Supplement to "Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm"

Alain Durmus, Éric Moulines

To cite this version:

Alain Durmus, Éric Moulines. Supplement to "Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm". 2016. hal-01176084v2

HAL Id: hal-01176084 https://hal.science/hal-01176084v2

Preprint submitted on 25 Apr 2016 (v2), last revised 15 Jul 2018 (v5)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Supplement to Sampling from a strongly log-concave distribution with the Unadjusted Langevin Algorithm

Alain Durmus ${ }^{1} \quad$ Éric Moulines ${ }^{2}$

April 25, 2016

1 Discussion of Theorem 3

Note that

$$
\begin{equation*}
u_{n}^{(2)}(\gamma) \leq \sum_{i=1}^{n}\left\{\mathrm{~A}_{0} \gamma_{i}^{2}+\mathrm{A}_{1} \gamma_{i}^{3}\right\} \prod_{k=i+1}^{n}\left(1-\kappa \gamma_{k} / 2\right) \tag{S1}
\end{equation*}
$$

-eq:bound'u'n'2"
where κ is given by (4), and

$$
\begin{align*}
& \mathrm{A}_{0} \stackrel{\text { def }}{=} 2 L^{2} \kappa^{-1} d, \tag{S2}\\
& \mathrm{~A}_{1} \stackrel{\text { def }}{=} 2 L^{2} \kappa^{-1} d(m+L)^{-1}+d L^{4}\left(\kappa^{-1}+(m+L)^{-1}\right)\left(m^{-1}+6^{-1}(m+L)^{-1}\right) . \tag{S3}
\end{align*}
$$

If $\left(\gamma_{k}\right)_{k \geq 1}$ is a constant step size , $\gamma_{k}=\gamma$ for all $k \geq 1$, then a straightforward consequence of Theorem 3 and (S1) if the following result, which gives the minimal number of iterations n and a step-size γ to get $W_{2}\left(\delta_{x^{\star}} Q_{\gamma}^{n}, \pi\right)$ smaller than $\epsilon>0$.

Corollary 1 (of Theorem 3). Assume H1 and H2, Let x^{\star} be the unique minimizer of U. Let $x \in \mathbb{R}^{d}$ and $\epsilon>0$. Set for all $k \in \mathbb{N}$, $\gamma_{k}=\gamma$ with

$$
\begin{align*}
& \gamma=\frac{-2 \mathrm{~A}_{0} \kappa^{-1}+\left(4 \kappa^{-1}\left(\mathrm{~A}_{0}^{2} \kappa^{-1}+\epsilon^{2} \mathrm{~A}_{1}\right)\right)^{1 / 2}}{4 \mathrm{~A}_{1} \kappa^{-1}} \wedge(m+L)^{-1}, \tag{S4}\\
& n=\left\lceil 2(\kappa \gamma)^{-1}\left\{-\log \left(\epsilon^{2} / 4\right)+\log (2 d / m)\right\}\right\rceil .
\end{align*}
$$

Then $W_{2}\left(\delta_{x^{\star}} Q_{n}^{\gamma}, \pi\right) \leq \epsilon$.
Note that if γ is given by (S4), and is different from $1 /(m+L)$, then $\gamma \leq \epsilon\left(4 \mathrm{~A}_{1} \kappa^{-1}\right)^{-1 / 2}$ and $2 \kappa^{-1}\left(\mathrm{~A}_{0} \gamma+\mathrm{A}_{1} \gamma^{2}\right)=\epsilon^{2} / 2$. Therefore,

$$
\gamma \geq\left(\epsilon^{2} \kappa / 4\right)\left\{\mathrm{A}_{0}+\epsilon\left(\mathrm{A}_{1} /(4 \kappa)\right)^{1 / 2}\right\}^{-1}
$$

It is shown in [1, Corollary 1] that under $\mathbf{H} \mathbf{2}$, for constant step size for any $\epsilon>0$, we can choose γ and $n \geq 1$ such that if for all $k \geq 1, \gamma_{k}=\gamma$, then $\left\|\nu^{\star} Q_{n}^{\gamma}-\pi\right\|_{\mathrm{TV}} \leq \epsilon$ where ν^{\star} is the Gaussian measure on \mathbb{R}^{d} with mean x^{\star} and covariance matrix $L^{-1} \mathrm{I}_{d}$. We stress that the results in [1,

[^0]corollary 1] hold only for a particular choice of the initial distribution ν^{\star}, (which might seem a rather artificial assumption) whereas Theorem 3 hold for any initial distribution in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$.

