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1 Proofs of Section 2

1.1 Proof of Proposition 1

(i) The generator A associated with (Pt)t≥0 is given, for all f ∈ C2(Rd) and y ∈ R
d,

by:
A f(y) = −〈∇U(y),∇f(y)〉+∆f(y) . (S1)

Denote for all y ∈ R
d by V (y) = ‖y − x⋆‖2. Let x ∈ R

d and (Yt)t≥0 be a solution of (1)
started at x. Under H1 supt∈[0,T ] E[‖Yt‖2] < +∞ for all T ≥ 0. Therefore, the process

(

V (Yt)− V (x)−
∫ t

0
A V (Ys)ds

)

t≥0

is a (Ft)t≥0-martingale. Denote for all t ≥ 0 and x ∈ R
d by v(t, x) = PtV (x). Then we

have, ∂v(t, x)/∂t = PtA V (x).

Since ∇U(x⋆) = 0 and by H2, 〈∇U(x)−∇U(x⋆), x− x⋆〉 ≥ m ‖x− x⋆‖2, we have

A V (x) = 2 (−〈∇U(x)−∇U(x⋆), x− x⋆〉+ d) ≤ 2 (−mV (x) + d) . (S2)

Therefore, we get

∂v(t, x)

∂t
= PtA V (x) ≤ −2mPtV (x) + 2d = −2mv(t, x) + 2d ,

and the proof follows from the Grönwall inequality.
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2Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France.

eric.moulines@polytechnique.edu

1



(ii) Set V (x) = ‖x− x⋆‖2. By Jensen’s inequality and Lemma 19-(i), for all c > 0
and t > 0, we get

π(V ∧ c) = πPt(V ∧ c) ≤ π(PtV ∧ c)

≤
∫

π(dx) c ∧
{

‖x− x∗‖2e−2mt +
d

m
(1− e−2mt)

}

≤ π(V ∧ c)e−2mt + (1− e−2mt)d/m .

Taking the limit as t→ +∞, we get π(V ∧ c) ≤ d/m. Using the monotone convergence
theorem and taking the limit as c→ +∞ concludes the proof.

(iii) Let x, y ∈ R
d. Consider the following SDE in R

d ×R
d:

{

dYt = −∇U(Yt)dt+
√
2dBt ,

dỸt = −∇U(Ỹt)dt+
√
2dBt ,

(S3)

where (Y0, Ỹ0) = (x, y). Since ∇U is Lipschitz, then by [4, Theorem 2.5, Theorem 2.9,
Chapter 5], this SDE has a unique strong solution (Yt, Ỹt)t≥0 associated with (Bt)t≥0.
Moreover since (Yt, Ỹt)t≥0 is a solution of (S3),

∥

∥

∥Yt − Ỹt
∥

∥

∥

2
=
∥

∥

∥Y0 − Ỹ0
∥

∥

∥

2
− 2

∫ t

0

〈

∇U(Ys)−∇U(Ỹs), Ys − Ỹs
〉

ds ,

which implies using H2 and Grönwall’s inequality that

∥

∥

∥
Yt − Ỹt

∥

∥

∥

2
≤
∥

∥

∥
Y0 − Ỹ0

∥

∥

∥

2
− 2m

∫ t

0

∥

∥

∥
Ys − Ỹs

∥

∥

∥

2
ds ≤

∥

∥

∥
Y0 − Ỹ0

∥

∥

∥

2
e−2mt .

Since for all t ≥ 0, the law of (Yt, Ỹt) is a coupling between δxPt and δyPt, by definition
of W2, W2(δxPt, δyPt) ≤ E[‖Yt − Ỹt‖2]1/2, which concludes the proof.

(iv) The proof is a direct consequence of (ii) and (iii)

1.2 Proof of Proposition 2

(i) Note that the proof is trivial if ℓ < n. Therefore we only need to consider the
case ℓ ≥ n. For any γ ∈ (0, 2/(m + L)), we have for all x ∈ R

d:
∫

Rd

‖y − x⋆‖2Rγ(x,dy) = ‖x− γ∇U(x)− x⋆‖2 + 2γd .

Using that ∇U(x⋆) = 0, and (3), we get from the previous inequality:
∫

Rd

‖y − x⋆‖2Rγ(x,dy)

≤ (1− κγ) ‖x− x⋆‖2 + γ

(

γ − 2

m+ L

)

‖∇U(x)−∇U(x⋆)‖2 + 2γd

≤ (1− κγ) ‖x− x⋆‖2 + 2γd ,
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where we have used for the last inequality that γ ≤ 2/(m + L). Then by definition (7)

of Qn,ℓγ for ℓ, n ≥ 1, ℓ ≥ n, the proof follows from a straightforward induction.

(ii) By (i), we have for all x ∈ R
d and n ≥ 1,

∫

Rd

‖y − x⋆‖2Rnγ (x,dy) ≤ (1− κγ)n ‖x− x⋆‖2 + 2d

n
∑

k=1

γ(1− κγ)n−k

≤ (1− κγ)n ‖x− x⋆‖2 + 2κ−1d(1− (1− κγ)n) . (S4)

Since any compact set of Rd is accessible and small for Rγ , then [5, Theorem 15.0.1]
implies that Rγ has a unique stationary distribution πγ . Using (S4), the proof is along
the same line as the one of Proposition 1-(ii).

1.3 Proof of Proposition 3

(i) (Zk)k≥1 be a sequence of i.i.d. d-dimensional Gaussian random variables. We

consider the processes (Xn,1
k ,Xn,2

k )k≥0 with (Xn,1
0 ,Xn,2

0 ) = (x, y) and defined for k ≥ 0
by

Xn,j
k+1 = Xn,j

k − γk+n∇U(Xn,j
k ) +

√

2γk+nZk+1 j = 1, 2 . (S5)

Using (S5), we get for any ℓ ≥ n ≥ 1. W 2
2 (δxQ

n,ℓ
γ , δyQ

n,ℓ
γ ) ≤ E[‖Xn,1

ℓ −Xn,2
ℓ ‖2] and (3)

implies for k ≥ n− 1,

∥

∥

∥
Xn,1
k+1 −X

n,2
k+1

∥

∥

∥

2
=
∥

∥

∥
Xn,1
k −Xn,2

k

∥

∥

∥

2
+ γ2n+k

∥

∥

∥
∇U(Xn,1

k )−∇U(Xn,2
k )

∥

∥

∥

2

− 2γn+k

〈

Xn,1
k −Xn,2

k ,∇U(Xn,1
k )−∇U(Xn,2

k )
〉

≤ (1− κγn+k)
∥

∥

∥
Xn,1
k −Xn,2

k

∥

∥

∥

2
.

Therefore by a straightforward induction we get for all ℓ ≥ n,

∥

∥

∥
Xn,1
ℓ −Xn,2

ℓ

∥

∥

∥

2
≤

ℓ
∏

k=n

(1− κγk)
∥

∥

∥
Xn,1

0 −Xn,2
0

∥

∥

∥

2
.

(ii) Let µ ∈ P2p(Rd) and p ≥ 1. It is straightforward that for all n ≥ 0, µRnγ ∈
P2p(Rd). Then, by Proposition 3-(i) for γ ≤ 2/(m + L), Rγ is a strict contraction
in (P2p(Rd),W2p) and there is a unique fixed point πγ which is the unique invariant
distribution. (ii) follows from Proposition 3-(i).
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2 Proofs of Section 3

2.1 Proof of Lemma 7

Let ℓ ∈ {1, . . . , n + 1}. Since (γk)k≥1 is non-increasing,

n+1
∑

i=1

n+1
∏

k=i+1

(1−̟γk) γji =
ℓ−1
∑

i=1

n+1
∏

k=i+1

(1−̟γk) γji +
n+1
∑

i=ℓ

n+1
∏

k=i+1

(1−̟γk) γji

≤
n+1
∏

k=ℓ

(1−̟γk)
ℓ−1
∑

i=1

γji + γj−1
ℓ

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1−̟γk) γi

≤
n+1
∏

k=ℓ

(1−̟γk)
ℓ−1
∑

i=1

γji +
γj−1
ℓ

̟
.

2.2 Proof of (28)

Consider the constant sequence γk = γ for all k ∈ N
∗ with γ ∈ (0, 1/(m + L)]. By (22),

we have for all n ∈ N
∗ and x ∈ R

d

ϑ
(1)
n,0(x) ≤ γD1(γ, d) + γ3D2(γ)

n
∑

i=1

(1− κγ/2)n−iδi,n,0(x) ,

where

D1(γ, d) = 2L2κ−1
(

κ−1 + γ
) (

2d+ L2γ2/6
)

, D2(γ) = L4
(

κ−1 + γ
)

.

In addition, using that κ ≥ 2m and for all t ≥ 0, 1− t ≤ e−t,

n
∑

i=1

(1− κγ/2)n−iδi,n,0(x) =
n
∑

i=1

[

(1− κγ/2)n−i
{

e−2mγ(i−1) ‖x− x⋆‖2

+
(

1− e−2mγ(i−1)
)

(d/m)
}]

≤ ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1 . (S6)

Therefore for all n ≥ 1 and x ∈ R
d we get

ϑ
(1)
n,0(x) ≤ γD1(γ) + γ3D2(γ)

{

ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1
}

. (S7)

Let now ℓ ∈ N
∗, ℓ ≥

⌈

γ−1
⌉

+ 1 and n = ℓ−
⌈

γ−1
⌉

. Then,

ℓ
∑

k=n+1

{

(γ3kL
2/3)̺1,k−1(x) + dγ2k

}

≤ (L2γ3/3)
{

(1− κγ)n(ℓ− n− 1) ‖x− x⋆‖2 + 2κ−1γd(ℓ− n− 1)
}

+ dγ2(ℓ− n− 1)

≤ (L2γ3/3)
{

(1 + γ−1)(1 − κγ)ℓ−⌈γ−1⌉ ‖x− x⋆‖2 + 2(1 + γ)κ−1d
}

+ d(1 + γ) .

Combining this inequality and (S7) in the bound provided by Theorem 13 shows (28).
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2.3 Proof of (58)

First for all n ≥ 1 and x ∈ R
d, we have

ϑ
(2)
n,0(x) ≤ γ2E1(γ, d) + γ3E2(γ)

n
∑

i=1

n
∏

k=i+1

(1− κγk/2)δi,n,0(x) ,

where

E1(γ, d) = 2dκ−1
{

2L2 + 4κ−1(dL̃2/12 + γL4/4) + γ2L4/6
}

,E2(γ) = L4(4κ−1/3 + γ) .
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E3(γ, d, x) = (ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d/(κγm)

E4(γ, d, x) = e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2κ−1d+ d/m .

