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1 Proofs of Section 2

1.1 Proof of Proposition 1

(i) The generator o7 associated with (P;)¢>0 is given, for all f € C?(R?) and y € R?,
by:
A f(y) == (VU(y),VI(y) + Af(y) - (S1)

Denote for all y € R? by V(y) = |ly — 2*||*. Let € R? and (Y;);>0 be a solution of (1)
started at z. Under H1 sup,c( 1 E[||Y;]?] < +oc for all T > 0. Therefore, the process

(Voo -vie) - [(wrviras) N

is a (F;)i>o-martingale. Denote for all ¢ > 0 and = € R? by v(t,z) = P,V (x). Then we
have, Ov(t,x)/0t = PV (x).

Since VU (2*) = 0 and by H2, (VU (z) — VU (2*), 2 — 2*) > m/ ||z — 2*||*, we have
GV (x) =2(—(VU(z) = VU(z*),x —2*) +d) < 2(—mV(z) +d) . (S2)
Therefore, we get

ov(t, x)
ot

and the proof follows from the Gronwall inequality.

= PV (x) < =2mP,V(z) 4+ 2d = —2muv(t,x) + 2d ,

Ecole Normale Supérieure CMLA 61, Av. du Président Wilson 94235 Cachan Cedex, France Email:
alain.durmus@cmla.ens-cachan.fr

2Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France.
eric.moulines@polytechnique.edu



(ii) Set V(z) = ||z — 2*||>. By Jensen’s inequality and Lemma 19-(i), for all ¢ > 0
and t > 0, we get

T(VAc)=nP(VAc)<m(PV Ac)

d
< / (dz)eA {Hx —z*|Pe™ ™ 4 —(1 - eth)}
m

<7(VAe)e™™ (1 —e ?™d/m .

A

Taking the limit as t — +o00, we get 7(V A ¢) < d/m. Using the monotone convergence
theorem and taking the limit as ¢ — +o0o concludes the proof.

(iii) Let z,y € R%. Consider the following SDE in R¢ x R%:

{dYt = —VU(Y;)dt + v2dB, , ($3)

dY; = —VU(Y;)dt 4+ v/2dB; ,

where (Yp,Yy) = (z,%). Since VU is Lipschitz, then by [4, Theorem 2.5, Theorem 2.9,
Chapter 5], this SDE has a unique strong solution (Y3, Y;)i>0 associated with (By)i>o.
Moreover since (Y;,Y;)s>0 is a solution of (S3),

i = sl -2 (vt - svtz s

which implies using H2 and Gronwall’s inequality that

—Y. —2mt
s .

~ 112 ~ 112 2 ~ 112
i =] < o 5] o< [vo -]

Since for all t > 0, the law of (Y},f}) is a coupling between 9, FP; and 4, P, by definition
of Wa, Wa(3,P;, 6, P;) < E[||Y; — Y3||]*/2, which concludes the proof.

(iv) The proof is a direct consequence of (ii) and (iii)

1.2 Proof of Proposition 2

(i) Note that the proof is trivial if ¢ < n. Therefore we only need to consider the
case £ > n. For any v € (0,2/(m + L)), we have for all x € R%:

/Rd ly = «*|* Ry (2,dy) = [l = yVU (x) — a*|* +27d .
Using that VU (z*) = 0, and (3), we get from the previous inequality:
[ = Ry (o)
Rd

* 2 *
< =m) o= 47 (7= = ) IVU() - VU@ + 20a

< (=) llz —a*|* + 2vd,



where we have used for the last inequality that v < 2/(m + L). Then by definition (7)
of QQL’K for £,n > 1, £ > n, the proof follows from a straightforward induction.

(ii) By (i), we have for all z € R% and n > 1,

L =P By dy) < (L= k)" o = o #2039 (1 - m)
k=1

< (1= )" [l =2 + 267N = (1= w)") - (S4)

Since any compact set of R? is accessible and small for R, then [5, Theorem 15.0.1]
implies that R, has a unique stationary distribution 7. Using (S4), the proof is along
the same line as the one of Proposition 1-(ii).

1.3 Proof of Proposition 3

(i) (Zk)k>1 be a sequence of ii.d. d-dimensional Gaussian random variables. We
consider the processes (Xg’l,Xl?’?)kZO with (Xg’l,Xg’2) = (z,y) and defined for k£ > 0
by

Xpli = X = e VUXP) +  24nZiir 5 =1,2. (S5)

Using (S5), we get for any £ > n > 1. W;(éng’g,ész’ ) < E[|X;"' — X;%)12] and (3)
implies for kK > n — 1,

)2 2 1 2
[zt = e = [l - x

2. 9 n,1 NIk
k+1 k+1 ’ +7n+kHVU(Xk ) — VU(X, )H

= 2 (Xp! = X2, VUK = VU(X]))
’2

Therefore by a straightforward induction we get for all £ > n,

< (1= ki) || X7 = X702

2

1 2
Jxi - |
(ii) Let u € Pop(R?) and p > 1. It is straightforward that for all n > 0, pRY €
Pap(R?).  Then, by Proposition 3-(i) for v < 2/(m + L), R, is a strict contraction

in (Pgp(RY), Way,) and there is a unique fixed point 7., which is the unique invariant
distribution. (ii) follows from Proposition 3-(i).

l
2
I ) (CRra] el v
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2 Proofs of Section 3

2.1 Proof of Lemma 7

Let ¢ € {1,...,n+ 1}. Since (y%)r>1 is non-increasing,

n+1 n+1 {—1 n+1 n+1 n+1
Z H (1 =)y Z H (1 — @) %+Z H (1 =)y
i=1 k=i+1 i=1 k=i+1 =0 k=i+1
n+1 n+1 n+1
<H (1 — k) Z'Wr'yg SOOI G=ww)
i=f k=i+1

n+1 —1

<H 1 — @) Z%

2.2  Proof of (28)

Consider the constant sequence 7 =y for all £ € N* with v € (0,1/(m + L)]. By (22),
we have for all n € N* and z € RY

n

9 (@) < AD1(y,d) +7*D2(7) S (1 — w7/2)" 6, m0(x) |
=1

where
Di(y,d) = 2L (k7' +7) (2d + L*4%/6) , Da(y) =L" (v7' +7) .

In addition, using that x > 2m and for all t >0, 1 — ¢ < e~ ?,
> (1= K9/ ino@) = D [(1 = w2 {2 g - 2
i=1 i=1
+(1_ —2my(i— 1> d/m }]

< ne™™ 0D 1 — 2¥)|12 4+ 2d(kym) 7 (S6)

Therefore for all n > 1 and z € R? we get

O)(@) <AD1(7) +7°Da(7) {ne ™™V |lz — 2 > + 2d(mym) '} . (ST)

n,

Let now £ € N*, ¢ > [7*1] +landn=1/~¢— [fy*q. Then,

¢
> {301 k-1(2) + dii}

k=n+1
< (L*~3/3) {(1 — k)" (L —=n—1) |z —a*|* + 2" yd(l —n — 1)} +dy? (0 —n—1)

< (£2*/3) {1+ =) T o = 2% 4 200 4 )t +d(1 4+ )

Combining this inequality and (S7) in the bound provided by Theorem 13 shows (28).



2.3 Proof of (58)

First for all n > 1 and = € R%, we have

I (@) < VE(r.d) +vE2(0) Y T (= 69/2)0im0(2)
=1 k=i+1

where

Ei(y,d) = 2dr~" {2L2 +dr~Y(dL?/12 + yLA/4) + 72L4/6} JEs(y) = L4(4r~1/3 4 ) .



Es(y,d,z) = (€ =5 De ™7 |z — 2*|? 4 24/ (kym)
Es(v,d,x) = e~ =271 -1) |z — a*||> + 26" d + d/m. .

