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Abstract

This paper presents a new algorithm that reduces multivalued consensus to binary consensus in an asyn-
chronous message-passing system made up ofn processes where up tot may commit Byzantine failures. This
algorithm has the following noteworthy properties: it assumest < n/3 (and is consequently optimal from a
resilience point of view), usesO(n2) messages, has a constant time complexity, and does not use signatures.
The design of this reduction algorithm relies on two new all-to-all communication abstractions. The first one
allows the non-faulty processes to reduce the number of proposed values toc, wherec is a small constant.
The second communication abstraction allows each non-faulty process to compute a set of (proposed) values
such that, if the set of a non-faulty process contains a single value, then this value belongs to the set of any
non-faulty process. Both communication abstractions haveanO(n2) message complexity and a constant time
complexity. The reduction of multivalued Byzantine consensus to binary Byzantine consensus is then a simple
sequential use of these communication abstractions. To thebest of our knowledge, this is the first asynchronous
message-passing algorithm that reduces multivalued consensus to binary consensus withO(n2) messages and
constant time complexity (measured with the longest causalchain of messages) in the presence of up tot < n/3
Byzantine processes, and without using cryptography techniques. Moreover, this reduction algorithm tolerates
message re-ordering by Byzantine processes.

Keywords: Asynchronous message-passing system, Broadcast abstraction, Byzantine process, Consensus, Dis-
tributed algorithm, Intrusion tolerance, Multivalued consensus, Optimal resilience, Randomized binary consen-
sus, Signature-free algorithm.



1 Introduction

Consensus in asynchronous Byzantine systemsThe consensus problem lies at the center of fault-tolerant
distributed computing. Assuming that each non-faulty process proposes avalue, its formulation is particularly
simple, namely, each non-faulty process decides a value (termination), the non-faulty processes decide the same
value (agreement), and the decided value is related to the proposed values(validity); the way the decided value
is related to the proposed values depends on the failure model. Consensusis binary when only two values can be
proposed by the processes, otherwise it is multivalued.

Byzantine failures were introduced in the context of synchronous distributed systems [17, 27, 30], and then
investigated in the context of asynchronous distributed systems [2, 19, 29]. A process has aByzantinebehavior (or
commits a Byzantine failure) when it arbitrarily deviates from its intended behavior: it then commits a Byzantine
failure (otherwise we say it isnon-faulty). This bad behavior can be intentional (malicious) or simply the result of
a transient fault that altered the local state of a process, thereby modifying its behavior in an unpredictable way.

Several validity properties have been considered for Byzantine consensus. This paper considers the following
one: a decided value is a value that was proposed by a non-faulty process or a default value denoted⊥. Moreover,
to prevent trivial or useless solutions, if all the non-faulty processes propose the same value,⊥ cannot be decided.
As these properties prevent a value proposed only by faulty processes to be decided, such a consensus is called
intrusion-tolerant Byzantine(ITB) consensus [7, 24].

Solving Byzantine consensusLet t denote the model upper bound on the number of processes that can havea
Byzantine behavior. It is shown in several papers (e.g., [9, 17, 27, 32]) that Byzantine consensus cannot be solved
whent ≥ n/3, be the system synchronous or asynchronous, or be the algorithm allowed to use random numbers
or not.

As far as asynchronous systems are concerned, it is well-known that there is no deterministic consensus algo-
rithm as soon as one process may crash [10], which means that Byzantineconsensus cannot be solved either as
soon as one process can be faulty. Said another way, the basic asynchronous Byzantine system model has to be
enriched with additional computational power. Such an additional power can be obtained by randomization (e.g.,
[3, 7, 13, 22, 28]), assumption on message delivery schedules (e.g., [5, 32]), failure detectors suited to Byzantine
systems (e.g., [12, 15]), additional –deterministic or probabilistic– synchrony assumptions (e.g., [5, 9, 20]), or re-
strictions on the vectors of input values proposed by the processes (e.g., [11, 23]). A reduction of atomic broadcast
to consensus in the presence of Byzantine processes is presented in [21].

Finally, for multivalued Byzantine consensus, another approach consists in considering a system model en-
riched with an algorithm solving (for free) binary Byzantine consensus.This reduction approach has been first
proposed in the context of synchronous systems [33]. Recent worksfor such synchronous systems can be found
in [16, 18, 26]. Reductions for asynchronous systems where the communication is by message-passing can be
found in [6, 7, 25]. The case where communication is by read/write registers is investigated in [31]. This reduction
approach is the approach adopted in this paper to address multivalued Byzantine consensus.

Contributions of the paper Considering asynchronous message-passing systems, this paper presents a new
reduction from multivalued Byzantine consensus to binary Byzantine consensus, that has the following properties:

• It tolerates up tot < n/3 Byzantine processes,

• Its message cost isO(n2),

• Its time complexity is constant,

• It tolerates message re-ordering by Byzantine processes,

• It does not use cryptography techniques.

A simple and efficient Byzantine Binary consensus algorithm has recently been proposed in [22]. This algo-
rithm, which is based on Rabin’s common coin, is signature-free and round-based, requirest < n/3, has anO(n2)
message complexity per round, and its expected number of rounds is constant. It follows that, when the reduc-
tion algorithm proposed in this paper is combined with this binary consensus algorithm, we obtain a Byzantine
multivalued consensus algorithm that has the five properties listed previously. To our knowledge, this is the first
Byzantine multivalued consensus algorithm that is signature-free, optimal with respect to resilience (t < n/3),
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has anO(n2) expected message complexity, a constant expected time complexity, and tolerates the re-ordering of
message deliveries by Byzantine processes.

The design of the proposed reduction algorithm is based on two new communication abstractions, which are
all-to-all communication abstractions. The first allows the non-faulty processes to reduce the number of values
they propose tok ≤ c values wherec is a known constant. More precisely,c = 6 whent < n/3 (worst case),
c = 4 whenn = 4t, andc = 3 whent < n/4. The second communication abstraction allows each non-faulty
process to compute a set of (proposed) values such that, if the set of a non-faulty process contains a single value,
then this value belongs to the set of any non-faulty process. Both communication abstractions have anO(n2)
message complexity and a constant time complexity.

The structure of the resulting Byzantine multivalued consensus algorithm is as follows. It uses the first com-
munication abstraction to reduce the number of proposed values to a constant. Then, it uses sequentially twice the
second communication abstraction to provide each non-faulty process with abinary value that constitutes the value
it proposes to the underlying binary Byzantine consensus algorithm. Finally, the value decided by a non-faulty
process is determined by the output (0 or 1) returned by the underlying binary Byzantine consensus algorithm.
Thanks to the communication abstractions, this reduction algorithm is particularlysimple (which is a first class
design property).

Roadmap The paper is composed of 6 sections. Section 2 presents the computing model,and defines the
multivalued ITB consensus problem. Section 3 defines the first communicationabstraction (called RD-broadcast)
that reduces the number of proposed values to a constant, presents an algorithm that implements it, and proves it
correct. Section 4 defines the second communication abstraction (called MV-broadcast), presents an algorithm that
implements it, and proves it correct. Section 5 presents the algorithm reducingmultivalued consensus to binary
consensus in the presence of Byzantine processes. Due to page limitation,some proofs appear only in appendices.