By (S6), we get for all n ≥ 1 and x ∈ R
d,

ϑ
(2)
n,0(x) ≤ γ2E1(γ, d) + γ3E2(γ)

{

ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1
}

. (S8)

On the other hand, for all x ∈ R
d, ℓ, n ∈ N, n ≥ 1, ℓ > n we have using that κ ≥ 2m

and for all t ≥ 0, 1− t ≤ e−t,

ϑ
(2)
n,ℓ(x) ≤ γ3nE1(γ) + γ3nE2(γ)

{

e−mγ(n−1)̺n,ℓ(x) + d/m
}

≤ γ3nE1(γ) + γ3nE2(γ)
{

e−mγ(n−1)
(

(1− κγ)ℓ−n ‖x− x⋆‖2 + 2κ−1d
)

+ d/m
}

≤ γ3nE1(γ) + γ3nE2(γ)
{

e−mγ(ℓ−1) ‖x− x⋆‖2 + 2κ−1d+ d/m
}

. (S9)

Finally, for all ℓ ∈ N
∗ and x ∈ R

d, we have

(γ3L2/3)̺1,ℓ−1(x) + dγ2 ≤ (γ3L2/3)
{

(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1
}

+ dγ2 . (S10)

Combining (S8), (S9) and (S10) in the bound given by Lemma 22, and using that
γ−1 ≤ 2n(γ) ≤ 2γ−1 we have for all ℓ ∈ N

∗, ℓ > 2n(γ),

‖δxPℓγ − δxRℓγ‖TV ≤ 2−3/2L
[

(γ3L2/3)
{

(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1
}

+ dγ2
]1/2

+ (4π)−1/2
[

γ2E1(γ) + γ3E2(γ)
{

(ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d(κγm)−1
}]1/2

+

n(γ)
∑

k=1





γ32k−1
E1(γ) + γ32k−1

E2(γ)
{

e−mγ(ℓ−2k−1) ‖x− x⋆‖2 + 2κ−1d+ d/m
}

π2k+1γ





1/2

≤ 2−3/2L
{

(γ3L2/3)
{

(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1
}

+ dγ2
}1/2

+ (4π)−1/2
[

γ2E1(γ) + γ3E2(γ)
{

(ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d(κγm)−1
}]1/2

+ (4π)−1/2
n(γ)

[

γ2E1(γ) + γ2E2(γ)
{

e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2κ−1d+ d/m
}]1/2

.

3 Proof of Theorem 18

Let N ≥ 0, n ≥ 1, x ∈ R
d and f ∈ Fb(R

d). The main idea of the proof is to consider
the decomposition (S31) again but combined with the decomposition of ΦNn,k+1, for
k ∈ {N, . . . ,N+n−1}, into a Lipschitz component and a bounded measurable component
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as it is done in the proof of (39). Let k ∈ {N, . . . ,N + n− 1}. By definition (33),

ΦNn,k = ωNk+1,nf + Φ̃Nn,k, where Φ̃Nn,k =
∑N+n

i=k+2 ω
N
i,nQ

k+2,i
γ f . Using that f is bounded, we

get for all y ∈ R
d and λ > 0,

Rγk+1

{

eλ{Φ
N
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)}

}

(y)

≤ eλ osc(f) γk+2(ΓN+2,N+n+1)
−2
Rγk+1

{

eλ{Φ̃
N
n,k+1(·)−Rγk+1

Φ̃N
n,k+1(y)}

}

(y)

By (38) and (S32), we obtain for all y ∈ R
d and λ > 0,

Rγk+1

{

eλ{Φ
N
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)}

}

(y)

≤ exp



λ osc(f) γk+2(ΓN+2,N+n+1)
−2 + (λ osc(f))2γk+1

(

N+n
∑

i=k+2

ωNi,n/(πΛk+2,i)
1/2

)2


 .

(S11)

It remains to control the Laplace transform of ΨN
n under δxQ

N
γ . For this, note that

by (40) ΨN
n is a Lipschitz function. Therefore using Lemma S6, we get an analogue of

Corollary 7: for all y ∈ R
d and λ > 0,

Ey

[

eλ{Ψ
N
n (Xn)−Ex[ΨN

n (Xn)]}
]

≤ exp



κ−1λ2osc(f)2

(

N+n
∑

i=N+1

ωNi,n/(πΛN+1,i)
1/2

)2


 ,

(S12)
Combining (S11) and (S12) in (S31), the Laplace transform of π̂Nn (f) can be explicitly

bounded: for all λ > 0,

Ex

[

eλ{π̂
N
n (f)−Ex[π̂N

n (f)]}
]

≤ eλ osc(f)(ΓN+2,N+n+1)
−1+(λ osc(f))2u

(5)
N,n(γ) .

Using this result and the Markov inequality, for all λ > 0, we have:

Px

[

π̂Nn (f) ≥ Ex[π̂
N
n (f)] + r

]

≤ exp
(

−λr + λ osc(f)(ΓN+2,N+n+1)
−1 + (λ osc(f))2u

(5)
N,n(γ)

)

.

Then the proof follows from taking

λ = (r − osc(f)(ΓN+2,N+n+1)
−1)/(2osc(f)2u

(5)
N,n(γ)) .
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4 Proof of Section 8

4.1 Coupling

Consider the Markov kernel Kk on (Rd×R
d,B(Rd)⊗B(Rd)) given for all (x, y) ∈ R

d×R
d

and A ∈ B(Rd)⊗ B(Rd) by

Kk((x, y), A) =
1D(hk(x), hk(y))

(2πσ2k)
d/2

∫

Rd

1A(x̃, x̃)e
−‖τk(x̃,x)‖

2/(2σ2k)dx̃ (S13)

+
1Dc(hk(x), hk(y))

(2πσ2k)
d/2

[
∫

Rd

1A(x̃, x̃)pk(x, y, τk(x̃, x))e
−‖τk(x̃,x)‖

2/(2σ2k)dx̃

+

∫

Rd

1A(x̃,Fk(x, y, τk(x̃, x))) {1− pk(x, y, τk(x̃, x))} e−‖τk(x̃,x)‖
2/(2σ2k)dx̃

]

,

where for all x̃ ∈ R
d, τk(x̃, x) = x̃− hk(x) and D =

{

(x̃, ỹ) ∈ R
d × R

d
∣

∣ x̃ = ỹ
}

and

pk(x, y, z) = 1 ∧ αk(x, y, z) .

By construction, Kk((x, y), · × R
d) = Pk(x, ·) for all x, y ∈ R

d and Kk((x, y),R
d × ·) =

Pk(y, ·) for all (x, y) such that hk(x) = hk(y). In addition, for all A ∈ B(Rd), we have for
all (x, y) ∈ R

d × R
d such that hk(x) 6= hk(y), we get

Kk((x, y),R
d × A) =

1

(2πσ2k)
d/2

∫

Rd

1A(x̃)pk(x, y, x̃− hk(x))e−‖x̃−hk(x)‖
2/(2σ2k)dx̃ (S14)

+
1

(2πσ2k)
d/2

∫

Rd

1A(Fk(x, y, x̃− hk(x))) {1− pk(x, y, x̃− hk(x))} e−‖x̃−hk(x)‖
2/(2σ2k)dx̃ .

Since (Id−2ek(x, y)ek(x, y)T) is an orthogonal matrix, making the change of variable
ỹ = Fk(x, y, x̃− hk(x)) and using that

〈ek(x, y), hk(y)− ỹ〉 = 〈ek(x, y), x̃ − hk(x)〉

we get that

∫

Rd

1A(Fk(x, y, x̃− hk(x))) {1− pk(x, y, x̃− hk(x))} e−‖x̃−hk(x)‖
2/(2σ2k)dx̃

=

∫

Rd

1A(ỹ) {1− pk(x, y, hk(y)− ỹ)} e−‖ỹ−hk(y)‖
2/(2σ2k)dỹ . (S15)

By definition of αk(x, y, (64), we have for all x̃ ∈ R
d,

αk (x, y, x̃− hk(x)) =
ϕϕϕσ2k

(〈ek(x, y), hk(y)− x̃〉)
ϕϕϕσ2k

(‖Ek(x, y)‖ − 〈ek(x, y), hk(y)− x̃〉)
=

1

αk (x, y, hk(y)− x̃)
.

(S16)
In addition using that

‖x̃− hk(x)‖2 = ‖x̃− hk(y)‖2 − 2 〈hk(y)− x̃,Ek(x, y)〉+ ‖Ek(x, y)‖2 ,
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we obtain

pk(x, y, x̃− hk(x))e−‖x̃−hk(x)‖
2/(2σ2k) = pk(x, y, hk(y)− x̃)e−‖x̃−hk(y)‖

2/(2σ2k) . (S17)

Plugging (S15) and (S17) into (65) implies that Kk((x, y),R
d × A) = Pk(y, A).

4.2 Proof of Lemma 24

Let ς, a > 0 and t ∈ R+. Let us denote by I the integral on the left hand side in the
expression above. Then,

I =

∫ t/2

−∞
{ϕϕϕς2(y)−ϕϕϕς2(t− y)}

{

1− 2Φ

(

2y − t
2a

)}

dy

=

∫ t/2

−∞
ϕϕϕς2(y)

{

1− 2Φ

(

2y − t
2a

)}

dy (S18)

−
∫ −t/2

−∞
ϕϕϕς2(y)

{

1− 2Φ

(

t+ 2y

2a

)}

dy ,

Now to simplify the proof, we give a probabilistic interpretation of this two integrals.
Let X and Y be two real Gaussian random variables with zero mean and variance a2

and ς2 respectively. Since for all u ∈ R+, 1− 2Φ(−u/(2a)) = P[|X | ≤ u/2], we have by
(S18)

I = P (Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2)
− P (Y ≥ t/2,X + Y ≥ t/2,Y − X ≥ t/2) .