By (S6), we get for all n > 1 and = € R?,
IN(@) < VE1(y,d) +E2(7) {ne ™D o — 2| + 2d(ym) T L (88)

On the other hand, for all z € R%, ¢,n € N, n > 1, £ > n we have using that x > 2m
and forall t > 0,1 -t <et,

92 (@) < nEr(3) + 7*nEa(y) {0y () + dfm |
< 7PnE1(7) + 7P nEa() {e ™D (1= k)" [l — 2| 4+ 257 1d) + d/m }

< 7*nE(y) +v*nEa(y) {e D |l — 2| 4+ 267 d + d/m | (S9)
Finally, for all £ € N* and x € R?, we have
(PL/3)ore1(2) + dy? < (PL2/3) {(1 = my)! 7 llo = ” | + 24571} + . (S10)

Combining (S8), (S9) and (S10) in the bound given by Lemma 22, and using that
4~1 < 2n) < 2971 we have for all £ € N*, ¢ > 2n(V),
1/2
10 Pey = oS vy < 27421 | (P L2/3) { (1 = k)"~ flo —2* > + 27" | + do?]
_ 1/2
+ (41) 72 [72E1(3) + 2 Ea(9) { (€ = v e T g — 0¥ + 2d(rym) T }

1/2
n(v) 732k_1E1(7) + 732k_1E2(’)/) {e—m'y(ﬁ—Qk_l) ||35 _ x*HQ + 2/-6_1d—|— d/m}

+ Z Tl:2k+1’y

k=1

1/2
<9732[ {(73L2/3) {(1 — k) |z — 2|2+ 2dm_1} + d72}

- - —my(£—=2y" " — * — 1/2
o+ (4m) 72 |26, (1) + E2(7) { (€ = D™D o — 0¥ o+ 2d(kym) ]

_ 1/2
+ (4m)"2n(y) |7E1(7) +2Ea(y) { T g — 2t P 4 267 d 4 dfm |

3 Proof of Theorem 18

Let N >0,n>1, 2 € Rand f € Fy(R?). The main idea of the proof is to consider
the decomposition (S31) again but combined with the decomposition of <I>nN i1 fOr
k€ {N,...,N+n—1}, into a Lipschitz component and a bounded measurable component



as it is done in the proof of (39). Let k € {N,...,N +n—1}. By definition (33),
@ﬁk = w,é\;_l’nf + i)nj\fk, where @ﬁk = Zf\i}:’i2 Wi'lyn §+2’Zf. Using that f is bounded, we
get for all y € R and A > 0,

R {eA{q}g’kﬁ_l(')*RﬁkJﬁl¢¢]Xk+1(y)}} (y)

Ve+1

< e)\OSC(f) 'Yk+2(FN+2,N+n+1)72R {eA{éﬁikH(')—Rka éﬁikﬂ(y)}} (y)

Y41

By (38) and (S32), we obtain for all y € R? and A > 0,

Ry, {ek{%ﬂcmw@ff,my»} )
N+n 2
o A“dﬁ%w@wwwMﬂ>2+umanWH<§Zw%mMHuWﬁ
i=k+2

(S11)

It remains to control the Laplace transform of W under 6;,3Q£>f . For this, note that

by (40) WX is a Lipschitz function. Therefore using Lemma S6, we get an analogue of
Corollary 7: for all y € R% and A > 0,

N+n 2
Ey eA{‘PrJY(Xn)*EI[\I/g(Xn)]} < exp I{_l)\QOSC(f)Q ( Z Wz!?[n (TCANJrl,i)l/Q) ’
i=N+1
(S12)
Combining (S11) and (S12) in (S31), the Laplace transform of #2 (f) can be explicitly
bounded: for all A > 0,

E, [e)\{ﬁﬁ(f)—Ex[ﬁ,]y(f)]}} < Aol Tnsa v inin) TN ose(N)uD, ()

Using this result and the Markov inequality, for all A > 0, we have:

P, (7Y (f) > Eu[ad ()] + 7]
< exp (—)\r + Aosc(f)(Tnson+nt1) t+ (A OSC(f))zugs,)n(’Y)) :

Then the proof follows from taking

A= (r — ose(f)(Tnsansni) )/ (2osc(f)*ulf) (7)) -



4 Proof of Section 8

4.1 Coupling

Consider the Markov kernel K on (R? x R4, B(R?) @ B(R9)) given for all (z,y) € R? x R?
and A € B(R?) ® B(R?) by

Ip(hr(x), he(y v (a2 /(202 1~
Ki((,y),A) = D((;TEO'%)d/Z( ) /Rd 1 (%, )o@/ C2oD) g3 (S13)
]lDC(hk(l')7hk(y)) [/ ]lA(.f',.f')pk(.%',y,Tk(.f',.%'))e_”ﬂ“(i’$)||2/(20z)d.i'
R4

ro?) 7
+ [ G Falo g l,00) (= pelosy () e @0 oDz |
Rd
where for all & € RY, 74,(Z,2) = & — hy(z) and D = {(,7) € R? x R*| & = §} and

pk(x’y’ Z) =1A Oék(ﬁl?,y,Z) .

By construction, Ki((z,y),- x R?) = Py(x,-) for all z,y € R? and Ki((z,y),R? x -) =
Pw(y,-) for all (x,y) such that hy(x) = hp(y). In addition, for all A € B(R?), we have for
all (z,) € R? x R? such that hy(z) # he(y), we get

1 .
Ki((z,9),RY x A) = ———— [ 1,@)pu(a,y, & — hy(z))e 1E-m@I7/CR gz (S14)
(2750',%)0U2 R4
+ G2y / L (Fi(z,y,& — hi(2) {1 — pile,y, & — hy(x))} e 1@/ Gl gz
(QRU]%)d/z Rd

Since (Id —2ex(x,y)ex(x,y)T) is an orthogonal matrix, making the change of variable
g = Fi(z,y,Z — hi(z)) and using that

<ek(x’y)a hk(y) - :’j> = <ek(xay)’j - hk(x»

we get that

/Rd 1y (Fr(,y, & — hp(2))) {1 — pr(, 9, & — ()} e~ IE- @7/ CoR) g3
B / 14(§) {1 = pilo,y, hiy) — §)} e 171/ 27Dag - (815)
R4

By definition of ay(z,y, (64), we have for all & € R?,

o (2.7 — ha(a) = @0z (ex (@, y), hu(y) — ) B 1
B ) = (Bl ) — (o, 9) h(y) — 7)) (g, ha(y) — 7)

(S16)

In addition using that

1 = hi(@)[* = & = P ()]* = 2 (hi(y) — &, Ex(2,)) + [|Ex(z, )],



we obtain
(@, y, & — hy(2))e 1T @I/ CoR) — by (2 y, g (y) — 2)e” PP/ o0 (s17)

Plugging (S15) and (S17) into (65) implies that Ky ((z,y), R? x A) = P (y, A).

4.2 Proof of Lemma 24

Let ¢,a > 0 and t € R,. Let us denote by I the integral on the left hand side in the
expression above. Then,

1= [ teat - patc-my {120 (1) Loy

—0o0

= /_t: P2 (y) {1 —2® <2y2—;t> } dy (S18)
_ /_:/2%2(;/) {1 — 2% (%) } dy ,

Now to simplify the proof, we give a probabilistic interpretation of this two integrals.
Let X and Y be two real Gaussian random variables with zero mean and variance a’
and ¢? respectively. Since for all u € Ry, 1 — 2®(—u/(2a)) = P[|X| < u/2], we have by
(S18)

I=P(Y <t/2,X+Y <t/2)Y — X <t/2)
~P(Y >t/2,X+Y >t/2,Y - X >1/2) .

Using that Y and —Y have the same law in the second term, we get

I=P(Y <t/2,X+Y <t/2,Y — X <t/2)
—P(Y <—1/2,X =Y >1/2,Y + X < —1/2)

=L +1, (819)
where
L=P(Y<t/2,X+Y <t/2,Y - X <t/2,X >0)
—P(Y <—-t/2,X-Y >t/2,Y + X <—1/2,X >0)
=P(|X+Y|<t/2,X>0), (S20)
and

L=P(Y<t/2X+Y <t/2,)Y —X <t/2,X <0)
—P(Y < —t/2,X - Y >1/2,Y + X < —1/2,X <0) .



Using again that Y and —Y have the same law in the two terms we have

L=P(Y>—t/2,X - Y <t/2,Y + X > /2, X <0)
-P(Y>t/2,X+Y >t/2, X -Y <—t/2,X <0)
=P(| X+ Y|<t/2,X <0) . (S21)
Combining (S20), (S21) in (S19), we have I = P(|X + Y| < ¢/2). The proof follows from

the fact that X + Y is a real Gaussian random variable with mean zero and variance
a2 + §2, since X and Y are independent.

