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Numerical Modelling of Soft Tissue Injury Due to Impact 

Z.W. Chen, P. Joli, J.M. Cros, and Z.Q. Feng 

LME-Evry, Université d’Evry/PRES UniverSud Paris, 40 rue du Pelvoux, 91020 Evry, France 

Abstract— Soft tissue injuries due to impact loading are a 
major health problem. The objective of this study was to simu-
late the impact of projectiles onto human body area and to 
show the validity of the model developed, based on a finite 
element model of the flash-ball impact on the human leg. To 
determine realistically the strain and stress in the biological 
soft tissues, anisotropic hyperelastic constitutive laws are nec-
essary in the context of finite element analysis. The contact 
between impacting bodies is solved by the bi-potential method 
which consists of projecting the displacement equations onto 
the constraining directions associated to contact points. The 
time integration of the equation of motion is achieved by 
means of a first order algorithm. The algorithm is imple-
mented into the finite element code FER/Impact using C++ 
Object Oriented Programming techniques. 

Keywords— Impact, Soft tissue, Injury, Hyperelasticity, Fi-
nite element. 

I.   INTRODUCTION

A quantitative evaluation of soft tissue injury due to im-
pact loading is of general interest. Hemorrhage and edema 
are the usual sequels to traumatic pulmonary impact. To 
gain some quantitative understanding of the phenomena, we 
propose a numerical approach to simulate the impact of 
projectiles onto the human body area. In such a context of 
simulation, there is an ongoing quest for realistic visual 
deformation of soft tissues and faster algorithms to solve 
multiple contact forces while controlling the numerical 
stability of the solution. A computational efficient simula-
tion relies on three optimized numerical “black boxes”, the 
first one to detect the potential contact points (collision 
detector), the second one to solve the nodal displacements 
of the soft tissues (displacement solver) and the third one to 
solve the multiple frictional contact forces (contact solver). 

To determine realistically the strain and stress in the bio-
logical soft tissues such as ligaments, tendons or arterial 
walls, anisotropic hyperelastic constitutive laws are neces-
sary in the context of finite element analysis. Most energy 
densities used to model transversely isotropic and 
orthotropic soft tissues take a power law form [1] or present 
an exponential behavior [2, 3]. It is usually assumed that 
anisotropy is due to the collagen fibers behavior [4] while 
the ground substance, or matrix, behaves in an isotropic 
manner. 

The contact between impacting bodies is solved by the 
bi-potential method [5] which consists of projecting the 
displacement equations onto the constraining directions 
associated to contact points. The contact laws (Signorini 
and Coulomb) are formulated from an augmented Lagran-
gian formulation (bi-potential formulation) and computed 
by Uzawa or Newton techniques which lead to an iterative 
predictor/corrector process. The advantage of this method is 
to separate the contact solver from the displacement solver. 

The time integration of the equation of motion is 
achieved by means of a first order algorithm. The algorithm 
is implemented into the finite element code FER/Impact [6] 
using C++ Object Oriented Programming techniques. 

One numerical example is performed in this study to 
show the validity of the model developed. This example 
concerns the flash-ball impact on the human leg. 

II. HGO HYPERELASTIC MODEL

To determine the strain and stress in the biological soft 
tissues such as ligaments, tendons, pelvic organs or arterial 
walls, anisotropic hyperelastic constitutive laws are often 
used in the context of finite element analysis. The most used 
strain-energy functions take a power law form or present an 
exponential behavior. More recently, Balzani et al. [7] have 
proposed polyconvex strain energy functions combining an 
exponential form with a power law to take care of the tis-
sues behavior in the low load domain. More realistic models 
have been also recently developed to capture the inter-fiber 
angle change by adding to the strain energy the contribution 
of the fiber-matrix shear interaction [8]. In general, the 
anisotropy can be represented via the introduction of a so-
called structural tensor, which allows a coordinate-invariant 
formulation of the constitutive [9–11]. It is usually assumed 
that anisotropy is due to the collagen fibers behavior [4], 
while the ground substance, or matrix, behaves in an iso-
tropic manner, so the energy densities modeling trans-
versely isotropic and orthotropic soft tissues are separated 
into isotropic and anisotropic parts [7,12].  
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Each anisotropic density a
aniW  refers to a preferred direction 

of the material. The number  fiber family. n is the number of 
fibers. To model the embedded collagen fibers of soft bio-
logical arterial tissues, the HGO (Holzapfel, Gasser, Ogden) 
constitutive law [3, 4] superposes two transversely isotropic 
energies corresponding to two fiber families: 
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where J4 denotes the fibre stretch. The HGO model has 
been implemented into an in-house finite element code FER 
[13, 14].  

III. CONTACT MODELING 

Without going into details, after spatial and temporal dis-
cretization, non linear problems involving contacts are gov-
erned by the following nodal algebraic equations defined at 
each time step: 

( ) ( ) 0i e cF U F t F+ + =  (3) 

where Fi is the vector of internal forces, Fe denotes the 
vector of external loads and Fc the vector of contact ac-
tion/reaction forces. These equations are strongly non-linear 
with respect to the nodal displacements U, because of finite 
strains, large displacements of solids and the contact phe-
nomenon (irreversibility of frictional effects).  

