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Abstract

This paper presents a new algorithm that reduces multislate@sensus to binary consensus in an asyn-
chronous message-passing system made uppobcesses where up tanay commit Byzantine failures. This
algorithm has the following noteworthy properties: it asgst < n/3 (and is consequently optimal from a
resilience point of view), use®(n?) messages, has a constant time complexity, and does notgnsgises.
The design of this reduction algorithm relies on two newtalkll communication abstractions. The first one
allows the non-faulty processes to reduce the number ofggexp values t@, wherec is a small constant.
The second communication abstraction allows each nomyfaubcess to compute a set of (proposed) values
such that, if the set of a non-faulty process contains a siaglue, then this value belongs to the set of any
non-faulty process. Both communication abstractions laav@(n?) message complexity and a constant time
complexity. The reduction of multivalued Byzantine cormento binary Byzantine consensus is then a simple
sequential use of these communication abstractions. Toe$ieof our knowledge, this is the first asynchronous
message-passing algorithm that reduces multivalued neaséo binary consensus with(n?) messages and
constant time complexity (measured with the longest cafsh of messages) in the presence of up<on/3
Byzantine processes, and without using cryptography tgoks. Moreover, this reduction algorithm tolerates
message re-ordering by Byzantine processes.

Keywords: Asynchronous message-passing system, Broadcast dlosty&yzantine process, Consensus, Dis-
tributed algorithm, Intrusion tolerance, Multivalued sensus, Optimal resilience, Randomized binary consen-
sus, Signature-free algorithm.



1 Introduction

Consensus in asynchronous Byzantine systemsThe consensus problem lies at the center of fault-tolerant
distributed computing. Assuming that each non-faulty process propogasie its formulation is particularly
simple, namely, each non-faulty process decides a value (termination)prtkiaulty processes decide the same
value (agreement), and the decided value is related to the proposed (alligisy); the way the decided value

is related to the proposed values depends on the failure model. Congehgwsy when only two values can be
proposed by the processes, otherwise it is multivalued.

Byzantine failures were introduced in the context of synchronous distgbsystems [17, 27, 30], and then
investigated in the context of asynchronous distributed systems [2, LA p8ocess has Byzantinebehavior (or
commits a Byzantine failure) when it arbitrarily deviates from its intended hehatthen commits a Byzantine
failure (otherwise we say it ison-faulty. This bad behavior can be intentional (malicious) or simply the result of
a transient fault that altered the local state of a process, thereby magifyipehavior in an unpredictable way.

Several validity properties have been considered for Byzantine msaseThis paper considers the following
one: a decided value is a value that was proposed by a non-faultysgroce default value denoted Moreover,
to prevent trivial or useless solutions, if all the non-faulty processgsgse the same valué,cannot be decided.
As these properties prevent a value proposed only by faulty pracésse decided, such a consensus is called
intrusion-tolerant Byzantiné TB) consensus [7, 24].

Solving Byzantine consensuslLet ¢ denote the model upper bound on the number of processes that caa have
Byzantine behavior. It is shown in several papers (e.g., [9, 17,ZYtl3at Byzantine consensus cannot be solved
whent > n/3, be the system synchronous or asynchronous, or be the algorithnedltovuse random numbers
or not.

As far as asynchronous systems are concerned, it is well-known #ratithno deterministic consensus algo-
rithm as soon as one process may crash [10], which means that Byzeotisensus cannot be solved either as
soon as one process can be faulty. Said another way, the basic @syoneh Byzantine system model has to be
enriched with additional computational power. Such an additional powebeabtained by randomization (e.g.,
[3, 7, 13, 22, 28]), assumption on message delivery schedules £.82]), failure detectors suited to Byzantine
systems (e.g., [12, 15]), additional —deterministic or probabilistic— symgteesumptions (e.g., [5, 9, 20]), or re-
strictions on the vectors of input values proposed by the processeg1&,@3]). A reduction of atomic broadcast
to consensus in the presence of Byzantine processes is presentgéH in [2

Finally, for multivalued Byzantine consensus, another approach ¢sisisonsidering a system model en-
riched with an algorithm solving (for free) binary Byzantine consenduss reduction approach has been first
proposed in the context of synchronous systems [33]. Recent arksich synchronous systems can be found
in [16, 18, 26]. Reductions for asynchronous systems where the coitation is by message-passing can be
found in [6, 7, 25]. The case where communication is by read/write registewvestigated in [31]. This reduction
approach is the approach adopted in this paper to address multivaluadtBgzconsensus.

Contributions of the paper Considering asynchronous message-passing systems, this pamptpresew
reduction from multivalued Byzantine consensus to binary Byzantineeosus, that has the following properties:

e Ittolerates up td < n/3 Byzantine processes,

Its message cost 3(n?),

Its time complexity is constant,

e It tolerates message re-ordering by Byzantine processes,
e It does not use cryptography techniques.

A simple and efficient Byzantine Binary consensus algorithm has recesglly proposed in [22]. This algo-
rithm, which is based on Rabin’s common coin, is signature-free and roased, requires< n/3, has arO(n?)
message complexity per round, and its expected number of rounds isrdoristallows that, when the reduc-
tion algorithm proposed in this paper is combined with this binary consensaosthig, we obtain a Byzantine
multivalued consensus algorithm that has the five properties listed prvidosour knowledge, this is the first
Byzantine multivalued consensus algorithm that is signature-free, optiitrakespect to resilience (< n/3),



has anO(n?) expected message complexity, a constant expected time complexity, and solleeate-ordering of
message deliveries by Byzantine processes.

The design of the proposed reduction algorithm is based on two new conatianiabstractions, which are
all-to-all communication abstractions. The first allows the non-faulty processeduoad¢he number of values
they propose t& < c values where: is a known constant. More precisety= 6 whent < n/3 (worst case),
¢ = 4 whenn = 4t, andec = 3 whent < n/4. The second communication abstraction allows each non-faulty
process to compute a set of (proposed) values such that, if the seboffaulty process contains a single value,
then this value belongs to the set of any non-faulty process. Both comrtiani@bstractions have ai(n?)
message complexity and a constant time complexity.

The structure of the resulting Byzantine multivalued consensus algorithsifidlaws. It uses the first com-
munication abstraction to reduce the number of proposed values to a dofitan, it uses sequentially twice the
second communication abstraction to provide each non-faulty processbiitarg value that constitutes the value
it proposes to the underlying binary Byzantine consensus algorithm. Fittadlyalue decided by a non-faulty
process is determined by the output (0 or 1) returned by the underlyimgybByzantine consensus algorithm.
Thanks to the communication abstractions, this reduction algorithm is particalarple (which is a first class
design property).

