆‖2Qn
γ (x, dy)

)
≤ e1Qn

γWc(x) .

The proof is then completed using Proposition 13, Lemma 1 and that φ is one-

to-one with for all t ≥ 1, φ−1(t) ≤
(
4η−1 log(t)

)2
.

Proof of Corollary 14. Using ∇U(x⋆) = 0, L1 and Lemma 28, we have for all
k ≥ 0,

∫

Rd

‖∇U(y)‖2Qk
γ(x, dy) ≤ L2

(
4η−1 {1 + log {G(λ, c, γ1,Wc(x))}}

)2
.

4.10. Proof of Theorem 15

We preface the proof by a Lemma.

Lemma 29. Assume L1 and that U is convex. Then
∫

Rd

e−U(y)dy ≤
(
(2π)(d+1)/2(d− 1)!

ηdΓ((d+ 1)/2)
+

π
d/2Md

η

Γ(d/2 + 1)

)
. (47)

Proof. By (24) and U(x⋆) = 0, we have
∫

Rd

e−U(y)dy ≤
∫

Rd

e−η‖y−x⋆‖dy +

∫

Rd

1{‖y−x⋆‖≤Mη}dy .

Then the proof is concluded using the spherical coordinates.
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Proof of Theorem 15. By [5, Theorem 1.2], π satisfies a Poincaré inequality with
constant log−1(κ). Therefore, the second term in (10) is dealt as in the proof of
Theorem 12 using (22), Lemma 29 and Lemma 26.

4.11. Proof of Proposition 16

For all x ∈ R
d, we have

A
LWc(x) =

ηWc(x)

4(‖x− x⋆‖2 + 1)1/2

{
(η/4)(‖x− x⋆‖2 + 1)−1/2 ‖x− x⋆‖2

−〈∇U(x), x− x⋆〉 − (‖x− x⋆‖2 + 1)−1 ‖x− x⋆‖2 + d
}
.

By (24), 〈∇U(x), x − x⋆〉 ≥ η ‖x− x⋆‖ for all x ∈ R
d, ‖x− x⋆‖ ≥ Mη. Then,

for all x, ‖x− x⋆‖ ≥ K = max(Mη, 4d/η, 1), A LWc(x) ≤ −(η2/8)Wc(x). In
addition, since U is convex and ∇U(x⋆) = 0, for all x ∈ R

d, 〈∇U(x), x − x⋆〉 ≥ 0
and we get sup{x∈E} A LWc(x) ≤ β.

4.12. Proof of Proposition 20

Under L1, using that ∇U(x⋆) = 0, we get for all x ∈ R
d,

∫

Rd

‖y − x⋆‖2Rγ(x, dy) = ‖x− x⋆ + γ(∇U(x⋆)−∇U(x))‖2 + 2γd

≤ (1 + (Lγ)2) ‖x− x⋆‖2 − 2γ 〈∇U(x) −∇U(x⋆), x − x⋆〉+ 2γd . (48)

Then for all x ∈ R
d, ‖x− x⋆‖ ≥Ms, we get using for all t ≥ 0, 1− t ≤ e−t

∫

Rd

‖y − x⋆‖2Rγ(x, dy) ≤ λ
γ ‖x− x⋆‖2 + 2γd .

Using again (48) and the convexity of U , it yields for all x ∈ R
d, ‖x− x⋆‖ ≤Ms,

∫

Rd

‖y − x⋆‖2Rγ(x, dy) ≤ γc ,

which concludes the proof.

4.13. Proof of Proposition 22

We preface the proof by a lemma.