5 Mean square error and concentration for Lipschitz func-
tions

Let f : R — R be a Lipschitz function and (Xk)k>0 the Euler discretization of the
Langevin diffusion. In this section we study the approximation of [ f(y)7(dy) by the
weighted average estimator

N+n
ﬁ-r]zv(f) = Z Wl]c\fnf(Xk) ) wljc\,fn = 7k+1rji\71+27]v+n+1 . (822)
k=N+1

where N > 0 is the length of the burn-in period, n > 1 is the number of samples, and for
n,p € N, I, , is given by (5). In all this section, P, and E, denote the probability and
the expectation respectively, induced on ((R%)N, B(R)N) by the Markov chain (X, )n>0
started at € R?. We first compute an explicit bound for the Mean Squared Error
(MSE) of this estimator defined by:

() = m (D] = (Bala (1] = ()} + Var, {72 ()}

We first bound the bias. For all k € {N+1,..., N+n}, let & be the optimal transference
plan between 535@5 and 7 for Wa, i.e. W22(5$Q,’j,7r) = Jpaypgallz — y||> d€(x,y). Then
by the Jensen inequality and because f is Lipschitz, we have:

MSEN" = E, [

(B3 (1]~ 7))’ = < Yol [ e —f<y>}§k<dz,dy>>2

k=N11 Rd xRd
N+n

Uy 30wl [, le= ol Guldzdy)

k=N+1

Let (v%)k>1 be a nonincreasing sequence with y; < 1/(m + L) and recall that z* is the

unique minimizer of U. Using Theorem 5 and Theorem 9, we end up with the following

bound:

5 N+n
. 1
Ela (=7} < W 3o il { Uz — 21+ d/m)u’) () + wi()}
k=N+1

(S23)

10



where ug)(’y) is given in (10) and wy,(7) is equal to u%)( ) defined by (11) if HI-H2
hold, and to u! (7), defined by (17), if H1-H2 and H3 hold.

Consider now the variance term. To control this term, we adapt the proof of [3,
Theorem 2| for homogeneous Markov chain to our inhomogeneous setting, and we have:

Theorem S1. Assume H 1 and H?2. Let (y;)r>1 be a nonincreasing sequence with
7 < 2/(m + L). Then for all N >0, n > 1 and Lipschitz functions f : R* — R, we get

Varg () (£)} < 8672 | fllEi TN} o v-n 10N (7), where

own() {14 Dby i (71 +2/(m+ D) (524)

Proof. Our main tool is the Gaussian Poincaré inequality [1, Theorem 3.20] which can
be applied to R, (y,-) defined by (6), noticing that R,(y,-) is a Gaussian distribution
with mean y—~VU (y) and covariance matrix 2 I4: for all Lipschitz function g : R* — R

2 2
Ry{g() = Ryg(y)}" (v) < 2v[lgllLsp - (525)
To go further, we decompose 7 (f) — E.[# (f)] as the sum of martingale increments,
w.r.t. (Gn)n>0, the natural filtration associated with Euler approximation (X,,),>0, and
we get

Vor, (=0} = 3 B [(B9 [+ (0] - 52 (7))
+ B, [(BS [# (1)) — B7Y (£))°] - (526)

Since 7Y (f) is an additive functional, the martingale increment Ek+! [#N(F)]-EZx [#5()]
has a simple expression. For k = N +n —1,..., N + 1, define backward in time the
function

q)r]:[,k P T wljc\,fnf(xk) + R"/k+1 n k—l—l(xk) ) (827)
where <I>nN7N+n S TN q)r]XN+n(xN+n) = wN_anf(xNJrn). Denote finally
\I/N TN = R’YN+1 nNNJrl(xN) : (828)

Note that for k € {N,..., N +n — 1}, by the Markov property,

g ~ A
(I)nN,kH(XkH) - R’Yk+1(I)7LN,kI+1(Xk) = E:L“Hl [erz\f(f)] - Egk [erzv(f)} ) (829)
and WY (Xy) = EIV [#)(f)]. With these notations, (S26) may be equivalently ex-
pressed as

N+n—1

Var:v {ﬁév(f)} = Z E [ V41 {q)n k+1 ) R’Yk+1q)nN,k+1(Xk)}2 (Xk)}
k=N

+ Var, {UN(Xn)} . (S30)

11



Now for k = N4+n—1,..., N, we will use the Gaussian Poincaré inequality (S25) to the
sequence of function ® k41 to prove that x — R%H{Cbn a1 (1) — R%HCDnNkH( )} ()
is uniformly bounded. It is required to bound the Lipschitz constant of <I>nN7

Lemma S2. Assume H1 and H2. Let (;)k>1 be a nonincreasing sequence with vy <
2/(m 4+ L). Let N > 0 and n > 1. Then for all y € R, Lipschitz function f and
ke{N,...,N+n—1},

2 2 _
Ry @Y1 () = Ry @1 () (1) < 83k 11T (KO N4 2N 4mr1) 2

where <I>nN7k+1 is given by (S27).

Proof of Theorem S1. By (S27), ||®Y wllLip < vaz:ﬁl HQkJr2 ZfHLlp Using Corol-

lary 4, the bound (1 —¢)1/2 < 1 —t/2 for t € [0,1] and the definition of w ', given by
(30), we have

N—+n

H(I) kHLlp = ||fHL1p Z Win H (1- ’{WJ/Q) <2 ||fHL1p (KFNJr? N4nt1) " !
i=k+1 Jj=k+2

Finally, the proof follows from (S25). O

Also to control the last term in right hand side of (S30), we need to control the
variance of WV (Xy) under 6;,;@4\7 . But similarly to the sequence of functions @2, W2
is Lipschitz by Corollary 4 by definition, see (S28). Therefore it suffices to find some

bound for the variance of g under §,Q5" , for g : R? — R a Lipschitz function, y € R?
and v > 0, which is done in Lemma 16.

Corollary 3. Assume H 1 and H2. Let (y;)k>1 be a nonincreasing sequence with
m < 2/(m + L) Then for all Lipschitz function f and x € RY, Var {UN(Xy)} <
8k 3 HfHLlp N+2 Nni1s Where UN s given by (S28).

Proof. By (S28) and Corollary 4, U} is Lipschitz function with [} ||pi, < SR wh HQN“ * Fllip-
Using Corollary 4, the bound (1 —)/2 <1 —t/2 for t € [0,1] and the definition of wm
given by (30), we have

N+n i

H‘I’nNHLip < HfHLip Z wf,vn (1- “7]’/2) <2 ||fHLip (“FN+2,N+n+1)71
i=N+1 F=N+2

The proof follows from Lemma 16. U
Plugging the bounds given by Lemma S2 and Corollary 3 in (S30), we have
Var, {ﬁ } <8k ? ||f||L1p { N+2,N+n+1L N+1,N4n + “_1F17\12+2 N+n+1}

o2
”f”Llp { N+2,N+nt1 T PN+2 N+n+1(’YN+1 TR )} .

Using that yy41 < 2/(m + L) concludes the proof. O

12



It is worth to observe that the bound for the variance is independent from the
dimension.

We may now discuss the bounds on the MSE (obtained by combining the bounds
for the squared bias (523) and the variance Theorem S1) for step sizes given for k > 1
by 7 = Mk~ where a € [0,1] and 71 < 1/(m + L). Details of these calculations
are postponed to Section 9.1-Section 9.2. The order of the bounds (up to numerical
constants) of the MSE are summarized in Table 1 as a function of v;, n and N. Note
that in the infinite horizon setting, it is optimal to take o« = 1/2 under H1 and H2, and
a =1/3 under H1, H2 and H3.

Bound for the MSE
a=0 71+ (1n) " {1 + exp(=r71N/2)}
a e (0,1/2) [ yn 4 (mn ) {1 +exp(—smN'"*/2(1 — a)))}
a=1/2 y1log(n)n=12 4+ (yynt/?)~t {1 + exp(—ry1 N1 2/4)}
a e (1/2,1) | no [+, {1+ exp(—mm N /(1 —a))}]
a=1 log(n)~! {’yl + ’yfl(l + N~k 2)}

Table 1: Bound for the MSE for v, = 1k~ for fixed 7; and N under H1 and H2

Bound for the MSE
a=0 71+ (nn) {1+ exp(=w1 N/2)}
a € (0,1/3) | vin > 4+ (mn' =) 1 + exp(=sm N'""*/(2(1 — o))}
a=1/3 vilog(n)n=2/% 4 (71n®3) "1 + exp(—rk N2 /4)}
a € (1/3,1) n 1?4+ 97 {1 + exp(—kn N 72/(2(1 — a)))}]
a=1 log(n) ' {7+, (1 + N %/2)}

Table 2: Bound for the MSE for v, = vk~ for fixed v; and N under H1, H2 and H3

If the total number of iterations n 4+ N is held fixed (fixed horizon setting), we may
optimize the value of the step size v, but also of the burn-in period N to minimize
the upper bound on the MSE. The order (in n) for different values of o € [0,1] are
summarized in Table 3 (we display the order in n but not the constants, which are quite
involved).