Using that Y and −Y have the same law in the second term, we get

I = P (Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2)
− P (Y ≤ −t/2,X − Y ≥ t/2,Y + X ≤ −t/2)

= I1 + I2 , (S19)

where

I1 = P (Y ≤ t/2,X + Y ≤ t/2,Y −X ≤ t/2,X ≥ 0)

− P (Y ≤ −t/2,X −Y ≥ t/2,Y + X ≤ −t/2,X ≥ 0)

= P (|X + Y | ≤ t/2,X ≥ 0) , (S20)

and

I2 = P (Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2,X ≤ 0)

− P (Y ≤ −t/2,X − Y ≥ t/2,Y + X ≤ −t/2,X ≤ 0) .
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Using again that Y and −Y have the same law in the two terms we have

I2 = P (Y ≥ −t/2,X − Y ≤ t/2,Y + X ≥ −t/2,X ≤ 0)

− P (Y ≥ t/2,X + Y ≥ t/2,X − Y ≤ −t/2,X ≤ 0)

= P (|X + Y | ≤ t/2,X ≤ 0) . (S21)

Combining (S20), (S21) in (S19), we have I = P(|X +Y | ≤ t/2). The proof follows from
the fact that X + Y is a real Gaussian random variable with mean zero and variance
a2 + ς2, since X and Y are independent.

5 Mean square error and concentration for Lipschitz func-

tions

Let f : Rd → R be a Lipschitz function and (Xk)k≥0 the Euler discretization of the
Langevin diffusion. In this section we study the approximation of

∫

Rd f(y)π(dy) by the
weighted average estimator

π̂Nn (f) =

N+n
∑

k=N+1

ωNk,nf(Xk) , ωNk,n = γk+1Γ
−1
N+2,N+n+1 . (S22)

where N ≥ 0 is the length of the burn-in period, n ≥ 1 is the number of samples, and for
n, p ∈ N, Γn,p is given by (5). In all this section, Px and Ex denote the probability and
the expectation respectively, induced on ((Rd)N,B(Rd)N) by the Markov chain (Xn)n≥0

started at x ∈ R
d. We first compute an explicit bound for the Mean Squared Error

(MSE) of this estimator defined by:

MSEN,nf = Ex

[

∣

∣π̂Nn (f)− π(f)
∣

∣

2
]

=
{

Ex[π̂
N
n (f)]− π(f)

}2
+Varx

{

π̂Nn (f)
}

.

We first bound the bias. For all k ∈ {N+1, . . . , N+n}, let ξk be the optimal transference
plan between δxQ

k
γ and π for W2, i.e. W

2
2 (δxQ

k
γ , π) =

∫

Rd×Rd ‖x− y‖2 dξk(x, y). Then
by the Jensen inequality and because f is Lipschitz, we have:

{

Ex[π̂
N
n (f)]− π(f)

}2
=

(

N+n
∑

k=N+1

ωNk,n

∫

Rd×Rd

{f(z)− f(y)}ξk(dz,dy)
)2

≤ ‖f‖2Lip
N+n
∑

k=N+1

ωNk,n

∫

Rd×Rd

‖z − y‖2 ξk(dz,dy) .

Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤ 1/(m + L) and recall that x⋆ is the
unique minimizer of U . Using Theorem 5 and Theorem 9, we end up with the following
bound:

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ ‖f‖2Lip
N+n
∑

k=N+1

ωNk,n

{

(‖x− x⋆‖2 + d/m)u
(1)
k (γ) + wk(γ)

}

,

(S23)
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where u
(1)
n (γ) is given in (10) and wn(γ) is equal to u

(2)
n (γ) defined by (11) if H1-H2

hold, and to u
(3)
n (γ), defined by (17), if H1-H2 and H3 hold.

Consider now the variance term. To control this term, we adapt the proof of [3,
Theorem 2] for homogeneous Markov chain to our inhomogeneous setting, and we have:

Theorem S1. Assume H 1 and H 2. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m+ L). Then for all N ≥ 0, n ≥ 1 and Lipschitz functions f : Rd → R, we get
Varx{π̂Nn (f)} ≤ 8κ−2 ‖f‖2Lip Γ−1

N+2,N+n+1vN,n(γ), where

vN,n(γ)
def
=
{

1 + Γ−1
N+2,N+n+1(κ

−1 + 2/(m+ L))
}

. (S24)

Proof. Our main tool is the Gaussian Poincaré inequality [1, Theorem 3.20] which can
be applied to Rγ(y, ·) defined by (6), noticing that Rγ(y, ·) is a Gaussian distribution
with mean y−γ∇U(y) and covariance matrix 2γ Id: for all Lipschitz function g : Rd → R

Rγ {g(·) −Rγg(y)}2 (y) ≤ 2γ ‖g‖2Lip . (S25)

To go further, we decompose π̂Nn (f)− Ex[π̂
N
n (f)] as the sum of martingale increments,

w.r.t. (Gn)n≥0, the natural filtration associated with Euler approximation (Xn)n≥0, and
we get

Varx
{

π̂Nn (f)
}

=

N+n−1
∑

k=N

Ex

[

(

E
Gk+1
x

[

π̂Nn (f)
]

− E
Gk
x

[

π̂Nn (f)
]

)2
]

+ Ex

[

(

E
GN
x

[

π̂Nn (f)
]

− Ex[π̂
N
n (f)]

)2
]

. (S26)

Since π̂Nn (f) is an additive functional, the martingale increment E
Gk+1
x

[

π̂Nn (f)
]

−EGk
x

[

π̂Nn (f)
]

has a simple expression. For k = N + n − 1, . . . , N + 1, define backward in time the
function

ΦNn,k : xk 7→ ωNk,nf(xk) +Rγk+1
ΦNn,k+1(xk) , (S27)

where ΦNn,N+n : xN+n 7→ ΦNn,N+n(xN+n) = ωNN+n,nf(xN+n). Denote finally

ΨN
n : xN 7→ RγN+1

ΦNn,N+1(xN ) . (S28)

Note that for k ∈ {N, . . . ,N + n− 1}, by the Markov property,

ΦNn,k+1(Xk+1)−Rγk+1
ΦNn,k+1(Xk) = E

Gk+1
x

[

π̂Nn (f)
]

− E
Gk
x

[

π̂Nn (f)
]

, (S29)

and ΨN
n (XN ) = E

GN
x

[

π̂Nn (f)
]

. With these notations, (S26) may be equivalently ex-
pressed as

Varx
{

π̂Nn (f)
}

=

N+n−1
∑

k=N

Ex

[

Rγk+1

{

ΦNn,k+1(·)−Rγk+1
ΦNn,k+1(Xk)

}2
(Xk)

]

+Varx
{

ΨN
n (XN )

}

. (S30)
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Now for k = N +n−1, . . . , N , we will use the Gaussian Poincaré inequality (S25) to the
sequence of function ΦNn,k+1 to prove that x 7→ Rγk+1

{ΦNn,k+1(·) − Rγk+1
ΦNn,k+1(x)}2(x)

is uniformly bounded. It is required to bound the Lipschitz constant of ΦNn,k .

Lemma S2. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤
2/(m + L). Let N ≥ 0 and n ≥ 1. Then for all y ∈ R

d, Lipschitz function f and
k ∈ {N, . . . ,N + n− 1},

Rγk+1

{

ΦNn,k+1(·)−Rγk+1
ΦNn,k+1(y)

}2
(y) ≤ 8γk+1 ‖f‖2Lip (κΓN+2,N+n+1)

−2 ,

where ΦNn,k+1 is given by (S27).

Proof of Theorem S1. By (S27), ‖ΦNn,k‖Lip ≤
∑N+n

i=k+1 ω
N
i,n‖Q

k+2,i
γ f‖Lip. Using Corol-

lary 4, the bound (1 − t)1/2 ≤ 1 − t/2 for t ∈ [0, 1] and the definition of ωNi,n given by
(30), we have

∥

∥ΦNn,k
∥

∥

Lip
≤ ‖f‖Lip

N+n
∑

i=k+1

ωNi,n

i
∏

j=k+2

(1 − κγj/2) ≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1 .

Finally, the proof follows from (S25).

Also to control the last term in right hand side of (S30), we need to control the
variance of ΨN

n (XN ) under δxQ
N
γ . But similarly to the sequence of functions ΦNn,k, Ψ

N
n

is Lipschitz by Corollary 4 by definition, see (S28). Therefore it suffices to find some
bound for the variance of g under δyQ

n,p
γ , for g : Rd → R a Lipschitz function, y ∈ R

d

and γ > 0, which is done in Lemma 16.

Corollary 3. Assume H 1 and H 2. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m + L). Then for all Lipschitz function f and x ∈ R

d, Varx{ΨN
n (XN )} ≤

8κ−3 ‖f‖2Lip Γ−2
N+2,N+n+1, where ΨN

n is given by (S28).

Proof. By (S28) and Corollary 4, ΨN
n is Lipschitz function with ‖ΨN

n ‖Lip ≤
∑N+n

i=N+1 ω
N
i,n‖Q

N+1,i
γ f‖Lip.

Using Corollary 4, the bound (1− t)1/2 ≤ 1− t/2 for t ∈ [0, 1] and the definition of ωNi,n
given by (30), we have

∥

∥ΨN
n

∥

∥

Lip
≤ ‖f‖Lip

N+n
∑

i=N+1

ωNi,n

i
∏

j=N+2

(1− κγj/2) ≤ 2 ‖f‖Lip (κΓN+2,N+n+1)
−1 .

The proof follows from Lemma 16.

Plugging the bounds given by Lemma S2 and Corollary 3 in (S30), we have

Varx
{

π̂Nn (f)
}

≤ 8κ−2 ‖f‖2Lip
{

Γ−2
N+2,N+n+1ΓN+1,N+n + κ−1Γ−2

N+2,N+n+1

}

≤ 8κ−2 ‖f‖2Lip
{

Γ−1
N+2,N+n+1 + Γ−2

N+2,N+n+1(γN+1 + κ−1)
}

.

Using that γN+1 ≤ 2/(m + L) concludes the proof.
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It is worth to observe that the bound for the variance is independent from the
dimension.

We may now discuss the bounds on the MSE (obtained by combining the bounds
for the squared bias (S23) and the variance Theorem S1) for step sizes given for k ≥ 1
by γk = γ1k

−α where α ∈ [0, 1] and γ1 < 1/(m + L). Details of these calculations
are postponed to Section 9.1-Section 9.2. The order of the bounds (up to numerical
constants) of the MSE are summarized in Table 1 as a function of γ1, n and N . Note
that in the infinite horizon setting, it is optimal to take α = 1/2 under H1 and H2, and
α = 1/3 under H1, H2 and H3.

