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Abstract

This paper is on broadcast and agreement in asynchronous message-passing systems made up of n
processes, and where up to ¢ processes may have a Byzantine Behavior. Its first contribution is a power-
ful, yet simple, all-to-all broadcast communication abstraction suited to binary values. This abstraction,
which copes with up to ¢ < n/3 Byzantine processes, allows each process to broadcast a binary value,
and obtain a set of values such that (1) no value broadcast only by Byzantine processes can belong to the
set of a correct process, and (2) if the set obtained by a correct process contains a single value v, then the
set obtained by any correct process contains v.

The second contribution of the paper is a new round-based asynchronous consensus algorithm that
copes with up to ¢ < n/3 Byzantine processes. This algorithm is based on the previous binary broadcast
abstraction and a weak common coin. In addition of being signature-free and optimal with respect to the
value of ¢, this consensus algorithm has several noteworthy properties: the expected number of rounds to
decide is constant; each round is composed of a constant number of communication steps and involves
O(n?) messages; each message is composed of a round number plus a constant number of bits. More-
over, the algorithm tolerates message re-ordering by the adversary (i.e., the Byzantine processes).

Keywords: Asynchronous message-passing system, Broadcast abstraction, Byzantine process, Com-
mon coin, Consensus, Distributed algorithm, Optimal resilience, Randomized algorithm, Signature-free
algorithm, Simplicity.



1 Introduction

Distributed computing Distributed computing occurs when one has to solve a problem in terms of physi-
cally distinct entities (usually called nodes, processors, processes, agents, sensors, etc.) such that each entity
has only a partial knowledge of the many parameters involved in the problem. In the following, we use the
term process to denote any computing entity. From an operational point of view this means that the pro-
cesses of a distributed system need to exchange information, and agree in some way or another, in order to
cooperate to a common goal. Hence, a distributed system has to provide the processes with communication
and agreement abstractions.

Understanding and designing distributed applications is not an easy task [2, 10, 27, 38, 39, 40]. This
is because, due to the very nature of distributed computing, no process can capture instantaneously the
global state of the application it is part of. This comes from the fact that, as processes are geographically
localized at distinct places, distributed applications have to cope with the uncertainty created by asynchrony
and failures. As a simple example, it is impossible to distinguish a crashed process from a very slow process
in an asynchronous system prone to process crashes.

As in sequential computing, a simple approach to facilitate the design of distributed applications consists
in designing appropriate abstractions. More generally, computing science is a science of abstraction and
distributed computing is the science of distributed abstractions [17]. With such abstractions, the application
designer can think about solutions to solve problems at a higher conceptual level than the basic send/receive
communication level.

Communication and agreement abstractions Broadcast abstractions are among the most important ab-
stractions required to address fault-tolerant distributed computing [2, 10, 12, 27, 38]. Roughly speaking,
these abstractions allow processes to disseminate information in such a way that specific provable proper-
ties concerning this dissemination are satisfied. One of the most popular of these abstractions is reliable
broadcast [7, 12].

As far as agreement abstractions are concerned, non-blocking atomic commit [22, ?] and consensus [16,
36] are certainly the most important abstractions of fault-tolerant distributed computing. Assuming that each
process proposes a value, the consensus abstraction allows the non-faulty processes to agree on the same
value, which has to satisfy some validity condition depending on both the proposed values and the failure
model [2, 27, 38, 39].

Asynchronous Byzantine systems This paper is on all-to-all broadcast abstractions and their use to solve
binary consensus in an asynchronous message-passing system where processes can commit Byzantine
failures [25]. This failure type has first been introduced in the context of synchronous distributed sys-
tems [25, 36, 39], and then investigated in the context of asynchronous distributed systems [2, 27, 38]. A
process has a Byzantine behavior when it arbitrarily deviates from its intended behavior: it then commits
a Byzantine failure (otherwise we say it is correct). This bad behavior can be intentional (malicious) or
simply the result of a transient fault that altered the local state of a process, thereby modifying its behavior
in an unpredictable way. Let us notice that process crashes (unexpected halting) define a strict subset of
Byzantine failures.



Consensus related work Let ¢ denote the model upper bound on the number of processes that can have a
Byzantine behavior. It is shown in several papers (e.g., [14, 25, 36, 43]) that Byzantine consensus cannot be
solved when t > n /3, be the system synchronous or asynchronous, be the algorithm allowed to use cryptog-
raphy or not, or be the algorithm allowed to use random numbers or not. As far as synchronous systems are
concerned, it has been shown in [15] that (¢ + 1) rounds is a lower bound on the number of communication
steps needed to solve Byzantine consensus. It has also been shown in [21] that, using randomization, this
bound can be improved to an expected O(logn) value in systems that are full-information, synchronous,
and where where ¢t < 3%6 and ¢ > 0.

In asynchronous systems, it is well-known that there is no deterministic consensus algorithm as soon as
one process may crash [16], which means that Byzantine consensus cannot be solved either if one process
can be faulty. Said another way, the basic asynchronous Byzantine system model has to be enriched with
additional computational power. Such an additional power can be obtained by randomization (e.g., [3, 13,
20, 37]), assumption on message delivery schedules [7, 43], failure detectors suited to Byzantine systems
(e.g., [19, 23]), additional —deterministic or probabilistic— synchrony assumptions (e.g., [7, 14, 29]), or
restrictions on the vectors of input values proposed by the processes [18, 32]. As this paper focuses on
binary consensus (i.e., the consensus problem where only two values can be proposed by processes), it
considers that the system is enriched with the additional computational power supplied by a common coin.
Such an object, introduced by Rabin [37], is a distributed object that is expected to deliver, with some
probability, the same sequence of random bits by, ba, ..., b,, ... to each process.

Some of the first randomized consensus algorithms (such as the ones of Ben-Or [3] or Bracha [5]) use
local coins (the values returned to a process by a local coin is not related to the values returned by the
local coins of the other processes). As a consequence they have an expected number of rounds which is
exponential (unless ¢ = O(y/n)), which makes them of theoretical interest, but of limited practical use. As
randomized algorithms based on a common coin can have an expected number of rounds which is constant,
this paper focuses only on such algorithms.