2 Computing Model and Intrusion-Tolerant Byzantine Consensus
2.1 Distributed computing model

Asynchronous processesThe system is made up of a finite setΠ of n > 1 asynchronous sequential processes,
namelyΠ = {p1, . . . , pn}. “Asynchronous” means that each process proceeds at its own pace, which may vary
arbitrarily with time, and remains always unknown to the other processes.

Communication network The processes communicate by exchanging messages through an asynchronous reli-
able point-to-point network. “Asynchronous” means that a message thathas been sent is eventually received by its
destination process, i.e., there is no bound on message transfer delays. “Reliable” means that the network does not
lose, duplicate, modify, or create messages. “Point-to-point” means that there is a bi-directional communication
channel between each pair of processes. Hence, when a process receives a message, it can identify its sender.

A processpi sends a message to a processpj by invoking the primitive “send TAG(m) to pj”, whereTAG is the
type of the message andm its content. To simplify the presentation, it is assumed that a process can sendmessages
to itself. A process receives a message by executing the primitive “receive()”.

The operationbroadcast TAG(m) is a macro-operation which stands for “for each j ∈ {1, . . . , n} send

TAG(m) to pj end for”.This operation is usually calledunreliable broadcast (if the sender commits a failure
in the middle of thefor loop, it is possible that only an arbitrary subset of processes receives the message).

Failure model Up to t processes may exhibit aByzantinebehavior. A Byzantine process is a process that
behaves arbitrarily: it may crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary
state, perform arbitrary state transitions, etc. Hence, a Byzantine process, which is assumed to send a message
m to all the processes, can send a messagem1 to some processes, a different messagem2 to another subset of
processes, and no message at all to the other processes. Moreover,Byzantine processes can collude to “pollute”
the computation. A process that exhibits a Byzantine behavior is also calledfaulty. Otherwise, it isnon-faulty.

Let us notice that, as each pair of processes is connected by a channel,no Byzantine process can impersonate
another process. Byzantine processes can influence the message delivery schedule, but cannot affect network
reliability. More generally, the model does not assume a computationally-limited adversary.

Discarding messages from Byzantine processesIf, according to its algorithm, a processpj is assumed to send
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a single messageTAG() to a processpi, thenpi processes only the first messageTAG(v) it receives frompj . This
means that, ifpj is Byzantine and sends several messagesTAG(v), TAG(v′) wherev′ 6= v, etc., all of them except
the first one are discarded by their receivers.

Notation In the following, this computation model is denotedBAMPn,t[∅]. In the following, this model is
restricted with the constraint ont < n/3 and is consequently denotedBAMPn,t[n > 3t].

2.2 Measuring time complexity
When computing the time complexity, we consider the longest sequence of messagesm1, . . . ,mz whose sending
are causally related, i.e., for eachx ∈ [2..z], the reception ofmx−1 is a requirement for the sending ofmx. The
time complexity is the length of this longest sequence. Moreover, we implicitly consider that, in each invocation
of an all-to-all communication abstraction, the non-faulty processes invokethe abstraction.

2.3 Multivalued Intrusion-tolerant Byzantine Consensus
Byzantine consensus This problem has been informally stated in the Introduction. Assuming that each non-
faulty process proposes a value, each of them has to decide on a value insuch a way that the following properties
are satisfied.

• C-Termination. Every non-faulty process eventually decides on a value,and terminates.

• C-One-shot. A non-faulty process decides at most once.

• C-Agreement. No two non-faulty processes decide on different values.

• C-Obligation (validity). If all the non-faulty processes propose the same valuev, thenv is decided.

Intrusion-tolerant Byzantine (ITB) consensus Byzantine algorithms differ in the validity properties they satisfy.
In classical Byzantine consensus, if the non-faulty processes do notpropose the same value, they can decide any
value (this is captured by the previous C-Obligation property.

As indicated in the Introduction, we are interested here in a more constrainedversion of the consensus problem
in which a value proposed only by faulty processes cannot be decided.This was first investigated in a systematic
way in [7, 24]. This consensus problem instance is defined by the C-Termination, C-One-shot, C-Agreement,
and C-Obligation properties stated above plus the following C-Non-intrusion(validity) property, where⊥ is a
predefined default value, which cannot be proposed by a process.

• C-Non-intrusion (validity). A value decided by a non-faulty process is a value proposed by a non-faulty
process or⊥.

The fact that no value proposed only by faulty processes can be decided gives its name (namelyintrusion-tolerant)
to that consensus problem instance1.

Remark on the binary consensusInterestingly, binary Byzantine consensus (only two values be can be proposed
by processes) has the following property.

Property 1. The ITB binary consensus problem is such that if a value is decided by a non-faultyprocess, this
value can always be a value proposed by a non-faulty process.

This means that, when considering the ITB binary consensus,⊥ can be safely replaced by any of the two possible
binary values.

3 The Reducing All-to-All Broadcast Abstraction
3.1 Definition
Thereducing broadcastabstraction (RD-broadcast) is a one-shot all-to-all communication abstraction, whose aim
is to reduce the number of values that are broadcast to a constant. RD-broadcast provides the processes with

1Directing the non-faulty processes to decide a predefined default value–instead of an arbitrary value, possibly proposed only by faulty
processes– in specific circumstances, is close to the notion of anabortableobject as defined in [14, 31] where an operation is allowed to
abort in the presence of concurrency. This notion of an abortable object is different from the notion of a query-abortable object introduced
in [1].
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a single operation denotedRD broadcast(). This operation has an input parameter, and returns a value. It is
assumed that all the non-faulty processes invoke this operation.

When a processpi invokesRD broadcast(vi) we say that it “RD-broadcasts” the valuevi. When a process
returns a valuev from an invocation ofRD broadcast(), we say that it “RD-delivers” a value (or a value is RB-
delivered). The default value denoted⊥rd cannot be RB-broadcast but can be RB-delivered. RD-broadcast is
defined by the following properties.

• RD-Termination. Every non-faulty process eventually RD-delivers a value.

• RD-Integrity. No non-faulty process RD-delivers more than one value.

• RD-Justification. The value RD-delivered by a non-faulty process is either a value RD-broadcast by a non-
faulty process, or the default value⊥rd.

• RD-Obligation. If the non-faulty processes RD-broadcast the same value v, none of them RD-delivers the
default value⊥rd.

• RD-Reduction. The number of values that are RD-delivered by the non-faulty processes is upper bounded
by a constantc.

3.2 An RD-broadcast algorithm
An algorithm implementing the RD-broadcast abstraction is described in Figure1. This algorithm assumest <
n/3. The aim of the local variablerd deli is to contain the value RD-delivered bypi; this variable is initialized to
“?”, a default value that cannot be RD-delivered by non-faulty processes.

