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Supplement to High-dimensional Bayesian inference via the

Unadjusted Langevin Algorithm

Alain Durmus1 Éric Moulines 2

December 9, 2016

1 Postponed proofs

1.1 Proof of (23)

Consider the constant sequence γk = γ for all k ∈ N
∗ with γ ∈ (0, 1/(m + L)]. By (20),

we have for all n ∈ N
∗ and x ∈ R

d

ϑ
(1)
n,0(x) ≤ γD1(γ, d) + γ3D2(γ)

n
∑

i=1

(1− κγ/2)n−iδi,n,0(x) ,

where

D1(γ, d) = 2L2κ−1
(

κ−1 + γ
) (

2d+ L2γ2/6
)

, D2(γ) = L4
(

κ−1 + γ
)

.

In addition, using that κ ≥ 2m and for all t ≥ 0, 1− t ≤ e−t,

n
∑

i=1

(1− κγ/2)n−iδi,n,0(x) =
n
∑

i=1

[

(1− κγ/2)n−i
{

e−2mγ(i−1) ‖x− x⋆‖2

+
(

1− e−2mγ(i−1)
)

(d/m)
}]

≤ ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1 . (S1)

Therefore for all n ≥ 1 and x ∈ R
d we get

ϑ
(1)
n,0(x) ≤ γD1(γ) + γ3D2(γ)

{

ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1
}

. (S2)
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Let now ℓ ∈ N
∗, ℓ ≥

⌈

γ−1
⌉

+ 1 and n = ℓ−
⌈

γ−1
⌉

. Then,

ℓ
∑

k=n+1

{

(γ3kL
2/3)̺1,k−1(x) + dγ2k

}

≤ (L2γ3/3)
{

(1− κγ)n(ℓ− n− 1) ‖x− x⋆‖2 + 2κ−1γd(ℓ− n− 1)
}

+ dγ2(ℓ− n− 1)

≤ (L2γ3/3)
{

(1 + γ−1)(1 − κγ)ℓ−⌈γ−1⌉ ‖x− x⋆‖2 + 2(1 + γ)κ−1d
}

+ d(1 + γ) .

Combining this inequality and (S2) in the bound provided by Theorem 14 shows (23).

1.2 Proof of (61)

First for all n ≥ 1 and x ∈ R
d, we have

ϑ
(2)
n,0(x) ≤ γ2E1(γ, d) + γ3E2(γ)

n
∑

i=1

n
∏

k=i+1

(1− κγk/2)δi,n,0(x) ,

where

E1(γ, d) = 2dκ−1
{

2L2 + 4κ−1(L̃2/12 + γL4/4) + γ2L4/6
}

,E2(γ) = L4(4κ−1/3 + γ) .

E3(γ, d, x) = (ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d/(κγm)

E4(γ, d, x) = e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2κ−1d+ d/m .

By (S1), we get for all n ≥ 1 and x ∈ R
d,

ϑ
(2)
n,0(x) ≤ γ2E1(γ, d) + γ3E2(γ)

{

ne−mγ(n−1) ‖x− x⋆‖2 + 2d(κγm)−1
}

. (S3)

On the other hand, for all x ∈ R
d, ℓ, n ∈ N, n ≥ 1, ℓ > n we have using that κ ≥ 2m

and for all t ≥ 0, 1− t ≤ e−t,

ϑ
(2)
n,ℓ(x) ≤ γ3nE1(γ) + γ3nE2(γ)

{

e−mγ(n−1)̺n,ℓ(x) + d/m
}

≤ γ3nE1(γ) + γ3nE2(γ)
{

e−mγ(n−1)
(

(1− κγ)ℓ−n ‖x− x⋆‖2 + 2κ−1d
)

+ d/m
}

≤ γ3nE1(γ) + γ3nE2(γ)
{

e−mγ(ℓ−1) ‖x− x⋆‖2 + 2κ−1d+ d/m
}

. (S4)

Finally, for all ℓ ∈ N
∗ and x ∈ R

d, we have

(γ3L2/3)̺1,ℓ−1(x) + dγ2 ≤ (γ3L2/3)
{

(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1
}

+ dγ2 . (S5)
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Combining (S3), (S4) and (S5) in the bound given by Lemma 31, and using that
γ−1 ≤ 2n(γ) ≤ 2γ−1 we have for all ℓ ∈ N

∗, ℓ > 2n(γ),

‖δxPℓγ − δxRℓγ‖TV ≤ 2−3/2L
[

(γ3L2/3)
{

(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1
}

+ dγ2
]1/2

+ (4π)−1/2
[

γ2E1(γ) + γ3E2(γ)
{

(ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d(κγm)−1
}]1/2

+

n(γ)
∑

k=1





γ32k−1
E1(γ) + γ32k−1

E2(γ)
{

e−mγ(ℓ−2k−1) ‖x− x⋆‖2 + 2κ−1d+ d/m
}

π2k+1γ





1/2

≤ 2−3/2L
{

(γ3L2/3)
{

(1− κγ)ℓ−1 ‖x− x⋆‖2 + 2dκ−1
}

+ dγ2
}1/2

+ (4π)−1/2
[

γ2E1(γ) + γ3E2(γ)
{

(ℓ− γ−1)e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2d(κγm)−1
}]1/2

+ (4π)−1/2
n(γ)

[

γ2E1(γ) + γ2E2(γ)
{

e−mγ(ℓ−2γ−1−1) ‖x− x⋆‖2 + 2κ−1d+ d/m
}]1/2

.

2 Discussion on Theorem 5

Note that

u(2)n (γ) ≤
n
∑

i=1

{

A0γ
2
i + A1γ

3
i

}

n
∏

k=i+1

(1− κγk/2) , (S6)

where κ is given by (3), and

A0 = 2L2κ−1d , (S7)

A1 = 2L2κ−1d(m+ L)−1 + dL4(κ−1 + (m+ L)−1)(m−1 + 6−1(m+ L)−1) . (S8)

If (γk)k≥1 is a constant step size ,γk = γ for all k ≥ 1, then a straightforward conse-
quence of Theorem 5 and (S6) is the following result, which gives the minimal number
of iterations nǫ and a step-size γǫ to get W2(δx⋆Q

n
γ , π) smaller than ǫ > 0.