Roadmap The paper is composed of 6 sections. Section 2 presents the computing enudielefines the
multivalued ITB consensus problem. Section 3 defines the first communiedtsiraction (called RD-broadcast)
that reduces the number of proposed values to a constant, preseigsrithra that implements it, and proves it
correct. Section 4 defines the second communication abstraction (calldadddcast), presents an algorithm that
implements it, and proves it correct. Section 5 presents the algorithm reducitigalued consensus to binary
consensus in the presence of Byzantine processes. Due to page limgati@proofs appear only in appendices.

2 Computing Model and Intrusion-Tolerant Byzantine Consensus
2.1 Distributed computing model

Asynchronous processesThe system is made up of a finite §&tof n > 1 asynchronous sequential processes,
namelyll = {pi,...,p,}. “Asynchronous” means that each process proceeds at its own\hiod may vary
arbitrarily with time, and remains always unknown to the other processes.

Communication network The processes communicate by exchanging messages through arrasgastreli-
able point-to-point network. “Asynchronous” means that a messagbadkdieen sent is eventually received by its
destination process, i.e., there is no bound on message transfer d&aliable” means that the network does not
lose, duplicate, modify, or create messages. “Point-to-point” means thatithe bi-directional communication
channel between each pair of processes. Hence, when a preces®s a message, it can identify its sender.

A procesg; sends a message to a progesby invoking the primitive $end TAG(m) to p;”, whereTAG is the
type of the message amdits content. To simplify the presentation, it is assumed that a process camsesdges
to itself. A process receives a message by executing the primttizeive()”.

The operatiorbroadcast TAG(m) is a macro-operation which stands fdof each j € {1,...,n} send
TAG(m) to p; end for".This operation is usually callednreliable broadcast (if the sender commits a failure
in the middle of thdfor loop, it is possible that only an arbitrary subset of processes recthigenessage).

Failure model Up tot processes may exhibit Byzantinebehavior. A Byzantine process is a process that
behaves arbitrarily: it may crash, fail to send or receive messages,ashitrary messages, start in an arbitrary
state, perform arbitrary state transitions, etc. Hence, a Byzantinegsroebich is assumed to send a message
m to all the processes, can send a messagéo some processes, a different messageto another subset of
processes, and no message at all to the other processes. MoBy@aaattine processes can collude to “pollute”
the computation. A process that exhibits a Byzantine behavior is also ¢aillltg Otherwise, it ismon-faulty

Let us notice that, as each pair of processes is connected by a chamBgkantine process can impersonate
another process. Byzantine processes can influence the messageydathedule, but cannot affect network
reliability. More generally, the model does not assume a computationally-limitestsaty.

Discarding messages from Byzantine processe#, according to its algorithm, a proceggis assumed to send



a single messagerG() to a procesg;, thenp; processes only the first messages (v) it receives fronp;. This
means that, ip; is Byzantine and sends several messagesv), TAG(v') wherev' # v, etc., all of them except
the first one are discarded by their receivers.

Notation In the following, this computation model is denot8MP,, +[0)]. In the following, this model is
restricted with the constraint an< n/3 and is consequently denot&MP,, ,[n > 3t].

2.2 Measuring time complexity

When computing the time complexity, we consider the longest sequence ofgesssa. . . , m, whose sending
are causally related, i.e., for eaghe [2..z], the reception ofn,_; is a requirement for the sending of,. The
time complexity is the length of this longest sequence. Moreover, we implicitlyidenthat, in each invocation
of an all-to-all communication abstraction, the non-faulty processes irthekabstraction.

2.3 Multivalued Intrusion-tolerant Byzantine Consensus

Byzantine consensus This problem has been informally stated in the Introduction. Assuming théat @
faulty process proposes a value, each of them has to decide on a valushia way that the following properties
are satisfied.

e C-Termination. Every non-faulty process eventually decides on a vahaeterminates.

e C-One-shot. A non-faulty process decides at most once.

e C-Agreement. No two non-faulty processes decide on different values

e C-Obligation (validity). If all the non-faulty processes propose the saaheew, thenv is decided.

Intrusion-tolerant Byzantine (ITB) consensus Byzantine algorithms differ in the validity properties they satisfy.
In classical Byzantine consensus, if the non-faulty processes doopose the same value, they can decide any
value (this is captured by the previous C-Obligation property.

As indicated in the Introduction, we are interested here in a more constrgrsgdn of the consensus problem
in which a value proposed only by faulty processes cannot be decidiesiwas first investigated in a systematic
way in [7, 24]. This consensus problem instance is defined by the @ifation, C-One-shot, C-Agreement,
and C-Obligation properties stated above plus the following C-Non-intrusialidity) property, wherel is a
predefined default value, which cannot be proposed by a process.

e C-Non-intrusion (validity). A value decided by a non-faulty process islae/ proposed by a non-faulty
process orl.

The fact that no value proposed only by faulty processes can beadiggiiees its name (nameigtrusion-tolerany
to that consensus problem instahce

Remark on the binary consensusInterestingly, binary Byzantine consensus (only two values be caropeged
by processes) has the following property.

Property 1. ThelTB binary consensus problem is such that if a value is decided by a non-faoltgss, this
value can always be a value proposed by a non-faulty process.

This means that, when considering the ITB binary consensesn be safely replaced by any of the two possible
binary values.

3 The Reducing All-to-All Broadcast Abstraction

3.1 Definition

Thereducing broadcasabstraction (RD-broadcast) is a one-shot all-to-all communication abstrawhose aim
is to reduce the number of values that are broadcast to a constant. ddBehst provides the processes with

Directing the non-faulty processes to decide a predefined defaultvissiead of an arbitrary value, possibly proposed only by faulty
processes— in specific circumstances, is close to the notion af@mableobject as defined in [14, 31] where an operation is allowed to
abort in the presence of concurrency. This notion of an abortabletabjdifferent from the notion of a query-abortable object introduced
in [1].



a single operation denoteRD broadcast(). This operation has an input parameter, and returns a value. It is
assumed that all the non-faulty processes invoke this operation.

When a procesg; invokesRD broadcast(v;) we say that it “RD-broadcasts” the valug When a process
returns a value from an invocation oRD_broadcast(), we say that it “RD-delivers” a value (or a value is RB-
delivered). The default value denoted, cannot be RB-broadcast but can be RB-delivered. RD-broadcas
defined by the following properties.

e RD-Termination. Every non-faulty process eventually RD-deliverdaeva
RD-Integrity. No non-faulty process RD-delivers more than one value.

RD-Justification. The value RD-delivered by a non-faulty process igritlvalue RD-broadcast by a non-
faulty process, or the default value..

RD-Obligation. If the non-faulty processes RD-broadcast the same vahone of them RD-delivers the
default valuel ..

RD-Reduction. The number of values that are RD-delivered by thefandty processes is upper bounded
by a constant.