Lemma 30. Assume H4. Then, for all x ∈ R
d,

‖x− γ∇U(x)− x⋆1‖2 ≤ (1 −̟γ/2) ‖x− x⋆1‖2 + γ(γ + 2̟−1) ‖∇U2‖2∞ .
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Proof. Using that for all y, z ∈ R
d, ‖y + z‖2 ≤ (1+̟γ/2) ‖y‖2+(1+2(̟γ)−1) ‖z‖2,

we get under H4-(b):

‖x− γ∇U(x)− x⋆1‖
2 ≤ (1 +̟γ/2) ‖x− γ∇U1(x) − x⋆1‖

2

+ γ(γ + 2̟−1) ‖∇U2‖2∞ . (49)

By [33, Theorem 2.1.12, Theorem 2.1.9], H4-(b) implies that for all x, y ∈ R
d:

〈∇U1(y)−∇U1(x), y − x〉 ≥ (̟/2) ‖y − x‖2 + 1

m+ L1
‖∇U1(y)−∇U1(x)‖2 ,

Using this inequality and ∇U1(x
⋆
1) = 0 in (49) concludes the proof.

Proof of Proposition 22. For any γ ∈ (0, 2/(m+ L1)), we have for all x ∈ R
d:

∫

Rd

‖y − x⋆1‖2Rγ(x, dy) = ‖x− γ∇U(x)− x⋆1‖2 + 2γd

≤ (1−̟γ/2) ‖x− x⋆1‖
2
+ γ

{
(γ + 2̟−1) ‖∇U2‖2∞ + 2d

}
,

where we have used Lemma 30 for the last inequality. Since γ1 ≤ 2/(m+L1) and
(γk)k≥1 is nonincreasing, by a straightforward induction, for p ≥ 1 and x ∈ R

d,

∫

Rd

‖y − x⋆1‖
2
Qp

γ(x, dy) ≤
p∏

k=1

(1−̟γk/2) ‖x− x⋆1‖
2

+ ((γ1 + 2̟−1) ‖∇U2‖2∞ + 2d)

p∑

i=n

p∏

k=i+1

(1−̟γk/2)γi . (50)

Consider the second term in the right hand side of (50). Since γ1 ≤ 2/(m+L1),
m ≤ L1 and (γk)k≥1 is nonincreasing, maxk≥1 γk ≤ ̟−1 and therefore:

p∑

i=n

p∏

k=i+1

(1−̟γk/2)γi

≤ ̟−1

p∑

i=n

{
p∏

k=i+1

(1−̟γk/2)−
p∏

k=i

(1−̟γk/2)

}
≤ 2̟−1 .

4.14. Proof of Theorem 23

We preface the proof of the Theorem by a preliminary lemma.

Lemma 31. Assume H4. Let γ ∈ (0, 2/(m+ L1)), then for all x ∈ R
d,

Entπ

(
dδxRγ

dπ

)
≤ (L1/2)

{
(1−̟γ/2) ‖x− x⋆1‖

2
+ γ(γ + 2̟−1) ‖∇U2‖2∞

}

+ oscRd(U2)− (d/2)(1 + log(2γm)− 2L1γ) .
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Proof. Let γ ∈ (0, 2/(m+ L1)) and rγ be the transition density of Rγ given
by (41). Under H4-(a) by [33, Theorems 2.1.8-2.1.9], we have for all x ∈ R

d,

U1(x) ≤ U1(x
⋆
1) + (L1/2) ‖x− x⋆1‖2 Therefore we have for all x ∈ R

d

Entπ

(
dδxRγ

dπ

)
=

∫

Rd

log(rγ(x, y)/π(y))rγ(x, y)dx

≤ Rγψ(x) − (d/2)(1 + log(4πγ)) , (51)

where ψ : Rd → R is the function defined for all y ∈ R
d by

ψ(y) = U2(y) + U1(x
⋆
1) + (L1/2) ‖y − x⋆1‖2 + log

(∫

Rd

e−U(z)dz

)
.

By H4-(b) and Lemma 30, we get for all x ∈ R
d:

Rγψ(x) ≤ (L1/2) ‖x− γ∇U(x)− x⋆1‖2 + log

(∫

Rd

e−U1(z)+U1(x
⋆
1)dz

)

+ oscRd(U2) + dL1γ

≤ (L1/2)
{
(1 −̟γ/2) ‖x− x⋆1‖2 + γ(γ + 2̟−1) ‖∇U2‖2∞

}

+ oscRd(U2) + dL1γ .