Corollary 1 (of Theorem 5). Assume H1 and H2. Let x⋆ be the unique minimizer of
U . Let x ∈ R

d and ǫ > 0. Set for all k ∈ N, γk = γ with

γ =
−A0 + (A2

0 + ǫ2κA1)
1/2

2A1
∧ (m+ L)−1 , (S9)

n =
⌈

log−1(1− κγ/2)
{

− log(ǫ2/2) + log(2d/m)
}⌉

.

Then W2(δx⋆R
n
γ , π) ≤ ǫ.

Note that if γ is given by (S9), and is different from 1/(m+L), then γ ≤ ǫ(4A1κ
−1)−1/2

and 2κ−1(A0γ + A1γ
2) = ǫ2/2. Therefore,

γ ≥ (ǫ2κ/4)
{

A0 + ǫ(A1/(4κ))
1/2
}−1

.
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It is shown in [1, Corollary 1] that under H2, for constant step size for any ǫ > 0, we can
choose γ and n ≥ 1 such that if for all k ≥ 1, γk = γ, then ‖ν⋆Qγn − π‖TV ≤ ǫ where ν⋆ is
the Gaussian measure on R

d with mean x⋆ and covariance matrix L−1 Id. We stress that
the results in [1, corollary 1] hold only for a particular choice of the initial distribution
ν⋆, (which might seem a rather artificial assumption) whereas Theorem 5 holds for any
initial distribution in P2(Rd).

We compare the optimal value of γ and n obtained from Corollary 1 with those given
in [1, Corollary 1]. This comparison is summarized in Table 1 and Table 2; for simplicity,
we provide only the dependencies of the optimal stepsize γ and minimal number of
simulations n as a function of the dimension d, the precision ǫ and the constants m,L.
It can be seen that the dependency on the dimension is significantly better than those
in [1, Corollary 1].

Parameter d ǫ L m

Corollary 1 d−1 ǫ2 L−2 m2

[1, Corollary 1] d−2 ǫ2 L−2 m

Table 1: Dependencies of γ

Parameter d ǫ L m

Corollary 1 d log(d) ǫ−2 |log(ǫ)| L2 |log(m)|m−3

[1, Corollary 1] d3 ǫ−2 |log(ǫ)| L3 |log(m)|m−2

Table 2: Dependencies of n

2.1 Explicit bounds for γk = γ1k
α with α ∈ (0, 1]

We give here a bound on the sequences (u
(1)
n (γ))n≥0 and (u

(2)
n (γ))n≥0 for (γk)k≥1 defined

by γ1 < 1/(m + L) and γk = γ1k
−α for α ∈ (0, 1]. Also for that purpose we introduce

for t ∈ R
∗
+,

ψψψβ(t) =

{

(tβ − 1)/β for β 6= 0

log(t) for β = 0 .
(S10)

We easily get for a ≥ 0 that for all n, p ≥ 1, n ≤ p

ψψψ1−a(p+ 1)−ψψψ1−a(n) ≤
p
∑

k=n

k−a ≤ ψψψ1−a(p)−ψψψ1−a(n) + 1 , (S11)

and for a ∈ R
p
∑

k=n

k−a ≤ ψψψ1−a(p + 1)−ψψψ1−a(n) + 1 . (S12)
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1. For α = 1, using that for all t ∈ R, (1 + t) ≤ et and by (S11) and (S12), we have

u(1)n (γ) ≤ (n+ 1)−κγ1/2 , u(2)n (γ) ≤ (n+ 1)−κγ1/2
1
∑

j=0

Aj(ψψψκγ1/2−1−j(n+ 1) + 1) .

2. For α ∈ (0, 1), by (S11) and Lemma 21 applied with ℓ = ⌈n/2⌉, where ⌈·⌉ is the
ceiling function, we have

u(1)n (γ) ≤ exp (−κγ1ψψψ1−α(n+ 1)/2)

u(2)n (γ) ≤
1
∑

j=0

Aj

[

2κ−1γj+1
1 (n/2)−α(j+1) + γj+2

1

{

ψψψ1−α(j+2)(⌈n/2⌉) + 1
}

× exp (−(κγ1/2) {ψψψ1−α(n+ 1)−ψψψ1−α(⌈n/2⌉)})] . (S13)

2.2 Optimal strategy with a fixed number of iterations

Corollary 2. Let n ∈ N
∗ be a fixed number of iteration. Assume H1, H2, and (γk)k≥1

is a constant sequence, γk = γ for all k ≥ 1. Set

γ+ = 2(κn)−1
[

log(κn/2) + log(2(‖x− x⋆‖2 + d/m)) − log(2κ−1
A0)
]

γ− = 2(κn)−1
[

log(κn/2) + log(2(‖x− x⋆‖2 + d/m))

− log
{

2κ−1(A0 + 2A1(m+ L)−1)
}]

.

Assume γ+ ∈
(

0, (m+ L)−1
)

.Then, the optimal choice of γ to minimize the bound on
W2(δxR

n
γ , π) given by Theorem 5 belongs to [γ−, γ

+]. Moreover if γ = γ+, then there
exists C ≥ 0 independent of the dimension such that the bound on W 2

2 (δxR
n
γ , π) is

equivalent to Cdn−1 log(n) as n goes to +∞.

Similarly, we have the following result.

Corollary 3. Assume H1 and H2. Let (γk)k≥1 be the decreasing sequence, defined by
γk = γαk

−α, with α ∈ (0, 1). Let n ≥ 1 and set

γα = 2(1 − α)κ−1(2/n)1−α log(κn/(2(1 − α))) .

Assume γα ∈
(

0, (m+ L)−1
)

. Then there exists C ≥ 0 independent of the dimension
such that the bound on W 2

2 (δxQ
n
γ , π) is equivalent to Cdn−1 log(n) as n goes to +∞.

