N
N

N

HAL

open science

Intrusion-Tolerant Broadcast and Agreement
Abstractions in the Presence of Byzantine Processes
Achour Mostéfaoui, Michel Raynal

» To cite this version:

Achour Mostéfaoui, Michel Raynal. Intrusion-Tolerant Broadcast and Agreement Abstractions in the
Presence of Byzantine Processes. IEEE Transactions on Parallel and Distributed Systems, 2016, 27

(4), pp.1-24. 10.1109/TPDS.2015.2427797 . hal-01176113

HAL Id: hal-01176113
https://hal.science/hal-01176113
Submitted on 15 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01176113
https://hal.archives-ouvertes.fr

Intrusion-Tolerant Broadcast and Agreement Abstractions

in the Presence of Byzantine Processes
Achour Mostéfaoui’ Michel Raynal**
T LINA, Université de Nantes, 44322 Nantes Cedex, France
* Institut Universitaire de France
P IRISA, Université de Rennes 35042 Rennes Cedex, France

Achour.Mostefaoui@univ-nantes.fr raynal@irisa.fr

Abstract

A process commits a Byzantine failure when its behavior does not comply with the algorithm it is
assumed to execute. Considering asynchronous message-passing systems, this paper presents distributed
abstractions, and associated algorithms, that allow non-faulty processes to correctly cooperate, despite
the uncertainty created by the net effect of asynchrony and Byzantine failures. These abstractions are
broadcast abstractions (namely, no-duplicity broadcast, reliable broadcast, and validated broadcast), and
agreement abstraction (namely, consensus).

While no-duplicity broadcast and reliable broadcast are well-known one-to-all communication ab-
stractions, validated broadcast is a new all-to-all communication abstraction designed to address agree-
ment problems. After having introduced these abstractions, the paper presents an algorithm implement-
ing validated broadcast on top of reliable broadcast. Then the paper presents two consensus algorithms,
which are reductions of multivalued consensus to binary consensus. The first one is a generic algorithm,
that can be instantiated with unreliable broadcast or no-duplicity broadcast, while the second is a con-
sensus algorithm based on validated broadcast. Finally, a third algorithm is presented that solves the
binary consensus problem. This algorithm is a randomized algorithm based on validated broadcast and
a common coin. The presentation of all the abstractions and their algorithms is done incrementally.

Keywords: Abstraction level, Agreement, Asynchronous message-passing system, Broadcast abstrac-
tion, Byzantine process, Common coin, Consensus, Distributed algorithm, Fault-tolerance, Intrusion-
tolerance, Message validation, Reliable broadcast, Signature-free algorithm.

1 Introduction

Distributed computing Distributed computing is the part of computing that considers that (a) the comput-
ing entities (usually called nodes, processors, processes, agents, sensors, etc.) are geographically distinct,
and (b) each entity has only a partial knowledge of the many parameters involved in the problem to be
solved [1, 15, 24, 25, 26]. In the following, we use the term process to denote any computing entity. From
an operational point of view this means that the processes of a distributed system need to exchange infor-
mation, and agree in some way or another, in order to cooperate to a common goal. When designing a
distributed algorithm, a main difficulty comes from the fact that no process can capture instantaneously the
global state of the application it is a part of. As a simple example, it is impossible to distinguish a crashed
process from a very slow process in an asynchronous system prone to process crashes. Said another way,
a central issue of distributed computing consists in coping with the uncertainty created by asynchrony and

failures. As in sequential computing, a simple approach to facilitate the design of distributed applications
consists in designing appropriate abstractions. With such abstractions, the application designer can think
about solutions to solve problems at a higher conceptual level than the basic send/receive communication
level.

Byzantine failure This failure type has first been introduced in the context of synchronous distributed
systems [13, 22, 25], and then investigated in the context of asynchronous distributed systems [1, 15, 24].
A process has a Byzantine behavior when it arbitrarily deviates from its intended behavior (Byzantine fail-
ure) [7, 13]. Otherwise it is non-faulty. Let us notice that process crashes (unexpected halting) define a strict
subset of Byzantine failures. An example of a bad behavior consists for a process to send different messages
to distinct subset of processes, while it is assumed to send the same message to all'.

Communication and agreement abstractions One of the most important communication abstractions
encountered in fault-tolerant distributed computing is Reliable Broadcast [1, 5, 6, 8, 15, 24, 27]. Roughly
speaking, reliable broadcast allows processes to broadcast messages, in such a way that all the non-faulty
processes eventually deliver the same set of messages, and this set includes all the messages they have broad-
cast plus a subset of messages broadcast by faulty processes. Consensus is the most important agreement
abstraction of fault-tolerant distributed computing [11]. Assuming each process proposes a value, it allows
the non-faulty processes to agree on the same value, which has to satisfy some validity condition depending
on both the proposed values and the failure model [15, 25].

Byzantine-tolerant broadcast abstractions This paper presents communication and agreement abstrac-
tions suited to distributed systems made up of n processes, and where up to ¢ processes may exhibit Byzan-
tine failures.

As far as communication is concerned, three abstractions are presented. The first two, which have
been introduced in [3, 28], are one-to-all broadcast abstractions. (Albeit not new, we present them for
completeness in order to have a self-contained paper. This provides us with a global view, which favors
understanding and makes reading easier.) Both these abstractions ensure that a message broadcast by a non-
faulty process is delivered by all the non-faulty processes. They differ in their requirement on the message
broadcast by faulty processes. More precisely, we have the following.

e No-duplicity broadcast (ND-broadcast). As far as a message broadcast by a Byzantine process p is
concerned, ND-broadcast ensures that no two non-faulty processes deliver different messages from
process p [28]. Let us observe that this delivery rule allows some non-faulty processes to deliver the
same message m from the faulty process p, while others deliver no message from p.

e Reliable broadcast (RB-broadcast). This abstraction is stronger than the previous one. As far as a
message broadcast by a Byzantine process p is concerned, the RB-broadcast abstraction ensures that
all the non-faulty processes deliver the same message from p, or none of them delivers a message
from p [3]. This is an “all-or-none” delivery rule.

' As noticed in [13], when designing Byzantine-tolerant algorithms, we are not concerned by the cause of the bad behavior. This
bad behavior can be intentional (malicious) or simply the result of a transient fault that altered the local state of a process, thereby
modifying its behavior in an unpredictable way. Some intentional bad behaviors are security flaws, which can be detected with
appropriate security techniques. These security issues are out the scope of the paper.

Let us notice that, in both previous broadcast abstractions, if a message is delivered from a faulty process p,
there is no requirement on its content. If the sender is correct, the content of a message that is delivered is
the one that should be sent; if the sender is faulty, the content of the message can be arbitrary.

While the previous communication abstractions are one-to-all abstractions, the third abstraction (called
VB-broadcast) is an all-to-all communication abstraction.

e Validated broadcast (VB-broadcast). Each process is assumed to broadcast a message. For a message
to be delivered by a non-faulty process, its content needs to be validated [19]. A message content is
validated by its sender as soon as it knows that at least one non-faulty process broadcast a message
with the same content. As a process does not know if it is faulty or not (e.g., while it executes correctly
its algorithm, a process may crash unexpectedly), a message content is validated by its sender as soon
as it has received messages with the very same content from (¢ 4+ 1) distinct processes (such a set
contains at least one non-faulty process). If the message broadcast by a process cannot be validated,
the default value _L is delivered instead of it.

Each of these three broadcast abstractions requires ¢t < n/3, and are consequently resilience-optimal (with
respect to the maximal number of processes that can be faulty) [3, 24, 28]. Moreover, (as we will see) an
algorithm implementing RB-broadcast can be obtained by using a relatively simple “echo” mechanism [3,
27, 28], and an algorithm implementing each of the n internal broadcasts of a VB-broadcast instance can be
obtained from two instances the RB-broadcast abstraction.?

Content of the paper: Byzantine-tolerant agreement abstraction The most important agreement ab-
straction encountered in distributed systems prone to process failures is consensus ([1, 5, 15, 26], to cite only
books). It is well-known that consensus is impossible to solve in the basic asynchronous message-passing
system model prone to even a single process crash failure [11]. This means that solving consensus de-
spite both asynchrony and Byzantine processes requires to enrich the system with additional computational
power. We consider here that this additional power is given by an underlying algorithm solving the binary
consensus problem (consensus instance where the only values that can be proposed are 0 and 1). Such an
algorithm (in short BBC, for Binary Byzantine Consensus) is described in the paper. This algorithm as-
sumes that the processes can access an oracle called common coin, which outputs random numbers [23]. It
is signature-free, resilience-optimal (¢ < n/3), and its expected number rounds is four.

The paper presents three multivalued Byzantine consensus algorithms (i.e., consensus algorithms where
the set of values is not restricted to the values 0 and 1, and processes can be Byzantine). These algo-
rithms, whose constructions are highly modular, are based on the previous broadcast abstractions and (as
announced) a BBC algorithm. More precisely, The first two multivalued Byzantine consensus algorithms
are obtained from a generic algorithm whose genericity parameter is a broadcast abstraction (namely, UB-
broadcast —which captures unreliable broadcast—, and ND-broadcast). The third algorithm is based on the
VB-broadcast abstraction. Interestingly, all these algorithms are signature-free, i.e., no underlying cryptog-
raphy mechanism is used.