Plugging this bound in (51) gives the desired result.

Proof of Theorem 23. We first deal with the second term in the right hand side
of (10). Under H 4, [4, Corollary 5.7.2] and the Holley-Stroock perturbation
principle [19, p. 1184] show that π satisfies a log-Sobolev inequality with constant
CLS = − log−1(κ). So by (32) we have

‖δxQn
γPt − π‖TV ≤ κt

{
2Entπ

(
dδxQ

n
γ

dπ

)}1/2

.

We now bound Entπ
(
dδxQ

n
γ/dπ

)
which will imply the upper bound of C(δxQ

n
γ ).

We proceed by induction. For n = 1, it is Lemma 31. For n ≥ 2, by (42) and
the Jensen inequality applied to the convex function t 7→ t log(t), we have for
all x ∈ R

d and n ≥ 1,

Entπ
(
dδxQ

n
γ/dπ

)

=

∫

Rd

log

{
π−1(y)

∫

Rd

qn−1
γ (x, z)rγn(z, y)dz

}∫

Rd

qn−1
γ (x, z)rγn(z, y)dzdy

≤
∫

Rd

∫

Rd

log
{
rγn(z, y)π

−1(y)
}
qn−1
γ (x, z)rγn(z, y)dzdy . (52)

Using Fubini’s theorem, Lemma 31, Proposition 22, and the inequality t ≥ 0,
1− t ≤ e−t in (52) implies the bound of C(δxQ

n
γ ).

Finally, A(γ, x) is bounded using the inequality for all y, z ∈ R
d, ‖y + z‖2 ≤

2(‖y‖2 + ‖z‖2), H4 and Proposition 22.
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5. Quantitative convergence bounds in total variation for diffusions

In this part, we derived quantitative convergence results in total variation norm
for d-dimensional SDEs of the form

dXt = b(Xt)dt+ dBd
t , (53)

started at X0, where (B
d
t )t≥0 is a d-dimensional standard Brownian motion and

b : Rd → R
d satisfies the following assumptions.

G1. b is Lipschitz and for all x, y ∈ R
d, 〈b(x) − b(y), x− y〉 ≤ 0.

Under G1, [20, Theorems 2.4-3.1-6.1, Chapter IV] imply that there exists a
unique solution (Xt)t≥0 to (53) for all initial point x ∈ R

d, which is strongly
Markovian. Denote by (Pt)t≥0 the transition semigroup associated with (53).
To derive explicit bound for ‖Pt(x, ·) − Pt(y, ·)‖TV, we use the coupling by
reflection, introduced in [27] to show convergence in total variation norm for
solution of SDE, and recently used by [15] to obtain exponential convergence in
the Wasserstein distance of order 1. This coupling is defined as (see [10, Example
3.7]) the unique strong Markovian process (Xt,Yt)t≥0 on R

2d, solving the SDE:
{
dXt = b(Xt)dt+ dBd

t

dYt = b(Yt)dt+ (Id−2ete
T
t )dB

d
t ,

where et = e(Xt −Yt) (54)

with e(z) = z/ ‖z‖ for z 6= 0 and e(0) = 0 otherwise. Define the coupling time

τc = inf{s ≥ 0 | Xs 6= Ys} . (55)

By construction Xt = Yt for t ≥ τc. We denote in the sequel by P̃(x,y) and

Ẽ(x,y) the probability and the expectation associated with the SDE (54) started

at (x, y) ∈ R
2d on the canonical space of continuous function from R+ to R

2d.

We denote by (F̃t)t≥0 the canonical filtration. Since B̄d
t =

∫ t

0 (Id−2ese
T
s )dB

d
s is

a d-dimensional Brownian motion, the marginal processes (Xt)t≥0 and (Yt)t≥0

are under P̃(x,y) weak solutions to (53) started at x and y respectively. The
results in [27] are derived under less stringent conditions than G1, but do not
provide quantitative estimates.