We compare the optimal value of γ and n obtained from Corollary 1 with those given in [1. Corollary 1]. This comparison is summarized in Table 1 and Table 2 for simplicity, we provide only the dependencies of the optimal stepsize γ and minimal number of simulations n as a function of the dimension d, the precision ϵ and the constants m, L. It can be seen that the dependency on the dimension is significantly better than those in [1, Corollary 1].

Parameter	d	ϵ	L	m
Theorem[3 and (21)	d^{-1}	ϵ^{2}	L^{-2}	m^{2}
[1, Corollary 1]	d^{-2}	ϵ^{2}	L^{-2}	m

Table 1: Dependencies of γ

Parameter	d	ϵ	L	m
Theorem 3 and (21)	$d \log (d)$	$\epsilon^{-2}\|\log (\epsilon)\|$	L^{2}	$\|\log (m)\| m^{-3}$
1, Corollary 1]	d^{3}	$\epsilon^{-2}\|\log (\epsilon)\|$	L^{3}	$\|\log (m)\| m^{-2}$

Table 2: Dependencies of n

1.1 Explicit bounds for $\gamma_{k}=\gamma_{1} k^{\alpha}$ with $\alpha \in(0,1]$

We give here a bound on the sequences $\left(u_{n}^{(1)}(\gamma)\right)_{n \geq 0}$ and $\left(u_{n}^{(2)}(\gamma)\right)_{n \geq 0}$ for $\left(\gamma_{k}\right)_{k \geq 1}$ defined by $\gamma_{1}<1 /(m+L)$ and $\gamma_{k}=\gamma_{1} k^{-\alpha}$ for $\alpha \in(0,1]$. Also for that purpose we introduce for $t \in \mathbb{R}_{+}^{*}$,

$$
\boldsymbol{\psi}_{\beta}(t)= \begin{cases}\left(t^{\beta}-1\right) / \beta & \text { for } \beta \neq 0 \tag{S5}\\ \log (t) & \text { for } \beta=0\end{cases}
$$

We easily get for $a \geq 0$ that for all $n, p \geq 1, n \leq p$

$$
\begin{equation*}
\boldsymbol{\psi}_{1-a}(p+1)-\boldsymbol{\psi}_{1-a}(n) \leq \sum_{k=n}^{p} k^{-a} \leq \boldsymbol{\psi}_{1-a}(p)-\boldsymbol{\psi}_{1-a}(n)+1 \tag{S6}
\end{equation*}
$$

and for $a \in \mathbb{R}$

$$
\begin{equation*}
\sum_{k=n}^{p} k^{-a} \leq \boldsymbol{\psi}_{1-a}(p+1)-\boldsymbol{\psi}_{1-a}(n)+1 \tag{S7}
\end{equation*}
$$

1. For $\alpha=1$, using that for all $t \in \mathbb{R},(1+t) \leq \mathrm{e}^{t}$ and by S6) and S7), we have

$$
u_{n}^{(1)}(\gamma) \leq(n+1)^{-\kappa \gamma_{1} / 2}, u_{n}^{(2)}(\gamma) \leq(n+1)^{-\kappa \gamma_{1} / 2} \sum_{j=0}^{1} \mathrm{~A}_{j}\left(\boldsymbol{\psi}_{\kappa \gamma_{1} / 2-1-j}(n+1)+1\right)
$$

2. For $\alpha \in(0,1)$, by $S 6$ and Lemma 14 applied with $\ell=\lceil n / 2\rceil$, where $\lceil\cdot\rceil$ is the ceiling function, we have

$$
\begin{align*}
u_{n}^{(1)}(\gamma) & \leq \exp \left(-\kappa \gamma_{1} \boldsymbol{\psi}_{1-\alpha}(n+1) / 2\right) \\
u_{n}^{(2)}(\gamma) & \leq \sum_{j=0}^{1} \mathrm{~A}_{j}\left(2 \kappa^{-1} \gamma_{1}^{j+1}(n / 2)^{-\alpha(j+1)}+\gamma_{1}^{j+2}\left(\boldsymbol{\psi}_{1-\alpha(j+2)}(\lceil n / 2\rceil)+1\right)\right. \\
& \left.\times \exp \left\{-\left(\kappa \gamma_{1} / 2\right)\left(\boldsymbol{\psi}_{1-\alpha}(n+1)-\boldsymbol{\psi}_{1-\alpha}(\lceil n / 2\rceil)\right)\right\}\right) . \tag{S8}
\end{align*}
$$