Let us discuss first the bounds based on Theorem 5. This time for any a € [0,1/2),
we can always achieve a MSE of order n=1/2 by choosing appropriately 71 and N (for
o = 1/2 we have only log(n)n~'/2). For a € (1/2,1], the best strategy is to take N =0
and the largest possible value for v; = 1/(m+ L), which leads to a MSE of order n®~! for
a € (0,1/2) and log(n) for a = 1. We now discuss the bounds provided by Theorem 9.
It appears that, for any a € [0,1/3), we can always achieved the order n=2/3 by choosing
appropriately v; and N (for a = 1/3 we have only log1/3(n)n_2/3). The worst case is
for o € (1/3,1], where in fact the best strategy is to take N = 0 and the largest possible
value for v; = 1/(m + L).

We can also follow the proof of [3, Theorem 5] to establish an exponential deviation

13



H1, H2 and H3 | H1, H2 and H3
=0 172 n—2/3
a € (0,1/2) n~1/2 n=2/3
a=1/2 log(n)n~1/? log!/3(n)n=2/3
ae (1/2,1) no=! no1
a=1 log(n) log(n)

Table 3: Optimal bound for the MSE by choosing v;

inequality for Y (f) — E.[#Y (f)] given by (30).

Theorem S4. Assume H 1 and H?2. Let (y;)r>1 be a nonincreasing sequence with
1 <2/(m+ L). Then for all N >0, n > 1, r >0 and Lipschitz functions f : R? — R:

P, [#(f) > B2 ()] + 1] < exp (JQKQF]ZVH,NMH) |
16 Hf”Lip UN,n(’Y)

where Ny, (7Y) is defined by (S24).

Proof. Let N >0,n>1, z € R? and f be a Lipschitz function. To prove Theorem S4,
we derive an upper bound of the Laplace transform of #2 (f) —E,[#2 (f)]. Consider the
decomposition by martingale increments

E, [ex{frﬁ (f)—Ex[7} (f)]}] —EK, [eA{EEN (7N ()] ~Ea[7 (A1} + N0~ MESH [ ()] Bk [ (f)]}} _

Now using (S29) with the sequence of functions (@2, ) and UL given by (S27) and (S28),
respectively, we have by the Markov property

E, [ek{frﬁ (N —Eul#) (f)}}]

N+n—1

=E, [eA{\Prly(Xn)lEz[\Pyly(Xn)]} H R‘/k+1 [ek{q>ﬁk+1(-)*ka+1‘I’ﬁk+1(xk)}} (Xk)] ’
k=N

(S31)

where R, is given by (6) for v > 0. We use the same strategy to get concentration in-
equalities than to bound the variance term in the previous section, replacing the Gaussian
Poincaré inequality by the log-Sobolev inequality to get uniform bound on

R’Yk+1 {eXp()\{@g’k_’_l(-) - R"/k+1 q)ibv,k—l—l(Xk)})}(Xk)

wr.t. X, forall k € {N +1,...,N +n}. Indeed for all z € R? and v > 0, recall
that R,(x,-) is a Gaussian distribution with mean x —yVU(z) and covariance matrix

14



2v14. The log-Sobolev inequality [1, Theorem 5.5] shows that for all Lipschitz function
g:RT SR, zeRY v >0and X >0,

[ Bola) {on (o) - RrgD} <ew (W Nld,) - (532

We deduced from this result, (S29) and Corollary 4, an equivalent of Lemma S2 for the
Laplace transform of @nNkH under 6, R, for ke {N+1,...,N+n}andallyec R,

Corollary 5. Assume H 1 and H 2. Let (y;)k>1 be a nonincreasing sequence with
y1 <2/(m+L). Let N >0 and n > 1. Then for allk € {N,...,N +n—1}, y € R?
and A > 0,

Ry {eA{q)ﬁ’““(')_R”’““Cbﬁ’““(y)}} (y) <exp <4'Yk+1)\2 [Fdl (KFN+2,N+n+1)72> :

where @ﬁk is given by (33).

It remains to control the Laplace transform of WY under 633QJWV , where 5IQ§V is

defined by (7). For this, using again that by (S28) and Corollary 4, ¥ is a Lipschitz
function, we iterate (S32) to get bounds on the Laplace transform of Lipschitz function
g under QQ’Z(y, -) for all y € R? and n, ¢ > 1, since for all n,¢ > 1, Qz’ég is a Lipschitz
function by Corollary 4.

Lemma S6. Assume H1 and H?2. Let (y;)r>1 be a nonincreasing sequence with v <
2/(m+L). Let g: R = R be a Lipschitz function, then for all n,p > 1, n <p, y € R?
and A > 0:

Q57 {exp (M) — Q591 } () < exp (w2 lgllE,) - (833)
where Q. p is given by (7).

Proof. Let (X,)n>0 the Euler approximation given by (2) and started at y € R%. By
. Gr— .
decomposing g(X,) — Ef [9(X,)] = >h_,  {E [9(X,)] — Ey* " [9(X,)]}, and using
k ’.
E§t [9(Xp)] = Q5" g(Xe), we get

EJ" [exp (A {g(X,) —EJ" [9(Xp)]})]

— Egn [ ﬁ Egk_l [exp ()\ {Egk l9(Xp)] — Egk_l [Q(XP)]})}]

k=n+1

=E;" [ ﬁ Ry, exp <)‘ {Q§+1’p9(') = kaQi“”’g(Xk-ﬁ}) (Xk—l)] :

k=n+1

By the Gaussian log-Sobolev inequality (S32), we get

Eg" [exp ()\ {g(Xp) - Eg" [Q(Xp)]})} < exp <)‘2 Z Tk HQg—FLngiip) '
k=n+1

15



The proof follows from Corollary 4 and Lemma 7, using the bound (1 —¢)Y/2 <1 —¢/2
for t € [0,1].
U
Combining this result and || U2 ||, < 2671 1 f1Lip FX/%F2,N+n+1
get an analogue of Corollary 3 for the Laplace transform of W'

by Corollary 4, we

Corollary 7. Assume H 1 and H2. Let (y;)k>1 be a nonincreasing sequence with
1 <2/(m+L). Let N >0 andn > 1. Then for all \ >0 and = € R,

Lip - N4+2,N+n—+1

where WY is given by (528).

The Laplace transform of #2(f) can be explicitly bounded using Corollary 5 and
Corollary 7 in (S31).

Proposition S8. Assume H1 and H2. Let (vy)r>1 be a nonincreasing sequence with
1 <2/(m+L). Then for all N >0, n > 1, Lipschitz functions f : R — R, A\ > 0 and
r € R4

~ N _ ﬁ-N _ _
E, Min (N =Ealmn (f)]}] < exp (4“ D% Hinip FN1+2,N+n+1u§3,)n(7)) )

where ugf’,)n(w) is given by (S24).

Proof of Theorem Sj. Using the Markov inequality and Proposition S8, for all A > 0,
we have:

Py [7Y (1) = Bala (1] + 7] < exp (=27 + 45722 | Iy TRY o v 108 (7))
Then the result follows from taking A = (762 42, N+nt1)/(8 Hf”iip UN (7)) O

O

If we apply this result to the sequence (yx)r>1 defined for all £ > 1 by v, = k™,
for o € [0,1], we end up with a concentration of order exp(—Cr?y;n'=?) for a € [0,1),
for some constant C' > 0 independent of v; and n.

6 Discussion on Theorem 5

Note that

u? (1) <Y {AF + A} [T (0 —rw/2) (S34)
i=1 k=i+1
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where £ is given by (3), and

Ao =2L%7d , (S35)
A =202 Ydm+ L) ' +dlf (kP (m+ L) Hm 67 m+ L)Y . (S36)
If (yk)k>1 is a constant step size ,y, = v for all k£ > 1, then a straightforward consequence

of Theorem 5 and (S34) is the following result, which gives the minimal number of
iterations n. and a step-size 7. to get Wa(d,+Q%, 7) smaller than € > 0.