These Byzantine consensus algorithms differ in their cost (number and size of messages they use), and
their requirement on ¢, from a “lower bound on ¢” (or resilience) point of view. The instance of the generic

%As already indicated, differently from validated broadcast, no-duplicity broadcast and reliable broadcast are not new. We
present them in this paper to have a self-contained paper, which facilitates understanding and provides us with a global picture of
broadcast abstractions.

Byzantine consensus algorithm based on UB-broadcast requires ¢ < n/5, while its instance based on ND-
broadcast requires ¢ < n/4. Finally, the Byzantine consensus algorithm based on VB-broadcast requires
t < n/3, and is consequently resilience-optimal.

Intrusion-tolerant Byzantine consensus The previous algorithms have a noteworthy property, namely,
if the faulty processes collude and propose the very same value v, while no non-faulty process proposes it,
then v cannot be decided. This property is called intrusion-tolerance in [19]. More generally, when the most
proposed value is proposed by too few non-faulty processes, a default value denoted | may be decided.

Road map The paper is made up of 8 sections. Section 2 presents the computation model. Then Section 3
presents the broadcast abstractions which have been previously sketched, and algorithms implementing
them. Section 4 presents the intrusion-tolerant Byzantine consensus problem. Then, sections 5 and 6 present
a suite of intrusion-tolerant multivalued Byzantine consensus algorithms that differ mainly in the underlying
broadcast abstraction they use. Section 7 presents a new binary consensus algorithm based on random bits
and the VB-broadcast abstraction. Finally, Section 8 concludes the paper.

2 Computation Model

Asynchronous processes The system is made up of a finite set II of n > 1 asynchronous sequential
processes, namely IT = {p;, ..., p,}. “Asynchronous” means that each process proceeds at its own speed,
which can vary arbitrarily with time, and remains unknown to the other processes.

Communication network The processes communicate by exchanging messages through an asynchronous
reliable point-to-point network. “Asynchronous” means that a message that has been sent is received by its
destination process after a finite time , i.e., there is no finite bound on message transfer delays. “Reliable”
means that the network neither losses, duplicates, modifies, nor creates messages. ‘“Point-to-point” means
that there is a bi-directional communication channel between each pair of processes. Hence, when a process
receives a message, it can identify its sender.

A process p; sends a message to a process p; by invoking the primitive “send TYPE(m) to p;”, where
TYPE is the type of the message and m its content. To simplify the presentation, it is assumed that a process
can send messages to itself. A process receives a message by executing “receive()”.

Failure model Up to ¢ processes can exhibit a Byzantine behavior. A Byzantine process is a process
that behaves arbitrarily: it can crash, fail to send or receive messages, send arbitrary messages, start in an
arbitrary state, perform arbitrary state transitions, etc. Hence, a Byzantine process, which is assumed to
send a message m to all the processes, can send a message m; to some processes, a different message ms to
another subset of processes, and no message at all to the other processes. Byzantine processes can collude
to “pollute” the computation. Let us notice that, as each pair of processes is connected by a channel, no
Byzantine process can impersonate a correct process (otherwise, no non-trivial computation can be done).
Moreover, it is assumed that the Byzantine processes do not control the network.

Terminology A process that exhibits a Byzantine behavior is called faulty. Otherwise, it is non-faulty.
Given an execution, C denotes the set of processes that are non-faulty in that execution, and F denotes the
set of faulty processes.

Multiset Distributed algorithms presented in the paper use multisets. A multiset (also called bag) dif-
fers from a set in that it can contain several copies of the same value. Given a multiset rec; managed
by a process p;, the operation #equal(v, rec;) issued by p; denotes the number of occurrences of v in
rec;, while #differ(v, rec;) denotes the number of occurrences of values different from v in rec;, namely,
#differ(v, rec;) = |rec;| — #equal(v, rec;).

Notation This system model is denoted BZ_AS,, ;[0]. In the following, this model is enriched with a con-
straint on ¢ and a specific broadcast abstraction. As an example, BZ_AS,, [t < n/5,RB]is BZ_AS,,;[0] in
which at most ¢ < n/5 processes are faulty, and processes communicate using the RB-broadcast abstraction.

Remark Making realistic assumptions on the reliability of the asynchronous network, and the fact that
Byzantine processes cannot impersonate a correct process, are requirements on the computation model built
by the underlying system layer [15, 24, 26]. The model parameter ¢ states that the algorithms are guaranteed
to work only when there are at most ¢ Byzantine processes.

3 Broadcast Abstractions

This section defines the broadcast abstractions sketched in the Introduction, and presents algorithms imple-
menting each of them. The first two, ND-broadcast and RB-broadcast, are from [28] and [3], respectively.

All these broadcast abstractions are implemented from the basic send/receive network primitives, which
means that, while they provide us with distinct abstraction levels, they do not provide processes with addi-
tional computing power.

Notation When considering the broadcast abstraction XX (where XX stands for UB, ND, RB, or VB),we
say that a process “XX-broadcasts” or “XX-delivers” a message.

Unreliable broadcast The simple broadcast (UB-broadcast) is defined by a pair of operations denoted
UB_broadcast() and UB_deliver(). UB_broadcast TYPE(m) is used as a shortcut for
for each j € {1,...,n} send TYPE(m) to p; end for,

and UB_deliver() is synonym with receive(). This means that a message UB-broadcast by a non-faulty
process is UB-delivered at least by all the non-faulty processes. Differently, while it is assumed to send
the same message to all the processes, a faulty process can actually send different messages to distinct
processes and no message to others. Hence the name “unreliable broadcast” (sometimes also called “best
effort broadcast”). Trivially, an invocation of UB_broadcast TYPE(m) costs one communication step and n
messages. The corresponding system model is denoted BZ_AS,, ;[UB].

Remark When measuring the cost of a broadcast abstraction we do not take into account the size of
the “data message” that is broadcast. This is because this size is application-dependent. Consequently,
we only consider the size of the additional control information required by the corresponding broadcast
implementation.

The no-duplication property The definition of each XX-broadcast abstraction includes the following no-
duplication property: a non-faulty process p; XX-delivers at most one message from any process p;. This
property states that the corresponding XX-broadcast abstraction is not allowed to create message duplicates.
As this property follows trivially from the implementation of each broadcast abstraction, it is no longer
mentioned in the following.

A preliminary lemma The following lemma is used in the correctness proof of the algorithms implement-
ing the ND-Broadcast and RB-broadcast abstractions (Theorem 1 and Theorem 2). It is stated here to help
better understand the description of the corresponding algorithms.

Lemma 1. Lett < n/3. We have

(@n—t> "t

(b) any set containing more than distinct processes, contains at least (t + 1) non-faulty processes, and
(¢c) any two sets Q1 and Qo of at least L”T‘HJ + 1 processes have at least one correct process in their
intersection.

n+t
2

Proof Proofof(a).n>3t<:>2n>n+3t@2n—2t>n+t@n—t>"T‘H.

Proof of (b). We have "T‘H > ‘“T‘H =2t+ %, from which it follows that any set of more than "T‘H distinct
processes contains at least 2¢ 4+ 1 processes. The proof then follows from the fact that any set of 2¢ + 1
distinct processes contains at least ¢ + 1 non-faulty processes.

Proof of (c). Notice that (z > %) = (z > [2] + 1).
* Q1UQ2 S {p1,...,pn}. Hence, Q1 U Q2 < n.

o [Q1NQ2 = Q1]+ Q2] — Q1 UQ2| > [Q1] +1Q2] —n >2([%] +1) —n > 2(%) —n =t.
Hence, |Q1 N Q2| > t + 1, from which it follows that @1 N @2 contains at least one correct process.
DLemma 1

3.1 The no-duplicity broadcast abstraction

No-duplicity broadcast The ND-broadcast communication abstraction, introduced by Toueg [28], is de-
fined by the operations ND _broadcast() and ND_deliver(), which provide the processes with a higher ab-
straction level than UB-broadcast but do not add computational power (BZ_AS,, [UB] and BZ_AS,, +[ND]
have the same computational power, namely the same power as BZ_AS, ;[0]).

Considering an instance of ND-broadcast where ND_broadcast() is invoked by a process p;, this com-
munication abstraction is defined by the following properties.

e ND-Validity. If a non-faulty process ND-delivers a message from a correct process p;, then p; invoked
ND-broadcast.

e ND-no-duplicity. No two non-faulty processes ND-deliver distinct messages from p;.

o ND-Termination-1. If the sender p; is non-faulty, all the non-faulty processes eventually ND-deliver
its message.

Let us observe that, if the sender p; is faulty, it is possible that some non-faulty processes ND-deliver
a message from p; while others do not. The no-duplicity property prevents the non-faulty processes from
ND-delivering different messages from a faulty sender.