Bound for the MSE

α = 0 γ1 + (γ1n)
−1 {1 + exp(−κγ1N/2)}

α ∈ (0, 1/2) γ1n
−α + (γ1n

1−α)−1
{

1 + exp(−κγ1N1−α/(2(1 − α)))
}

α = 1/2 γ1 log(n)n
−1/2 + (γ1n

1/2)−1
{

1 + exp(−κγ1N1/2/4)
}

α ∈ (1/2, 1) nα−1
[

γ1 + γ−1
1

{

1 + exp(−κγ1N1−α/(2(1 − α)))
}]

α = 1 log(n)−1
{

γ1 + γ−1
1 (1 +N−γ1κ/2)

}

Table 1: Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1 and H2

Bound for the MSE

α = 0 γ21 + (γ1n)
−1{1 + exp(−κγ1N/2)}

α ∈ (0, 1/3) γ21n
−2α + (γ1n

1−α)−1{1 + exp(−κγ1N1−α/(2(1 − α)))}
α = 1/3 γ21 log(n)n

−2/3 + (γ1n
2/3)−1{1 + exp(−κγ1N1/2/4)}

α ∈ (1/3, 1) nα−1
[

γ21 + γ−1
1 {1 + exp(−κγ1N1−α/(2(1 − α)))}

]

α = 1 log(n)−1
{

γ21 + γ−1
1 (1 +N−γ1κ/2)

}

Table 2: Bound for the MSE for γk = γ1k
−α for fixed γ1 and N under H1, H2 and H3

If the total number of iterations n+N is held fixed (fixed horizon setting), we may
optimize the value of the step size γ1 but also of the burn-in period N to minimize
the upper bound on the MSE. The order (in n) for different values of α ∈ [0, 1] are
summarized in Table 3 (we display the order in n but not the constants, which are quite
involved).

Let us discuss first the bounds based on Theorem 5. This time for any α ∈ [0, 1/2),
we can always achieve a MSE of order n−1/2 by choosing appropriately γ1 and N (for
α = 1/2 we have only log(n)n−1/2). For α ∈ (1/2, 1], the best strategy is to take N = 0
and the largest possible value for γ1 = 1/(m+L), which leads to a MSE of order nα−1 for
α ∈ (0, 1/2) and log(n) for α = 1. We now discuss the bounds provided by Theorem 9.
It appears that, for any α ∈ [0, 1/3), we can always achieved the order n−2/3 by choosing
appropriately γ1 and N (for α = 1/3 we have only log1/3(n)n−2/3). The worst case is
for α ∈ (1/3, 1], where in fact the best strategy is to take N = 0 and the largest possible
value for γ1 = 1/(m+ L).

We can also follow the proof of [3, Theorem 5] to establish an exponential deviation
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H1, H2 and H3 H1, H2 and H3

α = 0 n−1/2 n−2/3

α ∈ (0, 1/2) n−1/2 n−2/3

α = 1/2 log(n)n−1/2 log1/3(n)n−2/3

α ∈ (1/2, 1) nα−1 nα−1

α = 1 log(n) log(n)

Table 3: Optimal bound for the MSE by choosing γ1

inequality for π̂Nn (f)− Ex[π̂
N
n (f)] given by (30).

Theorem S4. Assume H 1 and H 2. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m+ L). Then for all N ≥ 0, n ≥ 1, r > 0 and Lipschitz functions f : Rd → R:

Px

[

π̂Nn (f) ≥ Ex[π̂
N
n (f)] + r

]

≤ exp

(

− r
2κ2ΓN+2,N+n+1

16 ‖f‖2Lip vN,n(γ)

)

,

where vN,n(γ) is defined by (S24).

Proof. Let N ≥ 0, n ≥ 1, x ∈ R
d and f be a Lipschitz function. To prove Theorem S4,

we derive an upper bound of the Laplace transform of π̂Nn (f)−Ex[π̂
N
n (f)]. Consider the

decomposition by martingale increments

Ex

[

eλ{π̂
N
n (f)−Ex[π̂N

n (f)]}
]

= Ex

[

eλ{E
GN
x [π̂N

n (f)]−Ex[π̂N
n (f)]}+

∑N+n−1
k=N λ{E

Gk+1
x [π̂N

n (f)]−E
Gk
x [π̂N

n (f)]}
]

.

Now using (S29) with the sequence of functions (ΦNn,k) and ΨN
n given by (S27) and (S28),

respectively, we have by the Markov property

Ex

[

eλ{π̂
N
n (f)−Ex[π̂N

n (f)]}
]

= Ex

[

eλ{ΨN
n (Xn)−Ex[ΨN

n (Xn)]}
N+n−1
∏

k=N

Rγk+1

[

eλ{Φ
N
n,k+1(·)−Rγk+1

ΦN
n,k+1(Xk)}

]

(Xk)

]

,

(S31)

where Rγ is given by (6) for γ > 0. We use the same strategy to get concentration in-
equalities than to bound the variance term in the previous section, replacing the Gaussian
Poincaré inequality by the log-Sobolev inequality to get uniform bound on

Rγk+1
{exp(λ{ΦNn,k+1(·)−Rγk+1

ΦNn,k+1(Xk)})}(Xk)

w.r.t. Xk, for all k ∈ {N + 1, . . . , N + n}. Indeed for all x ∈ R
d and γ > 0, recall

that Rγ(x, ·) is a Gaussian distribution with mean x − γ∇U(x) and covariance matrix
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2γ Id. The log-Sobolev inequality [1, Theorem 5.5] shows that for all Lipschitz function
g : Rd → R, x ∈ R

d, γ > 0 and λ > 0,
∫

Rγ(x,dy) {exp (λ{g(y)−Rγg(x)})} ≤ exp
(

γλ2 ‖g‖2Lip
)

. (S32)

We deduced from this result, (S29) and Corollary 4, an equivalent of Lemma S2 for the
Laplace transform of ΦNn,k+1 under δyRγk+1

for k ∈ {N + 1, . . . , N + n} and all y ∈ R
d.

Corollary 5. Assume H 1 and H 2. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m + L). Let N ≥ 0 and n ≥ 1. Then for all k ∈ {N, . . . ,N + n− 1}, y ∈ R

d

and λ > 0,

Rγk+1

{

eλ{Φ
N
n,k+1(·)−Rγk+1

ΦN
n,k+1(y)}

}

(y) ≤ exp
(

4γk+1λ
2 ‖f‖2Lip (κΓN+2,N+n+1)

−2
)

,

where ΦNn,k is given by (33).

It remains to control the Laplace transform of ΨN
n under δxQ

N
γ , where δxQ

N
γ is

defined by (7). For this, using again that by (S28) and Corollary 4, ΨN
n is a Lipschitz

function, we iterate (S32) to get bounds on the Laplace transform of Lipschitz function

g under Qn,ℓγ (y, ·) for all y ∈ R
d and n, ℓ ≥ 1, since for all n, ℓ ≥ 1, Qn,ℓγ g is a Lipschitz

function by Corollary 4.

Lemma S6. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with γ1 ≤
2/(m + L). Let g : Rd → R be a Lipschitz function, then for all n, p ≥ 1, n ≤ p, y ∈ R

d

and λ > 0:

Qn,pγ
{

exp
(

λ{g(·) −Qn,pγ g(y)}
)}

(y) ≤ exp
(

κ−1λ2 ‖g‖2Lip
)

, (S33)

where Qγn,p is given by (7).

Proof. Let (Xn)n≥0 the Euler approximation given by (2) and started at y ∈ R
d. By

decomposing g(Xp) − E
Gn
y [g(Xp)] =

∑p
k=n+1{EGk

y [g(Xp)] − E
Gk−1
y [g(Xp)]}, and using

E
Gk
y [g(Xp)] = Qk+1,p

γ g(Xk), we get

E
Gn
y

[

exp
(

λ
{

g(Xp)− E
Gn
y [g(Xp)]

})]

= E
Gn
y

[

p
∏

k=n+1

E
Gk−1
y

[

exp
(

λ
{

E
Gk
y [g(Xp)]− E

Gk−1
y [g(Xp)]

})]

]

= E
Gn
y

[

p
∏

k=n+1

Rγk exp
(

λ
{

Qk+1,p
γ g(·) −RγkQk+1,p

γ g(Xk−1)
})

(Xk−1)

]

.

By the Gaussian log-Sobolev inequality (S32), we get

E
Gn
y

[

exp
(

λ
{

g(Xp)− E
Gn
y [g(Xp)]

})]

≤ exp

(

λ2
p
∑

k=n+1

γk

∥

∥

∥
Qk+1,p
γ g

∥

∥

∥

2

Lip

)

.
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The proof follows from Corollary 4 and Lemma 7, using the bound (1 − t)1/2 ≤ 1− t/2
for t ∈ [0, 1].

Combining this result and ‖ΨN
n ‖Lip ≤ 2κ−1 ‖f‖Lip Γ−1

N+2,N+n+1 by Corollary 4, we

get an analogue of Corollary 3 for the Laplace transform of ΨN
n :

Corollary 7. Assume H 1 and H 2. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m+ L). Let N ≥ 0 and n ≥ 1. Then for all λ > 0 and x ∈ R

d,

Ex

[

eλ{Ψ
N
n (Xn)−Ex[ΨN

n (Xn)]}
]

≤ exp
(

4κ−3λ2 ‖f‖2Lip Γ−2
N+2,N+n+1

)

,

where ΨN
n is given by (S28).

The Laplace transform of π̂Nn (f) can be explicitly bounded using Corollary 5 and
Corollary 7 in (S31).

Proposition S8. Assume H1 and H2. Let (γk)k≥1 be a nonincreasing sequence with
γ1 ≤ 2/(m+ L). Then for all N ≥ 0, n ≥ 1, Lipschitz functions f : Rd → R, λ > 0 and
x ∈ R

d:

Ex

[

eλ{π̂
N
n (f)−Ex[π̂N

n (f)]}
]

≤ exp
(

4κ−2λ2 ‖f‖2Lip Γ−1
N+2,N+n+1u

(3)
N,n(γ)

)

,

where u
(3)
N,n(γ) is given by (S24).

Proof of Theorem S4. Using the Markov inequality and Proposition S8, for all λ > 0,
we have:

Px

[

π̂Nn (f) ≥ Ex[π̂
N
n (f)] + r

]

≤ exp
(

−λr + 4κ−2λ2 ‖f‖2Lip Γ−1
N+2,N+n+1vN,n(γ)

)

.

Then the result follows from taking λ = (rκ2ΓN+2,N+n+1)/(8 ‖f‖2Lip vN,n(γ)).