Proposition 32 ([27, Example 5]). Assume G 1 and let (Xt,Yt)t≥0 be the
solution of (54). Then for all t ≥ 0 and x, y ∈ R

d, we have

P̃(x,y) (τc > t) = P̃(x,y) (Xt 6= Yt) ≤ 2

(
Φ

{(
2t1/2

)−1

‖x− y‖
}
− 1/2

)
.

Proof. For t < τc, Xt −Yt is the solution of the SDE

d{Xt −Yt} = {b(Xt)− b(Yt)} dt+ 2etdB
1
t ,

where B1
t =

∫ t

0 1{s<τc}e
T
s dB

d
s . Using the Itô’s formula and G1, we have for all

t < τc,

‖Xt −Yt‖ = ‖x− y‖+
∫ t

0

〈b(Xs)− b(Ys), es〉ds+ 2B1
t ≤ ‖x− y‖+ 2B1

t .
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Therefore, for all x, y ∈ R
d and t ≥ 0, we get

P̃(x,y) (τc > t) ≤ P̃(x,y)

(
min
0≤s≤t

B1
s ≥ ‖x− y‖ /2

)

= P̃(x,y)

(
max
0≤s≤t

B1
s ≤ ‖x− y‖ /2

)
= P̃(x,y)

(
|B1

t | ≤ ‖x− y‖ /2
)
,

where we have used the reflection principle in the last identity.

Define for R > 0 the set ∆R = {x, y ∈ R
d | ‖x− y‖ ≤ R}. Proposition 32

and Lindvall’s inequality give that, for all ǫ ∈ (0, 1) and t ≥ ω(ǫ, R),

sup
(x,y)∈∆R

‖Pt(x, ·)−Pt(y, ·)‖TV ≤ 2(1− ǫ) , (56)

where ω is defined in (29). To obtain quantitative exponential bounds in total
variation for any x, y ∈ R

d, it is required to control some exponential moments
of the successive return times to ∆R. This is first achieved by using a drift
condition for the generator A associated with the SDE (53) defined for all
f ∈ C2(Rd) by

A f = 〈b,∇f〉+ (1/2)∆f .

Consider the following assumption:

G2. (i) There exist a twice continuously differentiable function V : Rd 7→
[1,∞) and constants θ > 0, β ≥ 0 such that

A V ≤ −θV + β . (57)

(ii) There exists δ > 0 and R > 0 such that Θ ⊂ ∆R where

Θ = {(x, y) ∈ R
2d | V (x) + V (y) ≤ 2θ−1β + δ} . (58)

For t > 0, and G a closed subset of R2d, define by TG,t
1 the first return time

to G delayed by t:

TG,t
1 = inf {s ≥ t | (Xs,Ys) ∈ G} .

For j ≥ 2, define recursively the j-th return time to G delayed by t by

TG,t
j = inf{s ≥ TG,t

j−1 + t | (Xs,Ys) ∈ G} = TG,t
j−1 +TG,t

1 ◦ STG,t
j−1

, (59)

where S is the shift operator on the canonical space. By [16, Proposition 1.5

Chapter 2], the sequence (TG,t
j )j≥1 is a sequence of stopping time with respect

to (F̃t)t≥0.

Proposition 33. Assume G1 and G2. For all x, y ∈ R
d, ǫ ∈ (0, 1) and j ≥ 1,

we have

Ẽ(x,y)

[
eθ̃T

Θ,ω(ǫ,R)
j

]
≤ {K(ǫ)}j−1

{
(1/2)(V (x) + V (y)) + eθ̃ω(ǫ,R)θ̃−1β

}
,

θ̃ = θ2δ(2β + θδ)−1 , K(ǫ) = θ̃−1β
(
1 + eθ̃ω(ǫ,R)

)
+ δ/2 , (60)

where ω is defined in (29).
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Proof. For notational simplicity, set Tj = T
Θ,ω(ǫ,R)
j . Note that for all x, y ∈ R

d,

A V (x) + A V (y) ≤ −θ̃(V (x) + V (y)) + 2β1Θ(x, y) .
Then by the Dynkin formula (see e.g. [32, Eq. (8)]) the process

t 7→ (1/2)eθ̃(T1∧t) {V (XT1∧t) + V (YT1∧t)} , t ≥ ω(ǫ,R) ,

is a positive supermartingale. Using the optional stopping theorem and the

Markov property, we have, using that for all t ≥ 0 Ẽ(x,y)

[
eθ̃tV (Xt)

]
≤ V (x) +

βθ̃−1eθ̃t,

Ẽ(x,y)

[
eθ̃T1

]
≤ (1/2)(V (x) + V (y)) + eθ̃ω(ǫ,R)θ̃−1β .