3.2 An RD-broadcast algorithm
An algorithm implementing the RD-broadcast abstraction is described in Figuféis algorithm assumes<
n/3. The aim of the local variabled_del; is to contain the value RD-delivered by this variable is initialized to
“?”, a default value that cannot be RD-delivered by non-faulty psses.

When a procesg; invokesRD_broadcast MSG(v;), it broadcasts the messageT (v;), and waits until it is
allowed to RD-deliver a value (line 1). During this waiting peripgreceives and processes the messages)
or ECHO() sent by the algorithm.

let rd_pset;(x) denotethe set of processes from whiphhas received\IT (x) or ECHO(z).

operation RD_broadcast(v;) is
(1) broadcast INIT (v;); wait(rd_del; # “?”); return(rd_del;).

when INIT (v) or ECHO(v) is received do

(2) if (v # vi) A (INIT (v) received from(n — 2t) different processes) (ECHO(v) never broadcast
3) then broadcast ECHO(v)

(4) endif;

(5) if (Fz#wv: |rdpset;(z)] >t+ 1) then rd_del; + 1,4 endif;

(6) if (3z: |rdpseti(z)| > n —t) thenrd_del; + x end if;

(7) letw be the value such that,z received byp;: |rd_pset;(w)| > |rd_pset;(z)|;

8) if (| Ua rd_pset;(z)| — |rd_pset;(w)| > t + 1) then rd_del; + 1,4 end if.

Figure 1: An algorithm implementing RD-broadcastil M P,, +[n > 3t]

The behavior of a procegs on its server side, i.e. when —while waiting— it receives a messagé¢v) or
ECHO(v), is made up of two phases.

e Conditional communication phase (lines 2-4). If the received valisedifferent from the value; it has
RD-broadcast, anaiiT (v) has been received from “enough” processes (naifely2t)), p; broadcasts the
messag&ECHO(v) if not yet done. Let us notice that, as— 2t > ¢ + 1, this means thaiIT (v) has been
received from at least one non-faulty process.

e Try-to-deliver phase (lines 5-8). Then, for any valuat has seen, a process computes first the set
rd_pset;(x) composed of the processes from whigthas received a messageT (z) or ECHO(x). If there
is a valuer, different fromuv;, that has been received frofh+ 1) different processes, f; is non-faulty, it
knows that at least two different values have been RD-broadcasbiyaulty processes (its own valug
plus another one). In this cagg,RD-delivers the default value,; (line 5 and line 1). The RD-delivery of
a value byp; terminates its invocation of the RD-broadcast.



If the predicate of line 5 is not satisfiegl, checks if there is a valuereceived from at least: — ¢) distinct
processes (line 6). Let us notice that, in this case, it is possible tha$ been RD-broadcast by all correct
processes. Hencg; RD-delivers this value.

Finally, if p; has not yet assigned a valuertd del;, it computes the value that, up to now, it has received
the most often in amiT () or ECHO() message (line 7). If there are at le@stt+ 1) different processes that
sentINIT () or ECHO() messages with values different fram(this is captured by the predicate of line 8), it
is impossible fop; to have in the future the same value received f(am- t) distinct processes. This claim
is trivially true forw, because at leaét + 1) processes sent values different fram As no valuew’ # w
has been received more thanthe claim is also true for any such valué So, the predicate of line 6 will
never be satisfied at, and consequently; RD-delivers the default valug,.;.

3.3 Proof of the RD-broadcast algorithm
All the proofs assume < n/3.

Lemma 1. Letnb_echo be the maximal number of different values that a non-faulty processuntayat line3.
We havei(n/3 >t > n/4) = (nb_echo < 2) and(n/4 > t) = (nb_echo < 1).

Proof Let us first consider the greatest possible valug afhich corresponds ta = 3¢ + 1. Let us observe that
a procesg; receives at most one messager () from each other process (otherwise, it knows that the sender is
Byzantine). Moreover, to broadcastHO(v), wherev # v;, p; needs to receiveNIT (v) fromn — 2t = ¢t + 1
different processes (predicate of line 2). It follows, from theseeplagions and the fact that= (¢t + 1) + (¢ +
1)+ (t — 1) < 3(n — 2t), thatp; can broadcast at most two messagesio() carrying distinct values. Ag;
broadcasts at most once a messageo() carrying a given value, it follows that(n/3 > t) = (nb_echo < 2).
Let us now consider the case= 4t + o > 4t, wherea > 0. In this casen — 2t = 2t + o > 2t. As the
broadcast by, of a messagecHo(v) requires the reception oflIT (v) from at leas®t + « different processes,
it is possible that there is such a valueOn the other side, as a procesgeceives at most one messager ()
from each other process, it is not possible for a progess receiven — 2t > 2t messages carrying a value
different from bothw andv;. It follows that(n/4 > t) = (nb_echo < 1), which concludes the proof of the lemma.
U Lemma 1

Lemma 2. At moste different values can beD-deliveredby the non-faulty processes, where- 6 whenn /3 > ¢,
¢ = 4 whenn = 4t, andc = 3 whent > n/4.

Proof Let us consider a “worst” execution, i.e., an execution in whiptocesses are Byzantine. Let us call “vote”
(for avaluev # L,;) a messagenIT (v) or ECHO(v) sent by a process.

To be RD-delivered by a non-faulty process a value (different fromL,.;) must be received fromn — t)
different processes (line 6). Due to Lemma 1, a non-faulty procesvatanfor at most three distinct values,
while a Byzantine process can vote for any number of values. To maximizetdienumber of values that can
be RD-delivered by the set of non-faulty processes, we considewdhst case where (a) there ar®yzantine
processes, and (b) if a non-faulty proces®D-delivers a value (line 6) it has received for this value: — 2t)
votes from non-faulty processes, and a vote from each of the Byegmtiitesses. In this way, we have to consider
the maximal number of votes that can be sent by the non-faulty processéiseafact that onlyn — 2t) of them
are needed to RD-deliver a value. There are three cases.

Casen > 3t. At most3(n —t) votes can be sent by the non-faulty processes. It follows that the totdder of
different values that can be RD-delivered by the set of non-fautiggsses is (where the:” comes fromn > 3t):

3(n—t) 3n—6t+3t 3t 3t
n—2t  n—2t 73+n—2t<3+3t—2t76

Hence the total number of RD-broadcast values that can be returrtbd laghole set of non-faulty processes is at
most5. When adding the default valug,;, we obtainc = 6.



Casen > 4t. It then follows from Lemma 1 that there are at mdgt — ¢) votes sent by non-faulty processes.
With the same reasoning as before we obtain (wherecomes fromn > 4t):

2(n—1t) 2n—4t+ 2t 2t 2t
n— 2t n — 2t +n—2t +4t—2t

Hence the total number of RB-broadcast values that can be returrtad imhole set of non-faulty processes is at
most2. When adding the default value,,;, we obtainc = 3.