Proof. Follows from (S6), (S13) and the choice of γα.

3 Discussion on Theorem 8

Based on Theorem 8, we can follow the same discussion as for Theorem 5. Note that

u(3)n (γ) ≤
n
∑

i=1

{

B0γ
3
i + B1γ

4
i

}

n
∏

k=i+1

(1− κγk/2) , (S14)
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where κ is given by (3), and

B0 = d
[

2L2 + κ−1
{

L̃2/3 + 4L4/(3m)
}]

, (S15)

B1 = d
[

κ−1L4 + L4/(6(m + L)) +m−1
]

. (S16)

The following result gives for a target precision ǫ > 0, the minimal number of iterations
nǫ and a step-size γǫ to get W2(δx⋆Q

n
γ , π) smaller than ǫ, when (γk)k≥1 is a constant step

size, γk = γǫ for all k ≥ 1.

Corollary 4. Assume H 1, H 2 and H 3. Let x⋆ be the unique minimizer of U . Let
x ∈ R

d and ǫ > 0. Set for all k ∈ N, γk = γ with

γ =
[

(ǫ/2)κ−1
{

B0 + B1(m+ L)−1
}−1/2

]

∧ (1/(m + L)) ,

n =
⌈

log−1(1− κγ/2)
{

− log(ǫ2/2) + log(2d/m)
}⌉

.

Then W2(δx⋆R
n
γ , π) ≤ ǫ.

We provide the dependencies of the optimal stepsize γǫ and minimal number of
simulations nǫ as a function of the dimension d, the precision ǫ and the constants m,L, L̃
in Table 3 and Table 4.

Parameter d ǫ L m

Corollary 4 d−1/2 ǫ L−2 m

Table 3: Dependencies of γ

Parameter d ǫ L m

Corollary 4 d1/2 log(d) ǫ−1 |log(ǫ)| L2 |log(m)|m−2

Table 4: Dependencies of n

3.1 Explicit bounds for γk = γ1k
α with α ∈ (0, 1]

We give here a bound on the sequence (u
(3)
n (γ))n≥0 for (γk)k≥1 defined by γ1 < 1/(m+L)

and γk = γ1k
−α for α ∈ (0, 1]. Bounds for (u

(1)
n (γ))n≥0 have already been given in

Section 2.1. Recall that the function ψψψ is defined by (S10). For α ∈ (0, 1], by (S11) and
Lemma 21 applied with ℓ = ⌈n/2⌉, where ⌈·⌉ is the ceiling function, we have

u(3)n (γ) ≤
2
∑

j=1

Bj−1

[

2κ−1γj+1
1 (n/2)−α(j+1) + γj+2

1

(

ψψψ1−α(j+2)(⌈n/2⌉) + 1
)

× exp (−(κγ1/2) {ψψψ1−α(n+ 1)−ψψψ1−α(⌈n/2⌉)})] . (S17)
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3.2 Optimal strategy with a fixed number of iterations

Corollary 5. Let n ∈ N
∗ be a fixed number of iteration. Assume H1, H2, H3 and

(γk)k≥1 is a constant sequence, γk = γ⋆ for all k ≥ 1, with

γ⋆ = 4(κn)−1
{

log(κn/2) + log(2(‖x− x⋆‖2 + d/m))
}

.

Assume γ⋆ ∈
(

0, (m + L)−1
)

. Then there exists C ≥ 0 independent of the dimension
such that the bound on W 2

2 (δxR
n
γ , π) is equivalent to Cdn−2 log2(n) as n goes to +∞.

Similarly, we have the following result.

Corollary 6. Assume H1, H2 and H3. Let (γk)k≥1 be the decreasing sequence, defined
by γk = γαk

−α, with α ∈ (0, 1). Let n ≥ 1 and set

γα = 2(1 − α)κ−1(2/n)1−α log(κn/(2(1 − α))) .

Assume γα ∈
(

0, (m+ L)−1
)

. Then there exists C ≥ 0 independent of the dimension
such that the bound on W 2

2 (δxR
n
γ , π) is equivalent to Cdn−2 log2(n) as n goes to +∞.

Proof. Follows from (S14), (S17) and the choice of γα.

4 Generalization of Theorem 5

In this section, we weaken the assumption γ1 ≤ 1/(m + L) of Theorem 5. We assume
now:

G1. The sequence (γk)k≥1 is non-increasing, and there exists ρ > 0 and n1 such that
(1 + ρ)γn1

≤ 2/(m+ L).

Under G1, we denote by

n0 = min {k ∈ N | γk ≤ 2/(m + L)} (S18)

We first give an extension of Theorem 3. Denote in the sequel (·)+ = max(·, 0). Recall
that under H2, x⋆ is the unique minimizer of U , and κ is defined in (4)

Theorem S7. Assume H1, H2 and G1. Then for all n, p ∈ N
∗, n ≤ p

∫

Rd

‖x− x⋆‖2 µ0Qpn(dx) ≤ Gn,p(µ0, γ) ,

where

Gn,p(µ0, γ) = exp

(

−
p
∑

k=n

γkκ+

n0−1
∑

k=n

L2γ2k

)

∫

Rd

‖x− x⋆‖2 µ0(dx)

+ 2dκ−1 + 2d

{

n0−1
∏

k=n

(γn0−1L
2)−1

(

1 + L2γ2k
)

}

exp

(

−
p
∑

k=n

κγk +

n0−1
∑

k=n

γ2kmL

)

. (S19)
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Proof. For any γ > 0, we have for all x ∈ R
d:

∫

Rd

‖y − x⋆‖2Rγ(x,dy) = ‖x− γ∇U(x)− x⋆‖2 + 2γd .