An algorithm implementing ND-broadcast Assuming ¢ < n/3, Algorithm 1 (from [28]) implements
the ND-broadcast abstraction. It is shown in [28] that ¢ < 7/3 is an upper bound on the model parameter
t when one has to implement ND-broadcast in an asynchronous message-passing system prone to process
Byzantine failures.

operation ND_broadcast MSG(v;) is
(01) UB_broadcast INIT(, v;).

when INIT(j, v) is UB_delivered do
(02) if (first UB_delivery of INIT(j, —))
(03) then UB_broadcast ECHO(j, v)
(04) end if.

when ECHO(j, v) is UB_delivered do
(05) if (ECHO(j,v) UB_delivered from more than %
different processes and MSG(jj, v) not yet ND_delivered)
(06) then ND_deliver MSG(j, v)
(07) end if.

Algorithm 1: Implementing ND-broadcast (t < n/3) [28]

The algorithm considers that a process is allowed to ND-broadcast only one message. Adding sequence
numbers allows processes to ND-broadcast several messages. In that case, the process identity associated
with each message has to be replaced by a pair made up of a sequence number and a process identity.

When a process p; wants to ND-broadcast a message whose content is v;, it UB-broadcasts the message
INIT(7,v;) (line 01). When a process p; receives (UB-delivers) a message INIT(j, —) for the first time,
it UB-broadcasts a message ECHO(j, v) where v is the data content of the INIT() message (line 02). If the
message INIT(j, v) received is not the first message INIT(j, —), p; is Byzantine and the message is discarded.
Finally, when p; has received the same message ECHO(j, v) from more than (n + t)/2 processes, it locally
ND-delivers MSG(j, v) (lines 05-06).

Theorem 1. Algorithm 1 implements the ND-broadcast abstraction in the system model BZ_AS,, [t <
n/3, UB]. (Proof in [20, 28].)

It is easy to see that this implementation uses two consecutive communication steps and n(n + 1)
underlying messages (n in the first communication step, and n? in the second one). Moreover, the size of
the control information added to a message is log, n (sender identity).

Remark Let us notice that replacing at line 06 “more than "T”Lt different processes” by “(n — t) different

processes’” leaves the algorithm correct. Asn —t > ”TH (Item (a) of Lemma 1), it follows that using “more

than "TH different processes” provides a weaker ND-delivery condition than “(n — ¢) different processes”,
and consequently a more efficient algorithm from a “message ND-delivery” point of view. As a simple
numerical example, considering n = 21 and ¢{ = 2, we have n — ¢ = 19, which is much greater than the
required value 12 (> ”TH = 11.5).

3.2 The reliable broadcast abstraction

Reliable broadcast The RB-broadcast abstraction has been proposed by G. Bracha [3]. It is proved in [4]
that ¢ < n/3 is an upper bound on ¢ when one has to implement such an abstraction. RB-broadcast provides
the processes with the operations RB_broadcast() and RB_deliver() defined by the following properties.

e RB-Validity. If a non-faulty process RB-delivers a message from a correct process p;, then p; invoked
the operation RB_broadcast().

e RB-no-duplicity. No two non-faulty processes ND-deliver distinct messages from p;.

o RB-Termination-1. If the sender p; is non-faulty, all the non-faulty processes eventually ND-deliver
its message.

e RB-Termination-2. If a non-faulty process RB-delivers a message from p; (possibly faulty) then all
the non-faulty processes eventually RB-deliver the same message from p;.

RB-broadcast is ND-broadcast plus the RB-Termination-2 property. Hence, not only two non-faulty
processes cannot RB-deliver different messages from a given process, but it is no longer possible that one
of them RB-delivers a message while the other does not. BZ_AS,, ;[RB] and BZ_AS,, ;[] have the same
computational power.

An algorithm implementing RB-broadcast Algorithm 2, which assumes ¢ < n/3, implements RB-
broadcast. It is a simple variant of an algorithm proposed in [3]. It is presented here in an incremental way
from the previous ND-broadcast algorithm.

While ND-broadcast Algorithm 1 requires two sequential communications steps (message INIT() fol-
lowed by messages ECHO()), the implementation of RB-broadcast requires three consecutive communica-
tions steps: message INIT(), followed by messages ECHO(), followed by messages READY ().

The first seven lines of the algorithm are similar to the corresponding lines of the ND-broadcast algo-
rithm. The only difference lies in the lines 05-06, where the ND-delivery is replaced by the UR-broadcast
of the message READY (7, v).

The aim of the last step of the algorithm (lines 08-13) is to ensure that all or none of the non-faulty
processes RB-deliver the message MSG(j, v) from p;. To that end, the RB-delivery predicate requires that
p; UB-delivers (2t+1) copies of READY(j, v), which means at least (¢+1) copies from non-faulty processes
(line 11).

Theorem 2. Algorithm 2 implements the RB-broadcast abstraction in the system model BZ_AS, [t <
n/3, UBJ. (Proof in [3, 20].)

As we have seen, this algorithm uses three consecutive communication steps and n(2n + 1) underlying
messages (7 in the first communication step, and n? in each of the second and third steps). Moreover, the
size of the control information added to a message is log, n (sender identity).

operation RB_broadcast MSG(v;) is
(01) UB_broadcast INIT (%, v;).

when INIT(j, v) is UB_delivered do
(02) if (first UB_delivery of INIT(j, —))
(03) then UB_broadcast ECHO(j, v)
(04) end if.

when ECHO(j, v) is UB_delivered do
(05) if (ECHO(j, v) UB_delivered from more than "3
different processes and READY (j, v) not yet UB_broadcast)
(06) then UB_broadcast READY (j, v)
(07) end if.

when READY (j, v) is UB_delivered do

(08) if (READY(j, v) UB_delivered from (¢ + 1) different processes
and READY (j, v) not yet UB_broadcast)

(09) then UB_broadcast READY (j, v)

(10) end if;

(11) if (READY (3, v) UB_delivered from (2t + 1) different processes
and MSG(j, v) not yet RB_delivered)

(12) then RB_deliver MSG(j, v)

(13) end if.

Algorithm 2: Implementing RB-broadcast (t < n/3) [3]

3.3 The validated broadcast abstraction

Validated broadcast The VB-broadcast communication abstraction is an all-fo-all communication ab-
straction designed to be used in the implementation of distributed agreement abstractions. VB-broadcast
integrates a notion of message validation, namely, assuming that each non-faulty process VB-broadcasts a
message, it requires that, for a message to be VB-delivered, its content v be validated; otherwise the default
value | is VB-delivered instead of it. For a message with content v to be valid, a message with the same
content v has to be VB-broadcast by at least one non-faulty process. As no process p; knows if it is itself
faulty or non-faulty (e.g., if a process executes correctly its algorithm and then unexpectedly crashes, it is
faulty), for a message m to be valid in the presence of up to ¢ faulty processes, messages with the same con-
tent need to be VB-broadcast by “enough” processes, where “enough” means “at least (¢ + 1)” (including
its sender p;). As already indicated, if a message is not validated, the default value L is delivered instead of
it.

VB-broadcast provides the processes with two operations denoted VB_broadcast() and VB _deliver(). In
a VB-broadcast instance each non-faulty process invokes VB_broadcast() once, and VB-delivers messages
from at least (n — t) distinct processes. The content of a message that is VB-delivered can be a value that
has been VB-broadcast or the default value 1. VB-broadcast is defined by the following properties.

e VB-Validity. As previously, this property relates the outputs (VB-delivered messages) to the inputs
(VB-broadcast messages). It is made up of two sub-properties.

— VB-Justification. Let p; be a non-faulty process that VB-delivers a message m as the value VB-
broadcast by some (faulty or non-faulty) process. If m # _L, there is at least one non-faulty

process that invoked VB_broadcast MSG(m).

— VB-Obligation. If all the non-faulty processes VB_broadcast the same value v, each non-faulty
process VB-delivers m = v from each non-faulty process.

e VB-Uniformity. If a non-faulty process VB-delivers a message from p; (possibly faulty), all the non-
faulty processes eventually VB-deliver the same message from p; (which can be a validated non-_L
value or the default value _L).

e VB-Termination. If p; is non-faulty and VB-broadcasts m, all the non-faulty processes eventually
VB-deliver the same message m’, where m/ is m or L.

3.4 An algorithm implementing VB-broadcast

Assuming ¢t < n/3, Algorithm 3 implements the all-to-all VB-broadcast abstraction. Let us recall that all-
to-all means here that all the non-faulty processes are assumed to invoke VB_broadcast(). As already said,
a process VB-delivers at least n — ¢ messages. This implementation uses consecutively two RB-broadcast
abstractions. It is made up of two parts.

operation VB_broadcast(v;) is

(01) RB_broadcast INIT(, v;);

(02) let rec; = multiset of values RB_delivered to p;;
(03) wait until (|rec;| > n —t);

(04) if (#equal(vs, rec;) > n — 2t) then auz; < “yes”
(05) else aux; < “no”

(06) end if;

(07) RB_broadcast VALID (%, aux;).

for 1 < j < n VB-delivery background task 7;[j]:

(08) wait until (VALID(j7 x) and INIT(j, v) RB_delivered from pj);
(09) if (x = “yes”) then wait (#equal(v,rec;) > n — 2t); d < v
(10) else wait (#differ(v,rec;) >t +1);d <+ L
(11) end if;

(12) VB_deliver(d) at p; as the value VB-broadcast by p;.