Finally, forn = 4t we haveQT(L”__Q? = % = 3. Hence, at most = 4 different values can be returned by the

whole set of non-faulty processes wheg= 4¢. ULemma 2

Theorem 1. The algorithm described in Figurgé implements thdRD-broadcastbstraction in the computing
modelBAMP,, ;[n > 3t].

Theorem 2. The number of messages sent by the non-faulty processes is uppeleddoyO(n?). Moreover, in
addition to a value sent by a process, a message carries a single binwbcimformation. The time complexity is
O(1).

3.4 RD-Broadcast vs Byzanting:-Set Agreement
In the k-set agreement problem, each process proposes a value, and at difeestent values can be decided by
the non-faulty processes. It is shown in [8] that the solvability:«fet agreement in the presence of Byzantine
processes depends crucially on the validity properties that are cogsider

As the reader can easily check, the specification of the RD-broadusisaetion defines an instance of the
Byzantine c-set agreement problem, whetreis the constant defined in Lemma 2. It follows that the algo-
rithm presented in Figure 1 solves this Byzantikieet agreement instance for ahy> ¢ in the system model
BAMP,+[t < n/3]. (Let us remind that < n/3 is the lower bound om to solve Byzantine consensus in a
synchronousystem.)

4 The Multivalued Validated All-to-All Broadcast Abstraction

4.1 Definition
The RD-broadcast abstraction reduces the number of values serddaspes to at most five values plus a default
value denoted.,.;, while keeping the number of messages exchanged by non-faulty pesdes (n?).

Differently, assuming that each non-faulty process broadcasts a eald@t mosk different values are broad-
cast (wherg: does not need to be known by the processes), the aim of the onsshivalued validated all-to-all
broadcastabstraction (in short MV-broadcast) is to provide each non-faultyge®avith an appropriate subset of
values (called/alidatedvalues), which can be used to solve multivalued ITB consensus. Torttatles funda-
mental property of MV-broadcast that is used is the following: if a nantygorocess returns a set with a single
value, the set returned by any other non-faulty process contains the \Woreover, from an efficiency point of
view, an important point that has to be satisfied is that the message cosivbf-Aroadcast instance has to be
O(kn?).

To MV-broadcast a value;, a proces®; invokes the operatioMV _broadcast(v;). This invocation returns
to p; a non-empty set a values, which consists of validated values, plus possielaalt value denoted ,,,,.
This default value cannot be MV-broadcast by a process. Similarly tdbR®Rdcast, when a process invokes
MV _broadcast(v), wee say that it “MV-broadcast’. MV-broadcast is defined by the following properties.

e MV-Obligation. If all the non-faulty processes MV-broadcast the saateew, then no non-faulty process
returns a set containing, .

e MV-Justification. If a non-faulty process returns a set including a value+# 1,,,,, there is a non-faulty
procesy; that MV-broadcast.

e MV-Inclusion. Letset; andset; be the sets returned by two non-faulty procegsesndp;, respectively.
(set; = {w}) = (w € set;) (let us notice thatv can bel ;).

6



e MV-Termination. An invocation oMV _broadcast() by a non-faulty process terminates (i.e., returns a non-
empty set).

The following property follows directly from the MV-Inclusion property.

e MV-Singleton. Letset; andset; be the sets returned by two non-faulty procegseandp;, respectively.
[(set; = {v}) A (set; = {w})] = (v =w).

let mv_pset1;(x) denotethe set of processes from whiphhas receivedv _vaL 1(z);
mu_val2; is a set of pairgprocess index, valyeinitially empty, received in messagey _VAL 2().

operation MV _broadcast MSG(v;) is

(1) broadcast MV _VAL 1(v;); wait (3 v such thatmu_pset1;(v)| > 2t + 1); % vcanbel,., %
(2) broadcast MV _VAL 2(v); wait (|mv_val2;| > n —t);

(3) return ({z | (—, z) € mv_val2;}).

whenmv _vAL 1(y) is received do % y canbel,,, %

(4) if ((Jmv_psetl;(y)| >t + 1) A (MV_VAL 1() not yet broadcas})then broadcast Mv _VAL 1(y) end if;
(5) letw be the value such that,z received byp;: |mv_psetl;(w)| > |mv_psetl;(z)|;

(6) if ((| Uz mu_psetli(z)| — |[mv_psetli(w)| > t 4+ 1) A (MV_VAL 1(L,) never broadcask)

(7) then broadcast MV _VAL 1(L,,,)

(8) endif;

whenmv _vAL 2(x) is received fromp; do % x canbel,,, %
(9)  wait(|mv_psetl;(z)| > 2t 4+ 1);
(10) mv_val2; < mv_val2; U (j, x).

Figure 2: An algorithm implementing MV-broadcastBd M P, ;[n > 3t]

4.2 An MV-broadcast algorithm

A two-phase algorithm implementing the MV-broadcast abstraction is deddriiggure 2. It assumes< n/3,
and —as we will see— its message complexit®&n?).

To bevalidated a value must have been MV-broadcast by at least one non-faultggsoHence, for a process
to locally know whether a value is validated, it needs to receive it ffosm 1) processes.

Each procesg; manages a local variablev_val2;, which is a set (initially empty). Its aim is to contain pairs
(7,x), wherej is a process index anda validated value. The behavior of a non-faulty proggss as follows.

e In the first phase (line 1) a procegsbroadcasts its initial value by sending the messagevaL 1(v;). It
then waits until it knows (a) a validated valughence it has receivedv _vAL 1(v) from at least(t + 1)
different processes), (b) and this valuis eventually known by all non-faulty processes. This is captured by
the following waiting predicate “the message VAL 1(v) has been received from at leg8t + 1) different
processes” used at line 1. From then gnyill champion this value for it to belong to the sets returned by
the non-faulty processes.

On it server side concerning the reception of a message/aL 1(y), a proces; does the following
(line 4). If p; knows thaty is a validated value (i.e., the message_VvAL 1(y) was received from least
(t + 1) processes), (if not yet dong) broadcasts the very same message to help the validatedyved e
known by all non-faulty processes.