1.2 Optimal strategy with a fixed number of iterations

Corollary 2. Let $n \in \mathbb{N}^{*}$ be a fixed number of iteration. Assume \boldsymbol{H}, \boldsymbol{H} 2, and $\left(\gamma_{k}\right)_{k \geq 1}$ is a constant sequence, $\gamma_{k}=\gamma$ for all $k \geq 1$. Set

$$
\begin{aligned}
& \gamma^{+} \stackrel{\text { def }}{=} 2(\kappa n)^{-1}\left(\log (\kappa n / 2)+\log \left(2\left(\left\|x-x^{\star}\right\|^{2}+d / m\right)\right)-\log \left(2 \kappa^{-1} \mathrm{~A}_{0}\right)\right) \\
& \gamma_{-} \stackrel{\text { def }}{=} 2(\kappa n)^{-1}\left(\log (\kappa n / 2)+\log \left(2\left(\left\|x-x^{\star}\right\|^{2}+d / m\right)\right)-\log \left(2 \kappa^{-1}\left(\mathrm{~A}_{0}+2 \mathrm{~A}_{1}(m+L)^{-1}\right)\right)\right) .
\end{aligned}
$$

Assume $\gamma^{+} \in\left(0,(m+L)^{-1}\right)$.Then, the optimal choice of γ to minimize the bound on $W_{2}\left(\delta_{x} Q_{n}^{\gamma}, \pi\right)$ given by Theorem 3 belongs to $\left[\gamma_{-}, \gamma^{+}\right]$. Moreover if $\gamma=\gamma_{+}$, then the bound on $W_{2}^{2}\left(\delta_{x} Q_{n}^{\gamma}, \pi\right)$ is equivalent to $4 \mathrm{~A}_{0}\left(\kappa^{2} n\right)^{-1} \log (\kappa n / 2)$ as $n \rightarrow+\infty$.

Similarly, we have the following result.
Corollary 3. Assume $\boldsymbol{H}\left[1\right.$ and $\boldsymbol{H}\left[2\right.$, Let $\left(\gamma_{k}\right)_{k \geq 1}$ be the decreasing sequence, defined by $\gamma_{k}=$ $\gamma_{\alpha} k^{-\alpha}$, with $\alpha \in(0,1)$. Let $n \geq 1$ and set

$$
\gamma_{\alpha} \stackrel{\text { def }}{=} 2(1-\alpha) \kappa^{-1}(2 / n)^{1-\alpha} \log (\kappa n /(2(1-\alpha))) .
$$

Assume $\gamma_{\alpha} \in\left(0,(m+L)^{-1}\right)$. Then the bound on $W_{2}^{2}\left(\delta_{x} Q_{n}^{\gamma}, \pi\right)$ given by Theorem 3 is smaller for large n than $8(1-\alpha) \mathrm{A}_{0}\left(\kappa^{2} n\right)^{-1} \log (\kappa n /(2(1-\alpha)))$.

Proof. Follows from (S1), S8) and the choice of γ_{α}.

2 Discussion of Theorem 6

Based on Theorem 6, we can follow the same discussion than for Theorem 3. Note that

$$
\begin{equation*}
u_{n}^{(3)}(\gamma) \leq \sum_{i=1}^{n}\left\{\mathrm{~B}_{0} \gamma_{i}^{3}+\mathrm{B}_{1} \gamma_{i}^{4}\right\} \prod_{k=i+1}^{n}\left(1-\kappa \gamma_{k} / 2\right), \tag{S9}
\end{equation*}
$$

where κ is given by (4), and

$$
\begin{align*}
& \mathrm{B}_{0} \stackrel{\text { def }}{=} d\left(2 L^{2}+\kappa^{-1}\left(\tilde{L}^{2} / 3+4 L^{4} /(3 m)\right)\right), \tag{S10}\\
& \mathrm{B}_{1} \stackrel{\text { def }}{=} d\left(\kappa^{-1} L^{4}+L^{4}\left(1 /(6(m+L))+m^{-1}\right)\right) . \tag{S11}
\end{align*}
$$

The following result gives the minimal number of iterations n and a step-size γ to get $W_{2}\left(\delta_{x^{\star}} Q_{\gamma}^{n}, \pi\right)$ smaller than $\epsilon>0$, when $\left(\gamma_{k}\right)_{k \geq 1}$ is a constant step size, $\gamma_{k}=\gamma$ for all $k \geq 1$.