The result then follows from this inequality and the strong Markov property.

Theorem 34. Assume G1 and G2. Then for all ǫ ∈ (0, 1), t ≥ 0 and x, y ∈ R
d,

‖Pt(x, ·) −Pt(y, ·)‖TV ≤ 2e−θ̃t/2
{
(1/2)(V (x) + V (y)) + eθ̃ω(ǫ,R)θ̃−1β

}
+ 4κt ,

where ω is defined in (29), θ̃,K(ǫ) in (60) and

log(κ) = (θ̃/2) log(1− ǫ){log(K(ǫ))− log(1− ǫ)}−1 .

Proof. Let x, y ∈ R
d and t ≥ 0. For all ℓ ≥ 1 and ǫ ∈ (0, 1),

P̃(x,y) (τc > t) ≤ P̃(x,y) (τc > t,Tℓ ≤ t) + P̃(x,y) (Tℓ > t) , (61)

where Tℓ = T
Θ,ω(ǫ,R)
ℓ . We now bound the two terms in the right hand side of

this equation. For the first term, since Θ ⊂ ∆R, by (56), we have conditioning

successively on F̃Tj , for j = ℓ, . . . , 1, and using the strong Markov property,

P̃(x,y) (τc > t,Tℓ ≤ t) ≤ (1− ǫ)ℓ . (62)

For the second term, using Proposition 33 and the Markov inequality, we get

P̃(x,y) (Tℓ > t) ≤ P̃(x,y) (T1 > t/2) + P̃(x,y) (Tℓ − T1 > t/2)

≤ e−θ̃t/2
{
(1/2)(V (x) + V (y)) + eθ̃ω(ǫ,R)θ̃−1β

}
+ e−θ̃t/2{K(ǫ)}ℓ−1 .

The proof is completed combining this inequality and (62) in (61) and taking

ℓ =
⌈
2−1θ̃t

/
(log(K(ǫ))− log(1 − ǫ))

⌉
.

More precise bounds can be obtained under more stringent assumption on
the drift b; see [6] and [15].

G3. There exist M̃s ≥ 1 and m̃s > 0, such that for all x, y ∈ R
d, ‖x− y‖ ≥ M̃s,

〈b(x)− b(y), x− y〉 ≤ −m̃s ‖x− y‖2 .
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Proposition 35. Assume G1 and G3.

(a) For all x, y ∈ R
d and ǫ ∈ (0, 1)

Ẽ(x,y)

[
exp

(
m̃s

2

(
τc ∧ T

∆M̃s
,ω(ǫ,M̃s)

1

))]
≤ 1 + ‖x− y‖+ (1 + M̃s)e

m̃sω(ǫ,M̃s)/2 .

(b) For all x, y ∈ R
d, ǫ ∈ (0, 1) and j ≥ 1

Ẽ(x,y)

[
exp

(
(m̃s/2)

(
τc ∧ T

∆M̃s
,ω(ǫ,M̃s)

j

))]

≤ {D(ǫ)}j−1
{
1 + ‖x− y‖+ (1 + M̃s)e

m̃sω(ǫ,M̃s)/2
}
,

D(ǫ) = (1 + em̃sω(ǫ,M̃s)/2)(1 + M̃s) , (63)

where ω is given in (29).

Proof. In the proof, we set Tj = T
∆M̃s

,ω(ǫ,M̃s)

j .