Algorithm 3: VB-broadcast on top of reliable broadcast (¢ < n/3, code of p;)

In the first part, a process p; first invokes RB_broadcast INIT(%, v;) and waits until it has RB-delivered
messages from at least n — ¢ processes (lines 01-03). The values RB-delivered are deposited in a multiset
denoted rec;. Then, if value v; has been RB-delivered from at least n — 2t > ¢ + 1 processes (which
means that it was RB-broadcast by at least one non-faulty process), p; validates it by assigning “’yes” to
aux;. Otherwise p; sets aux; to “no” at line 05 (in this case, v; is not validated). Then, p; issues a second
RB-broadcast (line 07) to disseminate aux; to all processes.

The second part is made up of n tasks, which execute in the background. The task 7;[7] is associated with
the VB-delivery of the message from p;. It starts by the wait statement for both the value v RB-broadcast
by p; and the value x RB-broadcast also by p; (= indicates the validation status attached to v by its sender
p;). Let us remember that each time a message INIT(—, w) is RB-delivered to p;, the corresponding value
w is added to rec;, which means that, after the predicate |rec;| > n — ¢ has become true at line 03, the set
rec; still keeps on being updated when new messages INIT() are RB-delivered to p;.

10

e If z = “yes”, as p; can be Byzantine, v was not necessarily validated by a non-faulty process. Hence,
p; has to check it. To that end, p; waits until the predicate #equal(v,rec;) > n — 2t becomes true
(line 09). When this predicate becomes true (if ever it does), it follows from n — 2t > ¢ 4 1 that
#equal(v,rec;) > t 4 1. If this occurs, v is VB-delivered to p; as being the value VB-broadcast by

pj.

e Similarly, if z = “no”, p; waits until rec; contains more than ¢ occurrences of values different from v
(the value RB-delivered from p;), which means that at least one non-faulty process did not validate v.
When this occurs (if ever it does, line 10), p; VB-delivers L as the value VB-broadcast by p;.

It is possible that the waiting predicate used at line 09 or line 10 never becomes satisfied. When this
occurs, the corresponding sender process p; is necessarily a faulty process. The waiting condition becomes
always satisfied when p; is a non-faulty process, and can become satisfied for some faulty senders p;.

As two instances of RB-broadcast are used, the algorithm requires 2 x 3 = 6 communication steps, and
as VB-broadcast is an all-to-all abstraction (n invocations for each instance of RB-broadcast), the algorithm
uses 2n%(2n + 1) messages, that is O(n?).

Theorem 3. Algorithm 3 implements the validated broadcast abstraction in the system model BZ_AS,, +[t <
n/3,UB].

Proof Proof of the VB-Termination property. This property states that, if a process p; is non-faulty and
VB-broadcast m, then all the non-faulty processes eventually VB-deliver the same message m’ from p;,
where m' is m or L.

As there are at least n — ¢ non-faulty processes, and each of them VB-broadcasts a value, we eventually
have |rec;j| > n—t at every non-faulty process p;. Hence, no non-faulty process can block forever at line 03
and will RB-broadcasts message VALID() at line 07. We now consider two cases.

e The non-faulty process p; RB-broadcasts VALID(4,“yes”). It follows from line 09 that (a) d = v;
(the value VB-broadcast by p;), and (b) rec; contains at least n — 2t copies of v = v, i.e., p; has
RB-delivered messages INIT (—,v) from n — 2¢ different processes. Due to the RB-Uniformity of
RB-broadcast, each non-faulty process p; eventually RB-delivers both these n — 2¢ messages INIT
(—,v), and the message VALID(:, “yes”) from p;. It follows that p; eventually VB-delivers v = v; at
line 09.

e The non-faulty process p; RB-broadcasts VALID(z,“no”). It follows from the termination property
of RB-broadcast that each non-faulty process p; RB-delivers VALID(4,“no”) from p;. Moreover, it
follows from the test line 04 that, if p; RB-broadcast VALID(7,“no”), that, among the n — ¢ values in
rec;, less then n — 2t values are equal to v;, i.e. more than ¢ values are different from v;. Hence due
to the RB-Uniformity property of RB-broadcast, every non-faulty process p; eventually RB-delivers
at least ¢t + 1 values different from v;, and consequently VB-delivers L at line 10.

Proof of the VB-Uniformity property. This property states that, if a non-faulty process p; VB-delivers
a message from p; —possibly faulty—, then all the non-faulty processes eventually VB-deliver the same
message from p;. Let p; be a non-faulty process that VB-delivers a value d from p;. This means that p; has
previously RB-delivered a message INIT(j, v) and a message VALID(j, x) from p; at the latest in its delivery
task 7;[j]. The proof of this property is very similar to the previous one.

11

Hence, p; has RB-delivered (1) a message VALID(j,z) and a message INIT(j,v) from p;, and (2) a
multiset rec; of values that satisfies some property (depending on the value of x). As p; is non-faulty,
it follows from the RB-Uniformity property of RB-broadcast, that every non-faulty process pj eventually
RB-delivers (1) both VALID(j,z) and INIT(j,v), and (2) a multiset rec;, of values such that eventually
reci = rec;. As the value x RB-delivered to p; and py, is the same, it follows from the waiting condition
(used at line 09 or line 10, according to the value of x) that p; eventually VB-delivers at line 12 the same
value d as p;.

Proof of the VB-Obligation property. This property states that if all the non-faulty process VB-broadcast
the same value v, each of them VB-delivers v as the value VB-broadcast by each of them. As each non-faulty
process p; VB-broadcasts the value v, it follows that it RB-broadcasts INIT(, v) (line 07). Consequently this
value v eventually appears at least (n — 2¢) times in the multiset rec; of every non-faulty process p;. Hence,
each non-faulty process p; VB-broadcasts the message VALID(,“yes”) and (from the RB-termination prop-
erty) each non-faulty process py RB-delivers the message VALID(7,“yes”). Consequently, each non-faulty
process py, executes the task 7} [¢] with respect to each non-faulty process p; (and possibly also with respect
to faulty processes). The waiting predicate of line 09 is then eventually satisfied at pg, and this is true for
value v only. When this occurs, each non-faulty process p;, VB-delivers v as the value VB-broadcast by the
non-faulty process p;.

Proof of the VB-Justification property. This property states that, if the VB-delivered value m is such
that m # L, there is at least one non-faulty process that invoked VB_broadcast MSG(m). If m # L is
VB-delivered by a non-faulty process p; as the value VB-broadcast by p;, this value appears at least (n — 2t)
times in rec; (waiting predicate of line 09). As n — 2t > ¢+ 1, it follows that at least one non-faulty process
has VB-broadcast m. O heorem 3

3.5 Comparing the broadcast abstractions

Table 1 compares the costs of the three previous broadcast abstractions. Considering one broadcast instance,
the second column indicates the broadcast type (1-to-n or n-to-n). The third column indicates the length
of the longest sequence of causally-related messages generated by the corresponding algorithm. The fourth
column presents the size of the additional control information that each message has to carry (the log, n
comes from the fact that the identity of the process that broadcasts a message has to be sent together with
it when forwarded by another process). The fifth column indicates the number of implementation mes-
sages used by the corresponding algorithms. Finally, the last column states the constraint on ¢ required to
implement the abstraction in BZ_AS,, +[0].

)) =
3 Q. N © N
5| &| ¢ o & g
g 5 | & s § o
3 Q) > 5
IS 3 S S < S
S & ¥ g RS &
UB | 1-to-n 1 constant n n>t
ND | 1-to-n 2 logy n n(n+1) n > 3t
RB | 1-to-n 3 log, n n(2n+1) | n>3t
VB | n-to-n 6 logon | 2n2(2n+1) [n > 3t

Table 1: Costs and constraints on the broadcast abstractions

12

4 Intrusion-Tolerant Byzantine Consensus and Underlying Enriched Model

4.1 Byzantine consensus

Byzantine consensus The consensus problem has been informally stated in the Introduction. Assuming
that each non-faulty process proposes a value, each of them has to decide on a value in such a way that the
following properties are satisfied.

e C-Termination. Every non-faulty process eventually decides on a value.
o C-Agreement. No two non-faulty processes decide on different values.

e C-Obligation (validity). If all the non-faulty processes propose the same value v, then v is decided.

Intrusion-tolerant Byzantine (ITB) consensus In Byzantine consensus, if not all the non-faulty pro-
cesses propose the same value, any value can be decided. As indicated in the Introduction, we are interested
here in a more constrained version of the consensus problem in which a value proposed only by faulty pro-
cesses cannot be decided. This consensus problem instance is defined by the C-Termination, C-Agreement
and C-Obligation properties stated above plus the following C-Non-intrusion property (which is a validity

property).
e C-Non-intrusion (validity). A decided value is a value proposed by a non-faulty process or L.

The fact that no value proposed only by faulty processes can be decided gives its name (namely intrusion-
tolerant) to that consensus problem instance.