Corollary 9 (of Theorem 5). Assume H1 and H2. Let x* be the unique minimizer of
U. Let x € R? and € > 0. Set for all k € N, v, = v with

—Ag + (A3 + 2kA)) /2 L
= L
vy oA, ANm+ L), (S37)

n= ﬂogfl(l — KY/2) {—10g(62/2) +log(2d/m)}] .

Then Wa (0.« RS, ) < .

Note that if 7 is given by (S37), and is different from 1/(m+L), then y < e(4A;x~1)~1/2
and 271 (Agy + A1y?) = £2/2. Therefore,

1> (/4) { Ao + (A1 /(am)) 2}

It is shown in [2, Corollary 1] that under H2, for constant step size for any € > 0, we
can choose v and n > 1 such that if for all k& > 1, v, = 7, then [|[v*Q7 — ||y < &
where v* is the Gaussian measure on R% with mean z* and covariance matrix L~'1,.
We stress that the results in [2, corollary 1] hold only for a particular choice of the initial
distribution »*, (which might seem a rather artificial assumption) whereas Theorem 5
holds for any initial distribution in Ps(R%).

We compare the optimal value of v and n obtained from Corollary 9 with those given
in [2, Corollary 1]. This comparison is summarized in Table 4 and Table 5; for simplicity,
we provide only the dependencies of the optimal stepsize 7 and minimal number of
simulations n as a function of the dimension d, the precision ¢ and the constants m, L.
It can be seen that the dependency on the dimension is significantly better than those
in [2, Corollary 1].

Parameter d € L
2

Corollary 9 d'|e
[2, Corollary 1] | d=2 | €2

m
L72 m2
L2 m

Table 4: Dependencies of ~
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Parameter d € L m
Corollary 9 | dlog(d) | e 2 |log(e)| | L? | [log(m)
[2, Corollary 1] d? e~ 2|log(e)| | L? | |log(m)

Table 5: Dependencies of n

6.1 Explicit bounds for 7, = 11k* with a € (0, 1]

We give here a bound on the sequences (un (7))n>0 and (ug )(’Y))nzo for (vx)k>1 defined
by 11 < 1/(m + L) and vy, = 71k~ for a € (0,1]. Also for that purpose we introduce
for t € RY,

J@P -1/ for B#£0
¥olt) = {log(t) for 6=0. (538)
We easily get for a > 0 that forall n,p > 1, n<p
Y1-a(p+1) — P14l Z = <t1-a(p) —%1-a(n) +1, (539)
and for a € R ,
Dk <P ap+1) — 1 a(n) 1, (S40)
k=n

1. For a = 1, using that for all t € R, (1 +¢) < e’ and by (S39) and (S40), we have
1
u (1) < (n+ )72 @ () < (n+ )TN A @ (0 1) +1)
=0

2. For a € (0,1), by (5S39) and Lemma 7 applied with ¢ = [n/2], where [-] is the
ceiling function, we have

u () < exp (—rmpi-a(n+1)/2)

1
ulP(v) < Z Aj {25_1’Y{+1(n/2)_a(]+1) R {¥1_ag12)([n/2]) + 1}
=0

x exp (=(k71/2) {¥1-a(n + 1) —=¥1-a([n/2])})] . (541)
6.2 Optimal strategy with a fixed number of iterations

Corollary 10. Let n € N* be a fized number of iteration. Assume H1, H2, and (Vk)r>1
is a constant sequence, v =~ for all k > 1. Set

7 = 2(nn) ™" [log(n/2) + log(2(l& — 2> + d/m)) — log(2x~"Ao)|
v- = 2(kn) ™" [log(kn/2) + log(2(lz — =*|* + d/m))
—log {2/{ (Ap +2A1(m+ L)~ )}] .
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Assume v € (0, (m + L)_l).Then, the optimal choice of v to minimize the bound on
Wo(6. R, ) given by Theorem 5 belongs to [y—,~"]. Moreover if v = ~y, then there
exists C' > 0 independent of the dimension such that the bound on Wg(&ng,w) 18
equivalent to Cdn~'log(n) as n goes to +oc.

Similarly, we have the following result.

Corollary 11. Assume H1 and H?2. Let (y;)k>1 be the decreasing sequence, defined by
Ve = Yok, with a € (0,1). Let n > 1 and set

Yo = 2(1 — a)r~(2/n) " log(xn/(2(1 — a))) .

Assume vy, € (0, (m —{—L)_l). Then there exists C' > 0 independent of the dimension
such that the bound on Wg(éxQQ,ﬂ) is equivalent to Cdn~1log(n) as n goes to +oo.

Proof. Follows from (534), (S41) and the choice of 7,. O

7 Discussion on Theorem 9
Based on Theorem 9, we can follow the same discussion as for Theorem 5. Note that
n n
ul(y) <> {Bov? + By} [ (10— sw/2), (S42)
i=1 k=i+1

where £ is given by (3), and

By = d [2L2 + w1 {dﬁ /3 + 4L /(3m)}] , (S43)
Bi=d[x 'L+ L*/(6(m + L)) + m™ '] . (S44)
The following result gives for a target precision € > 0, the minimal number of iterations

ne and a step-size 7. to get Wa(d,+QY, m) smaller than e, when (vx)k>1 is a constant
step size, v = . for all k& > 1.

Corollary 12. Assume H1, H2 and HS3. Let z* be the unique minimizer of U. Let
z € R? and e > 0. Set for all k € N, v, = v with

7= [(e/207 {Bo+ Bim+ L)} ] A (1 (m+ L))
n= ﬂogfl(l — KY/2) {—log(e2/2) +log(2d/m)}] .
Then Wa (0.« RS, ) < e.

We provide the dependencies of the optimal stepsize 7. and minimal number of
simulations n. as a function of the dimension d, the precision € and the constants m, L
in Table 6 and Table 7.
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Parameter d |e| L |m
Corollary 12 [ d~ ' [ e | L72 | m
Table 6: Dependencies of 7,
Parameter d € L m

Corollary 12 | dlog(d) | e~ |log(e)| | L? | [log(m)| m =2

Table 7: Dependencies of n.

7.1 Explicit bounds for v, = y1k* with « € (0, 1]

We give here a bound on the sequence (u,(f’) (7))n>0 for (vx)k>1 defined by v; < 1/(m+L)

and v, = mk™® for @ € (0,1]. Bounds for (u,&l)(y))nzo have already been given in
Section 6.1. Recall that the function 4 is defined by (S38). For v € (0, 1], by (S39) and
Lemma 7 applied with ¢ = [n/2], where [-] is the ceiling function, we have

2
uld (y) < Z Bj_1 [2ﬁ_17{+1(”/2)_a(j+1) + V{H (Y1—ag+2)([n/2]) +1)
=1
x exp (—(k71/2) {$1-a(n +1) —¥1_a([n/2])})] . (545)

7.2 Optimal strategy with a fixed number of iterations
Corollary 13. Let n € N* be a fized number of iteration. Assume H1, H2, H3 and
(Vk)k>1 18 a constant sequence, v = ~* for all k > 1, with
v* = 4(kn) "t {log(/m/Q) +log(2(||z — *||* + d/m))} .
Assume v* € (0, (m —|—L)_1). Then there exists C > 0 independent of the dimension
such that the bound on Wg(éxRQL,ﬂ) is equivalent to Cd*n~2log?(n) as n goes to +oc.
Similarly, we have the following result.

Corollary 14. Assume H1, H2 and H3. Let ()i>1 be the decreasing sequence, defined
by Vi = Yok ™%, with o € (0,1). Let n > 1 and set
Yo =2(1 — a)r H(2/n) ¥ log(kn/(2(1 — @))) .

Assume vy, € (0, (m —{—L)_l). Then there exists C' > 0 independent of the dimension
such that the bound on W22(5foYL,7T) is equivalent to Cd*n~2log?(n) as n goes to +oc.

Proof. Follows from (S42), (S45) and the choice of 7. O

Note that in Corollary 13 and Corollary 14, we do not find the optimal convergence
rates obtained for the sequence of step-sizes v, = v1/k, for £ > 1 and 7, > 0, up to a
logarithmic factor log(n). This most likely due to the fact that the bounds (for example
(S45)) used to compute the optimal parameters v* and -y, are not the most appropriate.
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8 Generalization of Theorem 5

In this section, we weaken the assumption 1 < 1/(m + L) of Theorem 5. We assume
now:

G 1. The sequence (V)g>1 is non-increasing, and there exists p > 0 and ny such that
1+ )Y, <2/(m+L).