If we apply this result to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α,

for α ∈ [0, 1], we end up with a concentration of order exp(−Cr2γ1n1−α) for α ∈ [0, 1),
for some constant C ≥ 0 independent of γ1 and n.

6 Discussion on Theorem 5

Note that

u(2)n (γ) ≤
n
∑

i=1

{

A0γ
2
i + A1γ

3
i

}

n
∏

k=i+1

(1− κγk/2) , (S34)
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where κ is given by (3), and

A0 = 2L2κ−1d , (S35)

A1 = 2L2κ−1d(m+ L)−1 + dL4(κ−1 + (m+ L)−1)(m−1 + 6−1(m+ L)−1) . (S36)

If (γk)k≥1 is a constant step size ,γk = γ for all k ≥ 1, then a straightforward consequence
of Theorem 5 and (S34) is the following result, which gives the minimal number of
iterations nε and a step-size γε to get W2(δx⋆Q

n
γ , π) smaller than ε > 0.

Corollary 9 (of Theorem 5). Assume H1 and H2. Let x⋆ be the unique minimizer of
U . Let x ∈ R

d and ε > 0. Set for all k ∈ N, γk = γ with

γ =
−A0 + (A2

0 + ε2κA1)
1/2

2A1
∧ (m+ L)−1 , (S37)

n =
⌈

log−1(1− κγ/2)
{

− log(ε2/2) + log(2d/m)
}⌉

.

Then W2(δx⋆R
n
γ , π) ≤ ε.

Note that if γ is given by (S37), and is different from 1/(m+L), then γ ≤ ε(4A1κ
−1)−1/2

and 2κ−1(A0γ + A1γ
2) = ε2/2. Therefore,

γ ≥ (ε2κ/4)
{

A0 + ε(A1/(4κ))
1/2
}−1

.

It is shown in [2, Corollary 1] that under H2, for constant step size for any ε > 0, we
can choose γ and n ≥ 1 such that if for all k ≥ 1, γk = γ, then ‖ν⋆Qγn − π‖TV ≤ ε
where ν⋆ is the Gaussian measure on R

d with mean x⋆ and covariance matrix L−1 Id.
We stress that the results in [2, corollary 1] hold only for a particular choice of the initial
distribution ν⋆, (which might seem a rather artificial assumption) whereas Theorem 5
holds for any initial distribution in P2(Rd).

We compare the optimal value of γ and n obtained from Corollary 9 with those given
in [2, Corollary 1]. This comparison is summarized in Table 4 and Table 5; for simplicity,
we provide only the dependencies of the optimal stepsize γ and minimal number of
simulations n as a function of the dimension d, the precision ε and the constants m,L.
It can be seen that the dependency on the dimension is significantly better than those
in [2, Corollary 1].

Parameter d ε L m

Corollary 9 d−1 ε2 L−2 m2

[2, Corollary 1] d−2 ε2 L−2 m

Table 4: Dependencies of γ
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Parameter d ε L m

Corollary 9 d log(d) ε−2 |log(ε)| L2 |log(m)|m−3

[2, Corollary 1] d3 ε−2 |log(ε)| L3 |log(m)|m−2

Table 5: Dependencies of n

6.1 Explicit bounds for γk = γ1k
α with α ∈ (0, 1]

We give here a bound on the sequences (u
(1)
n (γ))n≥0 and (u

(2)
n (γ))n≥0 for (γk)k≥1 defined

by γ1 < 1/(m + L) and γk = γ1k
−α for α ∈ (0, 1]. Also for that purpose we introduce

for t ∈ R
∗
+,

ψψψβ(t) =

{

(tβ − 1)/β for β 6= 0

log(t) for β = 0 .
(S38)

We easily get for a ≥ 0 that for all n, p ≥ 1, n ≤ p

ψψψ1−a(p+ 1)−ψψψ1−a(n) ≤
p
∑

k=n

k−a ≤ ψψψ1−a(p)−ψψψ1−a(n) + 1 , (S39)

and for a ∈ R
p
∑

k=n

k−a ≤ ψψψ1−a(p + 1)−ψψψ1−a(n) + 1 . (S40)

1. For α = 1, using that for all t ∈ R, (1 + t) ≤ et and by (S39) and (S40), we have

u(1)n (γ) ≤ (n+ 1)−κγ1/2 , u(2)n (γ) ≤ (n+ 1)−κγ1/2
1
∑

j=0

Aj(ψψψκγ1/2−1−j(n+ 1) + 1) .

2. For α ∈ (0, 1), by (S39) and Lemma 7 applied with ℓ = ⌈n/2⌉, where ⌈·⌉ is the
ceiling function, we have

u(1)n (γ) ≤ exp (−κγ1ψψψ1−α(n+ 1)/2)

u(2)n (γ) ≤
1
∑

j=0

Aj

[

2κ−1γj+1
1 (n/2)−α(j+1) + γj+2

1

{

ψψψ1−α(j+2)(⌈n/2⌉) + 1
}

× exp (−(κγ1/2) {ψψψ1−α(n+ 1)−ψψψ1−α(⌈n/2⌉)})] . (S41)

6.2 Optimal strategy with a fixed number of iterations

Corollary 10. Let n ∈ N
∗ be a fixed number of iteration. Assume H1, H2, and (γk)k≥1

is a constant sequence, γk = γ for all k ≥ 1. Set

γ+ = 2(κn)−1
[

log(κn/2) + log(2(‖x− x⋆‖2 + d/m)) − log(2κ−1
A0)
]

γ− = 2(κn)−1
[

log(κn/2) + log(2(‖x− x⋆‖2 + d/m))

− log
{

2κ−1(A0 + 2A1(m+ L)−1)
}]

.
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Assume γ+ ∈
(

0, (m+ L)−1
)

.Then, the optimal choice of γ to minimize the bound on
W2(δxR

n
γ , π) given by Theorem 5 belongs to [γ−, γ

+]. Moreover if γ = γ+, then there
exists C ≥ 0 independent of the dimension such that the bound on W 2

2 (δxR
n
γ , π) is

equivalent to Cdn−1 log(n) as n goes to +∞.

Similarly, we have the following result.

Corollary 11. Assume H1 and H2. Let (γk)k≥1 be the decreasing sequence, defined by
γk = γαk

−α, with α ∈ (0, 1). Let n ≥ 1 and set

γα = 2(1 − α)κ−1(2/n)1−α log(κn/(2(1 − α))) .

Assume γα ∈
(

0, (m+ L)−1
)

. Then there exists C ≥ 0 independent of the dimension
such that the bound on W 2

2 (δxQ
n
γ , π) is equivalent to Cdn−1 log(n) as n goes to +∞.

Proof. Follows from (S34), (S41) and the choice of γα.

7 Discussion on Theorem 9

Based on Theorem 9, we can follow the same discussion as for Theorem 5. Note that

u(3)n (γ) ≤
n
∑

i=1

{

B0γ
3
i + B1γ

4
i

}

n
∏

k=i+1

(1− κγk/2) , (S42)

where κ is given by (3), and

B0 = d
[

2L2 + κ−1
{

dL̃2/3 + 4L4/(3m)
}]

, (S43)

B1 = d
[

κ−1L4 + L4/(6(m+ L)) +m−1
]

. (S44)

The following result gives for a target precision ε > 0, the minimal number of iterations
nε and a step-size γε to get W2(δx⋆Q

n
γ , π) smaller than ε, when (γk)k≥1 is a constant

step size, γk = γε for all k ≥ 1.

Corollary 12. Assume H1, H2 and H3. Let x⋆ be the unique minimizer of U . Let
x ∈ R

d and ε > 0. Set for all k ∈ N, γk = γ with

γ =
[

(ε/2)κ−1
{

B0 + B1(m+ L)−1
}−1/2

]

∧ (1/(m+ L)) ,

n =
⌈

log−1(1− κγ/2)
{

− log(ε2/2) + log(2d/m)
}⌉

.

Then W2(δx⋆R
n
γ , π) ≤ ε.

We provide the dependencies of the optimal stepsize γε and minimal number of
simulations nε as a function of the dimension d, the precision ε and the constants m,L
in Table 6 and Table 7.
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Parameter d ε L m

Corollary 12 d−1 ε L−2 m

Table 6: Dependencies of γε

Parameter d ε L m

Corollary 12 d log(d) ε−1 |log(ε)| L2 |log(m)|m−2

Table 7: Dependencies of nε

7.1 Explicit bounds for γk = γ1k
α with α ∈ (0, 1]

We give here a bound on the sequence (u
(3)
n (γ))n≥0 for (γk)k≥1 defined by γ1 < 1/(m+L)

and γk = γ1k
−α for α ∈ (0, 1]. Bounds for (u

(1)
n (γ))n≥0 have already been given in

Section 6.1. Recall that the function ψψψ is defined by (S38). For α ∈ (0, 1], by (S39) and
Lemma 7 applied with ℓ = ⌈n/2⌉, where ⌈·⌉ is the ceiling function, we have

u(3)n (γ) ≤
2
∑

j=1

Bj−1

[

2κ−1γj+1
1 (n/2)−α(j+1) + γj+2

1

(

ψψψ1−α(j+2)(⌈n/2⌉) + 1
)

× exp (−(κγ1/2) {ψψψ1−α(n+ 1)−ψψψ1−α(⌈n/2⌉)})] . (S45)

7.2 Optimal strategy with a fixed number of iterations

Corollary 13. Let n ∈ N
∗ be a fixed number of iteration. Assume H1, H2, H3 and

(γk)k≥1 is a constant sequence, γk = γ⋆ for all k ≥ 1, with

γ⋆ = 4(κn)−1
{

log(κn/2) + log(2(‖x− x⋆‖2 + d/m))
}

.

Assume γ⋆ ∈
(

0, (m + L)−1
)

. Then there exists C ≥ 0 independent of the dimension
such that the bound on W 2

2 (δxR
n
γ , π) is equivalent to Cd2n−2 log2(n) as n goes to +∞.

Similarly, we have the following result.

Corollary 14. Assume H1, H2 and H3. Let (γk)k≥1 be the decreasing sequence, defined
by γk = γαk

−α, with α ∈ (0, 1). Let n ≥ 1 and set

γα = 2(1 − α)κ−1(2/n)1−α log(κn/(2(1 − α))) .

Assume γα ∈
(

0, (m+ L)−1
)

. Then there exists C ≥ 0 independent of the dimension
such that the bound on W 2

2 (δxR
n
γ , π) is equivalent to Cd2n−2 log2(n) as n goes to +∞.