Binary consensus The consensus is binary when only two different values (e.g., b and b) can be proposed.
Interestingly, binary Byzantine consensus has the following property.

Property 1. The ITB binary consensus problem is such that it is always possible for a correct process to
decide a value proposed by a correct process.

Proof It follows from the C-obligation property that any correct process decides b when all the correct
processes proposed b. Otherwise, at least one correct process proposed b, and then any value b or b may be
decided by a correct process without violating the C-Non-intrusion property. O property 1

4.2 Enriched model for multivalued ITB consensus

Additional power is required It is well-known that Byzantine consensus cannot be solved when ¢ > n /3
in synchronous systems [13, 22]. Moreover, consensus cannot be solved in asynchronous systems as soon
as even only one process may crash [11], which means that Byzantine consensus cannot be solved either as
soon as one process can be faulty. Said another way, additional computational power is needed if one wants
to solve Byzantine consensus in an asynchronous system.

Such an additional power can be obtained by randomization (e.g., [2, 9, 12, 23, 28]), failure detectors
(e.g., [18]), additional synchrony assumptions (e.g., [10, 14, 16, 17]), or even the assumption that there is a
binary consensus algorithm that is given for free by the underlying system (e.g., [9, 21, 29]).

13

Enriched model for multivalued ITB consensus In the following, BBC denotes any algorithm that solves
the Byzantine binary consensus problem. (Such algorithms are described in [3, 9, 12, 28]. A novel BBC al-
gorithm based on the VB-broadcast abstraction is presented in Section 7). Let BZ_AS,, ;[XX, BBC] denote
the system model BZ,ASM[@} enriched with BBC (which adds computational power) and the broadcast
abstraction XX (which provides a higher abstraction level than send/receive).

As announced in the Introduction, the aim is to design a generic multivalued ITB consensus algorithm
on top of BZ_AS,, +[XX,BBC].

5 Generic Consensus Based on the UB or ND-Broadcast Abstractions

This section presents a generic multivalued ITB consensus algorithm that can be instantiated with UB-
broadcast or ND-broadcast. It uses two rounds for each process to compute a value it proposes to the
underlying binary consensus. The instance based on UB-broadcast requires ¢ < n/5, while the one based
on ND-broadcast requires ¢ < n/4.

5.1 Principles and description of the algorithm

Algorithm 4 is a generic algorithm. A process invokes propose(v;) where v; is the value it proposes to
the consensus. It terminates when it executes the statement return() (line 17), which supplies it with the
decided value. (In order to prevent confusion, the operation of the underlying binary consensus is denoted
bin_propose().)

operation propose(v;) is

(01) XX_broadcast EST1(v;);

(02) waituntil (EST1(—) messages XX_delivered from n — ¢ proc.);
(03) let recl; = multiset of values carried by the EST1 messages;
(04) if (Fv : #equal(v,recl;) > n — 2t)

(05) then auzx; < v else aux; < 1 end if;

(06) XX_broadcast EST2(aux;);

(07) waituntil (EST2(—) messages XX_delivered from n — ¢ proc.);
(08) let rec2; = multiset of values carried by the EST2 messages;
(09) if (v # L : #equal(v,rec2;) > n — 2t)

(10) then bp; < 1 else bp; < 0 end if;

(1) if (Jv # L : v € rec2;)

(12) then let v = most frequent non-_L value in rec2;;
(13) res; < v

(14) else res; < L

(15) end if;

(16) b_dec; < bin_propose(bp;); % underlying BBC algorithm %
(17) if (b_dec; = 1) then return(res;) else return(L) end if.

Algorithm 4: Generic intrusion-tolerant Byzantine multivalued consensus

In order to reduce the Byzantine consensus problem to its binary counterpart to benefit from BBC,
the processes first exchange the values they propose. If a process sees that a value v has been proposed
“enough” times, it proposes 1 to BBC, otherwise it proposes 0. Then, if 1 is decided from BBC, the non-
faulty processes decide the value v that has been proposed “enough” times, otherwise they decide L (lines

14

11-17). For this to work, If a process p; proposes 1 to the underlying BBC algorithm because it has seen
enough copies of a value v, it must be sure that any other non-faulty process p; will be able to decide v even
if it has proposed 0 to BBC (because it has not seen enough copies of v).

This issue is solved by two asynchronous rounds executed before invoking the underlying BBC al-
gorithm (lines 01-15). The messages of the first round and the second round are typed EST1 and EST2,
respectively. Interestingly, we will state below two properties PR1 and PR2 that are the same as the prop-
erties used in [18, 24] to solve consensus on top of an asynchronous system enriched with any of Chandra
and Toueg’s failure detectors [8].

It is important to remark that, at the abstraction level of the consensus algorithm, a message carries only
a type (EST1 or EST2) and a proposed value or L. Hence, considering that proposed values have constant
size, the size of the messages of the algorithm is O(1) (no message is required to carry array-like data
structures whose size would depend on n).

5.2 First additional round

The aim of this round (lines 01-05) is to direct each process p; to define a “new” proposed value auzx; in
such a way that the values aux; of the non-faulty processes satisfy the following property (Lemma 2):

PR1 =
Vi,j € C: ((auz; # L) A (auz; # 1)) =
[((auz; = auz; = v) A
(v has been proposed by a non-faulty process)].

Hence this round replaces (for the non-faulty processes) the set of values they collectively propose by a
non-empty set including at most two values (namely, a value v proposed by a non-faulty process and _L).

From an operational point of view, this is obtained as follows. The processes first exchange (with the
help of the underlying broadcast facility) the values they propose (lines 01-02). The values delivered at p;
are kept in the multiset recl;. Then, if there is a value v in recl; such that #equal(v,recl;) > n — 2t, v is
assigned to aux;. Otherwise aux; = L.

5.3 Second additional round

The aim of the second round (lines 06-15) is to establish the following property denoted PR2 (Lemma 3)
in order the result of the underlying BBC algorithm can be safely exploited as described previously (lines
16-17). The local variable bp; contains the value proposed by p; to the underlying BBC algorithm, and res;
contains the non-_L value that any non-faulty process p; will decide if the default value L is not decided.
Let us recall that C denotes the set of processes that are non-faulty in the considered execution.

PR2 =
(FieC:bpi=1)= (VjelC resj=resi=v # 1).

Operationally, this is obtained as follows. With the help of the underlying broadcast abstraction the
non-faulty processes exchange the values of their aux; variables. The values delivered at p; are saved in
the multiset rec2;. (This multiset contains n — ¢ values, and, due to PR1, those can be L, a non-_1 value v
proposed by a non-faulty process, and at most ¢ arbitrary values sent by faulty processes.)

15

If there is a non-_L value v such that #equal(v,rec2;) > n — 2t, p; proposes bp; = 1 to the binary
consensus BBC. Otherwise, p; has not seen enough copies of a value v # 1 and consequently proposes
bp; = 0. In all cases, p; defines res; as the most frequent non-_L value it has received. As the proof of
Lemma 3 will show, if a non-faulty process p; invokes bin_propose(1), each non-faulty process will have
the same non-_L value in its local variable res;.

5.4 Proof of the algorithm
Lemma 2. PR1 holds in both system models BZ_AS,, [t < n/5, UB] and BZ_AS,,;[t < n/4,ND].

Proof Let p; and p; be two non-faulty processes such that auz; = v # L. We consider separately each
case stated in the lemma assumption.

Case I: t < n/5 and the non-faulty processes use the UB-broadcast abstraction.

As aux; = v # L, it follows that #equal(v, recl;) > n— 2t (line 04). Hence, due to the UB-broadcast,
among the n — ¢t messages it has UB-delivered (from different processes), at least n — 2t are EST1(v). As at
most ¢ processes are faulty, it follows that at least n — 3¢ non-faulty processes have UB-broadcast a message
ESTI1(v). Consequently, at most n — (n — 3t) = 3t processes may send w # v to p;. As 3t < n — 2t, p;
never assigns w to au;.

Finally, the proof that v has been proposed by a non-faulty process follows from the observation that v
has been sent by at least n — 2¢ > ¢ non-faulty processes.

Case 2: t < n/4 and the non-faulty processes use the ND-broadcast.

In that case, p; has ND-delivered at least (n — 2t) messages EST1(v), from different processes, and p;
has ND-delivered at least n — 2¢ messages EST1(w) from different processes. As n > 4t, it follows that
there is a process p, such that p; has ND-delivered EST1(v) from p, and p; has ND-delivered ESTI(w)
from p,. But, be p, faulty or non-faulty, this is impossible due to the ND-duplicity property (if a non-faulty
process ND-delivers a value from a process p, any other non-faulty process either ND-delivers the same
value from p, or does not ND-deliver a message from p,). It follows that we have v = w.

Finally, similarly to the previous case, the proof that v has been proposed by a non-faulty process follows
from the observation that v has been ND-broadcast by at least n — 2¢ > ¢ non-faulty processes. Ofemma 2

Lemma 3. PR2 holds in both system models BZ_AS,, [t < n/5, UB] and BZ_AS,,+[t < n/4,ND].