When a processpi invokesRD broadcast MSG(vi), it broadcasts the messageINIT(vi), and waits until it is
allowed to RD-deliver a value (line 1). During this waiting period,pi receives and processes the messagesINIT()
or ECHO() sent by the algorithm.

let rd pseti(x) denotethe set of processes from whichpi has receivedINIT(x) or ECHO(x).

operationRD broadcast(vi) is
(1) broadcast INIT(vi); wait(rd deli 6= “?”); return(rd deli).

when INIT(v) or ECHO(v) is received do
(2) if (v 6= vi) ∧ (INIT(v) received from(n− 2t) different processes)∧ (ECHO(v) never broadcast)
(3) then broadcast ECHO(v)
(4) end if;
(5) if

(

∃ x 6= vi : |rd pseti(x)| ≥ t+ 1
)

then rd deli ← ⊥rd end if;
(6) if

(

∃ x : |rd pseti(x)| ≥ n− t
)

then rd deli ← x end if;
(7) let w be the value such that,∀ x received bypi: |rd pseti(w)| ≥ |rd pseti(x)|;
(8) if

(

| ∪x rd pseti(x)| − |rd pseti(w)| ≥ t+ 1
)

then rd deli ← ⊥rd end if.

Figure 1: An algorithm implementing RD-broadcast inBAMPn,t[n > 3t]

The behavior of a processpi on its server side, i.e. when –while waiting– it receives a messageINIT(v) or
ECHO(v), is made up of two phases.

• Conditional communication phase (lines 2-4). If the received valuev is different from the valuevi it has
RD-broadcast, andINIT(v) has been received from “enough” processes (namely(n−2t)), pi broadcasts the
messageECHO(v) if not yet done. Let us notice that, asn − 2t ≥ t + 1, this means thatINIT(v) has been
received from at least one non-faulty process.

• Try-to-deliver phase (lines 5-8). Then, for any valuex it has seen, a processpi computes first the set
rd pseti(x) composed of the processes from whichpi has received a messageINIT(x) or ECHO(x). If there
is a valuex, different fromvi, that has been received from(t + 1) different processes, ifpi is non-faulty, it
knows that at least two different values have been RD-broadcast bynon-faulty processes (its own valuevi,
plus another one). In this case,pi RD-delivers the default value⊥rd (line 5 and line 1). The RD-delivery of
a value bypi terminates its invocation of the RD-broadcast.
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If the predicate of line 5 is not satisfied,pi checks if there is a valuev received from at least(n− t) distinct
processes (line 6). Let us notice that, in this case, it is possible thatv has been RD-broadcast by all correct
processes. Hence,pi RD-delivers this value.

Finally, if pi has not yet assigned a value tord deli, it computes the valuew that, up to now, it has received
the most often in anINIT() or ECHO() message (line 7). If there are at least(t+ 1) different processes that
sentINIT() or ECHO() messages with values different fromw (this is captured by the predicate of line 8), it
is impossible forpi to have in the future the same value received from(n− t) distinct processes. This claim
is trivially true forw, because at least(t + 1) processes sent values different fromw. As no valuew′ 6= w
has been received more thanw, the claim is also true for any such valuew′. So, the predicate of line 6 will
never be satisfied atpi, and consequentlypi RD-delivers the default value⊥rd.

3.3 Proof of the RD-broadcast algorithm
All the proofs assumet < n/3.

Lemma 1. Letnb echo be the maximal number of different values that a non-faulty process mayecho at line3.
We have:(n/3 > t > n/4)⇒ (nb echo ≤ 2) and(n/4 ≥ t)⇒ (nb echo ≤ 1).

Proof Let us first consider the greatest possible value oft, which corresponds ton = 3t+ 1. Let us observe that
a processpi receives at most one messageINIT() from each other process (otherwise, it knows that the sender is
Byzantine). Moreover, to broadcastECHO(v), wherev 6= vi, pi needs to receiveINIT(v) from n − 2t = t + 1
different processes (predicate of line 2). It follows, from these observations and the fact thatn = (t + 1) + (t +
1) + (t − 1) < 3(n − 2t), thatpi can broadcast at most two messagesECHO() carrying distinct values. Aspi
broadcasts at most once a messageECHO() carrying a given valuev, it follows that(n/3 > t)⇒ (nb echo ≤ 2).

Let us now consider the casen = 4t + α ≥ 4t, whereα ≥ 0. In this casen − 2t = 2t + α ≥ 2t. As the
broadcast bypi of a messageECHO(v) requires the reception ofINIT(v) from at least2t + α different processes,
it is possible that there is such a valuev. On the other side, as a processpi receives at most one messageINIT()
from each other process, it is not possible for a processpi to receiven − 2t ≥ 2t messages carrying a valuew,
different from bothv andvi. It follows that(n/4 ≥ t)⇒ (nb echo ≤ 1), which concludes the proof of the lemma.

✷Lemma 1

Lemma 2. At mostc different values can beRD-deliveredby the non-faulty processes, wherec = 6 whenn/3 > t,
c = 4 whenn = 4t, andc = 3 whent > n/4.

Proof Let us consider a “worst” execution, i.e., an execution in whicht processes are Byzantine. Let us call “vote”
(for a valuev 6= ⊥rd) a messageINIT(v) or ECHO(v) sent by a process.

To be RD-delivered by a non-faulty processpi, a value (different from⊥rd) must be received from(n − t)
different processes (line 6). Due to Lemma 1, a non-faulty process canvote for at most three distinct values,
while a Byzantine process can vote for any number of values. To maximize thetotal number of values that can
be RD-delivered by the set of non-faulty processes, we consider theworst case where (a) there aret Byzantine
processes, and (b) if a non-faulty processpi RD-delivers a valuev (line 6) it has received for this value(n − 2t)
votes from non-faulty processes, and a vote from each of the Byzantine processes. In this way, we have to consider
the maximal number of votes that can be sent by the non-faulty processes and the fact that only(n − 2t) of them
are needed to RD-deliver a value. There are three cases.

Casen > 3t. At most3(n−t) votes can be sent by the non-faulty processes. It follows that the total number of
different values that can be RD-delivered by the set of non-faulty processes is (where the “<” comes fromn > 3t):

3(n− t)

n− 2t
=

3n− 6t+ 3t

n− 2t
= 3 +

3t

n− 2t
< 3 +

3t

3t− 2t
= 6.

Hence the total number of RD-broadcast values that can be returned bythe whole set of non-faulty processes is at
most5. When adding the default value⊥rd, we obtainc = 6.
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Casen > 4t. It then follows from Lemma 1 that there are at most2(n− t) votes sent by non-faulty processes.
With the same reasoning as before we obtain (where “<” comes fromn > 4t):

2(n− t)

n− 2t
=

2n− 4t+ 2t

n− 2t
= 2 +

2t

n− 2t
< 2 +

2t

4t− 2t
= 3.

Hence the total number of RB-broadcast values that can be returned bythe whole set of non-faulty processes is at
most2. When adding the default value⊥rd, we obtainc = 3.