Proof. Follows from (S42), (S45) and the choice of γα.

Note that in Corollary 13 and Corollary 14, we do not find the optimal convergence
rates obtained for the sequence of step-sizes γk = γ1/k, for k ≥ 1 and γ1 > 0, up to a
logarithmic factor log(n). This most likely due to the fact that the bounds (for example
(S45)) used to compute the optimal parameters γ⋆ and γα are not the most appropriate.
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8 Generalization of Theorem 5

In this section, we weaken the assumption γ1 ≤ 1/(m + L) of Theorem 5. We assume
now:

G1. The sequence (γk)k≥1 is non-increasing, and there exists ρ > 0 and n1 such that
(1 + ρ)γn1 ≤ 2/(m+ L).

Under G1, we denote by

n0 = min {k ∈ N | γk ≤ 2/(m + L)} (S46)

We first give an extension of Proposition 2. Denote in the sequel (·)+ = max(·, 0). Recall
that under H2, x⋆ is the unique minimizer of U , and κ is defined in (4)

Theorem S15. Assume H1, H2 and G1. Then for all n, p ∈ N
∗, n ≤ p

∫

Rd

‖x− x⋆‖2 µ0Qpn(dx) ≤ Gn,p(µ0, γ) ,

where

Gn,p(µ0, γ) = exp

(

−
p
∑

k=n

γkκ+

n0−1
∑

k=n

L2γ2k

)

∫

Rd

‖x− x⋆‖2 µ0(dx)

+ 2dκ−1 + 2d

{

n0−1
∏

k=n

(γn0−1L
2)−1

(

1 + L2γ2k
)

}

exp

(

−
p
∑

k=n

κγk +

n0−1
∑

k=n

γ2kmL

)

. (S47)

Proof. For any γ > 0, we have for all x ∈ R
d:

∫

Rd

‖y − x⋆‖2Rγ(x,dy) = ‖x− γ∇U(x)− x⋆‖2 + 2γd .

Using that ∇U(x⋆) = 0, (3) and H1, we get from the previous inequality:

∫

Rd

‖y − x⋆‖2Rγ(x,dy)

≤ (1− κγ) ‖x− x⋆‖2 + γ

(

γ − 2

m+ L

)

‖∇U(x)−∇U(x⋆)‖2 + 2γd

≤ η(γ) ‖x− x⋆‖2 + 2γd ,

where η(γ) = (1 − κγ + γL(γ − 2/(m + L))+). Denote for all k ≥ 1, ηk = η(γk). By a
straightforward induction, we have by definition of Qpn for p, n ∈ N, p ≤ n,

∫

Rd

‖x− x⋆‖2 µ0Qpn(dx) ≤
p
∏

k=n

ηk

∫

Rd

‖x− x⋆‖µ0(dx) + (2d)

p
∑

i=n

p
∏

k=i+1

ηkγi , (S48)
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with the convention that for n, p ∈ N, n < p,
∏n
p = 1. For the first term of the right

hand side, we simply use the bound, for all x ∈ R, (1 + x) ≤ ex, and we get by G1

p
∏

k=n

ηk ≤ exp

(

−
p
∑

k=n

κγk +

n0−1
∑

k=n

L2γ2k

)

, (S49)

where n0 is defined in (S46). Consider now the second term in the right hand side of
(S48).

p
∑

i=n

p
∏

k=i+1

ηkγi ≤
p
∑

i=n0

p
∏

k=i+1

(1− κγk) γi +
n0−1
∑

i=n

p
∏

k=i+1

ηkγi

≤ κ−1
p
∑

i=n0

{

p
∏

k=i+1

(1− κγk)−
p
∏

k=i

(1− κγk)
}

+

{

n0−1
∑

i=n

n0−1
∏

k=i+1

(

1 + L2γ2k
)

γi

}

p
∏

k=n0

(1− κγk) (S50)

Since (γk)k≥1 is nonincreasing, we have

n0−1
∑

i=n

n0−1
∏

k=i+1

(

1 + L2γ2k
)

γi =

n0−1
∑

i=n

(γiL
2)−1

{

n0−1
∏

k=i

(

1 + L2γ2k
)

−
n0−1
∏

k=i+1

(

1 + L2γ2k
)

}

≤
n0−1
∏

k=n

(γn0−1L
2)−1

(

1 + L2γ2k
)

.

Furthermore for k < n0 γk > 2/(m + L). This implies with the bound (1 + x) ≤ ex on
R:

p
∏

k=n0

(1− κγk) ≤ exp

(

−
p
∑

k=n

κγk

)

exp

(

n0−1
∑

k=n

κγk

)

≤ exp

(

−
p
∑

k=n

κγk

)

exp

(

n0−1
∑

k=n

γ2kmL

)

.

Using the two previous inequalities in (S50), we get

p
∑

i=n

p
∏

k=i+1

ηkγi

≤ κ−1 +

{

n0−1
∏

k=n

(γn0−1L
2)−1

(

1 + L2γ2k
)

}

exp

(

−
p
∑

k=n

κγk +

n0−1
∑

k=n

γ2kmL

)

. (S51)

Combining (S49) and (S51) in (S48) concluded the proof.
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We now deal with bounds on W2(µ0Q
n
γ , π) under G1. But before we preface our

result by some techincal lemmas.

Lemma S16. Assume H1 and H2. Let ζ0 ∈ P2(Rd×R
d), (Yt, Y t)t≥0 such that (Y0, Y 0)

is distributed according to ζ0 and given by (9). Let (Ft)t≥0 be the filtration associated
with (Bt)t≥0 with F0, the σ-field generated by (Y0, Y 0). Then for all n ≥ 0, ε1 > 0 and
ε2 > 0,

E
FΓn

[

∥

∥YΓn+1 − Y Γn+1

∥

∥

2
]

≤ {1− γn+1 (κ− 2ε1) + γn+1L((1 + ε2)γn+1 − 2/(m+ L))+}
∥

∥YΓn − Y Γn

∥

∥

2

+ γ2n+1(1/(2ε1) + (1 + ε−1
2 )γn+1)

(

dL2 + (L4γn+1/2) ‖YΓn − x⋆‖2 + dL4γ2n+1/12
)

.

Proof. Let n ≥ 0 and ε1 > 0, and set ∆n = YΓn − Y Γn by definition we have:

E
FΓn

[

‖∆n+1‖2
]

= ‖∆n‖2 + E
FΓn

[

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys)−∇U(Y Γn)
}

ds

∥

∥

∥

∥

2
]

− 2γn+1

〈

∆n,∇U(YΓn)−∇U(Y Γn)
〉

− 2

∫ Γn+1

Γn

E
FΓn [〈∆n, {∇U(Ys)−∇U(YΓn)}〉ds] .

Using the two inequalities | 〈a, b〉 | ≤ ε1‖a‖2 + (4ε1)
−1‖b‖2 and (3), we get

E
FΓn

[

‖∆n+1‖2
]

≤ {1− γn+1(κ− 2ε1)} ‖∆n‖2 − 2γn+1/(m+ L)
∥

∥∇U(YΓn)−∇U(Y Γn)
∥

∥

2

+ E
FΓn

[

∥

∥

∥

∥

∫ Γn+1

Γn

{∇U(Ys)−∇U(Y Γn)}ds
∥

∥

∥

∥

2
]

+ (2ε1)
−1

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn)‖2
]

ds . (S52)

Using ‖a+ b‖2 ≤ (1 + ε2) ‖a‖2 + (1 + ε−1
2 ) ‖b‖2 and the Jensen’s inequality, we have

E
FΓn

[

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys)−∇U(Y Γn)
}

ds

∥

∥

∥

∥

2
]

≤ (1 + ε2)γ
2
n+1

∥

∥∇U(YΓn)−∇U(Y Γn)
∥

∥

2

+ γn+1E
FΓn

[∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn)‖2 ds
]

.

This result and H1 imply,

E
FΓn

[

‖∆n+1‖2
]

≤ {1− γn+1(κ− 2ε1) + γn+1L((1 + ε2)γn+1 − 2/(m+ L))+} ‖∆n‖2

+ ((1 + ε−1
2 )γn+1 + (2ε1)

−1)

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn)‖2
]

ds . (S53)
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By H1, the Markov property of (Yt)t≥0 and Lemma 19, we have

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn)‖2
]

ds

≤ L2
(

dγ2n+1 + dL2γ4n+1/12 + (L2γ3n+1/2) ‖YΓn − x⋆‖2
)

.

Plugging this bound in (S53) concludes the proof.

Lemma S17. Let (γk)k≥1 be a nonincreasing sequence of positive numbers. Let ̟,β > 0
be positive constants satisfying ̟2 ≤ 4β and τ > 0. Assume there exists N ≥ 1, γN ≤ τ
and γN̟ ≤ 1. Then for all n ≥ 0, j ≥ 2

(i)

n+1
∑

i=1

n+1
∏

k=i+1

(1− γk̟ + γkβ(γk − τ)+) γji ≤
n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji

+

{

β−1γj−2
1

N−1
∏

k=1

(

1 + γ2kβ
)

}

n+1
∏

k=N

(1−̟γk) .

(ii) For all ℓ ∈ {N, . . . , n},

n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji ≤ exp

(

−
n+1
∑

k=ℓ

̟γk

)

ℓ−1
∑

i=N

γji +
γj−1
ℓ

̟
.

Proof. By definition of N we have

n+1
∑

i=1

n+1
∏

k=i+1

(1− γk̟ + γkβ(γk − τ)+) γji

≤
n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji +

{

N−1
∑

i=1

N−1
∏

k=i+1

(

1 + γ2kβ
)

γji

}

n+1
∏

k=N

(1− γk̟) . (S54)

Using that (γk)k≥1 is nonincreasing, we have

N−1
∑

i=1

N−1
∏

k=i+1

(

1 + γ2kβ
)

γji ≤
N−1
∑

i=1

γj−2
i

β

{

N−1
∏

k=i

(

1 + γ2kβ
)

−
N−1
∏

k=i+1

(

1 + γ2kβ
)

}

≤ β−1γj−2
1

N−1
∏

k=1

(

1 + γ2kβ
)

.
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Plugging this inequality in (S54) concludes the proof of (i). Let ℓ ∈ {N, . . . , n+ 1}.
Since (γk)k≥1 is nonincreasing and for every x ∈ R, (1 + x) ≤ ex, we get

n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji =

ℓ−1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji +

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1− γk̟) γji

≤
ℓ−1
∑

i=N

exp

(

−
n+1
∑

k=i+1

̟γk

)

γji + γj−1
ℓ

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1− γk̟) γi

≤ exp

(

−
n+1
∑

k=ℓ

̟γk

)

ℓ−1
∑

i=N

γji +
γj−1
ℓ

̟
.