[ Protocol [ n > | signatures | msgs/round | bits/msg |

[ 371 10t [ yes [ Om) | o) |
[4] 5t no O(n?) O(1)
[20] 5t no O(n?) 0(1)
[6] 3t no O(n?) O(log(n))
(42 3t no O(n3) O(log(n))
[43] 3t yes o(n?) O(n)
[11] 3t yes O(n?) poly(n)
[8] 3t yes O(n?) O()

| This paper [ 3¢ | no | o) | o |

Table 1: Cost and constraint of different Byzantine binary consensus algorithms

Round-based asynchronous Byzantine algorithms using a common coin are listed in Table 1 (at the line
before the last line, £ denotes the length of an RSA signature)!.
All these algorithms, which address binary consensus, are round-based, and each message carries the

"For synchronous systems, an efficient coin-based algorithm that solves consensus despite Byzantine processes is described
in [24].



number of the round in which it is sent. Hence, when comparing their message size, we do not consider
round numbers. We have the following.

e The first algorithm is such that n < 10¢, has an O(n?) message complexity, and requires signatures.

e The algorithms of the two next lines are such that t < n/5, and their message complexity is O(n?).
These algorithms are simple, signature-free, and use one or two communication steps per round, but
none of them is optimal with respect to ¢-resilience.

e The algorithms of the next three lines are optimal with respect to ¢, but have an O(n?) message
complexity. Moreover, [43] uses signed messages”, while [6] does not use a common coin, and
may consequently execute an exponential number of rounds. Due to their message complexity, these
algorithms are costly.

e The algorithm proposed in [11], although polynomial, has a huge bit complexity. The algorithm
presented in [8] is optimal with respect to ¢, uses only O(n?) messages per round, has two commu-
nication steps per round, and uses signed messages. However, as noticed by its authors, “because of
public key operations, the computational complexity of this protocol is typically higher than those
using authentication codes”.

Content of the paper The paper first introduces a new, yet simple, all-fo-all broadcast abstraction suited
to binary values, that we call DSBV (Double Synchronized Binary Value) broadcast. The corresponding
broadcast operation, denoted DSBV _broadcast(), allows each process to broadcast an input value and obtain
a non-empty set of at most two values called a view. A novel feature of this operation lies in the fact that
it focuses on values and not on processes, which means that it does not consider the fact that “this” value
has been broadcast by “this” process. More explicitly, if a value v has been broadcast by the processes p
and ¢, what is important is only the fact that v was broadcast by two distinct processes. The second feature
of DSBV-broadcast lies in the fact that it reduces the power of Byzantine processes in such a way that no
view delivered at a correct process contains values broadcast only by Byzantine processes, and, if the set
delivered to a correct process contains a single value v, then the set delivered to any correct process contains
this value v. The last noteworthy feature of DSBV-broadcast lies in its implementation, which is particularly
simple and easy to prove. Then, the paper uses this all-to-all value-oriented broadcast abstraction to solve
Byzantine binary consensus in an asynchronous message-passing system enriched with a common coin. The
resulting consensus algorithm is a round-based asynchronous algorithm that has the following noteworthy
properties.

e The algorithm requires ¢ < n/3 and is consequently optimal with respect to ¢.

e The algorithm uses a constant number of communication steps per round.

The expected number of rounds to decide is constant.

The message complexity is O(n?) messages per round.

e Each message carries its type, a round number plus a constant number of bits.

*Signatures are used to prevent message falsification by Byzantine processes.



° Byzantine processes may re-order messages sent to correct processes.

e The algorithm uses a weak coin. Weak means here that there is a constant probability that, at every
round, the coin returns different values to distinct processes.

o Finally, the algorithm does not assume a computationally-limited adversary (and consequently it does
rely on signed messages).

Hence, contrarily to what one could believe from existing asynchronous Byzantine binary consensus algo-
rithms, the formula

[quadratic message complexity] = [(use of signatures) V (t < n/5)]
is false. The proposed algorithm shows that ¢t < n/3 (as in [8]), quadratic message complexity (as in [4, 8]),
and absence of signatures (as in [4, 20]) are not incompatible.

Remark The algorithm presented in this paper is an improved version of the algorithm presented in [31],
which requires a perfect common coin and considers a fair message scheduling (i.e., it assumes that the
adversary -Byzantine processes- cannot re-order messages sent by correct processes). Both the algorithm
presented in the paper and the previous one have the same asymptotic upper bound on time and message
cost.

Roadmap The paper is composed of 6 sections. Section 2 presents the computation model. Section 3
presents and proves correct the DSBV broadcast abstraction. Section 4 presents and proves correct a con-
sensus algorithm, based on a common coin, in which the correct processes decide in a constant expected
number of rounds. Then, Section 5 extends the previous algorithm to obtain a binary consensus algorithm in
which the correct processes decide and terminate in a constant expected number of rounds. Finally, Section
6 concludes the paper.

2 Computation Model

Asynchronous processes The system is made up of a finite set II of n > 1 asynchronous sequential
processes, namely IT = {p1,...,p,}. “Asynchronous” means that each process proceeds at its own pace,
which may vary arbitrarily with time, and remains always unknown to the other processes.

Communication network The processes communicate by exchanging messages through an asynchronous
reliable point-to-point network. “Asynchronous” means that a message that has been sent is eventually
received by its destination process, i.e., there is no bound on message transfer delays. ‘“Reliable” means
that the network does not lose, duplicate, modify, or create messages. ‘“Point-to-point” means that there is
a bi-directional communication channel between each pair of processes. Hence, when a process receives a
message, it can identify its sender.

A process p; sends a message to a process p; by invoking the primitive “send TAG(m) to p;”, where
TAG is the type of the message and m its content. To simplify the presentation, it is assumed that a process
can send messages to itself. A process receives a message by executing the primitive “receive()”.

The operation broadcast TAG(m) is a macro-operation which stands for “for each j € {1,...,n} send
TAG(m) to p; end for”. This operation is usually called unreliable broadcast (if the sender commits a
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failure in the middle of the for loop, it is possible that only an arbitrary subset correct processes receives the
message).

Failure model Up to ¢ processes may exhibit a Byzantine behavior. A process that exhibits a Byzantine
behavior is called faulty. Otherwise, it is correct. A Byzantine process is a process that behaves arbitrarily:
it may crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary state, perform
arbitrary state transitions, etc. Hence, a Byzantine process, which is assumed to send a message m to
all the processes, can send a message m; to some processes, a different message ms to another subset of
processes, and no message at all to the other processes. More generally, a Byzantine process has an unlimited
computational power, and Byzantine processes can collude to “pollute” the computation. Let us notice that,
as each pair of processes is connected by a channel, no Byzantine process can impersonate another process,
but Byzantine processes are not prevented from influencing the delivery order of messages sent to correct
processes.

Notation This computation model is denoted BAMP,, ;[)] (BAMP stands for Byzantine Asynchronous
Message Passing). In the following, this model is both restricted with a constraint on ¢ and enriched with an
object providing processes with additional computational power. More precisely, BAMP,, ;[n > 3t] de-
notes the model BAMP,, +[()] where the number of faulty processes is smaller than n/3, and BAMP,, ;[n >
3t, CC] denotes the model BAMP,, ;[n > 3t] enriched with a common coin (CC) abstraction [37] (defini-
tion and details of CC will be given Section 4.1). Let us notice that, as CC belongs to the model, it is given
for free in BAMP,, ;[n > 3t,CC].

Time complexity When computing the time complexity we ignore local computation time, and consider
the longest sequence of messages mj, mao, ..., m, which are causally related (i.e., for any x € [2..z], the
reception of m,_1 is a requirement for the sending of m,). The size of such a longest sequence defines the
time complexity.