Under G1, we denote by
no =min{k € N | v, <2/(m+ L)} (S46)

We first give an extension of Proposition 2. Denote in the sequel (-); = max(-,0). Recall
that under H2, z* is the unique minimizer of U, and & is defined in (4)

Theorem S15. Assume H1, H2 and G 1. Then for alln,p e N*, n <p

[l =1 10@2 () < G )

where

no—1

Gpp(po,7y) = exp < Z'yk/{ + Z L2fyk> /Rd ||z — x*HZMO(dm)
no—1 no—1
+2dr ! + Qd{ I (mo—a L)~ (1 + L2 }exp < Z e + Z ’ykmL> . (847)

k=n

Proof. For any v > 0, we have for all z € R%:
/Rd ly — 2*||* Ry(z, dy) = ||x — yVU (z) — 2*||* + 2vd .

Using that VU (z*) = 0, (3) and H1, we get from the previous inequality:

[ =1 Ry )

*\ |12
m—i—L) VU (xz) — VU (z%)||* + 2vd

<-m) o=+ (-
<n(y) lz —a*|* + 2+,

where n(y) = (1 — ky +yL(y —2/(m + L))4). Denote for all & > 1, nx = n(v). By a
straightforward induction, we have by definition of @}, for p,n € N, p < n,

p p p
= @) < [T [ e =l + ) 3° TT w549
k=n i=n k=i+1
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with the convention that for n,p € N, n < p, HZ = 1. For the first term of the right
hand side, we simply use the bound, for all z € R, (14 z) < e”, and we get by G 1

P no—1
I <exp < Z Kye + Z LQ%) : (549)
k=n

where ng is defined in (S46). Consider now the second term in the right hand side of
(548).

no—1 p
Z H MY < Z H A=rw)vi+ >, [] m
i=n k=i+1 1=ng k=i+1 i=n k=i+1
p p p
<KDY { I1 (1—*@%)—1—[(1—/‘@%)}
i=ng \k=i+1 k=1
no—1 no—1 p
+{Z I +22%) }H (1 — k) (S50)
i=n k=i+1 k=

Since (y%)k>1 is nonincreasing, we have

no—1 no—1 nog—1 no—1 no—1
Yo I +2%0) v = Z(%LQ)_l{H (1+2%7%) - 11 (1+L2'Y§)}

i=n k=i+1 i=n k=i k=i+1
no—1
< T Cuort®)* (14 1233)
k=n

Furthermore for k < ng v, > 2/(m + L). This implies with the bound (1 + z) < €” on
R:

H (1 = Ryk) <exp < Z ﬂ7k> exp <OZ: ﬂ7k>
k=ng
< exp < Z ﬂ7k> exp <OZ: 'ykmL> .

Using the two previous inequalities in (S50), we get

P p
Z H ki

i=n k=i+1
no—1 no—1
<k 1+ { H (Yng—1L*)™? (1+ L~} }exp < Z KYg + Z ykmL> . (S51)
k=n
Combining (549) and (S51) in (S48) concluded the proof. O
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We now deal with bounds on Wa(uoQ%,7) under G 1. But before we preface our
result by some techincal lemmas.

Lemma S16. Assume H1 and H2. Let {y € P2(R*xRY), (Y3, Y)i>0 such that (Yp,Y)
is distributed according to (o and given by (9). Let (Fi)i>0 be the filtration associated
with (By)i>0 with Fo, the o-field generated by (Yy,Yo). Then for alln >0, &1 > 0 and
€9 >0,

~ 2
E}—Fn [HYFM-I - YFn-H H ]
53 2
< {1 = Y41 (5 = 261) + Y1 L((L + €2)m41 — 2/(m + L))+ } || Yo, — Y1, ||
921 (1/(2e1) + (14 65 vns1) (422 + (E41/2) IV, — 21 + dL*2,0/12)

Proof. Let n >0 and ¢; > 0, and set A, = Y1, — Y1, by definition we have:

Ern [HAWH?} = | A% + BT [H/FF+ {VU(Y;) = VU(Vr,)} ds 2

— 21 (A, VU(YE,) — VU (Vr,)) — 2 / T e, [(An, {VU(Ys) — VU (Yr,)}) ds] .

n

Using the two inequalities | (a,b) | < e1]|a||* + (4e1)71|b]|? and (3), we get

70 [ Ansa ] < 11 = i1 (5 = 260} 1Al = 29041/ (m + L) [VU(VE,) = VU (VT
7

Cnit
+(281)1/ B [HVU(fo)—VU(YFn)H?] ds . (S52)

+ ETn

/ FW{VU(YS) VUV, ) s

Using |ja +b]|> < (1 +2) ||lal|® + (1 + &5 1) ||b]|* and the Jensen’s inequality, we have

E7Tn

/F"H (VU(Y,) - VU(Yr,)} ds

2
] < (1+e)72, [VUOT,) - VU,

Fn«b»l
s | [ vU) - voerIPas) |
This result and H1 imply,

7T (1A l] < {1 = ns1 (6 = 261) + 31 L1+ 220341 = 2/(m + L))+ } [ An?

Tpi1
H( &+ 2207 [ BT [IVU) - VORI ds . (853)
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By H1, the Markov property of (Y;);>0 and Lemma 19, we have

Fn«b»l 9
[ E [Ivow) - vu )P as
I'n

< L (o2 + AL /12 4 (290 /2) Y, — 7))
Plugging this bound in (S53) concludes the proof. O
Lemma S17. Let (y;)r>1 be a nonincreasing sequence of positive numbers. Let w, [ > 0

be positive constants satisfying w?> < 483 and T > 0. Assume there exists N > 1, yw < T
and yyw < 1. Then for alln >0, j > 2

(i)
n+l ntl - ntl ndl
S O-ww+wBon—1w <> [ @—ww)y
=1 k=i+1 i=N k=i+1
N—-1 n+1
+ {ﬁ_lﬁ “TI @ +%35)} 1T ==
k=1 k=N

(ii) For all £ € {N,...,n},

n+1l n+1 ) n+1 J 1
oI (1—7W)7§§exp< wa> Do

i=N k=i+1

Proof. By definition of N we have

n+1l n+1

S I = ww + Bl — 7)),

i=1 k=i+1
n+1l n+1 N—1 N-1 n+1

<3 1wt {3 I it} L o0
=N k=i+1 i=1 k=i+1 k=N

Using that (7x)x>1 is nonincreasing, we have

N-1 N-1 Lg=2 (N1 N-1
ST +988)+ < Z : {H Q++8) - 1 (1+%§ﬁ)}
i=1 k=1+1 k=1 k=1+1

< BN ? H (1+28)
k=1
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Plugging this inequality in (S54) concludes the proof of (i). Let ¢ e {N,...,n+1}.
Since (7%)k>1 is nonincreasing and for every z € R, (1 4+ z) < e*, we get

n+1l n+l1 —1 n+1 n+1l n+1
ST ot =3 1T a-wmd+ 3 T 10—
i=N k=i+1 i=N k=i+1 i=f k=i+1
-1 n+1 ‘ ‘ n+l n+1
<Y exp <— > ww) WA I - @)
i=N k=i+1 =L k=i+1

n+1 ’—1
< exp ( Zw%> > oA+

O

Lemma S18. Let (y;)r>1 be a nonincreasing sequence of positive numbers, w, 3,7 > 0
be positive real numbers, and N > 1 satisfying the assumptions of Lemma S17. Let
PeN, C;>0,i=0,...,P be positive constants and (un)n>0 be a sequence of real
numbers with ug > 0 satisfying for alln >0

Un+1 < (1 = Yn1® + Bynt1 (Vo1 — 7)4)un + Z Cﬂiﬁ

Then for allm > 1,

N-—1 n
wé{H]+m%}H1—wwm+ZC§jH (1~ )
k=1 k=N

= =N k=i+1

N-1 n
ZC]B T a+8) ¢ [T =) -
j=0 k=1 k=N
Proof. This is a consequence of a straightforward induction and Lemma S17-(i). O

Proposition S19. Assume H1, H2 and G1. Let x* be the unique minimizer of U. Let
Co € Pa(RY x RY), (Y3, Y 1)i>0 such that (Yo,Y o) is distributed according to (o and given
by (9). Then for alln >0 and t € [I'y,T'piq]:

E (v - Vo) < @B [|[¥o - Yol "] +a + a2

where

) (v) = { ﬁ 1+ L1+ p)’nf)} I - rw/2) (S55)

k=1 k=n,
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n

i) = valw) [ (1 —rw/2)

1=n1 k=i+1

ni—1 n
+a(y)(L*(1+p) " { [T a+~ra+ p)LQ)} I @ -sn/2) .

k=1 k=n1

where for v > 0,
a(y) = {2+ (L+p )y} (dL? + 6L /2 + dL*?/12)
§ = max;>1 {e’2mF¢*1E [HYO - x*\ﬂ r (- e*QmFH)(d/m)} ,

and

(5 m+ L [ (t—T,)3L2
e =" (L

Gl,n(u07 7) + (t - Pn)2d> )

where G n(p0,7) is given by (SAT) and po is the initial distribution of Y.