Using that ∇U(x⋆) = 0, (3) and H1, we get from the previous inequality:

∫

Rd

‖y − x⋆‖2Rγ(x,dy)

≤ (1− κγ) ‖x− x⋆‖2 + γ

(

γ − 2

m+ L

)

‖∇U(x)−∇U(x⋆)‖2 + 2γd

≤ η(γ) ‖x− x⋆‖2 + 2γd ,

where η(γ) = (1 − κγ + γL(γ − 2/(m + L))+). Denote for all k ≥ 1, ηk = η(γk). By a
straightforward induction, we have by definition of Qpn for p, n ∈ N, p ≤ n,

∫

Rd

‖x− x⋆‖2 µ0Qpn(dx) ≤
p
∏

k=n

ηk

∫

Rd

‖x− x⋆‖µ0(dx) + (2d)

p
∑

i=n

p
∏

k=i+1

ηkγi , (S20)

with the convention that for n, p ∈ N, n < p,
∏n
p = 1. For the first term of the right

hand side, we simply use the bound, for all x ∈ R, (1 + x) ≤ ex, and we get by G1

p
∏

k=n

ηk ≤ exp

(

−
p
∑

k=n

κγk +

n0−1
∑

k=n

L2γ2k

)

, (S21)

where n0 is defined in (S18). Consider now the second term in the right hand side of
(S20).

p
∑

i=n

p
∏

k=i+1

ηkγi ≤
p
∑

i=n0

p
∏

k=i+1

(1− κγk) γi +
n0−1
∑

i=n

p
∏

k=i+1

ηkγi

≤ κ−1
p
∑

i=n0

{

p
∏

k=i+1

(1− κγk)−
p
∏

k=i

(1− κγk)
}

+

{

n0−1
∑

i=n

n0−1
∏

k=i+1

(

1 + L2γ2k
)

γi

}

p
∏

k=n0

(1− κγk) (S22)

Since (γk)k≥1 is nonincreasing, we have

n0−1
∑

i=n

n0−1
∏

k=i+1

(

1 + L2γ2k
)

γi =

n0−1
∑

i=n

(γiL
2)−1

{

n0−1
∏

k=i

(

1 + L2γ2k
)

−
n0−1
∏

k=i+1

(

1 + L2γ2k
)

}

≤
n0−1
∏

k=n

(γn0−1L
2)−1

(

1 + L2γ2k
)

.
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Furthermore for k < n0 γk > 2/(m + L). This implies with the bound (1 + x) ≤ ex on
R:

p
∏

k=n0

(1− κγk) ≤ exp

(

−
p
∑

k=n

κγk

)

exp

(

n0−1
∑

k=n

κγk

)

≤ exp

(

−
p
∑

k=n

κγk

)

exp

(

n0−1
∑

k=n

γ2kmL

)

.

Using the two previous inequalities in (S22), we get

p
∑

i=n

p
∏

k=i+1

ηkγi

≤ κ−1 +

{

n0−1
∏

k=n

(γn0−1L
2)−1

(

1 + L2γ2k
)

}

exp

(

−
p
∑

k=n

κγk +

n0−1
∑

k=n

γ2kmL

)

. (S23)

Combining (S21) and (S23) in (S20) concluded the proof.

We now deal with bounds on W2(µ0Q
n
γ , π) under G1. But before we preface our

result by some techincal lemmas.

Lemma S8. Assume H1 and H2. Let ζ0 ∈ P2(Rd×R
d), (Yt, Y t)t≥0 such that (Y0, Y 0)

is distributed according to ζ0 and given by (9). Let (Ft)t≥0 be the filtration associated
with (Bt)t≥0 with F0, the σ-field generated by (Y0, Y 0). Then for all n ≥ 0, ǫ1 > 0 and
ǫ2 > 0,

E
FΓn

[

∥

∥YΓn+1
− Y Γn+1

∥

∥

2
]

≤ {1− γn+1 (κ− 2ǫ1) + γn+1L((1 + ǫ2)γn+1 − 2/(m + L))+}
∥

∥YΓn − Y Γn

∥

∥

2

+ γ2n+1(1/(2ǫ1) + (1 + ǫ−1
2 )γn+1)

(

dL2 + (L4γn+1/2) ‖YΓn − x⋆‖2 + dL4γ2n+1/12
)

.

Proof. Let n ≥ 0 and ǫ1 > 0, and set ∆n = YΓn − Y Γn by definition we have:

E
FΓn

[

‖∆n+1‖2
]

= ‖∆n‖2 + E
FΓn

[

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys)−∇U(Y Γn)
}

ds

∥

∥

∥

∥

2
]

− 2γn+1

〈

∆n,∇U(YΓn)−∇U(Y Γn)
〉

− 2

∫ Γn+1

Γn

E
FΓn [〈∆n, {∇U(Ys)−∇U(YΓn)}〉ds] .

Using the two inequalities | 〈a, b〉 | ≤ ǫ1‖a‖2 + (4ǫ1)
−1‖b‖2 and (3), we get

E
FΓn

[

‖∆n+1‖2
]

≤ {1− γn+1(κ− 2ǫ1)} ‖∆n‖2 − 2γn+1/(m+ L)
∥

∥∇U(YΓn)−∇U(Y Γn)
∥

∥

2

+ E
FΓn

[

∥

∥

∥

∥

∫ Γn+1

Γn

{∇U(Ys)−∇U(Y Γn)}ds
∥

∥

∥

∥

2
]

+ (2ǫ1)
−1

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn)‖2
]

ds . (S24)
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Using ‖a+ b‖2 ≤ (1 + ǫ2) ‖a‖2 + (1 + ǫ−1
2 ) ‖b‖2 and the Jensen’s inequality, we have

E
FΓn

[

∥

∥

∥

∥

∫ Γn+1

Γn

{

∇U(Ys)−∇U(Y Γn)
}

ds

∥

∥

∥

∥

2
]

≤ (1 + ǫ2)γ
2
n+1

∥

∥∇U(YΓn)−∇U(Y Γn)
∥

∥

2

+ γn+1E
FΓn

[
∫ Γn+1

Γn

‖∇U(Ys)−∇U(YΓn)‖2 ds
]

.