A typical solution procedure for this type of non-linear 
analysis is obtained by using the Newton–Raphson iterative 
procedure: 
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 is the tangential matrix (including mass and 

stiffness matrix) and ( ) ( )i i eF F U F t= + . 
The gap vector between two bodies  Ω1 and Ω2 in the 

global coordinates system is defined by: 
1 1 1

1 2 0
i i i

c cX U U X+ + += − +   (5)  

where 1cU  (resp. 1cU ) is the displacement vector of the 
contact node of  Ω1 (resp. Ω2) and  X0  is the initial gap vec-
tor. The equation (7) can be easily transformed as follows:

1 1
0

i iX CU X+ += +   (6) 
Where C is a condensation matrix. 

By the virtual work principle, we have: 
T T T

c cR X F U F C Rδ δ= ⇒ =    (7) 

where  R represents the nodal contact forces in the global 
reference frame (X, Y, Z) . By combining equations (4), (6) 
and (7), we obtain : 

1i
FX W R U+ = + (8) 

with 
1 1

0;T i
FW CK C X CK F CU X− −= = + +

Let Q be the rotation matrix between the local frame 
( 1 2T ,T ,N ) (Fig.1).and  (X, Y, Z) . Let x and r be respec-
tively the gap vector and the contact force vector in the local 
frame. Equation (8) may be written in the local frame: 

Fig. 1 The gap between two contact points 

fx wr x= + (9) 

where : 1;  ;  ;  .i T
f fx QX r QR x QX w Q WQ+= = = =  

For the following, let xn  be the algebraic value of the 
normal gap, xt the tangential part of the gap vector, rn the 
algebraic value of the normal contact force and rt the tan-
gential part of the contact force vector. 

The complete contact law (Signorini conditions + Cou-
lomb friction laws) is  a complex non-smooth dissipative 
law including three statuses: 

No contact : 0nx >  and  r=0 

Contact with sticking : 0tx = and int( )r Kμ∈   (10) 

Contact with sliding : ( )r bd Kμ∈ with t
t n

t

xr r
x

μ= −

where int( )Kμ and ( )bd Kμ denote the interior and the 
boundary of the so-called coulomb cone  respectively. 
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DeSaxe and Feng [15] have proposed an augmented La-
grangian formulation of the contact derived from a bipoten-
tial function as follows: 

* * *; tr r x x x x Nρ μ= − = +   (11)
They have demonstrated  that the three possible contact 
statuses as mentioned in Equation (10) can be stated from 
the following  projection operator:  if *r Kμ∈  (contact

with sticking) then *r r= , if * *r Kμ∈ (separating) then 

0r = and if  * 3 *( )r K Kμ μ∈ − ∪¡  (contact with sliding) 

then r is the orthogonal projection of r*onto Kμ . *Kμ  is 

the polar cone of . Kμ  (Fig.2).

Fig. 2 The Coulomb cone and contact projection operators 

Consequently, the projection operation can be explicitly 
defined by: 
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The contact solving problem is defined by: 

*
KProj ( )

fx wr x

r rμ

= +⎧⎪
⎨

=⎪⎩
(13) 

where the unknowns are  and x r . The solution can be 
done by using Uzawa or Newton techniques. Interested 
readers could find more details in [5].  

IV. FINITE ELEMENT MODELLING 

As a prerequisite of the 3D FE model, a pre-processing 
step is accomplished including the main following tasks: 
first, the constitutive laws of the soft tissues are identified. 

The 3D human leg geometries are next identified: the data 
are acquired with CT scans. The CT images are further 
delineated in order to identify the leg’s boundaries, the 
curves and 3D surfaces are generated.  

The finite element discretization includes 2384 eight-
node hexahedral elements and 3418 nodes (see Fig.1); 
thereafter, the set of nodes and elements is transferred to the 
finite element code FER/Impact, the results are showed in 
the post-processor FER/View. 

This problem concerns the impact of a hollow flash-ball 
made of Mooney-Rivlin rubber materials into the human leg 
of HGO model. The radius of the ball is: R = 0.015m. The 
initial impact velocity of the ball is: v = 100 m/s.  Fig. 2 
shows the distribution of the von Mises stress during the 
impact. It is noted that the concentration is localized in the 
impact zone as expected.  

Fig. 3 Initial configuration and mesh 

Fig. 4 Distribution of the von Mises stress 
(t=2.5e-5; t=5e-5; t=7.5e-5; t=1e-4) 
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V.   CONCLUSIONS  

As we can see in figure 4, we have succeeded to simulate 
efficiently an impact between two hyperelastic bodies. One 
is a soft tissue and the other is a rubber material.  It is possi-
ble to simulate a great variety of injuries such as a flash ball 
impact in different parts of the human body. This is a first 
step which opens many perspectives and can propose a tool 
to help physicians to characterize injuries such as bruises. 
With this tool, it is possible to have a good idea of the im-
pact force, the dimension of impact surface, the deepness of 
significant stresses, the energy absorbed by the soft tissue. 
Of course a lot of problems remain to be solved to have 
simulations close to reality  such as : 

- having quantitative measurements of the mechanical 
properties of biological tissues in vivo. 

- improving the modelling of soft tissue by taking into 
account  the water content in the tissue which affects its 
mechanical properties. The water content in the tissue is 
also a major factor which determines the thickness of the 
top layer of the skin. 
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