3 The Double Synchronized Binary-Value Broadcast Abstraction

This section introduces the DSBV broadcast abstraction, which (as announced) will be at the core of the bi-
nary consensus algorithm presented in Section 4. This abstraction is built modularly on top of an underlying
abstraction called SBV (Strong Binary Value) broadcast, which is itself built on top of an extremely simple
broadcast abstraction called BV (Binary Value) broadcast.

These three broadcast abstractions are one-shot, all-to-all, and binary. “One-shot” means that, in each
broadcast instance, a correct process invokes at most once the corresponding communication operation.
“All-to-all” means that, by assumption, all the correct processes invoke the corresponding broadcast opera-
tion. “Binary value” means that only two different predefined values a and b can be broadcast.

3.1 Binary-value Broadcast

Definition This all-to-all communication abstraction (in short, BV-broadcast) provides the processes with
a single operation denoted BV _broadcast(). When a process invokes BV _broadcast TAG(m ), we say that it
“BV-broadcasts the message typed TAG and carrying the binary value m”. The invocation of BV _broadcast



TAG(m) does not block the invoking process. The aim of BV-broadcast is to eliminate a value (if any) that
has been broadcast only by Byzantine processes.

In a BV-broadcast instance, each correct process p; BV-broadcasts a binary value and eventually obtains
a set of binary values. To store these values, BV-broadcast provides each correct process p; with a read-
only local variable denoted bin_values;. This set variable, initialized to (), increases when new values are
received. Each instance of BV-broadcast is defined by the four following properties.

e BV-Termination. The invocation of BV _broadcast() by a correct process terminates.
e BV-Justification. If p; is correct and v € bin_values;, v has been BV-broadcast by a correct process.

e BV-Uniformity. If a value v is added to the set bin_values; of a correct process p;, eventually v €
bin_values; at every correct process p;.

e BV-Obligation. Eventually the set bin_values; of each correct process p; is not empty.

Let us observe that, as only two values can be BV-broadcast, the following properties are an immediate
consequence of the previous definition.

o BV-Single-value. If all the correct processes BV-broadcast the same value v, v is eventually added to
the set bin_values; of each correct process p;.

e The sets bin_values; of the correct processes p; eventually (a) become non-empty and equal, (b) do
not contain values broadcast only by Byzantine processes.

A BV-broadcast Algorithm A simple algorithm implementing the BV-broadcast abstraction is described
in Figure 1. This algorithm is based on a particularly simple “echo” mechanism. Differently from previous
echo-based algorithms (e.g., [6, 42]), echo is used here with respect to each value that has been received
(whatever the number of processes that broadcast it), and not with respect to each pair composed of a value
plus the identity of the process that broadcast this value. Hence, in the algorithm of Figure 1, a value entails
a single echo, whatever the number of processes that broadcast this value.

let witness(v) = number of different processes from which B_VAL(v) was received;
bin_value; is initially empty.

operation BV _broadcast MSG(v;) is
(1) broadcast B_VAL(v;); return().

when B_VAL(v) is received
(2) if (witness(v) >t + 1) A (B_VAL(v) not yet broadcast)

3) then broadcast B_-VAL(v) % a process echoes a value only once %

(4) endif;

(5) if (witness(v) > 2t + 1) A (v € bin_values;)

(6) then bin_values; < bin-values; U {v} % local delivery of a value %
(7) endif.

Figure 1: An algorithm implementing BV-broadcast in BAMP,, ;[n > 3t]



When a process p; invokes BV _broadcast MSG(v;), v; € {a,b}, it broadcasts B_VAL(v;) to all the
processes (line 1). Then, when a process p; receives (from any process) a message B_VAL(v), (if not yet
done) it forwards this message to all the processes (line 3) if it has received the same message from at least
(t + 1) different processes (line 2). Moreover, if p; has received v from at least (2¢ + 1) different processes,
the value v is added to bin_values; (lines 5-6).

Remark Letus notice that, when bin_values; contains a single value, process p; cannot know if bin_values;
has obtained its final value. (Otherwise, consensus will be directly obtained by directing each process p;
to deterministically extract the same value from bin_values;). This impossibility is due to the net effect of
asynchrony and process failures [16].

Theorem 1. The algorithm described in Figure 1 implements the BV-broadcast abstraction in the system
model BAMP,,+[t < n/3].

Proof The proof of the BV-Termination property is trivial. If a correct process invokes BV _broadcast(), it
eventually sends a message to each process, and terminates.

Proof of the BV-Justification property. To show this property, we prove that a value BV-broadcast only
by faulty processes cannot be added to the set bin_values; of a correct process p;. Hence, let us assume that
only faulty processes BV-broadcast v. It follows that a correct process can receive the message B_VAL(v)
from at most ¢ different processes. Consequently the predicate of line 2 cannot be satisfied at a correct
process. Hence, the predicate of line 5 cannot be satisfied either at a correct process, and the property
follows.

Proof of the BV-Uniformity property. If a value v is added to the set bin_values; of a correct process p;
(local delivery), this process has received B_VAL(v) from at least (2¢ + 1) different processes (line 5), i.e.,
from at least (¢ 4 1) different correct processes. As each of these correct processes has sent this message to
all the processes, it follows that the predicate of line 2 is eventually satisfied at each correct process, which
consequently broadcasts B_VAL(v) to all. As n —t > 2t + 1, the predicate of line 5 is then eventually
satisfied at each correct process, and the BV-Uniformity property follows.

Proof of the BV-Obligation property. As (a) there are at least (n — t) correct processes, (b) each of them
invokes BV _broadcast MSG(), (c)n —t > 2t + 1 = (t + 1) + t, and (d) only two values a and b can be
BV-broadcast, it follows that there is a value v € {a,b} that is BV-broadcast by at least (¢ + 1) correct
processes. Hence, each correct process eventually receives a message B_VAL(v) from (¢ 4 1) processes, and
then forwards this message (if not already done). Consequently, the predicate of line 5 becomes satisfied
and v is added to bin_value; at every correct process, from which follows the BV-Obligation property.

Urheorem 1

Cost of the algorithm We have the following for each BV-broadcast instance.

o If all correct processes BV-broadcast the same value, the algorithm requires a single communication
step. Otherwise, it can require two communication steps.

e Let ¢ > n — t be the number of correct processes. The correct processes send ¢ n messages if they
BV-broadcast the same value, and at most 2 ¢ n messages otherwise.

o In addition to the control tag B_VAL, a message carries a single bit. Hence, message size is constant.



3.2 Synchronized Binary-value Broadcast

Definition This all-to-all communication abstraction (in short SBV-broadcast) provides the processes with
a single operation denoted SBV _broadcast(). As indicated by its name, its aim is to synchronize processes
so that, if a single value v is delivered to a correct process, then v is delivered to all the correct processes.

In an SBV-broadcast instance, each correct process invokes SBV _broadcast TAG(m ), where TAG is the
type of the message and m € {a, b} the binary value that it wants to broadcast. Such an invocation returns
to the invoking process p; a set denoted view; and called a (local) view. SBV-broadcast is defined by the
following properties.

e SBV-Termination. The invocation of SBV _broadcast TAG() by a correct process terminates.
e SBV-Obligation. The set view; returned by a correct process p; is not empty.
e SBV-Justification. If p; is correct and v € view;, then a correct process SBV-broadcast v.

e SBV-Inclusion. If p; and p; are correct processes and view; = {v}, then v € view;.