Lemma S18. Let (γk)k≥1 be a nonincreasing sequence of positive numbers, ̟,β, τ > 0
be positive real numbers, and N ≥ 1 satisfying the assumptions of Lemma S17. Let
P ∈ N

∗, Ci ≥ 0, i = 0, . . . ,P be positive constants and (un)n≥0 be a sequence of real
numbers with u0 ≥ 0 satisfying for all n ≥ 0

un+1 ≤ (1− γn+1̟ + βγn+1(γn+1 − τ)+)un +
P
∑

i=0

Cjγ
j+2
n+1 .

Then for all n ≥ 1,

un ≤
{

N−1
∏

k=1

(

1 + βγ2k
)

}

n
∏

k=N

(1− γk̟) u0 +
P
∑

j=0

Cj

n
∑

i=N

n
∏

k=i+1

(1− γk̟) γj+2
i

+







P
∑

j=0

Cjβ
−1γj1

N−1
∏

k=1

(

1 + γ2kβ
)







n
∏

k=N

(1−̟γk) .

Proof. This is a consequence of a straightforward induction and Lemma S17-(i).

Proposition S19. Assume H1, H2 and G1. Let x⋆ be the unique minimizer of U . Let
ζ0 ∈ P2(Rd ×R

d), (Yt, Y t)t≥0 such that (Y0, Y 0) is distributed according to ζ0 and given
by (9). Then for all n ≥ 0 and t ∈ [Γn,Γn+1]:

E

[

∥

∥Yt − Y t
∥

∥

2
]

≤ ũ(1)n E

[

∥

∥Y0 − Y 0

∥

∥

2
]

+ ũ(4)n + ũ
(5)
t,n ,

where

ũ(1)n (γ) =

{

n1−1
∏

k=1

(

1 + L2(1 + ρ)γ2k
)

}

n
∏

k=n1

(1− κγk/2) , (S55)
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ũ(4)n (γ) =
n
∑

i=n1

γ2i a(γi)
n
∏

k=i+1

(1− κγk/2)

+ a(γ1)(L
2(1 + ρ))−1

{

n1−1
∏

k=1

(1 + γ2k(1 + ρ)L2)

}

n
∏

k=n1

(1− κγk/2) ,

where for γ > 0,

a(γ) =
{

2κ−1 + (1 + ρ−1)γ
}

(dL2 + δL4γ/2 + dL4γ2/12) ,

δ = maxi≥1

{

e−2mΓi−1E

[

‖Y0 − x⋆‖2
]

+ (1− e−2mΓi−1)(d/m)
}

,

and

ũ
(5)
t,n(γ) =

m+ L

2

(

(t− Γn)
3L2

3
G1,n(µ0, γ) + (t− Γn)

2d

)

,

where G1,n(µ0, γ) is given by (S47) and µ0 is the initial distribution of Y 0.

Proof. Lemma S16 with ε1 = κ/4 and ε2 = ρ, G1, Lemma S17, ((i)) imply for all n ≥ 0

E

[

∥

∥YΓn − Y Γn

∥

∥

2
]

≤ ũ(1)n (γ)E
[

∥

∥Y0 − Y 0

∥

∥

2
]

+ ũ(4)n (γ) . (S56)

Now let n ≥ 0 and t ∈ [Γn,Γn+1]. By (9),

∥

∥Yt − Y t

∥

∥

2
=
∥

∥YΓn − Y Γn

∥

∥

2 − 2

∫ t

Γn

〈

∇U(Ys)−∇U(Y Γn), Ys − Y s

〉

ds . (S57)

Moreover for all s ∈ [Γn,Γn+1], by (3) we get

〈

∇U(Ys)−∇U(Y Γn), Ys − Y s

〉

=
〈

∇U(Ys)−∇U(Y Γn), Ys − Y Γn + Y Γn − Y s

〉

≥ (m+ L)−1
∥

∥∇U(Ys)−∇U(Y Γn)
∥

∥

2
+
〈

∇U(Ys)−∇U(Y Γn), Y Γn − Y s

〉

. (S58)

Since |〈a, b〉| ≤ (m+ L)−1 ‖a‖2 + (m+ L) ‖b‖2 /4, we have

〈

∇U(Ys)−∇U(Y Γn), Y Γn − Y s

〉

≥ −(m+ L)−1
∥

∥∇U(Ys)−∇U(Y Γn)
∥

∥

2 − (m+ L)
∥

∥Y s − Y Γn

∥

∥

2 /
4 .

Using this inequality in (S58), we get

〈

∇U(Ys)−∇U(Y Γn), Ys − Y s

〉

≥ −(m+ L)
∥

∥Y s − Y Γn

∥

∥

2 /
4 ,

and (S57) becomes

∥

∥Yt − Y t

∥

∥

2 ≤
∥

∥YΓn − Y Γn

∥

∥

2
+ ((m+ L)/2)

∫ t

Γn

∥

∥Y s − Y Γn

∥

∥

2
ds (S59)
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Therefore, by the previous inequality, it remains to bound the expectation of
∥

∥Y s − Y Γn

∥

∥

2
.

By (9) and using ∇U(x⋆) = 0,

∥

∥Y s − Y Γn

∥

∥

2
=
∥

∥

∥−(s− Γn)(∇U(Y Γn)−∇U(x⋆)) +
√
2(Bs −BΓn)

∥

∥

∥

2
.

Then taking the expectation, using the Markov property of (Bt)t≥0 and H1, we have

E

[

∥

∥Y s − Y Γn

∥

∥

2
]

≤ (s− Γn)
2L2

E

[

∥

∥Y Γn − x⋆
∥

∥

2
]

+ 2(s− Γn)d . (S60)

The proof follows from taking the expectation in (S59), combining (S56)-(S60), and
using Theorem S15.

Theorem S20. Assume H1, H2 and G1. Then for all µ0 ∈ P2(Rd) and n ≥ 1,

W 2
2 (µ0Q

n
γ , π) ≤ ũ(1)n (γ)W 2

2 (µ0, π) + ũ(2)n (γ) , (S61)

where (ũ
(1)
n )n≥0 is given by (S55) and

ũ(2)n (γ) =
n
∑

i=n1

γ2i b(γi)
n
∏

k=i+1

(1− κγk/2)

+ b(γ1)(L
2(1 + ρ))−1

{

n1−1
∏

k=1

(1 + γ2k(1 + ρ)L2)

}

n
∏

k=n1

(1− κγk/2) , (S62)

where
b(γ) =

{

2κ−1 + (1 + ρ−1)γ
}

(dL2 + dL4γ/(2m) + dL4γ2/12) .

Proof. Let ζ0 be an optimal transference plan of µ0 and π. Let (Yt, Y t)t≥0 with (Y0, Y 0)
distributed according to ζ0 and defined by (9). By definition of W2 and since for all
t ≥ 0, π is invariant for Pt, W

2
2 (µ0Q

n, π) ≤ E[‖YΓn −XΓn‖2]. Then the proof follows
from Proposition S19 since Y0 is distributed according to π and by Proposition 1-(ii),
which shows that δ ≤ d/m.

8.1 Explicit bound based on Theorem S20 for γk = γ1k
α with α ∈ (0, 1]

We give here a bound on the sequences (ũ
(1)
n (γ))n≥1 and (ũ

(2)
n (γ))n≥1 for (γk)k≥1 defined

by γ1 > 0 and γk = γ1k
−α for α ∈ (0, 1]. Recall that ψψψβ is given by (S38). First note,

since (γk)k≥1 is nonincreasing, for all n ≥ 1, we have

ũ(2)n (γ) ≤
1
∑

j=0

Cj

n
∑

i=n1

γj+2
i

n
∏

k=i+1

(1− κγk/2)

+

1
∑

j=0

Cj(L
2(1 + ρ))−1γj1

{

n1−1
∏

k=1

(1 + γ2k(1 + ρ)L2)

}

n
∏

k=n1

(1− κγk/2) , (S63)

where

C1 = bdL2 ,C2 = b(dL4/(2m) + γ1dL
4/12) , b = 2κ−1 + (1 + ρ−1)γ1 .
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1. For α = 1 and n1 = 1, by (S39) and (S40), we have

ũ(1)n (γ) ≤ (n+ 1)−κγ1/2

ũ(2)n (γ) ≤ (n+ 1)−κγ1/2
1
∑

j=0

Cj

{

γj+2
1 (ψψψκγ1/2−1−j(n+ 1) + 1) + (L2(1 + ρ))−1γj1

}

.

For n1 > 1, since (γk)k≥0 is non increasing, using again (S39), (S40), and the
bound for t ∈ R, (1 + t) ≤ et

ũ(1)n (γ) ≤ (n + 1)−κγ1/2 exp
{

κγ1ψψψ0(n1)/2 + L2(1 + ρ)γ21(ψψψ−1(n1 − 1) + 1)
}

ũ(2)n (γ) ≤ (n + 1)−κγ1/2
1
∑

j=0

Cj

(

γj+2
1 (ψψψκγ1/2−1−j(n + 1)−ψψψκγ1/2−1−j(n1) + 1)

+(γj1/(L
2(1 + ρ)) exp

{

κγ1ψψψ0(n1)/2 + L2(1 + ρ)γ21(ψψψ−1(n1 − 1) + 1)
}

)

.

Thus, for γ1 > κ/2, we get a bound in O(n−1).

2. For α ∈ (0, 1) and n1 = 1, by (S39) and Lemma S17-(ii) applied with ℓ = ⌈n/2⌉,
we have

ũ(1)n (γ) ≤ exp (−(κγ1/2)ψψψα−1(n+ 1))

ũ(2)n (γ) ≤
1
∑

j=0

Cj

{

γj+2
1

(

ψψψ1−α(j+2)(⌈n/2⌉) + 1
)

e−(κγ1/2)(ψψψ1−α(n+1)−ψψψ1−α(⌈n/2⌉))

+2κ−1γj+1
1 (n/2)−α(j+1) + γj1e

−(κγ1/2)ψψψα−1(n+1)
}

.