This result and H1 imply,

E
FΓn

[

‖∆n+1‖2
]

≤ {1− γn+1(κ− 2ǫ1) + γn+1L((1 + ǫ2)γn+1 − 2/(m+ L))+} ‖∆n‖2

+ ((1 + ǫ−1
2 )γn+1 + (2ǫ1)

−1)

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn)‖2
]

ds . (S25)

By H1, the Markov property of (Yt)t≥0 and Lemma 19, we have

∫ Γn+1

Γn

E
FΓn

[

‖∇U(Ys)−∇U(YΓn)‖2
]

ds

≤ L2
(

dγ2n+1 + dL2γ4n+1/12 + (L2γ3n+1/2) ‖YΓn − x⋆‖2
)

.

Plugging this bound in (S25) concludes the proof.

Lemma S9. Let (γk)k≥1 be a nonincreasing sequence of positive numbers. Let ̟,β > 0
be positive constants satisfying ̟2 ≤ 4β and τ > 0. Assume there exists N ≥ 1, γN ≤ τ
and γN̟ ≤ 1. Then for all n ≥ 0, j ≥ 2

(i)

n+1
∑

i=1

n+1
∏

k=i+1

(1− γk̟ + γkβ(γk − τ)+) γji ≤
n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji

+

{

β−1γj−2
1

N−1
∏

k=1

(

1 + γ2kβ
)

}

n+1
∏

k=N

(1−̟γk) .

(ii) For all ℓ ∈ {N, . . . , n},

n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji ≤ exp

(

−
n+1
∑

k=ℓ

̟γk

)

ℓ−1
∑

i=N

γji +
γj−1
ℓ

̟
.

Proof. By definition of N we have

n+1
∑

i=1

n+1
∏

k=i+1

(1− γk̟ + γkβ(γk − τ)+) γji

≤
n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji +

{

N−1
∑

i=1

N−1
∏

k=i+1

(

1 + γ2kβ
)

γji

}

n+1
∏

k=N

(1− γk̟) . (S26)
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Using that (γk)k≥1 is nonincreasing, we have

N−1
∑

i=1

N−1
∏

k=i+1

(

1 + γ2kβ
)

γji ≤
N−1
∑

i=1

γj−2
i

β

{

N−1
∏

k=i

(

1 + γ2kβ
)

−
N−1
∏

k=i+1

(

1 + γ2kβ
)

}

≤ β−1γj−2
1

N−1
∏

k=1

(

1 + γ2kβ
)

.

Plugging this inequality in (S26) concludes the proof of (i). Let ℓ ∈ {N, . . . , n+ 1}.
Since (γk)k≥1 is nonincreasing and for every x ∈ R, (1 + x) ≤ ex, we get

n+1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji =

ℓ−1
∑

i=N

n+1
∏

k=i+1

(1− γk̟) γji +

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1− γk̟) γji

≤
ℓ−1
∑

i=N

exp

(

−
n+1
∑

k=i+1

̟γk

)

γji + γj−1
ℓ

n+1
∑

i=ℓ

n+1
∏

k=i+1

(1− γk̟) γi

≤ exp

(

−
n+1
∑

k=ℓ

̟γk

)

ℓ−1
∑

i=N

γji +
γj−1
ℓ

̟
.

Lemma S10. Let (γk)k≥1 be a nonincreasing sequence of positive numbers, ̟,β, τ > 0
be positive real numbers, and N ≥ 1 satisfying the assumptions of Lemma S9. Let
P ∈ N

∗, Ci ≥ 0, i = 0, . . . ,P be positive constants and (un)n≥0 be a sequence of real
numbers with u0 ≥ 0 satisfying for all n ≥ 0

un+1 ≤ (1− γn+1̟ + βγn+1(γn+1 − τ)+)un +
P
∑

i=0

Cjγ
j+2
n+1 .

Then for all n ≥ 1,

un ≤
{

N−1
∏

k=1

(

1 + βγ2k
)

}

n
∏

k=N

(1− γk̟) u0 +

P
∑

j=0

Cj

n
∑

i=N

n
∏

k=i+1

(1− γk̟) γj+2
i

+







P
∑

j=0

Cjβ
−1γj1

N−1
∏

k=1

(

1 + γ2kβ
)







n
∏

k=N

(1−̟γk) .

Proof. This is a consequence of a straightforward induction and Lemma S9-(i).

Proposition S11. Assume H1, H2 and G1. Let x⋆ be the unique minimizer of U . Let
ζ0 ∈ P2(Rd ×R

d), (Yt, Y t)t≥0 such that (Y0, Y 0) is distributed according to ζ0 and given
by (9). Then for all n ≥ 0 and t ∈ [Γn,Γn+1]:

E

[

∥

∥Yt − Y t
∥

∥

2
]

≤ ũ(1)n E

[

∥

∥Y0 − Y 0

∥

∥

2
]

+ ũ(4)n + ũ
(5)
t,n ,

11



where

ũ(1)n (γ) =

{

n1−1
∏

k=1

(

1 + L2(1 + ρ)γ2k
)

}

n
∏

k=n1

(1− κγk/2) , (S27)

ũ(4)n (γ) =

n
∑

i=n1

γ2i a(γi)

n
∏

k=i+1

(1− κγk/2)

+ a(γ1)(L
2(1 + ρ))−1

{

n1−1
∏

k=1

(1 + γ2k(1 + ρ)L2)

}

n
∏

k=n1

(1− κγk/2) ,

where for γ > 0,

a(γ) =
{

2κ−1 + (1 + ρ−1)γ
}

(dL2 + δL4γ/2 + dL4γ2/12) ,

δ = maxi≥1

{

e−2mΓi−1E

[

‖Y0 − x⋆‖2
]

+ (1− e−2mΓi−1)(d/m)
}

,

and

ũ
(5)
t,n(γ) =

m+ L

2

(

(t− Γn)
3L2

3
G1,n(µ0, γ) + (t− Γn)

2d

)

,

where G1,n(µ0, γ) is given by (S19) and µ0 is the initial distribution of Y 0.