Finally, for n = 4t we have2(n−t)
n−2t = 6t

2t = 3. Hence, at mostc = 4 different values can be returned by the
whole set of non-faulty processes whenn = 4t. ✷Lemma 2

Theorem 1. The algorithm described in Figure1 implements theRD-broadcastabstraction in the computing
modelBAMPn,t[n > 3t].

Theorem 2. The number of messages sent by the non-faulty processes is upper bounded byO(n2). Moreover, in
addition to a value sent by a process, a message carries a single bit of control information. The time complexity is
O(1).

3.4 RD-Broadcast vs Byzantinek-Set Agreement
In thek-set agreement problem, each process proposes a value, and at mostk different values can be decided by
the non-faulty processes. It is shown in [8] that the solvability ofk-set agreement in the presence of Byzantine
processes depends crucially on the validity properties that are considered.

As the reader can easily check, the specification of the RD-broadcast abstraction defines an instance of the
Byzantinec-set agreement problem, wherec is the constant defined in Lemma 2. It follows that the algo-
rithm presented in Figure 1 solves this Byzantinek-set agreement instance for anyk ≥ c in the system model
BAMPn,t[t < n/3]. (Let us remind thatt < n/3 is the lower bound ont to solve Byzantine consensus in a
synchronoussystem.)

4 The Multivalued Validated All-to-All Broadcast Abstraction
4.1 Definition
The RD-broadcast abstraction reduces the number of values sent by processes to at most five values plus a default
value denoted⊥rd, while keeping the number of messages exchanged by non-faulty processes inO(n2).

Differently, assuming that each non-faulty process broadcasts a value, and at mostk different values are broad-
cast (wherek does not need to be known by the processes), the aim of the one-shotmultivalued validated all-to-all
broadcastabstraction (in short MV-broadcast) is to provide each non-faulty process with an appropriate subset of
values (calledvalidatedvalues), which can be used to solve multivalued ITB consensus. To that end, the funda-
mental property of MV-broadcast that is used is the following: if a non-faulty process returns a set with a single
value, the set returned by any other non-faulty process contains this value. Moreover, from an efficiency point of
view, an important point that has to be satisfied is that the message cost of anMV-broadcast instance has to be
O(kn2).

To MV-broadcast a valuevi, a processpi invokes the operationMV broadcast(vi). This invocation returns
to pi a non-empty set a values, which consists of validated values, plus possibly adefault value denoted⊥mv.
This default value cannot be MV-broadcast by a process. Similarly to RD-broadcast, when a process invokes
MV broadcast(v), wee say that it “MV-broadcastv”. MV-broadcast is defined by the following properties.

• MV-Obligation. If all the non-faulty processes MV-broadcast the same valuev, then no non-faulty process
returns a set containing⊥mv.

• MV-Justification. If a non-faulty processpi returns a set including a valuev 6= ⊥mv, there is a non-faulty
processpj that MV-broadcastv.

• MV-Inclusion. Letseti andsetj be the sets returned by two non-faulty processespi andpj , respectively.
(seti = {w})⇒ (w ∈ setj) (let us notice thatw can be⊥mv).
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• MV-Termination. An invocation ofMV broadcast() by a non-faulty process terminates (i.e., returns a non-
empty set).

The following property follows directly from the MV-Inclusion property.

• MV-Singleton. Letseti andsetj be the sets returned by two non-faulty processespi andpj , respectively.
[(seti = {v}) ∧ (setj = {w})]⇒ (v = w).

let mv pset1i(x) denotethe set of processes from whichpi has receivedMV VAL 1(x);
mv val2i is a set of pairs〈process index, value〉, initially empty, received in messagesMV VAL 2().

operationMV broadcast MSG(vi) is
(1) broadcast MV VAL 1(vi); wait

(

∃ v such that|mv pset1i(v)| ≥ 2t+ 1
)

; % v can be⊥mv %
(2) broadcast MV VAL 2(v); wait

(

|mv val2i| ≥ n− t
)

;
(3) return ({x | 〈−, x〉 ∈ mv val2i}).

when MV VAL 1(y) is received do % y can be⊥mv %
(4) if

(

(|mv pset1i(y)| ≥ t+ 1) ∧ (MV VAL 1() not yet broadcast)
)

then broadcast MV VAL 1(y) end if;
(5) let w be the value such that,∀ x received bypi: |mv pset1i(w)| ≥ |mv pset1i(x)|;
(6) if

(

(| ∪x mv pset1i(x)| − |mv pset1i(w)| ≥ t+ 1) ∧ (MV VAL 1(⊥mv) never broadcast)
)

(7) then broadcast MV VAL 1(⊥mv)
(8) end if;

when MV VAL 2(x) is received frompj do % x can be⊥mv %
(9) wait(|mv pset1i(x)| ≥ 2t+ 1);
(10) mv val2i ← mv val2i ∪ 〈j, x〉.

Figure 2: An algorithm implementing MV-broadcast inBAMPn,t[n > 3t]

4.2 An MV-broadcast algorithm
A two-phase algorithm implementing the MV-broadcast abstraction is described in Figure 2. It assumest < n/3,
and –as we will see– its message complexity isO(kn2).

To bevalidated, a value must have been MV-broadcast by at least one non-faulty process. Hence, for a process
to locally know whether a value is validated, it needs to receive it from(t+ 1) processes.

Each processpi manages a local variablemv val2i, which is a set (initially empty). Its aim is to contain pairs
〈j, x〉, wherej is a process index andx a validated value. The behavior of a non-faulty processpi is as follows.

• In the first phase (line 1) a processpi broadcasts its initial value by sending the messageMV VAL 1(vi). It
then waits until it knows (a) a validated valuev (hence it has receivedMV VAL 1(v) from at least(t + 1)
different processes), (b) and this valuev is eventually known by all non-faulty processes. This is captured by
the following waiting predicate “the messageMV VAL 1(v) has been received from at least(2t+1) different
processes” used at line 1. From then on,pi will champion this valuev for it to belong to the sets returned by
the non-faulty processes.

On it server side concerning the reception of a messageMV VAL 1(y), a processpi does the following
(line 4). If pi knows thaty is a validated value (i.e., the messageMV VAL 1(y) was received from least
(t+ 1) processes), (if not yet done)pi broadcasts the very same message to help the validated valuey to be
known by all non-faulty processes.

Then, according to its current knowledge of the global state,pi checks if there is a possibility that no value
at all be present enough to be validated. It there is such a possibility,pi broadcastsMV VAL 1(⊥mv). To
that end (as at lines 6-7 of the RD-broadcast algorithm, Figure 1),pi computes the valuew most received
from different processes (lines 5). If at least(t + 1) processes have broadcast values different fromw, pi
broadcastsMV VAL 1(⊥mv), if not yet done (lines 6-8);pi sends the default value because it sees too may
different values, and it does not know which ones are from non-faulty processes.
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• When it enters the second phase (line 2), a process champions the validated valuev it has previously com-
puted with the waiting predicate of line 1. This is done by broadcasting the message MV VAL 2(v). It
then waits until the setmv val2i contains at least(n − t) pairs〈j, x〉, and finally returns the set of values
contained in these pairs (line 3). Let us remind that those are validated values.