Proof. Lemma S16 with 1 = k/4 and €2 = p, G1, Lemma S17, ((i)) imply for all n > 0
E (1Y, - V. *] < @D o) [|[Y - Vol !] + a0 () (356)
Now let n > 0 and t € [y, ['y41]. By (9),
t
1Y = Vo)) = |[Ye, — Ve | - 2/ (VU(Y;) =VU(Yr,),Ys —Y)ds.  (S57)
I'n

Moreover for all s € [I',,T'41], by (3) we get
<VU(Y;) —-VU(Yr,),Ys — ?8> = <VU(Y;) -VvU(XYr,),Ys—Yr, +Yr, — ?S>
> (m+ L) |VU(Y.) - VU(Vr,)||* + (VU(Y2) = VU(Vr,), Y, — Vs) . (S58)
Since |(a,b)| < (m + L)~ !al* + (m + L) ||b||* /4, we have
(VU(Y;) =VU(YT,). YT, — Ys)
> —(m+ L) [VU(Y:) = VU(Vr,)||* = (m+ L) | Vo = Vo, ||* /4.
Using this inequality in (S58), we get
(VU(Y2) = VU(Vr,).Ya = Va) = ~(m + L) [V = ¥, | /2

and (S57) becomes

t

HYt—?tHzgHan—anH2+((m+L)/2)/F V.~V *ds  (S59)
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Therefore, by the previous inequality, it remains to bound the expectation of H?S ~Yr, H2

By (9) and using VU (z*) = 0,

IV, =V, = -5 - D) (VU (Tr,) — VU@*) + V3B, - Br,) ’

Then taking the expectation, using the Markov property of (B;):>o and H1, we have
E ||V = V|| < (s = Tw?L%E [V, = 2*['] +2(s = Tw)d. (S60)

The proof follows from taking the expectation in (S59), combining (S56)-(S60), and
using Theorem S15. O

Theorem S20. Assume H1, H2 and G 1. Then for all ug € Po(R?) and n > 1,
W3 (p0Q%,m) < @D (W3 (o, m) + 4P (7)., (S61)

where (aﬁf))nzo is given by (S55) and

P () =" 4b(y) [ @ - rw/2)
i=n1 k=i+1
ni—1 n
+b(y) (L2 (1 + p)) ! { [Ta+xwa+ p)Lz)} IT (= rw/2), (S62)

k=1 k=n1

where
b(y) = {2671 + (1 + p )y} (dL* + dL*/(2m) + dL*9?/12) .

Proof. Let (p be an optimal transference plan of g and 7. Let (Y;,Y)i>0 with (Yo, Yo)
distributed according to (y and defined by (9). By definition of Wy and since for all
t >0, 7 is invariant for P,, W(poQ", ) < E[||Yr, — Xr, ||*]. Then the proof follows
from Proposition S19 since Yj is distributed according to m and by Proposition 1-(ii),
which shows that § < d/m. O

8.1 Explicit bound based on Theorem S20 for 7, = 11 k* with « € (0, 1]

We give here a bound on the sequences (ﬁg)(*y))nzl and (aﬁf) (7))n>1 for (x)k>1 defined

by v1 > 0 and v, = 1k~ for a € (0,1]. Recall that 93 is given by (S38). First note,
since (vx)k>1 is nonincreasing, for all n > 1, we have

1 n n
a2 <3G AT ] - rw/2)
j=0  i=m k=i+1
1 ' ni—1 n
+Y G +p) A { [Ta+va+ P)LQ)} IT (= rw/2), (S63)
=0 k=1 k=mn1
where

Cy =bdL? ,Co = b(dL*/(2m) + v1dL*/12) ,b =21+ (14 p Yy .
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1. For a =1 and n; = 1, by (S39) and (S40), we have

D) < (n+1)7m/2

=g

1
D) <+ 1723 G P W p1 s+ 1) + 1)+ (L20+p) ]
j=0

=41

For n; > 1, since (y4)r>0 is non increasing, using again (S39), (S40), and the
bound for t € R, (1+1¢) < e

4 (y) < (n+ 1)/ o {Fmo(n1)/2 + L*(1 + p)rf(@-1(m — 1) + 1)}
ﬂg) (7) < (TL + 1)_H71/2 Z Cj (7{+2(1/}571/2—1—j(n + 1) - Qpn’y1/2—1—j(n1) + 1)
j=0
(] (LA(1 + p)) exp (ko (m) /2 + L2(1+ p)r2@-1(m = 1) + 1)} ) -
Thus, for 71 > x/2, we get a bound in O(n~1).
2. For a € (0,1) and n; = 1, by (S39) and Lemma S17-(ii) applied with ¢ = [n/2],

we have

aM(y) < eXP (= (kM1 /2)pa—1(n + 1))
) < Z C; {71 (4, a2y ([n/2]) + e —(sm1/2)®1-a(n+1)—p1-a([n/2]))

19p 1 J+1(n/2) a(j+1) + o= (F71/2)%a- 1(n+1)} )

For ny > 1 and [n/2] > ny, since (y)x>0 is non increasing, using again (S39), and
Lemma S17-(ii) applied with £ = [n/2], and the bound for t € R, (1 +1t) < €', we
get

A0 (7) < o= N War (1)1 (m1)/2 L2 (1 p)33 b1 20 (m1 —1) 1)

<3¢ {2r 9] (nj2) 0D

7=0
172 (D10 (1/2]) = bragoa)(n) + 1) &7 DO1-alrt) b1 /2D)
—i—(’y{/(LQ(l +p))e_H’YI("pafl(n+1)_'¢'17a(nl))/2+L2(1+p)'ﬁ(¢172a(n1_1)+1)} i

—

9 Explicit bounds on the MSE

Without loss of generality, assume that || f||;;, = 1. In the following, denote by Q(z) =

|z — 2*||* + d/m and C a constant (which may take different values upon each appear-
ance), which does not depend on m, L, 7y, a and ||z — z*||.
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9.1 Explicit bounds based on Theorem 5
1. First for a = 0, recall by Theorem 5 and (S34) we have for all p > 1,
W3 (0, R, m) < 20(z)(1 — k71 /2)" + 267 (Aom + A1rf)

where Ag and A; are given by (S35) and (S36) respectively. So by (5S23) and
Lemma 7, we have the following bound for the bias

k" exp(=kN71/2)Q(x)
Tin

(B ()] - n()} < C ( T ffle%) .

Therefore plugging this inequality and the one given by Theorem S1 implies:

k24 k71 exp(—mNWl/Q)Q(x)>
nm '

MSE?”g(j<mlAmq+ (S64)

So with fixed 7; this bound is of order v;. If we fix the number of iterations n, we
can optimize the choice of v;. Set

Yeo(n) = (5 'A0) ! (Cumsmo/n)'/? , where Crnso = £ *Ao
and (S64) becomes if y1 <= Y, 0(n),
MSE?’" < C’(C’l\/ISE,on)_l/2 (/<;_1 exp(—KkN7,0(n)/2)Q(z) + Cusey) -
Setting No(n) = 2(kyx0(n)) " log(Q(z)), we end up with
MSE;VO(H)’H < C(Cnso/n)Y? .
Note that No(n) is of order n'/2.