For n1 > 1 and ⌈n/2⌉ ≥ n1, since (γk)k≥0 is non increasing, using again (S39), and
Lemma S17-(ii) applied with ℓ = ⌈n/2⌉, and the bound for t ∈ R, (1 + t) ≤ et, we
get

ũ(1)n (γ) ≤ e−κγ1(ψψψα−1(n+1)−ψψψ1−α(n1))/2+L2(1+ρ)γ21 (ψψψ1−2α(n1−1)+1)

ũ(2)n (γ) ≤
1
∑

j=0

Cj

{

2κ−1γj+1
1 (n/2)−α(j+1)

+ γj+2
1

(

ψψψ1−α(j+2)(⌈n/2⌉)−ψψψ1−α(j+2)(n1) + 1
)

e−(κγ1/2)(ψψψ1−α(n+1)−ψψψ1−α(⌈n/2⌉))

+(γj1/(L
2(1 + ρ))e−κγ1(ψψψα−1(n+1)−ψψψ1−α(n1))/2+L2(1+ρ)γ21 (ψψψ1−2α(n1−1)+1)

}

.

9 Explicit bounds on the MSE

Without loss of generality, assume that ‖f‖Lip = 1. In the following, denote by Ω(x) =

‖x− x⋆‖2 + d/m and C a constant (which may take different values upon each appear-
ance), which does not depend on m,L, γ1, α and ‖x− x⋆‖.
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9.1 Explicit bounds based on Theorem 5

1. First for α = 0, recall by Theorem 5 and (S34) we have for all p ≥ 1,

W 2
2 (δxR

p
γ , π) ≤ 2Ω(x)(1 − κγ1/2)p + 2κ−1(A0γ1 + A1γ

2
1) ,

where A0 and A1 are given by (S35) and (S36) respectively. So by (S23) and
Lemma 7, we have the following bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1 exp(−κNγ1/2)Ω(x)
γ1n

+ κ−1
A0γ1

)

.

Therefore plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1 +

κ−2 + κ−1 exp(−κNγ1/2)Ω(x)
nγ1

)

. (S64)

So with fixed γ1 this bound is of order γ1. If we fix the number of iterations n, we
can optimize the choice of γ1. Set

γ⋆,0(n) = (κ−1
A0)

−1(CMSE,0/n)
1/2 , where CMSE,0 = κ−3

A0 ,

and (S64) becomes if γ1 ← γ⋆,0(n),

MSEN,nf ≤ C(CMSE,0n)
−1/2

(

κ−1 exp(−κNγ⋆,0(n)/2)Ω(x) + CMSE,0

)

.

Setting N0(n) = 2(κγ⋆,0(n))
−1 log(Ω(x)), we end up with

MSE
N0(n),n
f ≤ C(CMSE,0/n)

1/2 .

Note that N0(n) is of order n
1/2.

2. For α ∈ (0, 1/2) by Theorem 5, Lemma 7, (S39) and (S41), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1

(1− 2α)nα
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.

Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1

(1− 2α)nα
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.

(S65)
At fixed γ1, this bound is of order n−α, and is better than (S64) for (γk)k≥1

constant. If we fix the number of iterations n, we can optimize the choice of γ1
again. Set

γ⋆,α(n) = (κ−1
A0/(1−2α))−1(CMSE,α/n

1−2α)1/2 , where CMSE,α = κ−3
A0/(1−2α) ,
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(S65) becomes with γ1 ← γ⋆,α(n),

MSEN,nf

≤ C(CMSE,αn)
−1/2

(

κ−1 exp
{

−κN1−αγ⋆,α(n)/(2(1 − α))
}

Ω(x) + CMSE,α

)

.

Setting Nα(n) = {2(1− α)(κγ⋆,α(n))−1 log(Ω(x))}1/(1−α), we end up with

MSE
Nα(n),n
f ≤ C(CMSE,α/n)

1/2 .

It is worthwhile to note that the order of Nα(n) in n is n(1−2α)/(2(1−α)) , and CMSE,α

goes to infinity as α→ 1/2 .

3. If α = 1/2, by Theorem 5, Lemma 7, (S39) and (S41), we have the following bound
for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1 log(n)

n1/2
+
κ−1 exp

{

−κγ1N1/2/4
}

Ω(x)

γ1n1/2

)

.

Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1 log(n)

n1/2
+
κ−1 exp

{

−κγ1N1/2/4
}

Ω(x) + κ−2

γ1n1/2

)

. (S66)

At fixed γ1, the order of this bound is log(n)n−1/2, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of γ1. Set

γ⋆,1/2(n) = (κ−1
A0)

−1(CMSE,1/2/ log(n))
1/2 , where CMSE,1/2 = κ−3

A0 ,

and (S66) becomes with γ1 ← γ⋆,1/2(n),

MSEN,nf

≤ C
(

log(n)

nCMSE,1/2

)1/2(

κ−1 exp
{

−κN1/2γ⋆,1/2(n)/4
}

Ω(x) +
CMSE,1/2

log(n)

)

.

Setting N1/2(n) = (4(κγ⋆,1/2(n))
−1 log(Ω(x)))2, we end up with

MSE
N1/2(n),n

f ≤ C
(

log(n)CMSE,1/2

n

)1/2

.

4. For α ∈ (1/2, 1], by Theorem 5, Lemma 7, (S39) and (S41), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.
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Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.

For fixed γ1, the MSE is of order n1−α, and is worse than for α ∈ [0, 1/2]. For
a fixed number of iteration n, optimizing γ1 would imply to choose γ1 → +∞ as
n→ +∞. Therefore, in that case, the best choice of γ1 is the largest possible value
1/(m + L).

5. For α = 1, by Theorem 5, Lemma 7, (S39) and (S41), the bias is upper bounded
by

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1

log(n)
+
κ−1N−κγ1/2Ω(x)

γ1 log(n)

)

.

Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1

log(n)
+
κ−1N−κγ1/2Ω(x) + κ−2

γ1 log(n)

)

.

For fixed γ1, the order of the MSE is (log(n))−1. For a fixed number of iterations,
the conclusions are the same than for α ∈ (1/2, 1).

9.2 Explicit bound based on Theorem 9

1. First for α = 0, recall by Theorem 9 and (S42) we have for all p ≥ 1,

W 2
2 (δxR

p
γ , π) ≤ 2Ω(x)(1 − κγ1/2)p + 2κ−1(B0γ1 + B1γ

2
1) ,

where B0 and B1 are given by (S43) and (S44) respectively. So by and Lemma 7,
we have the following bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1 exp(−κNγ1/2)Ω(x)
γ1n

+ κ−1
B0γ

2
1

)

.

Therefore plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
B0γ

2
1 +

κ−2 + κ−1 exp(−κNγ1/2)Ω(x)
nγ1

)

. (S67)

So with fixed γ1 this bound is of order γ1. If we fix the number of iterations n, we
can optimize the choice of γ1. Set

γ⋆,0(n) = (κB0n)
−1/3 ,

and (S64) becomes if γ1 ← γ⋆,0(n),

MSEN,nf ≤ C(B
−1/2
0 n)−2/3

(

κ−4/3 exp(−κNγ⋆,0(n)/2)Ω(x) + κ−5/3
)

.
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Setting N0(n) = 2(κγ⋆,0(n))
−1 log(Ω(x)), we end up with

MSE
N0(n),n
f ≤ C(B

−1/2
0 κ5/2n)−2/3 .

Note that N0(n) is of order n
1/3.

2. For α ∈ (0, 1/3) by Theorem 9, Lemma 7, (S39) and (S45), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ

2
1

(1− 3α)n2α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.

Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
B0γ

2
1

(1− 3α)n2α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.

(S68)
If we fix the number of iterations n, we can optimize the choice of γ1 again. Set

γ⋆,α(n) = (n1−3ακB0/(1− 3α))−1/3 ,

(S68) becomes with γ1 ← γ⋆,α(n),

MSEN,nf ≤ C(B
−1/2
0 n)−2/3

(

κ−4/3 exp(−κNγ⋆,0(n)/(2(1 − α)))Ω(x) + κ−5/3(1− 3α)−1/3
)

.

Setting Nα(n) = {(κγ⋆,α(n))−1 log(Ω(x))}1/(1−α), we end up with

MSE
Nα(n),n
f ≤ C(B

−1/2
0 κ5/2n)−2/3 .

It is worthwhile to note that the order of Nα(n) in n is n(1−3α)/(3(1−α)) .

3. If α = 1/3, by Theorem 9, Lemma 7, (S39) and (S45), we have the following bound
for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ

2
1 log(n)

n2/3
+
κ−1 exp

{

−κγ1N2/3/4
}

Ω(x)

γ1n2/3

)

.

Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
B0γ

2
1 log(n)

n2/3
+
κ−1 exp

{

−κγ1N2/3/4
}

Ω(x) + κ−2

γ1n2/3

)

. (S69)

At fixed γ1, the order of this bound is log(n)n−2/3, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of γ1. Set

γ⋆,1/2(n) = (κB0 log(n))
−1/3 ,
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and (S69) becomes with γ1 ← γ⋆,1/2(n),

MSEN,nf ≤ C
(

log(n)B0

n2

)1/3
(

κ−4/3 exp
{

−κN1/2γ⋆,1/2(n)/4
}

Ω(x) + κ−5/3
)

.

Setting N1/2(n) = (4(κγ⋆,1/2(n))
−1 log(Ω(x)))3/2, we end up with

MSE
N1/2(n),n

f ≤ C
(

log(n)B0

κ5n2

)1/3

.

We can see that we obtain a worse bound than for α = 0 and α ∈ (0, 1/3).

4. For α ∈ (1/3, 1], by Theorem 9, Lemma 7, (S39) and (S45), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.

Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
B0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.

For fixed γ1, the MSE is of order n1−α, and is worse than for α = 1/2. For a fixed
number of iteration n, optimizing γ1 would imply to choose γ1 → +∞ as n→ +∞.
Therefore, in that case, the best choice of γ1 is the largest possible value 1/(m+L).

5. For α = 1, by Theorem 9, Lemma 7, (S39) and (S41), the bias is upper bounded
by

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ1

log(n)
+
κ−1N−κγ1/2Ω(x)

γ1 log(n)

)

.

Plugging this inequality and the one given by Theorem S1 implies:

MSEN,nf ≤ C
(

κ−1
B0γ1

log(n)
+
κ−1N−κγ1/2Ω(x) + κ−2

γ1 log(n)

)

.

For fixed γ1, the order of the MSE is (log(n))−1. For a fixed number of iterations,
the conclusions are the same than for α ∈ (1/2, 1).
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