Proof. Lemma S8 with ǫ1 = κ/4 and ǫ2 = ρ, G1, Lemma S9, ((i)) imply for all n ≥ 0

E

[

∥

∥YΓn − Y Γn

∥

∥

2
]

≤ ũ(1)n (γ)E
[

∥

∥Y0 − Y 0

∥

∥

2
]

+ ũ(4)n (γ) . (S28)

Now let n ≥ 0 and t ∈ [Γn,Γn+1]. By (9),

∥

∥Yt − Y t

∥

∥

2
=
∥

∥YΓn − Y Γn

∥

∥

2 − 2

∫ t

Γn

〈

∇U(Ys)−∇U(Y Γn), Ys − Y s

〉

ds . (S29)

Moreover for all s ∈ [Γn,Γn+1], by (3) we get

〈

∇U(Ys)−∇U(Y Γn), Ys − Y s

〉

=
〈

∇U(Ys)−∇U(Y Γn), Ys − Y Γn + Y Γn − Y s

〉

≥ (m+ L)−1
∥

∥∇U(Ys)−∇U(Y Γn)
∥

∥

2
+
〈

∇U(Ys)−∇U(Y Γn), Y Γn − Y s

〉

. (S30)

Since |〈a, b〉| ≤ (m+ L)−1 ‖a‖2 + (m+ L) ‖b‖2 /4, we have

〈

∇U(Ys)−∇U(Y Γn), Y Γn − Y s

〉

≥ −(m+ L)−1
∥

∥∇U(Ys)−∇U(Y Γn)
∥

∥

2 − (m+ L)
∥

∥Y s − Y Γn

∥

∥

2 /
4 .

Using this inequality in (S30), we get

〈

∇U(Ys)−∇U(Y Γn), Ys − Y s

〉

≥ −(m+ L)
∥

∥Y s − Y Γn

∥

∥

2 /
4 ,

12



and (S29) becomes

∥

∥Yt − Y t

∥

∥

2 ≤
∥

∥YΓn − Y Γn

∥

∥

2
+ ((m+ L)/2)

∫ t

Γn

∥

∥Y s − Y Γn

∥

∥

2
ds (S31)

Therefore, by the previous inequality, it remains to bound the expectation of
∥

∥Y s − Y Γn

∥

∥

2
.

By (9) and using ∇U(x⋆) = 0,

∥

∥Y s − Y Γn

∥

∥

2
=
∥

∥

∥
−(s− Γn)(∇U(Y Γn)−∇U(x⋆)) +

√
2(Bs −BΓn)

∥

∥

∥

2
.

Then taking the expectation, using the Markov property of (Bt)t≥0 and H1, we have

E

[

∥

∥Y s − Y Γn

∥

∥

2
]

≤ (s− Γn)
2L2

E

[

∥

∥Y Γn − x⋆
∥

∥

2
]

+ 2(s− Γn)d . (S32)

The proof follows from taking the expectation in (S31), combining (S28)-(S32), and
using Theorem S7.

Theorem S12. Assume H1, H2 and G1. Then for all µ0 ∈ P2(Rd) and n ≥ 1,

W 2
2 (µ0Q

n
γ , π) ≤ ũ(1)n (γ)W 2

2 (µ0, π) + ũ(2)n (γ) , (S33)

where (ũ
(1)
n )n≥0 is given by (S27) and

ũ(2)n (γ) =
n
∑

i=n1

γ2i b(γi)
n
∏

k=i+1

(1− κγk/2)

+ b(γ1)(L
2(1 + ρ))−1

{

n1−1
∏

k=1

(1 + γ2k(1 + ρ)L2)

}

n
∏

k=n1

(1− κγk/2) , (S34)

where
b(γ) =

{

2κ−1 + (1 + ρ−1)γ
}

(dL2 + dL4γ/(2m) + dL4γ2/12) .

Proof. Let ζ0 be an optimal transference plan of µ0 and π. Let (Yt, Y t)t≥0 with (Y0, Y 0)
distributed according to ζ0 and defined by (9). By definition of W2 and since for all
t ≥ 0, π is invariant for Pt, W

2
2 (µ0Q

n, π) ≤ E[‖YΓn −XΓn‖2]. Then the proof follows
from Proposition S11 since Y0 is distributed according to π and by Theorem 1-(ii), which
shows that δ ≤ d/m.

4.1 Explicit bound based on Theorem S12 for γk = γ1k
α with α ∈ (0, 1]

We give here a bound on the sequences (ũ
(1)
n (γ))n≥1 and (ũ

(2)
n (γ))n≥1 for (γk)k≥1 defined

by γ1 > 0 and γk = γ1k
−α for α ∈ (0, 1]. Recall that ψψψβ is given by (S10). First note,

13



since (γk)k≥1 is nonincreasing, for all n ≥ 1, we have

ũ(2)n (γ) ≤
1
∑

j=0

Cj

n
∑

i=n1

γj+2
i

n
∏

k=i+1

(1− κγk/2)

+
1
∑

j=0

Cj(L
2(1 + ρ))−1γj1

{

n1−1
∏

k=1

(1 + γ2k(1 + ρ)L2)

}

n
∏

k=n1

(1− κγk/2) , (S35)

where

C1 = bdL2 ,C2 = b(dL4/(2m) + γ1dL
4/12) , b = 2κ−1 + (1 + ρ−1)γ1 .

1. For α = 1 and n1 = 1, by (S11) and (S12), we have

ũ(1)n (γ) ≤ (n+ 1)−κγ1/2

ũ(2)n (γ) ≤ (n+ 1)−κγ1/2
1
∑

j=0

Cj

{

γj+2
1 (ψψψκγ1/2−1−j(n+ 1) + 1) + (L2(1 + ρ))−1γj1

}

.

For n1 > 1, since (γk)k≥0 is non increasing, using again (S11), (S12), and the
bound for t ∈ R, (1 + t) ≤ et

ũ(1)n (γ) ≤ (n + 1)−κγ1/2 exp
{

κγ1ψψψ0(n1)/2 + L2(1 + ρ)γ21(ψψψ−1(n1 − 1) + 1)
}

ũ(2)n (γ) ≤ (n + 1)−κγ1/2
1
∑

j=0

Cj

(

γj+2
1 (ψψψκγ1/2−1−j(n + 1)−ψψψκγ1/2−1−j(n1) + 1)

+(γj1/(L
2(1 + ρ)) exp

{

κγ1ψψψ0(n1)/2 + L2(1 + ρ)γ21(ψψψ−1(n1 − 1) + 1)
}

)

.