Corollary 4 (of Theorem 6). Assume H1, H2 and H(3. Let x^{\star} be the unique minimizer of U. Let $x \in \mathbb{R}^{d}$ and $\epsilon>0$. Set for all $k \in \mathbb{N}$, $\gamma_{k}=\gamma$ with

$$
\begin{align*}
\gamma & =(\epsilon / 2) \kappa^{-1}\left(\mathrm{~B}_{0}+\mathrm{B}_{1}(m+L)^{-1}\right)^{-1 / 2}, \tag{S12}\\
n & =\left\lceil 2(\kappa \gamma)^{-1}\left\{-\log \left(\epsilon^{2} / 4\right)+\log (2 d / m)\right\}\right\rceil . \tag{S13}
\end{align*}
$$

Then $W_{2}\left(\delta_{x^{\star}} Q_{n}^{\gamma}, \pi\right) \leq \epsilon$.
We provide only the dependencies of the optimal stepsize γ and minimal number of simulations n as a function of the dimension d, the precision ϵ and the constants m, L, \tilde{L} in Table 3 and Table 4

Parameter	d	ϵ	L	m
Theorem $[6]$ and (21)	$d^{-1 / 2}$	ϵ	$L^{-7 / 2}$	m^{2}

Table 3: Dependencies of γ

Parameter	d	ϵ	L	m
Theorem 6 and (21)	$d^{1 / 2} \log (d)$	$\epsilon^{-1}\|\log (\epsilon)\|$	$L^{9 / 2}$	$\|\log (m)\| m^{-3}$

Table 4: Dependencies of n

2.1 Explicit bounds for $\gamma_{k}=\gamma_{1} k^{\alpha}$ with $\alpha \in(0,1]$

We give here a bound on the sequence $\left(u_{n}^{(3)}(\gamma)\right)_{n \geq 0}$ for $\left(\gamma_{k}\right)_{k \geq 1}$ defined by $\gamma_{1}<1 /(m+L)$ and $\gamma_{k}=\gamma_{1} k^{-\alpha}$ for $\alpha \in(0,1]$. Bounds for $\left(u_{n}^{(1)}(\gamma)\right)_{n \geq 0}$ have already been given in Section 1.1. Recall that the function ψ is defined by $(\mathrm{S5})$.

1. For $\alpha=1$, using that for all $t \in \mathbb{R},(1+t) \leq \mathrm{e}^{t}$ and by (S6) and (S7), we have

$$
u_{n}^{(3)}(\gamma) \leq(n+1)^{-\kappa \gamma_{1} / 2} \sum_{j=1}^{2} \mathrm{~B}_{j-1}\left(\boldsymbol{\psi}_{\kappa \gamma_{1} / 2-1-j}(n+1)+1\right) .
$$

2. For $\alpha \in(0,1)$, by 56 and Lemma 14 applied with $\ell=\lceil n / 2\rceil$, where $\lceil\cdot\rceil$ is the ceiling function, we have

$$
\begin{align*}
& u_{n}^{(3)}(\gamma) \leq \sum_{j=1}^{2} \mathrm{~B}_{j-1}\left(2 \kappa^{-1} \gamma_{1}^{j+1}(n / 2)^{-\alpha(j+1)}+\gamma_{1}^{j+2}\left(\boldsymbol{\psi}_{1-\alpha(j+2)}(\lceil n / 2\rceil)+1\right)\right. \\
&\left.\times \exp \left\{-\left(\kappa \gamma_{1} / 2\right)\left(\boldsymbol{\psi}_{1-\alpha}(n+1)-\boldsymbol{\psi}_{1-\alpha}(\lceil n / 2\rceil)\right)\right\}\right) . \tag{S14}
\end{align*}
$$

-eq:bound 'n 'alphaD"

2.2 Optimal strategy with a fixed number of iterations

Corollary 5. Let $n \in \mathbb{N}^{*}$ be a fixed number of iteration. Assume $\boldsymbol{H}\left[1, \boldsymbol{H} 2, \boldsymbol{H} 3\right.$ and $\left(\gamma_{k}\right)_{k \geq 1}$ is a constant sequence, $\gamma_{k}=\gamma^{\star}$ for all $k \geq 1$, with

$$
\gamma^{\star}=4(\kappa n)^{-1}\left\{\log (\kappa n / 2)+\log \left(2\left(\left\|x-x^{\star}\right\|^{2}+d / m\right)\right)\right\} .
$$

Assume $\gamma^{\star} \in\left(0,(m+L)^{-1}\right)$. Then the bound on $W_{2}^{2}\left(\delta_{x} Q_{n}^{\gamma}, \pi\right)$ given by Theorem 6 is of order $\mathcal{O}\left(\mathrm{B}_{0}\left(\kappa^{2} n\right)^{-2} \log ^{2}(n)\right)$ as $n \rightarrow+\infty$.