Let us observe that the first property that follows is an immediate consequence of the previous SBV-
Justification and SBV-Obligation properties, while the second one is an immediate consequence of the
previous SBV-inclusion property.

e SBV-Uniformity. If all correct processes SBV-broadcast the same value v, then view; = {v} at every
correct process p;.

e SBV-Singleton. If p; and p; are correct, [(view; = {v}) A (view; = {w})] = (v=w).

An SBV-broadcast algorithm An algorithm implementing the SBV-broadcast abstraction is described in
Figure 2. A process p; first BV-broadcasts a message MSG (v;) and waits until the associated set bin_values;
is not empty (lines 1-2). Let us remind that, when p; stops waiting, bin_values; has not necessarily obtained
its final value. Then, p; extracts a value w from bin_values; and broadcasts it to all (line 3). If there are
two values in bin_values;, w is any of them. Moreover, let us remind that a Byzantine process can send
messages AUX() carrying different values to distinct processes.

operation SBV _broadcast MSG (v;) is
(1)  BV_broadcast MSG(est;);
(2)  wait (bin_values; # 0);

% bin_values; has not necessarily its final value when the wait statement terminates %
(3)  broadcast AUX(w) where w € bin_values;;
(4)  wait (3 a set view; such that its values (i) belong to bin_values;, and

(ii) come from messages AUX() received from (n — t) distinct processes);

(5)  return (view;).

Figure 2: An algorithm implementing SBV-broadcast in BAMP,, ;[n > 3t]

Finally, p; waits until the predicate of line 4 is satisfied. This predicate has two aims. The first is to
discard from view; (the set returned by p;) a value broadcast only by Byzantine processes. The second is
to ensure that if the view view; of a correct process p; contains a single value, then this value eventually



belongs to the view view; of every correct process p;. From an operational point of view, this translates as
follows at a process p;. There is a set (view;) of values received in messages AUX() from (n — t) different
processes, and these values originated from correct processes (let us remind that bin_values; can contain
only values BV-broadcast by correct processes). Hence, at line 5, we have view; C {a, b}, and for any
v € view;, v is a value SBV-broadcast by a correct process.

Theorem 2. The algorithm described in Figure 2 implements the SBV-broadcast abstraction in the system
model BAMP,, [t < n/3].

Proof Proof of the SBV-Termination property. Let us first observe that, due to the BV-Termination property
and the BV-Obligation property of the underlying BV-broadcast, a correct process cannot block forever at
line 2. As there are at least (n — t) correct processes, it follows that any correct process p; receives values
at least from these (n — t) processes and, due to the BV-Justification property, these values have been SBV-
broadcast by correct processes. It follows that the predicate of line 4 becomes eventually satisfied at any
correct process p;, and consequently the invocations of SBV _broadcast() by the correct processes terminate.
Proof of the SBV-Obligation property. Any correct process p; eventually receives (n — t) messages
AUX() sent by correct processes. As these messages carry values taken from the set bin_values of correct
processes, it follows (from the predicate of line 4) that the set view; returned by a correct process is not
empty.
Proof of the SBV-Justification property. This proof follows directly from the BV-Justification property,
namely, the set bin_values; of a correct process contains only values BV-broadcast by correct processes.
Proof of the SBV-Inclusion property. Let us consider a correct process p; and assume view; = {v}.
It follows from the predicate of line 4 that p; has received the same message AUX(v) from at least (n — t)
different processes. As at most ¢ processes can be Byzantine, it follows that p; received this message from
at least (n — 2t) different correct processes, i.e., as n — 2t > t + 1, from at least (¢ + 1) correct processes.
Let us consider any correct process p;. This process received messages AUX() from at least (n — t)
different processes. As (n —t) + (t + 1) > n, it follows that a correct process p, sent the same message
AUX(v) to p; and p;, and consequently v € view;, which concludes the proof of the lemma.  Oppeorem 2

Cost of the algorithm We have the following for each SBV-broadcast instance.

o If all the correct processes SBV-broadcast the same value, the algorithm requires two communication
steps (one in the underlying BV-broadcast plus the exchange of the AUX() messages). Otherwise, it
can require three communication steps.

e Let c > n — t be the number of correct processes. The correct processes send 2¢ n messages if they
SBV-broadcast the same value, and at most 3 ¢ n messages otherwise.

o In addition to the control tag MSG, a message carries a single bit. Hence, message size is constant.

3.3 Double Synchronized Binary-value Broadcast

Definition This all-to-all communication abstraction (in short DSBV-broadcast) provides the processes
with a single operation denoted DSBV _broadcast(). When a correct process p; invokes DSBV _broadcast
TAG(m), it broadcasts the binary value m and, as in the SBV broadcast, it obtains a view view;, which may



now contain a default value denoted 1. and at most one of the broadcast values (either a or b). This means
that if p; is correct and view; contains a, no correct process has a view containing b. DSBV-broadcast is
defined by the following properties.

DSBV-Termination. The invocation of DSBV _broadcast TAG() by a correct process terminates.
DSBV-Obligation. The set view; returned by a correct process p; is such that 1 < |view;| < 2.

DSBV-value-Justification. If p; is correct, v € view; and v # L, then a correct process DSBV-
broadcast v.

DSBV-bottom-Justification. If p; is correct and 1 € wview;, then both a and b have been DSBV-
broadcast by correct processes.

DSBV-Inclusion. If p; and p; are correct processes and view; = {v} (where v is a value DSBV-
broadcast by a correct process, or L), then v € view;.

Let us observe that the following properties are immediate consequences of the previous justification, obli-
gation, and inclusion, properties.

DSBV-Uniformity. If all correct processes DSBV-broadcast the same value v, then view; = {v} at
every correct process p;.

DSBV-Mutex. If both p; and p; are correct, and v # L, view; = {v} and view; = {_L} are mutually
exclusive.

DSBV-Singleton. If p; and p; are correct, [(view; = {v}) A (view; = {w})] = (v =w).

operation DSBV _broadcast MSG(v;) is

(1)  wview;[0] < SBV _broadcast STAGE[0](v;);

(2)  if (view;[0] = {v}) then auz; < v else auz; < L end if;
(3)  wview;[1] - SBV_broadcast STAGE[1](aux;);

4)  return (view;[1]).

Figure 3: An algorithm implementing DSBV-broadcast in BAMP,, ;[n > 3t]

A DSBV-broadcast algorithm A very simple DSBV-broadcast algorithm is described in Figure 3. This
algorithm consists in two sequential instances of SBV-broadcast (hence its name), separated by an “if”
statement. Using an array-like notation, the local variables and messages of each instance are tagged with
an additional bit. The aim is to replace the (possibly two) values v and w, which are DSBV-broadcast by
the correct processes, by at most one of them (either v or w) plus possibly the default value L. Hence, if
both v and w have been DSBV-broadcast, one of them is eliminated. To this end, the first invocation (line 1)
returns at each correct process p; a view view;[0], that is then locally filtered by an “if” statement (line 2)
so that at most one of the values v or w DSBV-broadcast by the correct processes will be SBV-broadcast at
line 3. Let y be this value (if any). It follows that the binary set {a, b} of values that can be SBV-broadcast
at line 3 is the set {y, L }. Hence, the view returned by a correct process p; at line 4 is a subset of {y, L}
satisfying (among others) the DSBV-Mutex and DSBV-Singleton properties stated above.