On its server side, when a processpi receives a messageMV VAL 2(x) from a processpj , it waits until it
has received a messageMV VAL 1(x) from at least(2t + 1) different processes. This is needed because
Byzantine processes can send spurious messagesMV VAL 2(x) while they have not validated the valuex.
More precisely, let us notice that the waiting predicate(|mv pset1i(x)| ≥ 2t + 1) used bypi at line 9 is
the same as the one used at line 2 bypj –if it is non-faulty– to champion the valuex. Hence, in casepj is
not non-faulty,pi waits until the same validation predicate(|mv pset1i(x)| ≥ 2t+ 1) becomes true before
accepting to process the messageMV VAL 2(x) sent bypj .

Remark Let us notice that this algorithm is tolerant to message duplication. Moreover,while a non-faulty
process is not allowed to MV-broadcast the default value⊥mv, a Byzantine process can do it. Let us also remark
that⊥mv is the only default value associated with the MV-broadcast abstraction. Hence, for MV-broadcast,⊥rd is
a “normal” value, which can be MV-broadcast, as any value different from⊥mv.

4.3 Proof of the MV-broadcast algorithm
As previously, all the proofs assumet < n/3.

Lemma 3. The waiting predicate(∃ v such that|mv pset1i(v)| ≥ 2t + 1) (used at line1) is eventually satisfied
at any non-faulty processpi.

Lemma 4. The waiting predicate(|mv val2i| ≥ n − t) (used at line2) is eventually satisfied at any non-faulty
processpi.

Lemma 5. If all non-faulty processesMV-broadcastthe same valuev, no non-faulty process returns a set con-
taining⊥mv.

Lemma 6. If the set returned by a non-faulty processpi contains a valuev 6= ⊥mv, thenv has beenMV-broadcast
by a non-faulty process.

Lemma 7. Let seti and setj be the sets returned by two non-faulty processespi and pj , respectively.(seti =
{w})⇒ (w ∈ setj).

Theorem 3. The algorithm described in Figure2 implements theMV-broadcastabstraction in the computing
modelBAMPn,t[t < n/3].

Theorem 4. Let us assume that at mostk different values areMV-broadcastby the processes. The number of
messages sent by the non-faulty processes is upper bounded byO(kn2). A message needs to carry a single bit of
control information. The time complexity isO(1).

5 Multivalued Intrusion-Tolerant Byzantine Consensus

The multivalued intrusion-tolerant Byzantine (ITB) consensus problem was defined in Section 2.3. A signature-
free algorithm that solves it despite up tot < n/3 Byzantine processes is described in this section. This algorithm
is such that the expected number of messages exchanged by the non-faulty processes isO(n2), and its expected
time complexity is constant.

5.1 Enriched computation model for multivalued ITB consensus
In the following, as announced in the introduction, we consider that the additional computational power that allows
multivalued ITB consensus to be solved inBAMPn,t[t < n/3] is an underlying Byzantine binary consensus
(BBC) algorithm. LetBAMPn,t[t < n/3,BBC] denote the system modelBAMPn,t[t < n/3] enriched with a
BBC algorithm. BBC algorithms are described in several papers (e.g., [4, 7, 13, 22, 32]).

To obtain a multivalued ITB consensus algorithm with anO(n2) expected message complexity and a constant
expected time complexity, we implicitly consider that the underlying BBC algorithm is the one presented in [22].
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5.2 An efficient algorithm solving the multivalued ITB consensus problem
The algorithm is described in Figure 3. The multivalued consensus operation that is built is denotedmv propose(),
while the underlying binary consensus operation it uses is denotedbin propose(). Extremely simple, this algorithm
can be decomposed in four phases. The first three phases are communication phases, while the last phase exploits
the result of the previous phases to reduce multivalued Byzantine consensus to BBC.

The second and the third phases are two distinct instances of the MV-broadcast abstraction. Not to confuse
them, their corresponding broadcast operations are denotedMV broadcast1(), andMV broadcast2(), respectively.
Similarly, their default values are denoted⊥mv1 and⊥mv2. It is assumed that the default values⊥rd,⊥mv1,⊥mv2,
and⊥ (the consensus default value) are all different. The four phases are as follows, whereC PROP denotes the
set of values proposed by the non-faulty processes.

operationmv propose(vi) is
(1) rd vali ← RD broadcast(vi);
% —————————————————————————————————————–
(2) set1i ← MV broadcast1(rd vali);

% pi, pj non-faulty:
(

(|set1i| = 1) ∧ (|set1j | = 1)
)

⇒ (set1i = set1j) %
(3) if (set1i = {w}) then auxi ← w elseauxi ← ⊥ end if;
% —————————————————————————————————————–
(4) set2i ← MV broadcast2(auxi);

% pi, pj non-faulty: (set2i = {w}) ⇒ (w ∈ set2j) %
% —————————————————————————————————————–
(5) if

(

(set2i = {w}) ∧ (w /∈ {⊥rd,⊥mv1,⊥mv2,⊥})
)

then bpi ← 1 elsebpi ← 0 end if;
(6) bdeci ← bin propose(bpi);
(7) if (bdeci = 1) then return(w) such thatw ∈ set2i andw /∈ {⊥rd,⊥mv1,⊥mv2,⊥}
(8) else return(⊥)
(9) end if.

Figure 3: An algorithm implementing multivalued ITB consensus inBAMPn,t[n > 3t,BBC]

• The first phase consists of an RD-broadcast instance. Each non-faulty processpi invokesRD broadcast(vi),
wherevi is the value it proposes to consensus, and stores the returned value in its local variablerd vali
(line 1). Due to properties of the RD-broadcast abstraction, we have

rd vali ∈ RD VAL whereRD VAL ⊆ C PROP ∪ {⊥rd},

and (due to Lemma 2)|RD VAL| ≤ 6. Moreover, the message cost of this phase is the one of the RD-
broadcast, i.e.,O(n2).

• The second phase (lines 2 and 3) consists of the first MV-broadcast instance, namely, a processpi invokes
MV broadcast1(rd vali) from which it obtains the non-empty setset1i. Due to the properties of the MV-
broadcast abstraction, we have

set1i ⊆ MV VAL1, whereMV VAL1 ⊆ RD VAL ∪ {⊥mv1} ⊆ C PROP ∪ {⊥rd,⊥mv1}.

Moreover, due to the MV-singleton property, we also have
(

(|set1i| = 1) ∧ (|set1j | = 1)
)

⇒ (set1i = set1j).

Then, according to the value ofset1i, pi prepares a valueauxi it will broadcast in the second MV-broadcast
instance. Ifset1i = {w}, auxi = w, otherwiseauxi = ⊥ (the consensus default value).

Let AUX = ∪i∈C{auxi}, whereC denotes the set of non-faulty processes. While preserving theO(n2)
message complexity, the aim of the lines 2 and 3 is to ensure the following property

AUX = {v} ∨ AUX = {⊥} ∨ AUX = {v,⊥}, wherev ∈ MV VAL1.