Similarly, we have the following result.
Corollary 6. Assume $\boldsymbol{H}\left[1, \boldsymbol{H}\left[2\right.\right.$ and $\boldsymbol{H}\left[3\right.$, Let $\left(\gamma_{k}\right)_{k \geq 1}$ be the decreasing sequence, defined by $\gamma_{k}=\gamma_{\alpha} k^{-\alpha}$, with $\alpha \in(0,1)$. Let $n \geq 1$ and set

$$
\gamma_{\alpha} \stackrel{\text { def }}{=} 2(1-\alpha) \kappa^{-1}(2 / n)^{1-\alpha} \log (\kappa n /(2(1-\alpha)))
$$

Assume $\gamma_{\alpha} \in\left(0,(m+L)^{-1}\right)$. Then the bound on $W_{2}^{2}\left(\delta_{x} Q_{n}^{\gamma}, \pi\right)$ given by Theorem 3 is smaller for large n than $\mathcal{O}\left(\mathrm{B}_{0}\left(\kappa^{2} n\right)^{-2} \log ^{2}(n)\right)$.

Proof. Follows from (S9), (S14) and the choice of γ_{α}.

3 Generalization of Theorem 3

In this section, we weaken the assumption $\gamma_{1} \leq 1 /(m+L)$ of Theorem 3. We assume now:
G1. The sequence $\left(\gamma_{k}\right)_{k \geq 1}$ is non-increasing, and there exists $\rho>0$ and n_{1} such that $(1+\rho) \gamma_{n_{1}} \leq$ $2 /(m+L)$.

Under G[1] we denote by

$$
\begin{equation*}
n_{0} \stackrel{\text { def }}{=} \min \left\{k \in \mathbb{N} \mid \gamma_{k} \leq 2 /(m+L)\right\} \tag{S15}
\end{equation*}
$$

Denote in the sequel $(\cdot)_{+}=\max (\cdot, 0)$. Recall that under $\mathbf{H} 2 x^{\star}$ is the unique minimizer of U, and κ is defined in (6)

Theorem S7. Assume H[1, H2a and G[1. Then for all $n, p \in \mathbb{N}^{*}, n \leq p$

$$
\int_{\mathbb{R}^{d}}\left\|x-x^{\star}\right\|^{2} \mu_{0} Q_{n}^{p}(\mathrm{~d} x) \leq E_{n, p}\left(\mu_{0}, \gamma\right),
$$

where

$$
\begin{align*}
E_{n, p}\left(\mu_{0}, \gamma\right) & \stackrel{\text { def }}{=} \exp \left(-\sum_{k=n}^{p} \gamma_{k} \kappa+\sum_{k=n}^{n_{0}-1} L^{2} \gamma_{k}^{2}\right) \int_{\mathbb{R}^{d}}\left\|x-x^{\star}\right\|^{2} \mu_{0}(\mathrm{~d} x) \\
& +2 d \kappa^{-1}+2 d\left\{\prod_{k=n}^{n_{0}-1}\left(\gamma_{n_{0}-1} L^{2}\right)^{-1}\left(1+L^{2} \gamma_{k}^{2}\right)\right\} \exp \left(-\sum_{k=n}^{p} \kappa \gamma_{k}+\sum_{k=n}^{n_{0}-1} \gamma_{k}^{2} m L\right) . \tag{S16}
\end{align*}
$$

Proof. For any $\gamma>0$, we have for all $x \in \mathbb{R}^{d}$:

$$
\int_{\mathbb{R}^{d}}\left\|y-x^{\star}\right\|^{2} R_{\gamma}(x, \mathrm{~d} y)=\left\|x-\gamma \nabla U(x)-x^{\star}\right\|^{2}+2 \gamma d
$$

Using that $\nabla U\left(x^{\star}\right)=0,4$ and $\mathbf{H} 1$, we get from the previous inequality:

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}\left\|y-x^{\star}\right\|^{2} & R_{\gamma}(x, \mathrm{~d} y) \\
& \leq(1-\kappa \gamma)\left\|x-x^{\star}\right\|^{2}+\gamma\left(\gamma-\frac{2}{m+L}\right)\left\|\nabla U(x)-\nabla U\left(x^{\star}\right)\right\|^{2}+2 \gamma d \\
& \leq \eta(\gamma)\left\|x-x^{\star}\right\|^{2}+2 \gamma d
\end{aligned}
$$

where $\eta(\gamma)=\left(1-\kappa \gamma+\gamma L(\gamma-2 /(m+L))_{+}\right)$. Denote for all $k \geq 1, \eta_{k}=\eta\left(\gamma_{k}\right)$. By a straightforward induction, we have by definition of Q_{n}^{p} for $p, n \in \mathbb{N}, p \leq n$,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left\|x-x^{\star}\right\|^{2} \mu_{0} Q_{n}^{p}(\mathrm{~d} x) \leq \prod_{k=n}^{p} \eta_{k} \int_{\mathbb{R}^{d}}\left\|x-x^{\star}\right\| \mu_{0}(\mathrm{~d} x)+(2 d) \sum_{i=n}^{p} \prod_{k=i+1}^{p} \eta_{k} \gamma_{i} \tag{S17}
\end{equation*}
$$

with the convention that for $n, p \in \mathbb{N}, n<p, \prod_{p}^{n}=1$. For the first term of the right hand side, we simply use the bound, for all $x \in \mathbb{R},(1+x) \leq \mathrm{e}^{x}$, and we get by $\mathbf{G} \mathbb{1}$

$$
\begin{equation*}
\prod_{k=n}^{p} \eta_{k} \leq \exp \left(-\sum_{k=n}^{p} \kappa \gamma_{k}+\sum_{k=n}^{n_{0}-1} L^{2} \gamma_{k}^{2}\right) \tag{S18}
\end{equation*}
$$

where n_{0} is defined in S15. Consider now the second term in the right hand side of S17.

$$
\begin{align*}
\sum_{i=n}^{p} \prod_{k=i+1}^{p} \eta_{k} \gamma_{i} & \leq \sum_{i=n_{0}}^{p} \prod_{k=i+1}^{p}\left(1-\kappa \gamma_{k}\right) \gamma_{i}+\sum_{i=n}^{n_{0}-1} \prod_{k=i+1}^{p} \eta_{k} \gamma_{i} \\
& \leq \kappa^{-1} \sum_{i=n_{0}}^{p}\left\{\prod_{k=i+1}^{p}\left(1-\kappa \gamma_{k}\right)-\prod_{k=i}^{p}\left(1-\kappa \gamma_{k}\right)\right\} \\
& +\left\{\sum_{i=n}^{n_{0}-1} \prod_{k=i+1}^{n_{0}-1}\left(1+L^{2} \gamma_{k}^{2}\right) \gamma_{i}\right\} \prod_{k=n_{0}}^{p}\left(1-\kappa \gamma_{k}\right) \tag{S19}
\end{align*}
$$

Since $\left(\gamma_{k}\right)_{k \geq 1}$ is nonincreasing, we have

$$
\begin{aligned}
\sum_{i=n}^{n_{0}-1} \prod_{k=i+1}^{n_{0}-1}\left(1+L^{2} \gamma_{k}^{2}\right) \gamma_{i} & =\sum_{i=n}^{n_{0}-1}\left(\gamma_{i} L^{2}\right)^{-1}\left\{\prod_{k=i}^{n_{0}-1}\left(1+L^{2} \gamma_{k}^{2}\right)-\prod_{k=i+1}^{n_{0}-1}\left(1+L^{2} \gamma_{k}^{2}\right)\right\} \\
& \leq \prod_{k=n}^{n_{0}-1}\left(\gamma_{n_{0}-1} L^{2}\right)^{-1}\left(1+L^{2} \gamma_{k}^{2}\right)
\end{aligned}
$$

Furthermore for $k<n_{0} \gamma_{k}>2 /(m+L)$. This implies with the bound $(1+x) \leq \mathrm{e}^{x}$ on \mathbb{R} :

$$
\begin{aligned}
\prod_{k=n_{0}}^{p}\left(1-\kappa \gamma_{k}\right) & \leq \exp \left(-\sum_{k=n}^{p} \kappa \gamma_{k}\right) \exp \left(\sum_{k=n}^{n_{0}-1} \kappa \gamma_{k}\right) \\
& \leq \exp \left(-\sum_{k=n}^{p} \kappa \gamma_{k}\right) \exp \left(\sum_{k=n}^{n_{0}-1} \gamma_{k}^{2} m L\right)
\end{aligned}
$$