10



Theorem 3. The algorithm described in Figure 2 implements the DSBV-broadcast abstraction in the system
model BAMP,, [t < n/3].

Proof Proof of the DSBV-Termination property. The proof follows directly from the termination property
of the SBV-broadcast instances.

Proof of the DSBV-Obligation property. Due to singleton property of the first SBV-broadcast instance,
no two correct processes can be such that view;[0] = {v} and view;[0] = {w}, where v and w have been
SBV-broadcast at line 1 and are such that v = w. Let C be the set of correct processes. It follows that the set
AUX = Ugec{aux,} is equal to either {v}, or { L}, or {v, L}, where v is a value SBV-broadcast at line 1
by a correct process. It then follows from the justification property of the second SBV-broadcast instance
that the set view;[1] of any correct process p; is such that view;[1] C AUX, and consequently contains at
most two values.

Proof of the DSBV-value-Justification property. If p; is correct and view;[1] = {v} where v # L,
it follows from the justification property of the second SBV-broadcast that a correct process p, invoked
SBV _broadcast STAGE[1](v) at line 3. As the “if” statement of line 2 does not add new non-_L values, it
follows that view, was such that view,[0] = {v}. We then conclude from the justification property of the
first SBV-broadcast instance that a correct process invoked SBV _broadcast STAGE[0](v) at line 1, which
concludes the proof of the DSBV-value-Justification property.

Proof of the DSBV-bottom-Justification property. The proof is similar to the previous one. If there is
a correct process p; such that view;[1] = {L}, there is a correct process p, that invoked SBV _broadcast
STAGE[1](_L) at line 3. It follows from line 2 and the SBV-Justification property of the first SBV-broadcast
instance that this process is such that view,[0] = {v,w}, where v and w are different and were SBV-
broadcast at line 1 by two correct processes, which concludes the proof of the property.

Proof of the DSBV-Inclusion property. The proof follows directly from the inclusion property of the
second SBV-broadcast instance (line 3). OTheorem 3

Cost of the algorithm The cost of a DSBV-broadcast instance is twice the cost of an SBV-broadcast.
Hence, we have the following.

o If all the correct processes DSBV-broadcast the same value, the algorithm requires four communica-
tion steps (two in each underlying SBV-broadcast). Otherwise, it can require up to six communication
steps.

e Let ¢ > n — t be the number of correct processes. The correct processes send 4c n messages if they
DSBV-broadcast the same value, and at most 6 ¢ n messages otherwise.

o In addition to the message tags needed by the two underlying SBV-broadcast instances, an additional
bit is needed to distinguish these instances. The message size is consequently constant.

4 A Byzantine Consensus Algorithm

This section presents and proves correct a Byzantine binary consensus algorithm, which is built on top of
the DSBV-broadcast communication abstraction and a weak common coin.
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4.1 Byzantine Consensus and Enriched Model

Binary Byzantine consensus The Byzantine consensus abstraction has been informally stated in the In-
troduction. It provides the processes with a single operation denoted propose(), which returns a value (we
then say that the corresponding process decides the returned value).

Assuming that each correct process p; invokes propose(v;), where v; € {0, 1} is the value it proposes
to the consensus, each correct process has to decide a value such that the following properties are satisfied.

e BC-Validity. A decided value was proposed by a correct process.
o BC-Agreement. No two correct processes decide different values.
e BC-Decision. Each correct process decides.

The BC-Validity property states that no value proposed only by faulty processes can be decided. As we
consider binary consensus, it is equivalent to the following property: if all correct processes propose the
same value v, the value v cannot be decided (where v is the other binary value).

From binary to multivalued Byzantine consensus Interestingly, asynchronous multivalued Byzantine
consensus (i.e., when more than two values can be proposed) can be solved on top of binary Byzantine
consensus. Such constructions are described in [9, 13, 26, 30, 33, 34, 35, 41] (see [44] for synchronous
systems).

Enriching the basic Byzantine asynchronous model with a common coin As indicated in the Introduc-
tion, the model BAMP,, ;[t < n/3] is not computationally strong enough to solve consensus. It has to be
enriched so that Byzantine consensus can be solved. The additional computational power we consider here
is a common coin (CC) as introduced by Rabin [37]°. As already said, the corresponding enriched system
model is denoted BAMP,, [t < n/3,CC] *.

A common coin is “a random source observable by all participants but unpredictable by an adver-
sary” [8]. More explicitly, a common coin is a global entity delivering to each correct process p; a sequence
of random bits b;[1], b;[2],. .., b;[r], ... such that, for each r, the bits b;[r], b;[r],, of all the correct processes
Di> Pj, - - -, are such that (1) they all have the value 0 with probability 1/d, (2) they all have the value 1 with
probability 1/d, and (3) some correct processes obtain the value 0 and the other correct processes obtain the
value 1 with probability (d — 2)/d, where d > 2 is a known constant. A perfect common coin corresponds
to the case d = 2 (namely, for any r, the correct processes obtain the same bit —0 or 1— with probability
1/2). If d > 2 the common coin is weak. From an operational point of view, this random oracle provides
the processes with a primitive denoted random() such that the r-th invocation by p; returns it the bit b;[r].

A common coin demands the processes to cooperate to compute the value of the bit during the round r,
namely, no Byzantine process p; can obtain the value of this random bit before at least one correct process
started its 7-th invocation of random() [10]. This is required to prevent Byzantine processes to compute

3The common coin algorithm described in [37] is based on a trusted dealer. Differently, the algorithm presented in [8] does
require a trusted dealer.

“Hence, as noticed in Section 2, in the model BAMP,, [t < n/3,CC], CC is given for free. A practical common coin
implementation is described in [8]. It is important to notice that, if cryptography is ever used to build an underlying common coin,
the paper shows that cryptography is no longer needed at the upper layer where Byzantine consensus is solved. This contrasts with
the signature-based algorithms cited in Figure 1.
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random bit values in advance and exploit these values to produce message delivery schedules that would
prevent termination.

On randomized consensus When relying on the additional computing power provided by common coins,
the BC-decision property can no longer be deterministic. Randomized consensus is defined by BC-Validity
(Obligation), BC-Agreement, plus the following BC-Decision property [3, 37]: Every non-faulty process
decides with probability 1. For round-based algorithms, this decision property is re-stated as follows. For
any correct process p;, we have:

lim, 4 o0 (Probability [p; decides by round r]) =1.