Let us notice that, thanks to the MV-Justification property, the setAUX cannot contain a value proposed
only by Byzantine processes.
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• The third phase (line 4) is a second instance of the MV-broadcast abstraction. The values MV-broadcast by
the non-faulty processes are values of the setAUX . So, the setset2i returned by a non-faulty processpi is
such that

set2i ⊆ MV VAL2 whereMV VAL2 ⊆ AUX ∪ {⊥mv2},

and, due to the MV-Inclusion property, the sets returned to any two non-faulty processespi andpj are such
that(set2i = {w}) ⇒ (w ∈ set2j).

• The last phase (lines 5-9) is where the underlying BBC algorithm is exploited. If set2i contains a single
value, that is not a default value,pi proposes1 to the underlying BBC algorithm. Otherwise, it proposes
0. Then, according to the valuebdeci returned by the BBC algorithm, there are two cases. Ifbdeci = 1,
pi return the value ofset2i which is not a default value (line 7). Otherwise,bdeci = 0 andpi returns the
default value⊥.

5.3 Proof of the multivalued ITB consensus algorithm and two remarks
Theorem 5. The algorithm described in Figure3 solves themultivalued ITB consensusproblem in the computing
modelBAMPn,t[t < n/3,BBC].

Theorem 6. Let us assume an underlyingBBC algorithm whose expected message complexity isO(n2) and
expected time complexity is constant (e.g., the one presented in[22]). When considering the non-faulty processes,
the expected message complexity of the multivalued ITB consensus algorithm described in Figure3 is O(n2), and
its expected time complexity is constant.

Remark 1 Let us remark that, if we suppress the invocation of the RD-broadcast abstraction, and replace line 1
by the statement “rd vali ← vi”, the multivalued ITB consensus remains correct. This modification saves the
two communication steps involved in the RD-broadcast, but loses theO(n2) message complexity, which is now
O(kn3) (this follows from Theorem 4 and the fact thatk ∈ [1..n] is the number of distinct values broadcast by
correct processes).

Remark 2 The algorithm of Figure 2 uses two instances of the MV-broadcast abstraction. It is an open problem
to know if it is possible to design an algorithm based on a single instance of it.

6 Conclusion

This paper presented an asynchronous message-passing algorithm which reduces multivalued consensus to binary
consensus in the presence of up tot < n/3 Byzantine processes (n being the total number of processes). This
algorithm has the following noteworthy features: its message complexity isO(n2), its time complexity isO(1),
and it does not rely on cryptographic techniques. As far as we know, this is the first consensus reduction owning
all these properties, while being optimal with respect to the value oft. This algorithm relies on two new all-to-
all communication abstractions. These abstractions consider the values thatare broadcast, and not the fact that
“this” value was broadcast by “this” process. This simple observation allowed us to design an efficient reduction
algorithm. (Ann-multiplexing of a one-to-all broadcast abstraction would entail anO(n3) message complexity.)
Interestingly, this reduction algorithm tolerates message re-ordering by Byzantine processes.

When combined with the binary Byzantine consensus algorithm presented in [22], we obtain the best algorithm
known so far (as far as we know) for multivalued Byzantine consensusin a message-passing asynchronous system
(where “best” is with respect the value oft, the message and time complexities, and the absence of limit on the
computational power of the adversary).
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A Proof of Property 1 (Section 2)

Property 1 The ITB binary consensus problem is such that if a value is decided by a non-faulty process, this
value can always be a value proposed by a non-faulty process.

Proof It follows from the C-obligation property that any non-faulty process decidesb when all the non-faulty
processes proposedb. Otherwise, at least one non-faulty process proposedg, and then any valueb or g may be
decided by a non-faulty process without violating the C-Non-intrusion property. ✷Property 1

B Proof of Theorem 1 and Theorem 2 (Section 3)

Theorem 1 The algorithm described in Figure 1 implements the RD-broadcast abstractionin the computing
modelBAMPn,t[n > 3t].

Proof The proof of the RD-Integrity property (a non-faulty process RD-delivers at most one value) follows di-
rectly from the text of the algorithm. The proof of the RD-Reduction property follows from Lemma 2.

To prove the RD-Justification property we show that a value RB-broadcast only by Byzantine processes cannot
be RD-delivered by a non-faulty processpi. Let us assume the worst case, namely, there aret Byzantine processes
and all of them RB-broadcast the same valuev. As n > 3t, no non-faulty process can receiveINIT(v) from
n− 2t ≥ t+ 1 different processes. Hence, no non-faulty process broadcastsECHO(v) at line 3. If follows that no
non-faulty process receives messagesINIT(v) or ECHO(v) from (n − t) different processes. Hence, the predicate
|rd pseti(v)| ≥ n− t (line 6) cannot become satisfied at a non-faulty processpi, which concludes the proof of the
RD-Justification property.

To prove the RD-Obligation property, let us assume that all the non-faulty processes RD-broadcast the same
valuev. We have to show that no non-faulty process RD-delivers⊥rd, i.e., executes the statementrd deli ← ⊥rd

at line 5 or line 8. Let us first observe that, even if all Byzantine processes propose the same valuew 6= v, the
predicate of line 5 cannot be satisfied forw. Finally, as the (at leastn − t) non-faulty processes RD-broadcast
the same valuev, whether the (at mostt) Byzantine processes have sent the same or different values inINIT() or
ECHO() messages, it is not possible for the predicate of line 8 to become satisfied.

To prove the RD-Termination property, we consider two cases. Let us first consider that some valuev is RD-
broadcast by at leastn− 2t ≥ t+1 non-faulty processes. If follows from line 2 that each other non-faultyprocess
broadcastsECHO(v). Hence, each non-faulty processpi receives messagesINIT() or ECHO() messages, carrying
the valuev, from at least(n − t) processes. Consequently, the predicate of line 6 becomes eventually satisfied at
every non-faulty process, and –if not yet done– each of them RD-delivers a value.
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Let us now consider the case where there is no valuev that is RD-broadcast byn − 2t non-faulty processes.
Considering a non-faulty processpi, let us assume that the predicates of line 5 and line 6 are never satisfied. We
show that the predicate of line 8 becomes then eventually satisfied. Letv be the value thatpi received the most
often from different processes. By assumption it received this value fromg non-faulty processes whereg < n−2t,
and fromb Byzantine processes, where0 ≤ b ≤ t. Asg+b < (n−2t)+b, at most(n−2t−1)+b processes have
sent the valuev to pi. Moreover, aspi does not terminate at line 5 or line 6, it eventually receives a message from
each non-faulty process, i.e., from at least(n − t) processes, from which we conclude thatpi receives messages
from at least(n− t)+b different processes. It follows that at least(n− t+b)− ((n−2t−1)+b) = t+1 different
processes have sent topi values different fromv. Consequently, the predicate of line 8 is eventually satisfied and
pi RD-delivers⊥rd. ✷Theorem 1

Theorem 2 The number of messages sent by the non-faulty processes is upper bounded byO(n2). Moreover, in
addition to a value sent by a process, a message carries a single bit of control information. The time complexity is
O(1).