(a) Consider the sequence of increasing stopping time

τk = inf{t > 0 | ‖Xt −Yt‖ 6∈
[
k−1, k

]
} , k ≥ 1 ,

and set ζk = τk ∧T1. We derive a bound on Ẽ(x,y)[exp{(m̃s/2)ζk}] independent
on k. Since limk→+∞ ↑ τk = τc almost surely, the monotone convergence theo-
rem implies that the same bound holds for Ẽ(x,y)[exp{(m̃s/2)(τc∧T1)}]. Set now
Ws(x, y) = 1+ ‖x− y‖. Since Ws ≥ 1 and τc <∞ a.s by Proposition 32, it suf-
fices to give a bound on Ẽ(x,y)[exp{(m̃s/2)ζk}Ws(Xζk ,Yζk)]. By Itô’s formula,
we have for all v, t ≤ τc, v ≤ t

em̃st/2Ws(Xt,Yt) = em̃sv/2Ws(Xv,Yv) + (m̃s/2)

∫ t

v

em̃su/2Ws(Xu,Yu)du

+

∫ t

v

em̃su/2 〈b(Xu)− b(Yu), eu〉du+ 2

∫ t

v

em̃su/2dB1
u . (64)

Using G3(b), we have for all k ≥ 1 and ts = ω(ǫ, M̃s) ≤ v ≤ t

e(m̃s/2)(ζk∧t)Ws(Xζk∧t,Yζk∧t) ≤ e(m̃s/2)(ζk∧v)Ws(Xζk∧v,Yζk∧v)

+ 2

∫ ζk∧t

ζk∧v

em̃su/2dB1
u .

So the process

{exp ((m̃s/2)(ζk ∧ t))Ws(Xζk∧t,Yζk∧t)}t≥ts
,

is a positive supermartingale and by the optional stopping theorem, we get

Ẽ(x,y)

[
e(m̃s/2)ζkWs(Xζk ,Yζk)

]
≤ Ẽ(x,y)

[
e(m̃s/2)(τk∧ts)Ws(Xτk∧ts ,Yτk∧ts)

]
,

(65)
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where we used that ζk ∧ ts = τk ∧ ts. By (64), G1 and G3, we have

Ẽ(x,y)

[
e(m̃s/2)(τk∧ts)Ws(Xτk∧ts ,Yτk∧ts)

]
≤ Ws(x, y) + (1 + M̃s)e

m̃sts/2 ,

and (65) becomes

Ẽ(x,y)

[
e(m̃s/2)ζkWs(Xζk ,Yζk)

]
≤ Ws(x, y) + (1 + M̃s)e

m̃sts/2 .

(b) The proof is by induction. The case j = 1 has been established above.
Now let j ≥ 2. Since on the event {τc > Tj−1}, we have

τc ∧ Tj = Tj−1 + (τc ∧ T1) ◦ STj−1 ,

where S is the shift operator, we have conditioning on F̃Tj−1 , using the strong
Markov property, Proposition 32 and the first part,

Ẽ(x,y)

[1{τc>Tj−1}e
(m̃s/2)(τc∧Tj)

]
≤ D(ǫ) Ẽ(x,y)

[1{τc>Tj−1}e
(m̃s/2)Tj−1

]
.

Then the proof follows since D(ǫ) ≥ 1.

Theorem 36. Assume G1 and G3. Then for all ǫ ∈ (0, 1), t ≥ 0 and x, y ∈ R
d,

‖Pt(x, ·) −Pt(y, ·)‖TV ≤ 2
{
(1− ǫ)−1 + 1 + ‖x− y‖

}
κt

log(κ) = (m̃s/2) log(1− ǫ)(log(D(ǫ))− log(1− ǫ))−1 ,

where D(ǫ) is defined in (63).