4.2 Randomized Byzantine Consensus Algorithm

Principles and description of the algorithm The consensus algorithm is described in Figure 4. It requires
t < n/3 and is consequently optimal with respect to the maximal number of Byzantine processes that can
be tolerated. A process p; invokes propose(v;) where v; € {0, 1} is the value it proposes. It decides when
it executes the statement decide(v) at line 6. The processes proceed in consecutive asynchronous rounds,
where a round consists of two phases, each made up of a single DSBV-broadcast instance.

The local variable est; of a process p; keeps its current estimate of the decision (initially est; = v;). The
local variable r; denotes the current round of process p;, while the local variables view;[r;, 1..2] contain
the results of the DSBV-broadcast instances used in round 7;. As these two variables are used one after
the other, a single variable view; could be used. As previously, we use an array-like notation to make the
presentation clearer. The behavior of a correct process p; during a round 7 is as follows.

operation propose(v;) is

est; < vi; i <= 0;

repeat forever

N rierit+1

" phase 1
(2)  wviewj[r;, 1] < DSBV_broadcast PHASE[r;, 1](est;)

(3)  bi[rs] + random();

) if (view;[ri, 1] = {v}) A (v # L)) then est; < v else est; < b;[r;] end if;
/! phase 2
(5)  wiew;[r;,2] + DSBV_broadcast PHASE[r;, 2](est;);

(6)  case (view;[r;, 2] = {v}) then decide(v) if not yet done end if

(7) (view;[ri, 2] = {v, L}) thenest; + v
(8) (view;[r;,2] = {L})  then skip

) end case

end repeat.

Figure 4: A binary consensus algorithm based on DSBV-broadcast and a common coin

e Phase 1: lines 2-4. The aim of this phase is to help the processes agree on a single value. To that end,
the processes execute first a DSBV-broadcast instance (line 2), at the end of which the view of any
correct process is such that view;[r, 1] = {v}, or view;[r, 1] = {v, L}, or view;[r,1] = {L}, where
v € {0,1} is a value that was DSBV-broadcast, and view;|r, 1] = {0} and view;[r,1] = {1} cannot
co-exist if p; and p; are correct processes.
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Then the processes compute the random number s associated with the current round (line 3). Finally,
if a correct process p; has seen a single DSBV-broadcast value (i.e., view;[r, 1] = {v} and v # 1), it
adopts it as new estimate. Otherwise, it has seen both 0 and 1, and adopts as new estimate the random
value b;[r] locally output by the common coin; this is to try breaking the non-determinism created by
the fact that both the values 0 and 1 have been DSBV-broadcast (line 4).

Due to the use of the common coin, it follows (as we will see in the proof) that, if the algorithm was a
simple “repeat” loop from which the second phase was suppressed (lines 5-9), there is a finite round
number 7 such that, from round r, all the correct processes have forever the same estimate. As no
process can know when this round occurs, the issue that remains to be solved is to help decide the
processes when the previous pattern occurs. This is the role of the second phase.

e Phase 2: lines 5-9. As just indicated, the second phase aims to help the correct processes decide. To
that end, the processes first execute a DSBV-broadcast instance (line 5), at the end of which the view
of any correct process p; is such that view;[r,2] = {v}, or view;[r,2] = {v, L}, or view;[r,2] =
{L}, where v € {0,1} is a value that was DSBV-broadcast at line 2, and view;[r,2] = {v} and
viewj[r, 2] = {_L} cannot co-exist if both p; and p; are correct processes.

This mutual exclusion property is used to direct the processes to decide without violating the con-
sensus BC-Agreement property. The corresponding behavior for a correct process is captured by the
case statement of lines 6-8. If p; sees only v (different from _L), it decides it (line 6). If it sees both
a binary value v and L, it adopts v as new estimate (line 7). Finally, if it sees only _L, it does not
change its estimate value.

Let us notice that the statement decide() (line 6) allows the invoking process to decide, but does not stop
its execution. This facilitates the description and the understanding of the algorithm. A terminating version
of the algorithm will be presented in Section 5.

4.3 Proof and Cost of the Algorithm
Lemma 1. Let n > 3t. A decided value is a value proposed by a correct process.

Proof Let us consider the round r» = 1. It follows from the DSBV-value-Justification property (line 2), that
the set view;[1, 1] of any correct process p; contains only values proposed by correct processes. Moreover,
it follows from DSBV-bottom-Justification property that if view;[1, 1] contains more than one value, both 0
and 1 have been DSBV-broadcast at line 2. Consequently, if p; assigns the random value s to est;, the value
s has been proposed by a correct process. It follows that the set view;[1, 2] obtained by a correct process
can contain only values proposed by correct processes. Hence, if a correct process assigns a value v to est;
at line 7, this value was proposed by a correct process.

By induction on the round number, the same reasoning applies to all other rounds, from which it follows
that an estimate value decided at line 6 is a value that was proposed by a correct process. Oremma 1

Lemma 2. Let n > 3t. If, at the beginning of a round r, all the correct processes have the same estimate
value v, they never change their estimates thereafter.

Proof If all the correct processes (which are at least n — ¢ > t + 1) have the same estimate value v at
beginning of a round r, they all DSBV-broadcast the message PHASE[r, 1](v) at line 2. It follows from
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the DSBV-value-Justification and DSBV-Obligation properties that each correct process p; is such that
view;[r,1] = {v}. It then follows from line 4, that all the correct processes assign v to their estimate
est;.

Consequently each correct process p; DSBV-broadcasts the message PHASE(r, 2|(v) at line 5, and, due
the DSBV-value-Justification property, each correct process p; obtains view;[r,2] = {v} and does not
change the value of its estimate est;, which concludes the proof of the lemma. O emma 2

Lemma 3. No two correct processes decide different values.

Proof Let r be the first round at which processes decide. If two correct processes p; and p; decide at line 6
of round r, we have view;[r,2] = {v} and view;[r,2] = {w}. It then follows from the DSBV-Singleton
property of the second DSBV-broadcast of round r that v = w.

Moreover, due to the DSBV-Inclusion property of the second DSBV-broadcast of round r, if a correct
process p; decides v during round 7 (i.e., view;[r, 2] = {v}), while another correct process p; does not, we
necessarily have view;[r, 2] = {v, L}, and consequently, p; is directed to assign v to est; (line 7).

Hence, at the beginning of round (r + 1), the estimates of all the correct processes are equal to v (the
value decided by correct processes at round r). It then follows from Lemma 2 that they keep this value
forever. It follows that, as a decided value is an estimate value, only the value v can be decided by a correct

process. IjLemma 3

Lemma 4. With probability 1 there is a round at the end of which all the correct processes have the same
estimate value.