Proof It follows from Lemma 1 that a non-faulty process echoes at most twoINIT () messages. This means that,
it broadcast at most three messages (its ownINIT () message, plus twoECHO() messages). As a broadcast costsn
messages, the total number of messages sent by the non-faulty processes is3n2. A single bit of control is required
to differentiateINIT () andECHO() messages.

As far as the time complexity is concerned, a messageECHO() can only be sent when a messageINIT () is
received. Hence, the time complexity is2. ✷Theorem 2

C Proof of the Lemmas 3-7, Theorem 3, and Theorem 4 (Section 4)

Lemma 3 The waiting predicate(∃ v such that|mv pset1i(v)| ≥ 2t + 1) (used at line 1) is eventually satisfied
at any non-faulty processpi.

Proof Let us consider the the following predicateP : “There is a valuev and a finite time after which at least
(t+ 1) non-faulty processes have sent the messageMV VAL 1(v)”. We consider two cases.

Case 1: The predicateP is satisfied. In this case, it follows from line 4 that every non-faulty process eventu-
ally broadcastsMV VAL 1(v). As there are at leastn − t ≥ 2t + 1 non-faulty processes, the predicate (∃ v such
that |mv pset1i(v)| ≥ 2t + 1) becomes eventually true at every non-faulty process. Consequently,no non-faulty
process can block forever at line 1.

Case 2: The predicateP is not satisfied. Letpi be a non-faulty process. Letvmri be the most often received
value bypi, from different processes (as defined at line 5). Letc be the number of non-faulty processes that sent
MV VAL 1(vmri). AsP is not satisfied,c ≤ t.

As there are at least(n − t) non-faulty processes,pi receives at least(n − t) messagesMV VAL 1(). More
precisely,pi receives these messages from(n− t+b) different processes, whereb ∈ [0..t] is the additional number
of –non-faulty or Byzantine– processes that sent a message topi. Among these(n−t+b) processes, at most(c+b)
messagesMV VAL 1() carry the valuevmri (the upper bound(c + b) is attained when theb additional processes
are Byzantine and sentMV VAL 1(vmri) to pi). It follows that at least(n− t+ b)− (c+ b) = n− t− c of them
sent topi values different fromvmri. As c ≤ t andn > 3t, we haven− t− c ≥ n− 2t ≥ t+ 1. It follows that
the predicate of line 6 is eventually satisfied, andpi broadcasts then the messageMV VAL 1(⊥mv) (line 7). This
reasoning applies to any non-faulty processpi (possibly with values different fromvmri). Hence, each non-faulty
processpi eventually receivesMV VAL 1(⊥mv) from at least(n − t) processes. Finally, asn − t ≥ 2t + 1, the
predicate(|mv pset1i(⊥mv)| ≥ 2t+ 1) is eventually satisfied at each non-faulty processpi, which concludes the
proof of the second case. ✷Lemma 3
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Lemma 4 The waiting predicate(|mv val2i| ≥ n − t) (used at line 2) is eventually satisfied at any non-faulty
processpi.

Proof It follows from Lemma 3 that no non-faulty process blocks forever in the wait statement of line 1.
Hence, each non-faulty processpi broadcasts a messageMV VAL 2(wi) at line 2, where the valuewi is such
that(|mv pset1i(wi)| ≥ 2t+1). If follows from this predicate that at least(2t+1) processes sentMV VAL 1(wi)
to pi, from which we conclude that the messageMV VAL 1(wi) has been broadcast by at least(t + 1) non-faulty
processes. It consequently follows from line 4 that (if not yet done) each non-faulty process broadcasts the mes-
sageMV VAL 1(wi). Hence, at each non-faulty processpj , we eventually have|mv pset1j(wi)| ≥ 2t+1. Finally,
it follows from the predicate of line 9 that, at line 10, every non-faulty processpj adds〈i, wi〉 to its local set
mv val2j .

As there are(n − t) non-faulty processes, it follows that we eventually have|mv pset1i(wi)| ≥ n − t at
every non-faulty process, and the predicate of line 2 becomes eventuallysatisfied, which concludes the proof of
the lemma. ✷Lemma 4

Lemma 5 If all non-faulty processes MV-broadcast the same valuev, no non-faulty process returns a set contain-
ing⊥mv.

Proof To prove the MV-Obligation property, let us assume that all non-faulty processes broadcastMV VAL 1(v)
at line 1. If follows from the predicate of line 4 that, even if all the Byzantine processes broadcast the same value
w 6= v, no non-faulty process broadcastsw at line 4, and consequently at mostt values different fromv can
be broadcast inMV VAL 1() messages. Let us consider a non-faulty processpi in a worst case execution, which
occurs when all the Byzantine processes broadcast the same valuew 6= v. Let us notice that|mv pset1i(v)|
monotonically increases from0 to (n − t), and|mv pset1i(w)| monotonically increases from0 to t. There are
two cases.
• If, during the execution, there are periods where|mv pset1i(w)| ≥ |mv pset1i(v)|, due to the range of
|mv pset1i(w)|, the predicate|mv pset1i(v)| − |mv pset1i(w)| ≥ t+ 1 returnsfalse when it is evaluated
by pi. It follows that, when|mv pset1i(w)| ≥ |mv pset1i(v)|, pi cannot broadcastMV VAL 1(⊥mv1) at
line 7.

• During the period where|mv pset1i(v)| ≥ |mv pset1i(w)| (this necessarily occurs, and eventually remains
true forever), due to the range of|mv pset1i(v)| and |mv pset1i(w)|, and similarly to the previous case,
the predicate|mv pset1i(w)| − |mv pset1i(v)| ≥ t + 1, returnsfalse when it is evaluated bypi, and, as
before,pi cannot broadcastMV VAL 1(⊥mv) at line 7.

It follows that no non-faulty process broadcastsMV VAL 1(⊥mv). As only (at mostt) Byzantine processes may
broadcastMV VAL 1(⊥mv), the predicate(|mv pset1i(⊥mv)| ≥ 2t+ 1) evaluated at line 9 can never be satisfied
at a non-faulty processpi. Hence, the setmv val2i of a non-faulty processpi cannot contain a pair〈−,⊥mv〉,
and consequentlypi cannot return a set including⊥mv, which concludes the proof the MV-Obligation property.

✷Lemma 5

Lemma 6 If the set returned by a non-faulty processpi contains a valuev 6= ⊥mv, thenv has beenMV-broadcast
by a non-faulty process.

Proof To prove the MV-Justification property, we show that a value MV-broadcast only by Byzantine processes
cannot be added to the setmv val2i of a non-faulty processpi. Let us consider the worst case where there aret
Byzantine processes and all broadcastMV VAL 1(v), wherev, is not MV-broadcast by non-faulty processes. Due
to the predicate of line 4, no non-faulty processpi echoes the valuev. Hence,v can be received only from the
t Byzantine processes. It follows that the predicate(|mv pset1i(v)| ≥ 2t + 1) of line 9 cannot be satisfied at a
non-faulty processpi, and consequently〈−, v〉 cannot be added tomv val2i. ✷Lemma 6

Lemma 7 Let seti andsetj be the sets returned by two non-faulty processespi andpj , respectively.(seti =
{w})⇒ (w ∈ setj).
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Proof If a non-faulty processpi returnsseti = {w}, it follows from the predicate of line 2 thatmv val2i contains
(n− t) different pairs〈process index,w〉. Hence,pi has received the messageMV VAL 2(w) from (n− t) different
processes.