Proof Let p; be a process such that bp; = 1. It follows from lines 07-10 that the multiset rec2; contains n—t
values (including L). From lines 09-10, we also have (bp; = 1) = (Jv # L : #equal(v, rec2;) > n—2t),
from which we conclude that p; has delivered at least n — 2t messages EST2(v). Moreover, due to Lemma 2,
the values sent by non-faulty processes are only v or L. Let us consider separately each case stated in the
lemma assumption.

Case I: t < n/5 and the non-faulty processes use UB-broadcast. As there are at most ¢ faulty processes,
at most ¢ messages EST2(v) UB-delivered by p; are from faulty processes. Consequently, at least n — 3t
non-faulty processes have UB-broadcast EST2(v) to p;. As p; waits for n — ¢ messages, it can miss at most
t messages EST2(v) from non-faulty processes (this is because, in the worst case, the ¢ messages missed by
p; are from non-faulty processes that UB-broadcast EST2(v)). Consequently, p; UB-delivers at least n — 4t
messages EST2(v) from non-faulty processes. As n > 5t, we have #equal(v, rec2;) > n—4t > t+ 1. Let

16

us finally notice that, as at most ¢ processes are faulty, p; UB-delivers at most ¢ messages EST2(—) carrying
values different from v and L. Hence, Vw # L we have #equal(v, rec2;) >t > #equal(w, rec2;), which
proves the lemma.

Case 2: t < n/4 and the non-faulty processes use ND-broadcast. In that case, due to ND-broadcast, no two
non-faulty processes can ND-deliver different values from the same faulty process. The worst case is then
when (a) ¢ processes are faulty and ND-broadcast the same value w ¢ {v, L}, and (b) p; ND-delivers these
t messages EST2(w). We trivially have ¢t > #equal(w, rec2;). On another side, as #equal(v, rec2;) >
n—2t > 2t + 1, and p; misses at most ¢ messages EST2(v), we have #equal(v, rec2;) > t + 1. Hence, we
have #equal(v, rec2;) > t > #equal(w, rec2;), which concludes the proof of the lemma. Oremma 3

Theorem 4. Algorithm 4 solves the ITB multivalued consensus problem in both BZ_AS,, [t < n/5,UB, BBC]
and BZ_AS,,+[t < n/4,ND, BBC]. The termination property is the one inherited from the underlying BBC
algorithm (deterministic: C-Termination), or randomized: see Section 7.1).

Proof Proof of the Termination property (every non-faulty process decides). As at most ¢ processes are
faulty, no non-faulty process blocks forever at line 02 or line 07. Due to the termination property of the
underlying binary consensus algorithm BBC, every non-faulty process decides.

Proof of the C-Agreement property (no two non-faulty processes decide differently). If BBC returns 0,
all the non-faulty processes decide 1, and C-Agreement trivially follows. Hence, let us consider that BBC
returns 1. It then follows from Property 1 of BBC that there is a non-faulty process p; such that bp; = 1.
Hence, due to Lemma 3, any non-faulty process p; is such that res; = v, and all the non-faulty processes
decide v.

Proof of the C-Obligation property (if all the non-faulty processes propose the same value, that value is
decided). Let us assume that all the non-faulty processes propose value v. Let p; be any non-faulty process.
We then have #equal(v, recl;) > n — 2t at each non-faulty process p;, and consequently each of the (at
least) n — ¢ non-faulty process sends EST2(v) (line 06). So, each non-faulty process delivers at least n — 2¢
of these messages and we have #equal(v,rec2;) > n — 2t. Hence, any non-faulty p; is such that bp; = 1
and sets res; to v. Due to the C-obligation property of BBC algorithm, value 1 is decided, and consequently
all the non-faulty processes decide v.

Proof of the C-Non-intrusion property (a non-_L value proposed only by faulty processes cannot be
decided). If a non-_L value is decided, it follows from Property 1 of the underlying BBC that a non-faulty
process p; has proposed 1. Hence, we have bp; = 1, and consequently #equal(v, rec2;) > n — 2t. As there
are at most ¢ faulty processes, it follows that non-faulty processes have broadcast EST2(v), which in turn
implies that n — 2t processes have broadcast EST1(v), i.e., at least n — 3t > t + 1 processes have broadcast
EST1(v), from which we finally conclude that v has been proposed by non-faulty processes. Oppeorem 4

6 A Consensus Algorithm Based on the VB-Broadcast Abstraction

This section presents an intrusion-tolerant Byzantine consensus algorithm based on the VB-broadcast ab-
straction. Algorithm 5 requires ¢ < n/3 and has consequently an optimal resilience. It requires a single
round (instead of two as in Algorithm 4). As it is based on VB-broadcast, this round requires six communi-
cation steps.

17

Principles and description of the algorithm After it has VB-broadcast its value, a process p; waits for EST()
messages from n — ¢ processes and deposits the corresponding values in the multiset rec;. Then, p; checks
if (1) (in addition to _L) it has VB-delivered exactly one non-_L value v, and (2) v has been VB-broadcast by
at least n — 2¢ processes (line 04). If there is such a value, p; proposes 1 to the underlying binary consensus,
otherwise it proposes 0 (line 05).

Finally, p; decides L if the underlying binary consensus BBC returns 0 (lines 11). Differently, if 1 is
returned, p; waits until it has VB-delivered (n —2t) messages EST() carrying the very same value v (line 09)
and then decides that value (line 10). Let us notice that, among these (n — 2¢) messages, some have been
already VB-delivered at line 02. The important point is (as shown in the proof) that the net effect of (a) the
VB-broadcast, (b) the predicate used at line 04, and (c) the predicate used in the wait statement at line 09,
ensures that if a non-faulty process invokes bin_propose(1), then all the non-faulty processes eventually
VB-deliver (n — 2t) times the same value v and decide it.

operation propose(v;) is
(01) VB_broadcast EST(v;);
(02) wait until (EST(—) messages VB_delivered from n — ¢ proc.);
(03) let rec; = multiset of values v s.t. EST(v) is VB_delivered to p;;
(04)if (v # L : #equal(v,rec;) > n — 2t)

A (rec; contains a single non-_L value)
(05) then bp; < 1 else bp; < 0
(06) end if;
(07) b_dec; <+ bin_propose(bp;); % underlying BBC consensus %
(08) if (b-dec; = 1)
(09) then wait until (Jv # L : #equal(v,rec;) > n — 2t);
(10) return(v)
(11) else return(L)
(12) end if.

Algorithm 5: Intrusion-tolerant Byzantine consensus algorithm based on VB-broadcast (t < n/3)

On the predicate “rec; contains a single non-_L value” used at line 04 The aim of this predicate is to
ensure that, if bp; = bp; = 1 (where p; and p; are two non-faulty processes), then the multisets rec; and
rec; contain only instances of thesame value v (plus possibly instances of L).

To motivate this predicate, let us consider that the predicate of line 04 is restricted to its first part, namely,
“Ju: #equal(v,rec;) > n — 2t”. Assuming n = 10 and ¢ = 3, let us consider the case where, at line 01,
four processes VB-broadcast the message EST(v), while six processes VB-broadcast the message EST(w).
Moreover, let us consider the following execution:

e On the one side, p; VB-delivers n — ¢ = 7 messages EST(), four that carry v and three that carry w.
As #equal(v,rec;) = 4 > n — 2t = 4, the restricted predicate is satisfied for v, and p; assigns 1 to

bpi .

e On the other side, p; VB-delivers n — t = 7 messages EST(), four that carry w and three that carry v.
As #equal(w,rec;) = 4 > n — 2t = 4, the restricted predicate is satisfied for w, and p; assigns 1 to

bpi .

18

It follows that we have bp; = bp; = 1 (p; and p; being non-faulty processes), while v is the value that will
be decided by p; if the underlying BBC algorithm returns 1, and the value decided by p; will be w # v. It
is easy to see that the second part of the predicate of line 04 prevents this bad scenario from occurring.

Theorem 5. Algorithm S solves the ITB multivalued consensus problem in the system model BZ_AS, ;[t <
n/3, VB,BBC]|. As in Theorem 4, the termination property is the one inherited from the underlying BBC
algorithm.

Proof Proof of the C-Termination property (every non-faulty process decides). If the underlying BBC
algorithm returns O, termination is trivial. Hence, let us consider that 1 is returned. Due to Property 1 of
BBC, there is a non-faulty process p; such that bp; = 1, which in turn implies that, at line 02, p; has received
at least (n — 2t) messages EST(v). Due to the VB-Uniformity property of VB-broadcast, any non-faulty
process eventually VB-delivers these (n — 2t) messages EST(v). Hence, no non-faulty process p; blocks
forever at line 09, which concludes the proof.

Proof the C-Agreement property (no two non-faulty processes decide differently). The proof is similar to the
previous one. If BBC returns 0, agreement is trivial. If 1 is returned, it follows from n — 2¢ > ¢ and the fact
that —at any non-faulty process p;— there is no w # v such that w € rec; (second predicate of line 04), that
the value v the processes are waiting for at line 09 is unique, which completes the proof of the agreement
property.