Then, according to its current knowledge of the global statehecks if there is a possibility that no value
at all be present enough to be validated. It there is such a possipjlitypadcastsiv_vAL 1(_L,,,). To

that end (as at lines 6-7 of the RD-broadcast algorithm, Figurg; omputes the valuer most received
from different processes (lines 5). If at led@st 1) processes have broadcast values different fugrm;
broadcastsiv _vAL 1(_L,,,), if not yet done (lines 6-8)p; sends the default value because it sees too may
different values, and it does not know which ones are from nohyfauocesses.



e When it enters the second phase (line 2), a process champions the dliditey it has previously com-
puted with the waiting predicate of line 1. This is done by broadcasting the geessaVvAL 2(v). It
then waits until the setww_val2; contains at leadtn — t¢) pairs(j, z), and finally returns the set of values
contained in these pairs (line 3). Let us remind that those are validatedvalue

On its server side, when a procgssreceives a messagev VAL 2(x) from a procesg;, it waits until it

has received a message/ VAL 1(xz) from at least(2¢ + 1) different processes. This is needed because
Byzantine processes can send spurious messagesiL 2(x) while they have not validated the value
More precisely, let us notice that the waiting predicgdtev_psetl;(x)| > 2t + 1) used byp; at line 9 is

the same as the one used at line 2oby-if it is non-faulty— to champion the value Hence, in casg; is

not non-faulty,p; waits until the same validation predicdtewv_pset1;(x)| > 2t + 1) becomes true before
accepting to process the message VAL 2(x) sent byp;.

Remark Let us notice that this algorithm is tolerant to message duplication. Moreswdle a non-faulty
process is not allowed to MV-broadcast the default valyg,, a Byzantine process can do it. Let us also remark
that L ,,, is the only default value associated with the MV-broadcast abstractiorcesiéor MV-broadcast] .4 is

a “normal” value, which can be MV-broadcast, as any value differemfL,,,,.

4.3 Proof of the MV-broadcast algorithm
As previously, all the proofs assumec n/3.

Lemma 3. The waiting predicat¢3 v such thaimuv_pset1;(v)| > 2t + 1) (used at linel) is eventually satisfied
at any non-faulty process.

Lemma 4. The waiting predicaté|mv_val2;| > n — t) (used at line2) is eventually satisfied at any non-faulty
process;.

Lemma 5. If all non-faulty processeMV-broadcasthe same value, no non-faulty process returns a set con-
taining L.,

Lemma 6. If the set returned by a non-faulty procggsontains a value # 1 ,,,,, thenv has beemMV-broadcast
by a non-faulty process.

Lemma 7. Let set; and set; be the sets returned by two non-faulty procegsesnd p;, respectively.(set; =
{w}) = (w € set;).

Theorem 3. The algorithm described in Figur2 implements thélV-broadcastabstraction in the computing
modelBAMP,, [t < n/3].

Theorem 4. Let us assume that at mastdifferent values aréV-broadcastby the processes. The number of
messages sent by the non-faulty processes is upper bound#@by). A message needs to carry a single bit of
control information. The time complexityd(1).

5 Multivalued Intrusion-Tolerant Byzantine Consensus

The multivalued intrusion-tolerant Byzantine (ITB) consensus probles defined in Section 2.3. A signature-
free algorithm that solves it despite upttec n/3 Byzantine processes is described in this section. This algorithm
is such that the expected number of messages exchanged by the lppfacesses i€ (n?), and its expected
time complexity is constant.

5.1 Enriched computation model for multivalued ITB consensus
In the following, as announced in the introduction, we consider that théi@aal computational power that allows
multivalued ITB consensus to be solved BAMP,, [t < n/3] is an underlying Byzantine binary consensus
(BBC) algorithm. LetBAMP,, [t < n/3,BBC| denote the system modBIAMP,, ;[t < n/3] enriched with a
BBC algorithm. BBC algorithms are described in several papers (e.g., 18, 22, 32]).

To obtain a multivalued ITB consensus algorithm with@m?) expected message complexity and a constant
expected time complexity, we implicitly consider that the underlying BBC algorithrreistie presented in [22].
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5.2 An efficient algorithm solving the multivalued ITB consersus problem

The algorithm is described in Figure 3. The multivalued consensus opetiaditis built is denotechv_propose(),
while the underlying binary consensus operation it uses is debotgstopose(). Extremely simple, this algorithm
can be decomposed in four phases. The first three phases are comtinnmbtases, while the last phase exploits
the result of the previous phases to reduce multivalued Byzantine carsenBBC.

The second and the third phases are two distinct instances of the Mildaistaabstraction. Not to confuse
them, their corresponding broadcast operations are deWdtebroadcast; (), andMV _broadcasts(), respectively.
Similarly, their default values are denoteg,,; and_L,,,». Itis assumed that the default values;, 1,01, L2,
and L (the consensus default value) are all different. The four phasessdollows, where€’ _PROP denotes the
set of values proposed by the non-faulty processes.

operation mv_propose(v;) is
(1) rd-val; < RD_broadcast(v;);
%
(2)  setl; < MV_broadcasti (rd-val;);

% ps, p; non-faulty: ((|setl;| =1) A (|setl;| =1)) = (setl; = setl;) %
(3) if (setl; = {w}) then aux; <+ w elseaux; + L endif;
%
(4)  set2; < MV_broadcasts(auz;);

% pi, p; non-faulty: (set2; = {w}) = (w € set2;) %

%
(5) if ((set2i = {w}) A (w & {Lrd, Lmv1, Lmoz, L})) thenbp; < 1 elsebp; + 0 end if;
(6)  bdec; < bin_propose(bp;);

(7)  if (bdec; = 1) then return(w) such thatw € set2; andw ¢ { L4, Limov1, Loz, L}

(8) else return(L)

(9) endif.

Figure 3: An algorithm implementing multivalued ITB consensu8#WMP,, «[n > 3t, BBC]

e The first phase consists of an RD-broadcast instance. Each altygeocess; invokesRD _broadcast(v;),
wherew; is the value it proposes to consensus, and stores the returned value taitsddablerd_val;
(line 1). Due to properties of the RD-broadcast abstraction, we have

rd-val; € RD_VALwhereRD_VAL C C_PROP U {L,4},

and (due to Lemma 2)RD_VAL| < 6. Moreover, the message cost of this phase is the one of the RD-
broadcast, i.e((n?).

e The second phase (lines 2 and 3) consists of the first MV-broadsdahae, namely, a procegsinvokes
MV _broadcast; (rd_val;) from which it obtains the non-empty sett1;. Due to the properties of the MV-
broadcast abstraction, we have

setl; C MV _VAL,, whereMV _VAL; C RD_VALU{ L ,,1} € C_.PROPU{L,q, L1}
Moreover, due to the MV-singleton property, we also have
((Isetl;| = 1) A (|setl;] =1)) = (setl; = setl;j).

Then, according to the value eét1;, p; prepares a valueux; it will broadcast in the second MV-broadcast
instance. Ifsetl; = {w}, aux; = w, otherwisenux; = L (the consensus default value).

Let AUX = U;ec{aux;}, whereC denotes the set of non-faulty processes. While preservin@thé)
message complexity, the aim of the lines 2 and 3 is to ensure the following proper

AUX ={v} V AUX = {1} vV AUX = {v, L}, wherev € MV _VAL,.