Before a non-faulty processpj returns a setsetj , it added(n− t) different pairs tomv del2j . As a non-faulty
process processes at most one messageMV VAL 2() from every other process (see the discarding of erroneous mes-
sages from Byzantine processes in section 2.1), it follows thatpj has received and processed messagesMV VAL 2()
from (n− t) different processes, i.e, from at leastn− 2t ≥ t+ 1 non-faulty processes.

As (n−t)+(t+1) > n, it follows that there is a non-faulty processpk that sent the same messageMV VAL 2()
to bothpi andpj . Hence, it sentMV VAL 2(w) to pj , and the pair〈k, w〉 is a pair ofmv val2j , which concludes
the proof of the lemma. ✷Lemma 7

Theorem 3 The algorithm described in Figure 2 implements theMV-broadcastabstraction in the computing
modelBAMPn,t[t < n/3].

Proof The proof follows from Lemmas 3 and 4 (MV-Termination), Lemma 5 (MV-Obligation), Lemma 6 (MV-
Justification), and Lemma 7 (MV-Inclusion). ✷Theorem 3

Theorem 4 Let us assume that at mostk different values areMV-broadcastby the processes. The number of
messages sent by the non-faulty processes is upper bounded byO(kn2). A message needs to carry a single bit of
control information. The time complexity isO(1).

Proof As far as the messagesMV VAL 1() are concerned we have the following. Each non-faulty process broad-
casts its initial valuevi (line 1), broadcasts at most once any valuev 6= vi it receives (line 4), and broadcasts
at most once the default value⊥mv (line 7). It follows that these broadcasts issued by the non-faulty processes
generate at most(k + 1)n2 MV VAL 1() messages. As each non-faulty process broadcasts a messageMV VAL 2()
at most once (line 2), it follows that at mostn2 MV VAL 2() messages are sent by the non-faulty processes. Hence,
the total number of messages sent by non-faulty processes belongs toO(n2).

As there are only two message types, a message has to carry a single bit of control information.
As far as the time complexity is concerned, we have the following. A messageMV VAL 1() sent by a non-

faulty process at line 1 entails at most one forwarding of the same message at line 4 by a non-faulty process.
Moreover, the sending of a messageMV VAL 2() by a non-faulty process at line 2 is entailed by “enough” reception
of messagesMV VAL 1(). It follows that the longest sequence of causally related messages is3. ✷Theorem 4

D Proof of Theorem 5 and Theorem 6 (Section 5)

Theorem 5 The algorithm described in Figure 3 solves the multivalued ITB consensus problem in the computing
modelBAMPn,t[t < n/3,BBC].

Proof The C-termination property follows from the following properties.

• The RD-termination property (line 1).

• The MV-Termination property applied to both instances of MV-broadcast (lines 2 and 4).

• The C-Termination property of the underlying BBC algorithm.

• The fact that, when BBC returns1:

– at least one non-faulty processpi proposed1 to BBC, and this process is such thatset2i = {w} where
w /∈ {⊥rd,⊥mv1,⊥mv2,⊥}, and

– due to the MV-inclusion property ofMV broadcast2(), the setset2j of any non-faulty processpj
containsw, and this is the only non-bottom value inset2j .
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Proof of the C-Obligation property. Let us consider the case where all non-faulty processes propose the same
valuev. It follows from the RD-Obligation property that they all returnv from their invocation ofRD broadcast(v)
(line 1). Hence, they all invokeMV broadcast1(v) (line 2), from which, due to the MV-Obligation and MV-
Justification properties, they all obtain the setset1i = {v}. It follows that they allMV broadcast2(v), from which
(for the same reason) they still obtain the same setset2i = {v} (line 4). Consequently all non-faulty processes
propose1 to the underlying BBC algorithm and (due to its C-Obligation property) they all decide1 (line 6). Hence,
they all returnv at line 7.

Proof of the C-Non-intrusion property. To show that a value proposedonly by Byzantine processes cannot be
decided, let us consider the worst case, namely, there aret Byzantine processes and all of them propose a valuew,
which is not proposed by a non-faulty process. It follows from the RD-Justification of the RD-broadcast abstrac-
tion that no non-faulty processpi obtainsw from its invocation ofRD broadcast() (line 1). Similarly, due to the
MV-Justification of the MV-broadcast abstraction, no non-faulty processpi can obtainw from its invocations of
MV broadcast1() (line 2) andMV broadcast2() (line 4). Asv /∈ set2i, a non-faulty processpi cannot decide onv.

Proof of the C-agreement property. If the value decided by the underlying BBC algorithm is0, all non-faulty
processes decide⊥ (line 8). If the value1 is decided, and all non-faulty processes proposed1, all their setsset2i
are singletons, which –due to the MV-singleton property– contain the same valuew. It follows from lines 5 and 7
that all non-faulty processes decidew.

Let us now consider the last case, where the value1 is decided by the underlying BBC algorithm, while two
non-faulty processespi andpj are such thatpi proposed1 andpj proposed0. As pi has proposed1 we have
set2i = {w}, wherew is not a default value. As bothpi andpj are non-faulty, it follows from the MV-Inclusion
property of the second MV-broadcast thatw ∈ set2j . Moreover, as non-faulty processes can MV-broadcast
only w or ⊥ at line 4, it follows from the MV-Inclusion property thatw is the only non-default value inset2j .
Consequently,pj decidesw at line 7. ✷Theorem 5

Theorem 6 Assuming an underlying BBC algorithm whose expected message complexity isO(n2) and expected
time complexity is constant (e.g., the one presented in [22]). When considering the non-faulty processes, the
expected message complexity of the multivalued ITB consensus algorithm described in Figure 3 isO(n2), and its
expected time complexity is constant.

Proof It follows from Theorem 2 that the number of messages sent by the non-faulty processes at line 1 is
O(n2). Due to the RD-reduction property of the RD-broadcast abstraction, there is constantc (wherec ≤ 6, see
Lemma 2) such that at mostc different values are RD-delivered by the RD-broadcast abstraction. It then follows
from Theorem 4 that the number of messages sent in the two MV-broadcasts (lines 2 and 4) by the non-faulty
processes isO(n2). Finally, as the expected number of messages sent by the non-faulty processes in the BBC
algorithm isO(n2), the multivalued ITB consensus algorithm inherits this message complexity. It follows that the
expected number of messages sent by the non-faulty processes belongs toO(n2).

The fact that expected time complexity is constant follows directly from the fact that the time complexities of
both the RB-broadcast and MV-Broadcast abstraction are constant (Theorem 2 and Theorem 4), and the underlying
BBC algorithm has an expected time complexity that is constant. ✷Theorem 6
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