Thus, for γ1 > κ/2, we get a bound in O(n−1).

2. For α ∈ (0, 1) and n1 = 1, by (S11) and Lemma S9-(ii) applied with ℓ = ⌈n/2⌉, we
have

ũ(1)n (γ) ≤ exp (−(κγ1/2)ψψψα−1(n+ 1))

ũ(2)n (γ) ≤
1
∑

j=0

Cj

{

γj+2
1

(

ψψψ1−α(j+2)(⌈n/2⌉) + 1
)

e−(κγ1/2)(ψψψ1−α(n+1)−ψψψ1−α(⌈n/2⌉))

+2κ−1γj+1
1 (n/2)−α(j+1) + γj1e

−(κγ1/2)ψψψα−1(n+1)
}

.

For n1 > 1 and ⌈n/2⌉ ≥ n1, since (γk)k≥0 is non increasing, using again (S11), and
Lemma S9-(ii) applied with ℓ = ⌈n/2⌉, and the bound for t ∈ R, (1 + t) ≤ et, we
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get

ũ(1)n (γ) ≤ e−κγ1(ψψψα−1(n+1)−ψψψ1−α(n1))/2+L2(1+ρ)γ2
1
(ψψψ1−2α(n1−1)+1)

ũ(2)n (γ) ≤
1
∑

j=0

Cj

{

2κ−1γj+1
1 (n/2)−α(j+1)

+ γj+2
1

(

ψψψ1−α(j+2)(⌈n/2⌉)−ψψψ1−α(j+2)(n1) + 1
)

e−(κγ1/2)(ψψψ1−α(n+1)−ψψψ1−α(⌈n/2⌉))

+(γj1/(L
2(1 + ρ))e−κγ1(ψψψα−1(n+1)−ψψψ1−α(n1))/2+L2(1+ρ)γ2

1
(ψψψ1−2α(n1−1)+1)

}

.

5 Explicit bounds on the MSE

Without loss of generality, assume that ‖f‖Lip = 1. In the following, denote by Ω(x) =

‖x− x⋆‖2 + d/m and C a constant (which may take different values upon each appear-
ance), which does not depend on m,L, γ1, α and ‖x− x⋆‖.

5.1 Explicit bounds based on Theorem 5

1. First for α = 0, recall by Theorem 5 and (S6) we have for all p ≥ 1,

W 2
2 (δxR

p
γ , π) ≤ 2Ω(x)(1 − κγ1/2)p + 2κ−1(A0γ1 + A1γ

2
1) ,

where A0 and A1 are given by (S7) and (S8) respectively. So by (15) and Lemma 21,
we have the following bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1 exp(−κNγ1/2)Ω(x)
γ1n

+ κ−1
A0γ1

)

.

Therefore plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1 +

κ−2 + κ−1 exp(−κNγ1/2)Ω(x)
nγ1

)

. (S36)

So with fixed γ1 this bound is of order γ1. If we fix the number of iterations n, we
can optimize the choice of γ1. Set

γ⋆,0(n) = (κ−1
A0)

−1(CMSE,0/n)
1/2 , where CMSE,0 = κ−3

A0 ,

and (S36) becomes if γ1 ← γ⋆,0(n),

MSEN,nf ≤ C(CMSE,0n)
−1/2

(

κ−1 exp(−κNγ⋆,0(n)/2)Ω(x) + CMSE,0

)

.

Setting N0(n) = 2(κγ⋆,0(n))
−1 log(Ω(x)), we end up with

MSE
N0(n),n
f ≤ C(CMSE,0/n)

1/2 .

Note that N0(n) is of order n
1/2.
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2. For α ∈ (0, 1/2) by Theorem 5, Lemma 21, (S11) and (S13), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1

(1− 2α)nα
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1

(1− 2α)nα
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.

(S37)
At fixed γ1, this bound is of order n−α, and is better than (S36) for (γk)k≥1

constant. If we fix the number of iterations n, we can optimize the choice of γ1
again. Set

γ⋆,α(n) = (κ−1
A0/(1−2α))−1(CMSE,α/n

1−2α)1/2 , where CMSE,α = κ−3
A0/(1−2α) ,

(S37) becomes with γ1 ← γ⋆,α(n),

MSEN,nf

≤ C(CMSE,αn)
−1/2

(

κ−1 exp
{

−κN1−αγ⋆,α(n)/(2(1 − α))
}

Ω(x) + CMSE,α

)

.

Setting Nα(n) = {2(1− α)(κγ⋆,α(n))−1 log(Ω(x))}1/(1−α), we end up with

MSE
Nα(n),n
f ≤ C(CMSE,α/n)

1/2 .

It is worthwhile to note that the order of Nα(n) in n is n(1−2α)/(2(1−α)) , and CMSE,α

goes to infinity as α→ 1/2 .

3. If α = 1/2, by Theorem 5, Lemma 21, (S11) and (S13), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1 log(n)

n1/2
+
κ−1 exp

{

−κγ1N1/2/4
}

Ω(x)

γ1n1/2

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1 log(n)

n1/2
+
κ−1 exp

{

−κγ1N1/2/4
}

Ω(x) + κ−2

γ1n1/2

)

. (S38)

At fixed γ1, the order of this bound is log(n)n−1/2, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of γ1. Set

γ⋆,1/2(n) = (κ−1
A0)

−1(CMSE,1/2/ log(n))
1/2 , where CMSE,1/2 = κ−3

A0 ,
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and (S38) becomes with γ1 ← γ⋆,1/2(n),

MSEN,nf

≤ C
(

log(n)

nCMSE,1/2

)1/2(

κ−1 exp
{

−κN1/2γ⋆,1/2(n)/4
}

Ω(x) +
CMSE,1/2

log(n)

)

.