Proof. The proof is along the same lines as Theorem 34. Set Tj = T
∆M̃s

,ω(ǫ,M̃s)

j

for j ≥ 1. Let x, y ∈ R
d and t ≥ 0. For all ℓ ≥ 1 and ǫ ∈ (0, 1),

P̃(x,y) (τc > t) ≤ P̃(x,y) (τc > t,Tℓ ≤ t) + P̃(x,y) (Tℓ ∧ τc > t) . (66)

For the first term, by (56) we have conditioning successively on F̃Tj , for j =
ℓ, · · · , 1, and using the strong Markov property,

P̃(x,y) (τc > t,Tℓ ≤ t) ≤ (1− ǫ)ℓ . (67)

For the second term, using Proposition 35-(b) and the Markov inequality, we
get

P̃(x,y) (Tℓ ∧ τc > t) ≤ e−
m̃st
2 {D(ǫ)}ℓ−1

{
1 + ‖x− y‖+ (1 + M̃s)e

m̃sω(ǫ,M̃s)
2

}
.

(68)
Taking ℓ =

⌊
(m̃st/2)

/
(log(D(ǫ))− log(1− ǫ))

⌋
and combining (67)-(68) in (66)

concludes the proof.
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5.1. Proof of Theorem 17 and Theorem 21

Recall that (Pt)t≥0 is the Markov semigroup of the Langevin equation associated
with U and let A L be the corresponding generator. Since (Pt)t≥0 is reversible
with respect to π, we deduce from Theorem 34 and Theorem 36 quantitative
bounds for the exponential convergence of (Pt)t≥0 to π in total variation noting
that if (Yt)t≥0 is a solution of (1), then (Yt/2)t≥0 is a weak solution of the
rescaled Langevin diffusion:

dỸt = −(1/2)∇U(Ỹt)dt+ dBd
t . (69)

Proof of Theorem 17. Since the generator associated with the SDE (69) is (1/2)A L,
Proposition 16 shows that (57) holds for Wc with constants θ/2 and β/2. Using
that for all a1, a2 ∈ R, e(a1+a2)/2 ≤ (1/2)(ea1 +ea2), G2-(ii) holds for δ = 2θ−1β
and R = (8/η) log(4θ−1β). By Theorem 34 with ǫ = 1/2, we get for all x, y ∈ R

d

and t ≥ 0

‖Pt(x, ·)− Pt(y, ·)‖TV ≤ 4̟t

+ 2e−θt/4
{
(1/2)(Wc(x) +Wc(y)) + 2θ−1βe4θ

−1ω(2−1,(8/η) log(4θ−1β))
}
, (70)

where̟ is defined in (30a). By [32, Theorem 4.3-(ii)], (57) implies that
∫
Rd Wc(y)π(dy) ≤

βθ−1. The proof is then concluded using this bound, (70) and that π is invariant
for (Pt)t≥0

Proof of Theorem 21. By applying Theorem 36 with ǫ = 1/2, the triangle in-
equality and using that π is invariant for (Pt)t≥0, we have

‖Pt(x, ·) − π‖TV ≤ 2

{
3 + ‖x− x⋆‖+

∫

Rd

‖y − x⋆‖ dπ(y)
}
κt .

It remains to show that
∫
Rd ‖y − x⋆‖ dπ(y) ≤ (d/m + M2

s )
1/2. For this, we

establish a drift inequality for the generator A L of the Langevin SDE associated
with U . Consider the functionWs(x) = ‖x− x⋆‖2. For all x ∈ R

d, we have using
∇U(x⋆) = 0,

A
LWs(x) ≤ 2(d− 〈∇U(x)−∇U(x⋆), x− x⋆〉) .

Therefore by G3, for all x ∈ R
d, ‖x− x⋆‖ ≥Ms, we get

A
LWs(x) ≤ −2mWs(x) + 2d ,

and for all x ∈ R
d,

A
LWs(x) ≤ −2mWs(x) + 2(d+mM2

s ) .

By [32, Theorem 4.3-(ii)], we get
∫
Rd Ws(y)dπ(y) ≤ d/m+M2

s . The bound on
C(δxQ

n
γ ) is a consequence of the Cauchy-Schwarz inequality, Proposition 20 and

Lemma 1. The bound for A(γ, x) similarly follows from L1, Proposition 20 and
Lemma 1.
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