Using the two previous inequalities in S19, we get

$$
\begin{equation*}
\sum_{i=n}^{p} \prod_{k=i+1}^{p} \eta_{k} \gamma_{i} \leq \kappa^{-1}+\left\{\prod_{k=n}^{n_{0}-1}\left(\gamma_{n_{0}-1} L^{2}\right)^{-1}\left(1+L^{2} \gamma_{k}^{2}\right)\right\} \exp \left(-\sum_{k=n}^{p} \kappa \gamma_{k}+\sum_{k=n}^{n_{0}-1} \gamma_{k}^{2} m L\right) \tag{S20}
\end{equation*}
$$

Combining (S18) and S20 in S17 concluded the proof.
We now deal with bounds on $W_{2}\left(\mu_{0} Q_{\gamma}^{n}, \pi\right)$ under $\mathbf{G} 1$ But before we preface our result by some techincal lemmas.

Lemma S8. Assume $\boldsymbol{H} 1$ and $\boldsymbol{H}\left[2\right.$. Let $\zeta_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$, $\left(Y_{t}, \bar{Y}_{t}\right)_{t \geq 0}$ such that $\left(Y_{0}, \bar{Y}_{0}\right)$ is distributed according to ζ_{0} and given by 12 . Let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be the filtration associated with $\left(B_{t}\right)_{t \geq 0}$ with \mathcal{F}_{0}, the σ-field generated by $\left(Y_{0}, \bar{Y}_{0}\right)$. Then for all $n \geq 0, \epsilon_{1}>0$ and $\epsilon_{2}>0$,

$$
\begin{aligned}
\mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}[& \left.\left\|Y_{\Gamma_{n+1}}-\bar{Y}_{\Gamma_{n+1}}\right\|^{2}\right] \\
& \leq\left\{1-\gamma_{n+1}\left(\kappa-2 \epsilon_{1}\right)+\gamma_{n+1} L\left(\left(1+\epsilon_{2}\right) \gamma_{n+1}-2 /(m+L)\right)_{+}\right\}\left\|Y_{\Gamma_{n}}-\bar{Y}_{\Gamma_{n}}\right\|^{2} \\
& +\gamma_{n+1}^{2}\left(1 /\left(2 \epsilon_{1}\right)+\left(1+\epsilon_{2}^{-1}\right) \gamma_{n+1}\right)\left(d L^{2}+\left(L^{4} \gamma_{n+1} / 2\right)\left\|Y_{\Gamma_{n}}-x^{\star}\right\|^{2}+d L^{4} \gamma_{n+1}^{2} / 12\right)
\end{aligned}
$$

Proof. Let $n \geq 0$ and $\epsilon_{1}>0$, and set $\Delta_{n}=Y_{\Gamma_{n}}-\bar{Y}_{\Gamma_{n}}$ by definition we have:

$$
\begin{aligned}
& \mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\Delta_{n+1}\right\|^{2}\right]=\left\|\Delta_{n}\right\|^{2}+\mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\int_{\Gamma_{n}}^{\Gamma_{n+1}}\left\{\nabla U\left(Y_{s}\right)-\nabla U\left(\bar{Y}_{\Gamma_{n}}\right)\right\} \mathrm{d} s\right\|^{2}\right] \\
& -2 \gamma_{n+1}\left\langle\Delta_{n}, \nabla U\left(Y_{\Gamma_{n}}\right)-\nabla U\left(\bar{Y}_{\Gamma_{n}}\right)\right\rangle-2 \int_{\Gamma_{n}}^{\Gamma_{n+1}} \mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\langle\Delta_{n},\left\{\nabla U\left(Y_{s}\right)-\nabla U\left(Y_{\Gamma_{n}}\right)\right\}\right\rangle \mathrm{d} s\right]
\end{aligned}
$$