Proof Let us remind that, during a round r, no Byzantine process obtains the value of the random bit
before at least one correct process invoked random() at line 3 of this round. Process p; being such a correct
process, let us consider the set view;|r, 1] obtained by p; at line 2 (i.e., before it invoked random()). Let us
assume that, at round r, both the value 0 and 1 are DSBV-broadcast by correct processes (otherwise, due
the DSBV-Uniformity property of both DSBV-broadcast instances of round r, the round trivially satisfies
the lemma). According to the value of view;[r, 1], there are five possible cases, each one independent from
the others. Let us also notice that this case decomposition is independent of the Byzantine processes (those
cannot benefit from the knowledge of the random bit to re-order message delivery at p;).

e Case 1: view;[r, 1] = {v} where v # L. It follows from the DSBV-Inclusion property of the DSBV-
broadcast of line 2 that the set view;[r, 1] of any other correct process is such that view;[r, 1] = {v}
or view;[r,1] = {v, L}.

e Case 2: view;[r,1] = {L}. This case is similar to the previous one. It follows from the DSBV-
Inclusion property of the DSBV-broadcast of line 2 that the set view,[r, 1] of any other correct process
is such that view;[r, 1] = {L} or view;[r,1] = {v, L}.

e Cases 3,4 and 5: view;[r, 1] = {v, L}. In this case, it follows from the DSBV-Mutex property that it
is not possible that a correct process p; be such that view;[r, 1] = {_L} while another correct process
P is such that viewy|[r, 1] = {v}. Hence the three following cases.

— Case 3: view;[r,1] = {v, L}, and (1) each other correct process p; is such that view;[r,1] =
{L} or view;[r,1] = {v, L}, and (2) at least one correct process p; is such that view;[r, 1] =

{1},
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— Case 4: view;[r,1] = {v, L}, and (1) each other correct process p; is such that view;[r,1] =
{v} or view;[r,1] = {v, L}, and (2) at least one correct process p; is such that view;[r, 1] =
{v}.

— Case 5: view;[r, 1] = {v, L} and all the other correct processes p; are such that view;[r, 1] =
{v, L}.

Let pb(r, z), where = € {1,2,3,4,5} be the probability that the case = occurs. We have ¥, pb(r,z) = 1.
Let us now compute, for each case x, the probability pb(x) that all the correct processes have the same
estimate after line 4.

e Case 1. The probability that the same value s is output for b;[r| at each correct process p; such that
viewj[r,1] = {v, L} is > 2/d, and the probability that this value s is equal to v is 1/2. Hence,
pb(1) = 1/d.

e Case 2. In this case, it follows from the DSBV-Mutex property of the DSBV-broadcast of line 2, that
all the correct processes p; execute est; <— b;[r] at line 4. Hence, the probability that they all assign
the same value to their estimates is pb(2) = 2/d.

e Case 3. In this case, it follows from the algorithm that all the correct processes p; execute est; <— b;[r]
at line 4. Hence, as in Case 2, the probability that they all assign the same value to their estimates is

pb(3) =2/d.
e Case 4. This case is similar to Case 1, and we have pb(4) = 1/d.
e Case 5. This case is similar to Case 3, and we have pb(5) = 2/d.

As ¥pb(r,x) = 1, it follows from the previous case analysis that the probability p that all the correct
processes terminate the first phase of round r with the same estimate value is equal to X, ((pb(z)pb(r, z)),
which means p > 1/d.

Let us now observe that, if all the correct processes have the same estimate value at the end of the
first phase of a round r, they invoke the second DSBV-broadcast of the round with the same value. It then
follows, from the DSBV-Uniformity property and line 6, that they do not change their estimate by the end
of the round.

Consequently the probability P(r) that all the correct processes have the same estimate at the end of a
roundris P(r) =p+(1—p)p+---+(1—p)'p=1—(1—p)". Aslim,_,,~ P(r) = 1, we conclude that
with probability 1, there is around after which all correct processes have the same estimate value. Ofemma 4

Lemma 5. Let n > 3t. All correct processes decide with probability 1.

Proof The lemma follows from Lemma 4 (there is a round r after which all the correct processes have the
same estimate value), the DSBV-Uniformity property applied to both DSBV-broadcast instances of round r,
and line 6. OrLemma 5

Theorem 4. The algorithm described in Figure 4 solves the randomized binary consensus problem in

BAMP, [t < n/3,CC].
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Proof BC-Validity follows from Lemma 1. BC-Agreement follows from Lemma 3. BC-Decision follows
from Lemma 5. O7heorem 4

Theorem 5. Let n > 3t. The expected decision time is constant (d rounds).

Proof As indicated in the proof of Lemma 4, the probability that all the correct processes have the same
estimate value after the first phase of a round is > 1/d. It follows that the average number of rounds so that
all correct processes have the same estimate is < d. Orheorem 5

Cost of the algorithm We have the following, where ¢ > n — ¢ denotes the number of correct processes.
Each round requires two DSBV-broadcast instances; each of them uses two SBV-broadcast instances, and
each SBV-broadcast (in which each process broadcasts a message AUX()) uses an underlying BV-broadcast
instance (in which one or two messages B_VAL() are broadcast). Consequently:

e If the correct processes propose the same value, each round requires eight communication steps.
Those are due to the four underlying SBV-broadcast instances, each requiring one communication
step in its underlying B V-broadcast and one in its own algorithm. The total number of messages sent
by correct processes is then 8 ¢ n.

e If the correct processes propose different values, each round requires twelve communication steps:
four SBV-broadcast instances, each requiring up to two communication steps in each underlying BV-
broadcast and one communication step for the messages AUX()). Moreover, the total number of
messages sent by the correct processes is then 12 ¢ n per round.

e The expected number of rounds to decide is < d (i.e., 2 rounds when the coin is perfect).

e In addition to a round number, each message carries a single data bit plus a constant number of bits
that identifies its type.

e The total number of bits exchanged by the correct processes is O(n?rlogr) where r is the number
of rounds executed by the correct processes. Hence, as the expected number of rounds is a known
constant (d), the expected bit complexity is O(n?).

Remark The cost of this consensus algorithm can be reduced if one considers that the common coin is
perfect and/or that the adversary cannot re-order messages. As an example, [31] assumes a perfect common
coin and assumes that the adversary cannot re-order messages.

5 A Terminating Consensus Algorithm

The consensus algorithm that has been previously presented is non-terminating. While every correct process
eventually decides a value, it has to execute rounds forever. So the BC-Decision property concerns decision
and not halting. This section presents a modified version of the previous algorithms in which a process stops
executing when it decides.
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Modifying the consensus algorithm As correct processes can decide at different rounds, a process that
decides and terminates while executing a round r is now required to broadcast a message TERM[r](v) to
inform the other processes that it decides the value v during round r and it stops its execution.

From an operational point of view, the statement “decide(v) if not yet done” at line 6 of Figure 4 is
replaced by the statements “broadcast TERM[r;](v); return(v)”.

Identifying DSBYV, SBV, and BV broadcast instances Let us notice that each DSBV-broadcast instance is
identified by a pair [r, z] where 7 is a round number and = € {1, 2} is a phase number. Hence each message
STAGE[0]() (resp., STAGE[1]()) inherits this identity, and becomes STAGE[r, z, 0]() (resp., STAGE|[r, x, 1]()).
Each underlying SBV-broadcast or BV-broadcast inherits also the identity [r, z, y], where y € {0, 1}. This
means that the message AUX(v) used in the implementation of the [r, x, y] instance of SBV-broadcast (Fig-
ure 2) becomes AUX|[r, z, y](v), and the message B_VAL(v) used in the [r, z,y| instance of BV-broadcast
(Figure 1) becomes B_VAL[r, z, y](v).