Proof of the C-Obligation property (if all the non-faulty processes propose the same value, that value is
decided). If all the non-faulty processes propose the same value v, it follows from the VB-Obligation prop-
erty that v is necessarily validated, and from the VB-Termination property that all the non-faulty processes
VB-deliver at least (n — 2t) messages EST(v). Moreover, as n — 2t > ¢, there is a single such value v.
Due to VB-Justification property, a value VB-broadcast only by faulty processes cannot be validated and
consequently no non-faulty process can VB-deliver it. This means that only v, L or nothing at all can be
VB-delivered from a faulty process. It follows that, at each non-faulty process p;, the predicate of line 04
is satisfied and p; proposes bp; = 1. Due to the C-Obligation property of BBC, they all decide 1 and
consequently decide the same proposed value v.

Proof of the C-Non-intrusion property (a non-_L value proposed only by faulty processes cannot be
decided). If a value w is proposed only by faulty processes, it follows from the VB-Justification property
that no non-faulty process p; VB-delivers it. If the underlying BBC algorithm returns 0, w is not decided.
If BBC returns 1, we have seen in the proof of the C-Agreement property that the processes decide a value
v such that at least (n — 2t) messages EST(v) have been VB-delivered. As n — 2t > t, it follows that w
cannot be decided. O7heorem 5

A discussion on additional properties of ITB consensus in deterministic vs non-deterministic scenarios
can be found in [20].

7 A Randomized VB-Based Byzantine Binary Consensus Algorithm

This section presents a particularly simple randomized Byzantine binary consensus algorithm (that can
be used as the underlying BBC algorithm on which rely the multivalued Byzantine consensus algorithms
previously described). The additional power needed to solve consensus is given here by random coins. This
algorithm, which is optimal from a resilience point of view (¢t < n/3), is based on the validated broadcast
abstraction. More precisely, each round requires one VB-broadcast instance.

19

When looking at Byzantine consensus algorithms that are optimal from a resilience point of view (i.e.,
algorithms able to cope with up to ¢ < n/3 faulty processes), the best consensus algorithm we are aware
of has rounds made up of three communication steps [7]. Moreover, this algorithm is based on signatures
(public key cryptography). As far as signature-free algorithms are concerned, the best resilience-optimal
algorithm we are aware of, that uses control information whose size is only O(log, n), is the one described
in [28], which requires five communication steps per round. Algorithm 6 is signature-free and requires only
six communication steps per round.

7.1 Randomized model

Common coin The asynchronous system is equipped with a common coin as defined by Rabin [23],
and improved in [7] in order to get rid of the trusted dealer. Such an oracle is denoted CC. The corre-
sponding enriched —from a computational power point of view— system model is consequently denoted
BZ_AS, [t < n/3,CC]. A common coin can be seen as a global entity that delivers a sequence of random
bits by, ba, ..., by, ... to processes (each bit b, has the value 0 or 1, with probability 1/2).

More precisely, this oracle provides the processes with a primitive denoted random() that returns a bit
each time it is called by a process. In addition to being random, this bit has the following global property:
the rth invocation of random() by any non-faulty process p; returns it the bit b,. This means that the rth
invocations of random() by any pair of non-faulty processes p; and p; return them b,, whatever the times
at which each of these invocations occur. It is important to notice that the network has no access to the
common coin (the reader interested in the implementation of a common coin can consult [7].)

On randomized consensus When using additional computing power provided by random coins, the con-
sensus termination property can no longer be deterministic. Randomized consensus is defined by C-Validity
(Obligation), C-Agreement, plus the following termination property [2, 23]: Every non-faulty process de-
cides with probability 1. For round-based algorithms, this termination property can be re-stated as follows.
For any non-faulty process p;: lim,_, | (Probability[pi decides by round r]) =1.

7.2 The algorithm

Underlying principles and description of the algorithm. In Algorithm 6, a process p; invokes bin_propose(v;)
where v; is the value it proposes. It decides when it executes the statement decide(v) (line 08). The design
of this algorithm is close to an algorithm proposed in [12]. Its fundamental difference is that it is resilience-
optimal (¢ < n/3), while the one described in [12] requires ¢t < n/5.

The local variable est; of a process p; keeps its current estimate of the decision value (initially, est; =
v;). The processes proceed by consecutive asynchronous rounds. Thus, the pair (r;, est;) of a non-faulty
process p; describes its current state (r; is p;’s current round number). The first part of the algorithm (lines
01-04) is devoted to communication occurring during a round. The second part (lines 05-10) defines the
management of the local estimate est; and the decision rule. There is one VB-broadcast instance per round.
To distinguish the messages EST() associated with different VB-broadcast instances, these messages are
tagged by their round number, namely EST[r](v) denotes a round r message carrying the value v. More
precisely, we have the following.

e At every round r;, each non-faulty process p; VB-broadcasts EST[r;|(est;), and waits until it has
VB-delivered EST[r;](—) from at least n — ¢ processes (lines 02-04).

20

e In the second part, p; first computes the random number s associated with the current round 7r;
(line 05). Then, p; checks if (a) it has received a non-_L value v from at least n — 2¢ different processes,
and (b) v is the only non-_ value in rec; (line 06). If this predicate holds, p; adopts v as new estimate
(line 07) and decides the random value s if v = s (line 08). If the predicate is false, p; updates its
estimate est; to the random value s. In all cases, p; starts a new asynchronous round.

The statement decide() allows the invoking process to decide but does not stop its execution. Hence, a
process executes rounds forever. This facilitates the description of the algorithm. Using techniques such as
the one developed in [12] allows a process to both decide and stop.

Remark It is possible to add the following test after line 04:

if (Ju : #equal(v, rec;) > n — t) then decide(v) end if.
This allows to always terminate in a single round whatever the value of the common coin when no process
commits Byzantine failure and all processes propose the same value. (This scenario is likely to happen in
actual executions.)

operation bin_propose(v;) is
est; < vi;r; < 0;
repeat forever
Ol r; < r; +1;
(02) VB_broadcast EST[r;](est;);
(03) let rec; = multiset of values est
such that EST[r;](est) has been VB_delivered to p;;

(04) wait until (|rec;| > n — t);
(05) s; + random();
(06) if (v # L : #equal(v, rec;) > n — 2t)

A (rec; contains a single non-_L value)
(07) then est; + v;
(08) if (v = s) A (p; has not yet decided) then decide(v) end if
(09) else est; + s
(10) end if
end repeat.

Algorithm 6: Randomized binary Byzantine consensus based on VB-broadcast (¢ < n/3)

7.3 Proof

Lemma 4. Let t < n/3. Consider the situation where, at the beginning of a round r, all the non-faulty
processes have the same estimate value v. These processes will never change their estimates, thereafter.

Proof As all the non-faulty processes VB-broadcast the same value v at the beginning of round r (line 02), it
follows from the VB-obligation property of VB-broadcast, that the only values that can be VB-delivered are
v (VB-broadcast by each of them and possibly from Byzantine processes) and | (from Byzantine processes).
Moreover, as each non-faulty process p; waits for n — ¢ messages (line 04), it will VB-deliver at least n — 2¢
values v; as n > 3t, at most ¢ of them can be VB-broadcast by Byzantine processes (due to the VB-validity
property, a value w # v VB-broadcast by a Byzantine process p; cannot be validated, and consequently L
or no value at all is VB-delivered from such a process p;). Hence, the predicate of line 06 is satisfied, and
p; sets est; to v (line 07), which concludes the proof of the lemma. O Lemma 4

21

Let COND(v, i) be the predicate that p; tests at line 06.

Lemma 5. Let n > 3t. If two non-faulty processes p; and p; are such that both COND(v, %) and
COND(w,j) hold at round r, then v = w.

Proof By the VB-Uniformity property of VB-broadcast, no two non-faulty processes VB-deliver different
values from the same process. Hence, if COND (v, i) holds for some non-faulty process p;, no other non-
faulty process p; can VB-deliver a value w # v from the set of (n —t) processes whose VB-broadcasts built
the set rec;. Consequently, if p; VB-delivers a value w # v, the number of occurrences of w is necessarily
at most t < n — 2t, and consequently COND(w, j) cannot be satisfied. OLemma 5

Lemma 6. Lett < n/3. If all the non-faulty processes propose the same value v, then no value v' # v can
be decided.

Proof This lemma is an immediate consequence of Lemma 4. As all estimates of the non-faulty processes
remain equal to v, it follows from line 08 that no value v # v can be returned by a non-faulty process.
ULemma 6

Lemma 7. No two non-faulty processes decide different values.

Proof Let r be the first round during which non-faulty processes decide. If two processes p; and p; decide
at round 7, they decide at line 08 the value s computed by the common coin for that round. Moreover,
before deciding during round r, a process updated its estimate to the decided value s. Hence, all processes
that decide during round r decide the same value s, and have their estimates equal to the decided value.