Setting N1/2(n) = (4(κγ⋆,1/2(n))
−1 log(Ω(x)))2, we end up with

MSE
N1/2(n),n

f ≤ C
(

log(n)CMSE,1/2

n

)1/2

.

4. For α ∈ (1/2, 1], by Theorem 5, Lemma 21, (S11) and (S13), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.

For fixed γ1, the MSE is of order n1−α, and is worse than for α ∈ [0, 1/2]. For
a fixed number of iteration n, optimizing γ1 would imply to choose γ1 → +∞ as
n→ +∞. Therefore, in that case, the best choice of γ1 is the largest possible value
1/(m + L).

5. For α = 1, by Theorem 5, Lemma 21, (S11) and (S13), the bias is upper bounded
by

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
A0γ1

log(n)
+
κ−1N−κγ1/2Ω(x)

γ1 log(n)

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
A0γ1

log(n)
+
κ−1N−κγ1/2Ω(x) + κ−2

γ1 log(n)

)

.

For fixed γ1, the order of the MSE is (log(n))−1. For a fixed number of iterations,
the conclusions are the same than for α ∈ (1/2, 1).
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5.2 Explicit bound based on Theorem 8

1. First for α = 0, recall by Theorem 8 and (S14) we have for all p ≥ 1,

W 2
2 (δxR

p
γ , π) ≤ 2Ω(x)(1 − κγ1/2)p + 2κ−1(B0γ1 + B1γ

2
1) ,

where B0 and B1 are given by (S15) and (S16) respectively. So by and Lemma 21,
we have the following bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1 exp(−κNγ1/2)Ω(x)
γ1n

+ κ−1
B0γ

2
1

)

.

Therefore plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
B0γ

2
1 +

κ−2 + κ−1 exp(−κNγ1/2)Ω(x)
nγ1

)

. (S39)

So with fixed γ1 this bound is of order γ1. If we fix the number of iterations n, we
can optimize the choice of γ1. Set

γ⋆,0(n) = (κB0n)
−1/3 ,

and (S36) becomes if γ1 ← γ⋆,0(n),

MSEN,nf ≤ C(B
−1/2
0 n)−2/3

(

κ−4/3 exp(−κNγ⋆,0(n)/2)Ω(x) + κ−5/3
)

.

Setting N0(n) = 2(κγ⋆,0(n))
−1 log(Ω(x)), we end up with

MSE
N0(n),n
f ≤ C(B

−1/2
0 κ5/2n)−2/3 .

Note that N0(n) is of order n
1/3.

2. For α ∈ (0, 1/3) by Theorem 8, Lemma 21, (S11) and (S17), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ

2
1

(1− 3α)n2α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
B0γ

2
1

(1− 3α)n2α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.

(S40)
If we fix the number of iterations n, we can optimize the choice of γ1 again. Set

γ⋆,α(n) = (n1−3ακB0/(1− 3α))−1/3 ,
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(S40) becomes with γ1 ← γ⋆,α(n),

MSEN,nf ≤ C(B
−1/2
0 n)−2/3

(

κ−4/3 exp(−κNγ⋆,0(n)/(2(1 − α)))Ω(x) + κ−5/3(1− 3α)−1/3
)

.

Setting Nα(n) = {(κγ⋆,α(n))−1 log(Ω(x))}1/(1−α), we end up with

MSE
Nα(n),n
f ≤ C(B

−1/2
0 κ5/2n)−2/3 .

It is worthwhile to note that the order of Nα(n) in n is n(1−3α)/(3(1−α)) .

3. If α = 1/3, by Theorem 8, Lemma 21, (S11) and (S17), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ

2
1 log(n)

n2/3
+
κ−1 exp

{

−κγ1N2/3/4
}

Ω(x)

γ1n2/3

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
B0γ

2
1 log(n)

n2/3
+
κ−1 exp

{

−κγ1N2/3/4
}

Ω(x) + κ−2

γ1n2/3

)

. (S41)

At fixed γ1, the order of this bound is log(n)n−2/3, and is the best bound for the
MSE. Fix the number of iterations n, and we now optimize the choice of γ1. Set

γ⋆,1/2(n) = (κB0 log(n))
−1/3 ,

and (S41) becomes with γ1 ← γ⋆,1/2(n),

MSEN,nf ≤ C
(

log(n)B0

n2

)1/3
(

κ−4/3 exp
{

−κN1/2γ⋆,1/2(n)/4
}

Ω(x) + κ−5/3
)

.

Setting N1/2(n) = (4(κγ⋆,1/2(n))
−1 log(Ω(x)))3/2, we end up with

MSE
N1/2(n),n

f ≤ C
(

log(n)B0

κ5n2

)1/3

.

We can see that we obtain a worse bound than for α = 0 and α ∈ (0, 1/3).

4. For α ∈ (1/3, 1], by Theorem 8, Lemma 21, (S11) and (S17), we have the following
bound for the bias

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x)

γ1n1−α

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
B0γ1

n1−α
+
κ−1 exp

{

−κγ1N1−α/(2(1 − α))
}

Ω(x) + κ−2

γ1n1−α

)

.
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For fixed γ1, the MSE is of order n1−α, and is worse than for α = 1/2. For a fixed
number of iteration n, optimizing γ1 would imply to choose γ1 → +∞ as n→ +∞.
Therefore, in that case, the best choice of γ1 is the largest possible value 1/(m+L).

5. For α = 1, by Theorem 8, Lemma 21, (S11) and (S13), the bias is upper bounded
by

{

Ex[π̂
N
n (f)]− π(f)

}2 ≤ C
(

κ−1
B0γ1

log(n)
+
κ−1N−κγ1/2Ω(x)

γ1 log(n)

)

.

Plugging this inequality and the one given by Theorem 10 implies:

MSEN,nf ≤ C
(

κ−1
B0γ1

log(n)
+
κ−1N−κγ1/2Ω(x) + κ−2

γ1 log(n)

)

.

For fixed γ1, the order of the MSE is (log(n))−1. For a fixed number of iterations,
the conclusions are the same than for α ∈ (1/2, 1).
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