Terminating SBV-broadcast Let us consider the case where a process p; broadcasts the message TERM([r](v).
In order not to be blocked forever in the SBV-broadcast instance identified [, z, y], while waiting from p;
for messages AUX[r’, x, y|() during rounds ' > r (those messages will never be sent), any process p; con-
siders that the message TERM|r](v) sent by p; is a compressed representation of the four infinite sequences
of (the never sent) messages AUX[r + 1, z, y](v), AUX[r + 2, x, y](v), etc., where (z,y) € {1,2} x {0, 1}.
So, to obtain a terminating SBV-broadcast instance identified [r, x], the only modification of the algo-
rithm presented in Figure 2 is in the waiting predicate of line 4, which is extended as follows (where the
local variables view; and bin_values; are identified by the corresponding instance identity):

Ja set view;[r, x, y| of values received in messages AUX|[r, x, y]() or in messages TERM[r’]() with ' < r
such that ((n — t) processes contributed to view;[r, z,y]) A (view;[r, z,y] C bin_values;[r, x,y]).

Terminating BV-broadcast The same occurs at the lower level where is implemented the BV-broadcast
instance used by each SBV-instance. Namely, the semantics of the message TERM[r|(v) is extended by
considering it, for (z,y) € {1,2} x {0, 1}, as a compressed representation of the four infinite sequences of
messages B_VAL[r + 1, z, y|(v), B_.VAL[r 4+ 2, z, y|(v), etc.

let witness;[r, z,y](v) = number of different processes from which the message B_VAL[r, z, y](v),
or a message TERM[r’'|(v) with 7’ < r, have been received.

operation BV _broadcast MSG[r, z, y](v;) is
(1)  broadcast B_VAL[r, z, y](v;).

when (witness;[r, z,y](v) >t + 1) A (B_VAL[r, z, y](v) not yet broadcast) do
(2) broadcast B_VAL[r, z, y](v).

when (witness;[r, z,y](v) > 2t + 1) A (v € bin_values;[r, z,y]) do
3)  binwalues;[r, x,y] < bin_values;[r, z,y] U {v}.

Figure 5: Modified BV-broadcast algorithm in BAMP,, ¢[n > 3]
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The modified BV-broadcast algorithm is presented in Figure 5. The main modification appears in the
definition of the set witness;[r,z,y|(v). In addition to the processes from which p; received messages
B_VAL[r, z, y](v), this set includes also the processes from which p; received a message TERM[r'](v) such
that 7’ < r. Let us notice that it is possible that both p; and py, are counted in witness;[r, z, y](v) while they
sent TERM|[r1](v) and TERM[r2](v), respectively, with 1 # r2. To keep simple its statement, the rest of the
algorithm is expressed with two guarded commands. The first guarded command states that, if not yet done,
p; broadcasts B_VAL[r, x, y|(v) as soon as it has received B_VAL[r, x, y|(v) or TERM[r'](v) with 7’ < r, from
at least (¢ + 1) different processes. The second guarded command adds the value b to bin_values;[r, z, y).

Let us observe that, according to the semantics of the messages TERM[—](), a process p; may send
B_VAL[r, z,0](v) B_VAL[r, x,1](v) even if it has received only messages TERM[—]|(v) from (¢ + 1) dif-

ferent processes. Let TERM([r!](v), TERM[r?](v),..., TERM[r!T!](v) be these messages. At least one
of these messages is from a correct process, and consequently this process decided v. Hence, if r; >
max(rt, 72, ..., r'*1), p; can broadcast the messages B_VAL[r;, z,0](v) and B_VAL|[r;, x, 1](v).

Theorem 6. The previous modified algorithms, where a process that decides stops its execution, solve the
randomized binary consensus problem in the system model BAMP,, [t < n/3,CC].

Proof The proof is a direct consequence of the following observation. Considering an execution of the
terminating algorithm, let us replace each message TERM[r](v) by the infinite sequences of messages
B_VAL [r + 1,z,y|(v), BLVAL [r + 2, z,y](v), etc., and AUX [r + 1, z,y](v), AUX [r + 2,z,y](v), etc.,
for each (z,y) € x{0,1}. This produces an execution whose message pattern could have been produced
by the basic non-terminating algorithm of Figure 4. As this basic algorithm satisfies the BC-Validity and
BC-Agreement consensus properties, so does its terminating version. OTheorem 6

Expedite termination It is possible to expedite termination in favorable circumstances. Those occur when
a process p; has received messages TERM|[—]|(v) (carrying possibly different round numbers but the same
value v) from (¢ + 1) different processes, which means at least one of these messages is from a correct
process. Process p; can then decide and terminate. In this case, to help other processes terminate it must
also broadcast the message TERM[r;](v). The following statement can consequently be inserted in Figure 4
just after line 9 (i.e., just before p; enters a new round).

if (TERM[—](v) received from (¢ + 1) different processes)
then broadcast TERM[r;](v); return(v)
end if.

Content of messages TERM() The reader can check that the round numbers carried by the messages
TERM() can be eliminated. It is sufficient for these messages to carry only a value.

6 Conclusion
Considering an asynchronous message-passing system made up of n processes, where up to ¢ may commit

Byzantine failures, this paper has first introduced a suite of simple all-to-all broadcast abstractions suited
to binary values. These abstractions require ¢ < n/3. The most high-level of these abstractions, denoted
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DSBV-broadcast, allows each process to broadcast a binary value, and obtain a set of values such that (1) no
value broadcast only by Byzantine processes can belong to the set returned by a correct process, and (2) if
the set obtained by a correct process contains a single value v, then the set obtained by any correct process
contains v.

Then the paper has presented a new round-based Byzantine binary consensus algorithm built on top of
the DSBV-broadcast abstraction in an asynchronous system enriched with a weak common coin. In addition
to being t¢-resilient optimal (¢ < n/3), this new Byzantine consensus algorithm, is signature-free, uses
a constant number of communication steps O(n?) messages per round. Moreover, each message carries a
round number plus a small constant number of bits, and the expected number of rounds to decide is constant.
Finally, the algorithm tolerates message re-ordering by Byzantine processes, and does not require the coin
to be perfect. Last but not least, in addition to its efficiency-related properties, a noteworthy feature of the
proposed algorithm lies in its design simplicity, which is a first-class property [1].

Remark The algorithm described in [34] reduces the multivalued consensus problem to the binary con-
sensus problem in signature-free asynchronous Byzantine systems where up to ¢ < n/3 processes may be
faulty. The cost of this reduction is O(n?) messages and constant time. It follows that, when used on top
of the binary consensus algorithm described in the paper, we obtain a signature-free multivalued Byzantine
consensus algorithm where ¢ < n/3 processes may be faulty, and whose expected cost is O(n?) messages
and O(1) time.
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