2. For a € (0,1/2) by Theorem 5, Lemma 7, (S39) and (S41), we have the following
bound for the bias

KAy K texp {—rmNTTY/(2(1 - )} Q(m)) ‘

AN 2
{Ex[wn (f)] - W(f)} < c ((1 _ 20&)’110‘ fylnlfa

Plugging this inequality and the one given by Theorem S1 implies:

K~ Aoy lexp {—rN'T/(2(1 — a))} Qz) + 2
(1 —2a)n® ynl—a

M%§WSC<

(S65)
At fixed 71, this bound is of order n™%, and is better than (S64) for (v4)r>1
constant. If we fix the number of iterations n, we can optimize the choice of v,
again. Set

V() = (lfflAO/(l—Qoz))*l(C’l\/[s,E,o{/nl*M)1/2 , where Cy\isp.o = £ Ao/ (1-2a) ,
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(S65) becomes with v; < Yx.a(n),

MSE}""
< C(Crsp.an) 12 (K exp {=kN'" %y 0(n)/(2(1 — a))} Q(z) + CusEa) -
Setting Nu(n) = {2(1 — @)(kx.a(n)) " log(Q(x)) 1/~ we end up with
MSE}*"" < O(Cyisga/n)'/? .

It is worthwhile to note that the order of Ny (n) in n is n1-20)/2(1=0)) and CMSE, o
goes to infinity as o — 1/2 .

. If a = 1/2, by Theorem 5, Lemma 7, (S39) and (S41), we have the following bound
for the bias

. kK 1Agy1 log(n) K lexp {—rky NY2/4) Q(x)
{Eo[aY ()] - m(D)} SC( (;311/2 5 = erlbl/z ; > '

Plugging this inequality and the one given by Theorem S1 implies:

“1Agm 1 ! —kmNY2/4} Q -2
MSE) gc<” onlogn) & lexp {—mnNY2/4} Q@) + 172 oo

nl/2 yinl/2

At fixed 71, the order of this bound is log(n)n~'/2, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of v;. Set

1/2

Ye1/2(n) = (K7 Ag) T (Crisi,/2/ log(n)) '/, where Cyispaje = £ Ao ,

and (S66) becomes with 1 < 7, 1/2(n),
Nn
MSEf

log(n) >1/2 ( -1 1/2 Cuise 1/2>
<C|————— k Lexp{d —kNY n)/4: Q(x) + ——= ) .
(nCMSE,l/Q p{ rrj2(n)/ } (z) log(n)

Setting Ny /2(n) = (4(k7,1/2(n)) " log(Q(z)))?, we end up with

n)n log(n)C' 1/2
MSE;V1/2( )s <C < og(n) MSE,I/Q)

n

. For a € (1/2,1], by Theorem 5, Lemma 7, (S39) and (S41), we have the following
bound for the bias

(BN - (D) <O (“_11‘\271 p el /00 o)) Qm) -
n 1mn
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9.2

Plugging this inequality and the one given by Theorem S1 implies:

Kk Agy N e lexp { =k NT/(2(1 — a)) } Qz) + 2
nl-a fylnl—a :

MSchV’" <C (

For fixed 71, the MSE is of order n'~®, and is worse than for a € [0,1/2]. For
a fixed number of iteration n, optimizing v; would imply to choose v; — +00 as
n — +oo. Therefore, in that case, the best choice of ~y; is the largest possible value

1/(m+L).

. For « = 1, by Theorem 5, Lemma 7, (S39) and (S41), the bias is upper bounded

by

{E.[#(f)] - 7r(f)}2 <C <“_1A071 m_lN—le/?Q(az)>

log(n) 71 log(n)
Plugging this inequality and the one given by Theorem S1 implies:

“Agyr  KTINTN2Q(z) 4+ k2
MSEY™ < ¢ [ 2200
= < log(n) 7 log(n)

For fixed 1, the order of the MSE is (log(n))~!. For a fixed number of iterations,
the conclusions are the same than for ao € (1/2,1).

Explicit bound based on Theorem 9

. First for a = 0, recall by Theorem 9 and (S42) we have for all p > 1,

W3 (0, R, ) < 2Q(z)(1 — k71/2)" + 267 (Bon + Bii)

where By and B are given by (S43) and (S44) respectively. So by and Lemma 7,
we have the following bound for the bias

k™! exp(=kN71/2)Q(z)

yn

(Bl (D] -n(n) <0 +rB)

Therefore plugging this inequality and the one given by Theorem S1 implies:

k24 k71 exp(—mNm/Q)Q(:c))
nm '

MSE}™" < C </@1807% + (S67)

So with fixed 7; this bound is of order v;. If we fix the number of iterations n, we
can optimize the choice of v;. Set
Yeo(n) = (kBon)~1/%

and (S64) becomes if 1 < v, 0(n),

MSE]™ < C(By /%n) /% (5% exp(—rNya 0(n)/2)2(a) +57) .
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Setting No(n) = 2(kyx0(n)) " log(Q(z)), we end up with
MSE]fVO(n),n < C(Bal/2ﬁ5/2n)_2/3 )

Note that No(n) is of order n'/3.

. For a € (0,1/3) by Theorem 9, Lemma 7, (S39) and (5S45), we have the following
bound for the bias

R 2 k~1Bgy? £ lexp { =k N/ (2(1 — @)} Q(z)
{Ex[wfy(f)] —rhy =C ((1 — 3oz)nlz°‘ + yinl—a > ‘

Plugging this inequality and the one given by Theorem S1 implies:

K 1Boy? ktexp {—knN'T/(2(1 — @)} Qz) + k2
(1 —3a)n2 ynl-e

MSEjY’" <C <

(S68)
If we fix the number of iterations n, we can optimize the choice of v again. Set

Yea(n) = (P 3%kBy /(1 — 3a))~1/? |
(S68) becomes with 1 = Vi o (1),

MSE}™ < C(By/%n) 27 (/% exp(=rN70(n)/(2(1 = )))2e) +5~7/3(1 — 30) /%) .

Setting Ny (n) = {(k7x.a(n)) " log(Q(2))}/1=%) we end up with
MSE}*"" < ¢(By2k%/2n) 722

It is worthwhile to note that the order of N, (n) in n is n(1=3¢)/B1-)

. If & = 1/3, by Theorem 9, Lemma 7, (S39) and (S45), we have the following bound
for the bias

(B[N (] -} < C (ﬁlBZﬁ;"g(n) L texp { =m0 )4 ﬂ<w>> .

y1n?/3
Plugging this inequality and the one given by Theorem S1 implies:

KBy log(n) , Kl exp {—wmuN¥?/4} O(a) + ) (569

Nn
<
MSEf =C < n2/3 y1n2/3

At fixed 1, the order of this bound is log(n)n~2/3, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of v;. Set

Yer/2(n) = (kBg log(n)) /3,
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and (569) becomes with v1 < 7, 1/2(n),

log(n)Bo

1/3
MSE}™ < ¢ < = > ({4/3 exp {—/-;Nl/%ﬂ 12(n) /4} Q(z) + 5*5/3> .

Setting Ny o(n) = (4(K7s,1/2 (n)) "' log(Q(z)))3/?, we end up with

1/3
Nyja(n)n log(n)By

We can see that we obtain a worse bound than for « = 0 and « € (0,1/3).

. For a € (1/3,1], by Theorem 9, Lemma 7, (S39) and (S45), we have the following
bound for the bias

/@‘18071 N k™ exp {—/ﬂlNl_O‘/(Q(l — a))} Q(x)
nl—a 'Ylnl_a ’

. 2
(B[ (D =n(f)} <C (
Plugging this inequality and the one given by Theorem S1 implies:

f@‘lB(]% N kL exp {—/ﬂlNl_O‘/(Q(l — a))} Qx) + K2
nl—a fylnl—a :

MSEij" <C (

For fixed 71, the MSE is of order n'~®, and is worse than for a = 1/2. For a fixed
number of iteration n, optimizing v; would imply to choose v — +00 as n — +o0.
Therefore, in that case, the best choice of ~; is the largest possible value 1/(m+L).

. For a = 1, by Theorem 9, Lemma 7, (S39) and (S41), the bias is upper bounded
by

k" 'Bom /-i_lN_"Wl/QQ(x)>

~N 2

Plugging this inequality and the one given by Theorem S1 implies:

MSEN" < ¢ <“_1Bo% KTINTI2Q () + %‘2>
f iy

log(n) 71 log(n)

For fixed 1, the order of the MSE is (log(n))~!. For a fixed number of iterations,
the conclusions are the same than for oo € (1/2,1).
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