Let us notice that, thanks to the MV-Justification property, theAdé&X cannot contain a value proposed
only by Byzantine processes.



e The third phase (line 4) is a second instance of the MV-broadcast efimtralhe values MV-broadcast by
the non-faulty processes are values of thesBX . So, the setet2; returned by a non-faulty procegsis

such that
set2; C MV _VALs whereMV _VAL, C AUX U {J_mvg},

and, due to the MV-Inclusion property, the sets returned to any two awltyfprocesses; andp; are such
that(set2; = {w}) = (w € set2;).

e The last phase (lines 5-9) is where the underlying BBC algorithm is explolfegkt2; contains a single
value, that is not a default valug; proposesl to the underlying BBC algorithm. Otherwise, it proposes
0. Then, according to the valuglec; returned by the BBC algorithm, there are two casesdit; = 1,

p; return the value oket2; which is not a default value (line 7). Otherwidelec; = 0 andp; returns the
default valuel .

5.3 Proof of the multivalued ITB consensus algorithm and two emarks

Theorem 5. The algorithm described in Figugsolves thenultivalued ITB consensysroblem in the computing
modelBAMP,, [t < n/3,BBC].

Theorem 6. Let us assume an underlyif@BC algorithm whose expected message complexity(is®) and
expected time complexity is constant (e.g., the one presenf2d])nWhen considering the non-faulty processes,
the expected message complexity of the multivalued ITB consensus atgieibribed in Figur@ is O(n?), and

its expected time complexity is constant.

Remark 1 Let us remark that, if we suppress the invocation of the RD-broadcastabon, and replace line 1
by the statementrd_val; + v;”, the multivalued ITB consensus remains correct. This modification saees th
two communication steps involved in the RD-broadcast, but lose®thé) message complexity, which is now
O(kn?) (this follows from Theorem 4 and the fact thiatc [1..n] is the number of distinct values broadcast by
correct processes).

Remark 2 The algorithm of Figure 2 uses two instances of the MV-broadcast ahetralt is an open problem
to know if it is possible to design an algorithm based on a single instance of it.

6 Conclusion

This paper presented an asynchronous message-passing algoritimreduces multivalued consensus to binary
consensus in the presence of up te: n/3 Byzantine processes (being the total number of processes). This
algorithm has the following noteworthy features: its message complexity:ig), its time complexity isO(1),
and it does not rely on cryptographic techniques. As far as we kn@istthe first consensus reduction owning
all these properties, while being optimal with respect to the value @his algorithm relies on two new all-to-
all communication abstractions. These abstractions consider the valuesdhabadcast, and not the fact that
“this” value was broadcast by “this” process. This simple observatiowatious to design an efficient reduction
algorithm. (Ann-multiplexing of a one-to-all broadcast abstraction would entaiDén?) message complexity.)
Interestingly, this reduction algorithm tolerates message re-ordering bgriipe processes.

When combined with the binary Byzantine consensus algorithm presen®?] jmve obtain the best algorithm
known so far (as far as we know) for multivalued Byzantine conseinsasnessage-passing asynchronous system
(where “best” is with respect the value ©fthe message and time complexities, and the absence of limit on the
computational power of the adversary).
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A Proof of Property 1 (Section 2)

Property 1 The ITB binary consensus problem is such that if a value is decided londawilty process, this
value can always be a value proposed by a non-faulty process.

Proof It follows from the C-obligation property that any non-faulty processidiesb when all the non-faulty
processes proposéd Otherwise, at least one non-faulty process propgsexhd then any valué or ¢ may be
decided by a non-faulty process without violating the C-Non-intrusiopgntg. O property 1

B Proof of Theorem 1 and Theorem 2 (Section 3)

Theorem 1 The algorithm described in Figure 1 implements the RD-broadcast abstréictitbe computing
modelBAMP,, ;[n > 3t].

Proof The proof of the RD-Integrity property (a non-faulty process RDwiet at most one value) follows di-
rectly from the text of the algorithm. The proof of the RD-Reduction priypfedlows from Lemma 2.

To prove the RD-Justification property we show that a value RB-breadedy by Byzantine processes cannot
be RD-delivered by a non-faulty process Let us assume the worst case, namely, there Bygantine processes
and all of them RB-broadcast the same valueAs n > 3¢, no non-faulty process can receiv@T (v) from
n — 2t > t + 1 different processes. Hence, no non-faulty process broadeasty(v) at line 3. If follows that no
non-faulty process receives messages (v) or ECHO(v) from (n — t) different processes. Hence, the predicate
|rd_pset;(v)| > n —t (line 6) cannot become satisfied at a non-faulty propgsshich concludes the proof of the
RD-Justification property.

To prove the RD-Obligation property, let us assume that all the non-fatdtgepses RD-broadcast the same
valuev. We have to show that no non-faulty process RD-deliverg i.e., executes the statemeiwt del; «+ 1,4
at line 5 or line 8. Let us first observe that, even if all Byzantine prasepsopose the same value# v, the
predicate of line 5 cannot be satisfied for Finally, as the (at least — ¢) non-faulty processes RD-broadcast
the same value, whether the (at mog) Byzantine processes have sent the same or different valuesrif) or
ECHO() messages, it is not possible for the predicate of line 8 to become satisfied.

To prove the RD-Termination property, we consider two cases. Letsisbnsider that some values RD-
broadcast by at least— 2t > ¢ + 1 non-faulty processes. If follows from line 2 that each other non-faquribgess
broadcastgCcHO(v). Hence, each non-faulty procegssreceives messagesiT () or ECHO() messages, carrying
the valuev, from at least{n — ¢) processes. Consequently, the predicate of line 6 becomes eventuafigdaitis
every non-faulty process, and —if not yet done— each of them Ribedea value.



Let us now consider the case where there is no valtiat is RD-broadcast by — 2¢ non-faulty processes.
Considering a non-faulty procegs let us assume that the predicates of line 5 and line 6 are never satisfied. We
show that the predicate of line 8 becomes then eventually satisfied: heethe value thap; received the most
often from different processes. By assumption it received this vatune § non-faulty processes whege< n — 2t,
and fromb Byzantine processes, whefe< b < ¢t. Asg+b < (n—2t)+b, at most(n —2¢t — 1) + b processes have
sent the value to p;,. Moreover, ap; does not terminate at line 5 or line 6, it eventually receives a message from
each non-faulty process, i.e., from at le@st— ¢) processes, from which we conclude thateceives messages
from at leas{n —t) + b different processes. It follows that at leg@st—¢ +b) — ((n—2t — 1) +b) = t+ 1 different
processes have sentgpvalues different fromv. Consequently, the predicate of line 8 is eventually satisfied and
pi RD'deIiverSJ—rd- UTheorem 1

Theorem 2 The number of messages sent by the non-faulty processes is uppeleddayO (n?). Moreover, in
addition to a value sent by a process, a message carries a single bitrof adnrmation. The time complexity is
O(1).