Let us now consider the case of a a processes p,, for which, during round r, (a) the predicate of line 06
is satisfied (i.e., COND(w, z) is true), (b) while the decision predicate at line 08 is not. As the predicate
of line 06 is satisfied for both p, and any process p; that decides at line 08 (i.e., both COND(w, z) and
COND(i, v) are true), it follows from Lemma 5 that w = v, which means that it is not possible that the
decision predicate of p, be false. Hence, p, decides during round r, exactly as p;.

Let us finally consider the case of a non-faulty process py such that COND(—, k) does not hold at
line 06 during round 7. It follows from line 09 that pj updates its estimate to the random value s associated
with round r. Hence, all such processes py, start round r + 1 with their estimates equal to the decided value s.

It then follows from Lemma 4 that, from round r + 1, the estimates of all the non-faulty processes keep
forever the same value (namely, the decided value). Hence, no value different from this estimate value can
be decided. Oremma 7

Lemma 8. Each non-faulty process decides with probability 1. (Proof in [20].)

Theorem 6. Algorithm 6 solves the randomized binary consensus problem in the system model BZ_AS, 1 [t <
n/3,VB, CC|.

Proof Follows from lemmas 6, 7 and 8. UTheorem 6

Theorem 7. Let t < n/3. The expected decision time is constant.

22

Proof As indicated in the proof of Lemma 8, termination is obtained in two phases. First, all the non-faulty
processes adopt the same value v. Second, the outcome of the common coin has to be the same as the
commonly adopted value v.

It follows from the proof of Lemma 8 that there is only one situation in which the non-faulty processes
do not adopt the same value. This is when the predicate of line 06 is satisfied for a subset of non-faulty
processes and not for the other non-faulty processes. Thus, the expected number of rounds for this to
happen is 2. As for the second phase, here again, the probability that the value output by the common coin
is the same as the value held by all the non-faulty processes is 1/2. Thus, the expected time for this to
occur is also 2. Combining the two phases, the expected termination time is 4 rounds (i.e., a small constant).

DTheorem 7

8 Conclusion

Considering distributed message-passing systems made up of n processes, and where up to ¢ processes
may commit Byzantine failures, the aim of the paper was to present in a simple and homogeneous way
(a) existing and new broadcast and agreement abstractions, and (b) algorithms implementing them. These
broadcast abstractions are UB-broadcast (unreliable broadcast), ND-broadcast (no-duplicity broadcast), RB-
broadcast (reliable broadcast), and VB-broadcast (validated broadcast). They have been used to design
three multivalued intrusion-tolerant Byzantine consensus algorithms. Moreover, all these algorithms are
signature-free. As we have seen, the intrusion-tolerance property means that no value proposed only by
Byzantine processes can ever be decided. As a consequence, a default value can be decided when the same
value is not proposed by enough processes

The intrusion-tolerant consensus algorithm based on VB-broadcast has several noteworthy features: it is
optimal from a resilience point of view (¢ < n/3), each round requires only a single VB-broadcast instance,
which costs six communication steps, and the size of control information attached with each message is
O(logy n). The paper has also presented a novel randomized binary Byzantine consensus algorithm that is
resilient-optimal and, in a very interesting way, is also based on the VB-broadcast abstraction.

Acknowledgments

The authors want to thank the referees for their constructive comments. This work has been partially supported by the
French ANR projects DISPLEXITY and DISCMAT.

References

[1] Attiya H. and Welch J., Distributed computing: fundamentals, simulations and advanced topics, Wiley-Interscience, 414
pages, 2004.

[2] Ben-Or M., Another advantage of free choice: completely asynchronous agreement protocols. Proc. 2nd ACM Symposium
on Principles of Distributed Computing(PODC’83), pp. 27-30, 1983.

[3] Bracha G., Asynchronous Byzantine agreement protocols. Information & Computation, 75(2):130-143, 1987.

[4] Bracha G. and Toueg S., Asynchronous consensus and broadcast protocols. Journal of the ACM, 32(4):824-840, 1985.

[5] Cachin Ch., Guerraoui R., and Rodrigues L., Reliable and secure distributed programming, Springer, 367 pages, 2011.

[6] Cachin Ch., Kursawe K., Petzold F., and Shoup V., Secure and efficient asynchronous broadcast protocols. Proc. 21st Annual
International Cryptology Conference CRYPTO’01, Springer LNCS 2139, pp. 524-541, 2001.

23

(7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]
(18]
[19]
(20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]
(28]

[29]

Cachin Ch., Kursawe K., and Shoup V., Random oracles in Constantinople: practical asynchronous Byzantine agreement
using cryptography. Proc. 19th Annual ACM Symposium on Principles of Distributed Computing (PODC’00), pp. 123-132,
2000.

Chandra T. and Toueg S., Unreliable failure detectors for reliable distributed systems. Journal of the ACM, 43(2):225-267,
1996.

Correia M., Ferreira Neves N., and Verissimo P., From consensus to atomic broadcast: time-free Byzantine-resistant protocols
without signatures. The Computer Journal, 49(1):82-96, 2006.

Dwork C., Lynch N., and Stockmeyer L., Consensus in the presence of partial synchrony. Journal of the ACM, 35(2), 288-323,
1988.

Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process. Journal of the
ACM, 32(2):374-382, 1985.

Friedman R., Mostéfaoui A., and Raynal M., Simple and efficient oracle-based consensus protocols for asynchronous Byzan-
tine systems. /IEEE Transactions on Dependable and Secure Computing, 2(1):46-56, 2005.

Lamport L., Shostack R., and Pease M., The Byzantine generals problem. ACM Transactions on Programming Languages
and Systems, 4(3)-382-401, 1982.

Liang G. and Vaidya N., Error-free multi-valued consensus with Byzantine failures. Proc. 30th ACM Symposium on Principles
of Distributed Computing (PODC’11), ACM Press, pp. 11-20, 2011.

Lynch N.A., Distributed algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996 (ISBN 1-55860-384-4).
Martin J.-Ph. and Alvisi L., Fast Byzantine consensus. /EEE Transactions on Dependable and Secure Computing, 3(3):202-
215, 2006.

Milosevic Z., Hutle M., and Schiper A., On the reduction of atomic broadcast to consensus with Byzantine faults. Proc. 30th
IEEE Int’l Symp. on Reliable Distributed Systems (SRDS’11), pp. 235-244, 2011.

Mostéfaoui A. and Raynal M., Solving consensus using Chandra-Toueg’s unreliable failure detectors: a general quorum-
based approach. Proc. 13th Int’l Symposium on Distributed Computing (DISC’99), Springer LNCS 1693, pp. 49-63, 1999.
Mostéfaoui A. and Raynal M., Signature-free broadcast-based intrusion tolerance: never decide a Byzantine value. Proc. 14th
Int’l Conference On Principles Of Distributed Systems (OPODIS’10), Springer LNCS 6490, pp. 144-159, 2010.

Mostéfaoui A. and Raynal M., Communication and agreement abstractions in the presence of Byzantine processes.Tech
Report #2015, 24 pages, IRISA, Université de Rennes (France), 2014.

Mostéfaoui A., Raynal M., and Tronel F., From binary consensus to multivalued consensus in asynchronous message-passing
systems. Information Processing Letters, 73:207-213, 2000.

Pease M., R. Shostak R., and Lamport L., Reaching agreement in the presence of faults. Journal of the ACM, 27:228-234,
1980.

Rabin M., Randomized Byzantine generals. Proc. 24th IEEE Symposium on Foundations of Computer Science (FOCS’83),
IEEE Computer Society Press, pp. 116-124, 1983.

Raynal M., Communication and agreement abstractions for fault-tolerant asynchronous distributed systems. Morgan & Clay-
pool, 251 pages, 2010 (ISBN 978-1-60845-293-4).

Raynal M., Fault-tolerant agreement in synchronous message-passing systems. Morgan & Claypool Publishers, 165 pages,
2010 (ISBN 978-1-60845-525-6).

Raynal M., Concurrent programming: algorithms, principles and foundations. Springer, 515 pages, 2013 (ISBN 978-3-642-
32026-2).

Srikanth T.K. and Toueg S., Simulating authenticated broadcasts to derive simple fault-tolerant algorithms. Distributed Com-
puting, 2:80-94, 1987.

Toueg S., Randomized Byzantine agreement. Proc. 3rd Annual ACM Symposium on Principles of Distributed Computing
(PODC’84), pp. 163-178, 1984.

Turpin R. and Coan B.A., Extending binary Byzantine agreement to multivalued Byzantine agreement. Information Process-
ing Letters, 18:73-76, 1984.

Achour Mostéfaoui is a professor of computer science at the University of Nantes (France). He received his M.Sc.
in computer science in 1991, and a Ph.D. in 1994 from the University of Rennes. He is head of a Masters diploma in
Computer Science (University of Nantes) and is co-head of the GDD research team within the LINA Lab.

Michel Raynal is a professor of computer science at the University of Rennes (France). His main research interests
are distributed algorithms, distributed computability, and the fundations of distributed computing. His last two books
Concurrent Programming: Algorithms, Principles and Foundations (ISBN 978-3-642-32026-2), and Distributed Al-
gorithms for Message-passing Systems (ISBN: 978-3-642-38122-5) have been published by Springer in 2013.

24