Proof It follows from Lemma 1 that a non-faulty process echoes at mosttwi) messages. This means that,
it broadcast at most three messages (its own() message, plus tweCcHO() messages). As a broadcast costs
messages, the total number of messages sent by the non-faulty psds&sse A single bit of control is required
to differentiateiNiT () andecHO() messages.

As far as the time complexity is concerned, a messageo() can only be sent when a messager () is
received. Hence, the time complexity2s OTheorem 2

C Proof of the Lemmas 3-7, Theorem 3, and Theorem 4 (Section 4)

Lemma 3 The waiting predicaté3 v such thafmuv_psetl;(v)| > 2t 4+ 1) (used at line 1) is eventually satisfied
at any non-faulty process.

Proof Let us consider the the following predicake “There is a valuey and a finite time after which at least
(t 4+ 1) non-faulty processes have sent the message/aL 1(v)”. We consider two cases.

Case 1: The predicat® is satisfied. In this case, it follows from line 4 that every non-faulty psea/entu-
ally broadcastsv _vAL 1(v). As there are at least — t > 2¢ 4+ 1 non-faulty processes, the predicateu(such
that|muv_pset1;(v)| > 2t + 1) becomes eventually true at every non-faulty process. Consequamtign-faulty
process can block forever at line 1.

Case 2: The predicat® is not satisfied. Lep; be a non-faulty process. Leinr; be the most often received
value byp;, from different processes (as defined at line 5). dbe the number of non-faulty processes that sent
MV _VAL 1(vmr;). As P is not satisfied¢ < ¢.

As there are at leagtr — t) non-faulty processeg; receives at leadtn — t) messagesv VAL 1(). More
preciselyp; receives these messages from- ¢ + b) different processes, whebec [0..¢] is the additional number
of —non-faulty or Byzantine— processes that sent a messageAmong thesén —t-+b) processes, at mogt+b)
messagestv _VAL 1() carry the valueymr; (the upper boundc + b) is attained when thé additional processes
are Byzantine and sentv _vAL 1(vmr;) to p;). It follows that at leastn — ¢ + b) — (¢ + b) = n — ¢t — c of them
sent top; values different frommr;. Asc < t andn > 3t, we haven — ¢t — ¢ > n — 2t > t + 1. It follows that
the predicate of line 6 is eventually satisfied, androadcasts then the message_vAaL 1(_L,,,) (line 7). This
reasoning applies to any non-faulty proces§possibly with values different fromvnr;). Hence, each non-faulty
procesy; eventually receivesiv _vAL 1(_L,,,) from at least(n — t) processes. Finally, as— ¢ > 2t + 1, the
predicate(|muv_psetl;( L, )| > 2t + 1) is eventually satisfied at each non-faulty progessvhich concludes the
proof of the second case. OFemma 3



Lemma 4 The waiting predicaté|mv_val2;| > n — t) (used at line 2) is eventually satisfied at any non-faulty
proces;.

Proof It follows from Lemma 3 that no non-faulty process blocks forever in tfat wtatement of line 1.
Hence, each non-faulty process broadcasts a message/ VAL 2(w;) at line 2, where the value; is such
that(|muv_psetl;(w;)| > 2t + 1). If follows from this predicate that at leatt + 1) processes senv _VAL 1(w;)
to p;, from which we conclude that the message_vAL 1(w;) has been broadcast by at leést- 1) non-faulty
processes. It consequently follows from line 4 that (if not yet doaehenon-faulty process broadcasts the mes-
sagemV _VAL 1(w;). Hence, at each non-faulty procegswe eventually havenv_psetl;(w;)| > 2t + 1. Finally,
it follows from the predicate of line 9 that, at line 10, every non-faulty pesp; adds(i, w;) to its local set
mv_val2;.

As there arg(n — t) non-faulty processes, it follows that we eventually have psetl;(w;)| > n —t at
every non-faulty process, and the predicate of line 2 becomes evergati$ified, which concludes the proof of
the lemma. O Lemma 4

Lemma5 If all non-faulty processes MV-broadcast the same valu® non-faulty process returns a set contain-
ing L.

Proof To prove the MV-Obligation property, let us assume that all non-faultggsses broadcasty VAL 1(v)

at line 1. If follows from the predicate of line 4 that, even if all the Byzantinecpsses broadcast the same value
w # v, No non-faulty process broadcastsat line 4, and consequently at mdsvalues different fromv can

be broadcast imv _vAL 1() messages. Let us consider a non-faulty propess a worst case execution, which
occurs when all the Byzantine processes broadcast the samewajti@. Let us notice thatmov_pset1;(v)|
monotonically increases frofto (n — ¢), and|muv_pset1;(w)| monotonically increases frofto ¢t. There are
two cases.

e If, during the execution, there are periods whera _psetl;(w)| > |mv_psetl;(v)|, due to the range of
|mu_pset1;(w)|, the predicatémuv_psetl;(v)| — [mv_psetl;(w)| > t + 1 returnsfalse when it is evaluated
by p;. It follows that, whenmuv_psetl;(w)| > |mv_psetl;(v)|, p; cannot broadcastv VAL 1(L,,,1) at
line 7.

e During the period whergnuv_pset1;(v)| > |mv_psetl;(w)| (this necessarily occurs, and eventually remains
true forever), due to the range phv_psetl;(v)| and|muv_pset1;(w)|, and similarly to the previous case,
the predicatémuv_psetl;(w)| — |mv_psetl;(v)| > t + 1, returnsfalse when it is evaluated by;, and, as
before,p; cannot broadcastv _vAL 1(_L,,,) atline 7.

It follows that no non-faulty process broadcaste_VAL 1(_L,,,). As only (at most) Byzantine processes may
broadcastv vAL 1(L,,,), the predicaté|mv_psetl;(L,,,)| > 2t + 1) evaluated at line 9 can never be satisfied
at a non-faulty process;. Hence, the setw_val2; of a non-faulty procesg; cannot contain a paif—, L,,),
and consequently; cannot return a set including,,.,,, which concludes the proof the MV-Obligation property.
DLemma 5

Lemma 6 If the set returned by a non-faulty procegssontains a value # 1 ,,,, thenv has beeMV-broadcast
by a non-faulty process.

Proof To prove the MV-Justification property, we show that a value MV-braationly by Byzantine processes

cannot be added to the set_val2; of a non-faulty procesg;. Let us consider the worst case where theretare
Byzantine processes and all broadaast VAL 1(v), wherew, is not MV-broadcast by non-faulty processes. Due
to the predicate of line 4, no non-faulty procegsschoes the value. Hence,v can be received only from the

t Byzantine processes. It follows that the predidatev_pset1;(v)| > 2t + 1) of line 9 cannot be satisfied at a

non-faulty procesg;, and consequently—, v) cannot be added tav_val2;. OLemma 6

Lemma 7 Let set; andset; be the sets returned by two non-faulty processesndp;, respectively. (set; =
{w}) = (w € set;).



Proof If a non-faulty process; returnsset; = {w}, it follows from the predicate of line 2 thatv_val2; contains
(n — t) different pairs(process indexy). Hence p; has received the message _VAL 2(w) from (n — t) different
processes.

Before a non-faulty procegs returns a setet;, it added(n — t) different pairs tonv_del2;. As a non-faulty
process processes at most one messag®AL 2() from every other process (see the discarding of erroneous mes-
sages from Byzantine processes in section 2.1), it followgithlaas received and processed messayesAL 2()
from (n — t) different processes, i.e, from at least- 2¢ > ¢ + 1 non-faulty processes.

As (n—t)+(t+1) > n, it follows that there is a non-faulty procegsthat sent the same message_ VAL 2()
to bothp; andp;. Hence, it senMv _vAL 2(w) to p;, and the pairk, w) is a pair ofmv_val2;, which concludes
the proof of the lemma. OLemma 7

Theorem 3 The algorithm described in Figure 2 implements M¥-broadcastabstraction in the computing
modelBAMP,, +[t < n/3].

Proof The proof follows from Lemmas 3 and 4 (MV-Termination), Lemma 5 (MV-Ollig®), Lemma 6 (MV-
Justification), and Lemma 7 (MV-Inclusion). OTheorem 3

Theorem 4 Let us assume that at mastdifferent values aréMV-broadcastby the processes. The number of
messages sent by the non-faulty processes is upper boundgdhy). A message needs to carry a single bit of
control information. The time complexity 3(1).

Proof As far as the messages/ _vAL 1() are concerned we have the following. Each non-faulty process broad-
casts its initial valuey; (line 1), broadcasts at most once any value: v; it receives (line 4), and broadcasts

at most once the default value,,, (line 7). It follows that these broadcasts issued by the non-faulty psese
generate at mogk + 1)n? Mv VAL 1() messages. As each non-faulty process broadcasts a message 2()

at most once (line 2), it follows that at mast Mv _vAL 2() messages are sent by the non-faulty processes. Hence,
the total number of messages sent by non-faulty processes belongstp

As there are only two message types, a message has to carry a singleoitrof mformation.

As far as the time complexity is concerned, we have the following. A mesgageaL 1() sent by a non-
faulty process at line 1 entails at most one forwarding of the same mesishge 4 by a non-faulty process.
Moreover, the sending of a message_vAL 2() by a non-faulty process at line 2 is entailed by “enough” reception
of messagesiv _vaL 1(). It follows that the longest sequence of causally related messages is  Orpeorem 4

D Proof of Theorem 5 and Theorem 6 (Section 5)

Theorem 5 The algorithm described in Figure 3 solves the multivalued ITB consemsbtem in the computing
model BAMP,,+[t < n/3,BBC].

Proof The C-termination property follows from the following properties.

e The RD-termination property (line 1).

e The MV-Termination property applied to both instances of MV-broaddeamq 2 and 4).
The C-Termination property of the underlying BBC algorithm.
The fact that, when BBC returnis

— at least one non-faulty procegsproposed to BBC, and this process is such that2; = {w} where
w ¢ {J—Td) J—m'ul; J—vav J—}1 and

— due to the MV-inclusion property o1V _broadcasts(), the setset2; of any non-faulty procesp;
containsw, and this is the only non-bottom valuednt2;.



Proof of the C-Obligation property. Let us consider the case wher@atfaulty processes propose the same
valuew. It follows from the RD-Obligation property that they all returfrom their invocation oRD _broadcast(v)
(line 1). Hence, they all invok&V broadcast;(v) (line 2), from which, due to the MV-Obligation and MV-
Justification properties, they all obtain the seftl; = {v}. It follows that they allMV _broadcasty(v), from which
(for the same reason) they still obtain the samess&t; = {v} (line 4). Consequently all non-faulty processes
proposel to the underlying BBC algorithm and (due to its C-Obligation property) theyealidk1 (line 6). Hence,
they all returnv at line 7.

Proof of the C-Non-intrusion property. To show that a value proposgyby Byzantine processes cannot be
decided, let us consider the worst case, namely, thereByeantine processes and all of them propose a value
which is not proposed by a non-faulty process. It follows from the RiBtification of the RD-broadcast abstrac-
tion that no non-faulty procegs obtainsw from its invocation ofRD_broadcast() (line 1). Similarly, due to the
MV-Justification of the MV-broadcast abstraction, no non-faulty psege can obtainw from its invocations of
MV _broadcast; () (line 2) andMV _broadcasts() (line 4). Asv ¢ set2;, a non-faulty process; cannot decide on.

Proof of the C-agreement property. If the value decided by the undgBBC algorithm is0, all non-faulty
processes decide (line 8). If the valuel is decided, and all non-faulty processes propdsel their setsset2;
are singletons, which —due to the MV-singleton property— contain the sdoeewalt follows from lines 5 and 7
that all non-faulty processes decide

Let us now consider the last case, where the valisedecided by the underlying BBC algorithm, while two
non-faulty processes; andp; are such thap; proposedl andp; proposed). As p; has proposed we have
set2; = {w}, wherew is not a default value. As bothy andp; are non-faulty, it follows from the MV-Inclusion
property of the second MV-broadcast that<c set2;. Moreover, as non-faulty processes can MV-broadcast
only w or L at line 4, it follows from the MV-Inclusion property that is the only non-default value iget2;.
Consequentlyp; decidesw at line 7. OTheorem 5

Theorem 6 Assuming an underlying BBC algorithm whose expected message compleXity 13 and expected
time complexity is constant (e.g., the one presented in [22]). When congdd&ennon-faulty processes, the
expected message complexity of the multivalued ITB consensus algorittomibdesin Figure 3 ig)(n?), and its
expected time complexity is constant.

Proof It follows from Theorem 2 that the number of messages sent by theandty-forocesses at line 1 is
O(n?). Due to the RD-reduction property of the RD-broadcast abstractiore theonstant (wherec < 6, see
Lemma 2) such that at mostifferent values are RD-delivered by the RD-broadcast abstradtidmen follows
from Theorem 4 that the number of messages sent in the two MV-brdadtiass 2 and 4) by the non-faulty
processes i§)(n?). Finally, as the expected number of messages sent by the non-faulgspescin the BBC
algorithm isO(n?), the multivalued ITB consensus algorithm inherits this message complexitjlol/s that the
expected number of messages sent by the non-faulty processessielong?).

The fact that expected time complexity is constant follows directly from thietliat the time complexities of
both the RB-broadcast and MV-Broadcast abstraction are con$taeiem 2 and Theorem 4), and the underlying
BBC algorithm has an expected time complexity that is constant. OTheorem 6
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