Using the two inequalities $|\langle a, b\rangle| \leq \epsilon_{1}\|a\|^{2}+\left(4 \epsilon_{1}\right)^{-1}\|b\|^{2}$ and (4), we get

$$
\begin{align*}
& \mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\Delta_{n+1}\right\|^{2}\right] \leq\left\{1-\gamma_{n+1}\left(\kappa-2 \epsilon_{1}\right)\right\}\left\|\Delta_{n}\right\|^{2}-2 \gamma_{n+1} /(m+L)\left\|\nabla U\left(Y_{\Gamma_{n}}\right)-\nabla U\left(\bar{Y}_{\Gamma_{n}}\right)\right\|^{2} \\
& +\mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\int_{\Gamma_{n}}^{\Gamma_{n+1}}\left\{\nabla U\left(Y_{s}\right)-\nabla U\left(\bar{Y}_{\Gamma_{n}}\right)\right\} \mathrm{d} s\right\|^{2}\right]+\frac{1}{2 \epsilon_{1}} \int_{\Gamma_{n}}^{\Gamma_{n+1}} \mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\nabla U\left(Y_{s}\right)-\nabla U\left(Y_{\Gamma_{n}}\right)\right\|^{2}\right] \mathrm{d} s . \tag{S21}
\end{align*}
$$

-eq:distance diffusion'pa
Using $\|a+b\|^{2} \leq\left(1+\epsilon_{2}\right)\|a\|^{2}+\left(1+\epsilon_{2}^{-1}\right)\|b\|^{2}$ and the Jensen's inequality, we have

$$
\begin{aligned}
\mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\int_{\Gamma_{n}}^{\Gamma_{n+1}}\left\{\nabla U\left(Y_{s}\right)-\nabla U\left(\bar{Y}_{\Gamma_{n}}\right)\right\} \mathrm{d} s\right\|^{2}\right] & \leq\left(1+\epsilon_{2}\right) \gamma_{n+1}^{2}\left\|\nabla U\left(Y_{\Gamma_{n}}\right)-\nabla U\left(\bar{Y}_{\Gamma_{n}}\right)\right\|^{2} \\
& \gamma_{n+1} \mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\int_{\Gamma_{n}}^{\Gamma_{n+1}}\left\|\nabla U\left(Y_{s}\right)-\nabla U\left(Y_{\Gamma_{n}}\right)\right\|^{2} \mathrm{~d} s\right]
\end{aligned}
$$

This result and $\mathbf{H} 1$ imply,

$$
\begin{align*}
\mathbb{E}^{\mathcal{J}_{\Gamma_{n}}}\left[\left\|\Delta_{n+1}\right\|^{2}\right] & \leq\left\{1-\gamma_{n+1}\left(\kappa-2 \epsilon_{1}\right)+\gamma_{n+1} L\left(\left(1+\epsilon_{2}\right) \gamma_{n+1}-2 /(m+L)\right)_{+}\right\}\left\|\Delta_{n}\right\|^{2} \\
& +\left(\left(1+\epsilon_{2}^{-1}\right) \gamma_{n+1}+\left(2 \epsilon_{1}\right)^{-1}\right) \int_{\Gamma_{n}}^{\Gamma_{n+1}} \mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\nabla U\left(Y_{s}\right)-\nabla U\left(Y_{\Gamma_{n}}\right)\right\|^{2}\right] \mathrm{d} s . \tag{S22}
\end{align*}
$$

By H[1 the Markov property of $\left(Y_{t}\right)_{t \geq 0}$ and (ii)], we have

$$
\begin{aligned}
& \int_{\Gamma_{n}}^{\Gamma_{n+1}} \mathbb{E}^{\mathcal{F}_{\Gamma_{n}}}\left[\left\|\nabla U\left(Y_{s}\right)-\nabla U\left(Y_{\Gamma_{n}}\right)\right\|^{2}\right] \mathrm{d} s \\
& \leq L^{2}\left(d \gamma_{n+1}^{2}+d L^{2} \gamma_{n+1}^{4} / 12+\left(L^{2} \gamma_{n+1}^{3} / 2\right)\left\|Y_{\Gamma_{n}}-x^{\star}\right\|^{2}\right)
\end{aligned}
$$

Plugging this bound in S22 concludes the proof.
Lemma S9. Let $\left(\gamma_{k}\right)_{k \geq 1}$ be a nonincreasing sequence of positive numbers. Let $\varpi, \beta>0$ be positive constants satisfying $\varpi^{2} \leq 4 \beta$ and $\tau>0$. Assume there exists $N \geq 1, \gamma_{N} \leq \tau$ and $\gamma_{N} \varpi \leq 1$. Then for all $n \geq 0, j \geq 2$
(i)

$$
\begin{aligned}
\sum_{i=1}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi+\gamma_{k} \beta\left(\gamma_{k}-\tau\right)_{+}\right) \gamma_{i}^{j} & \leq \sum_{i=N}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi\right) \gamma_{i}^{j} \\
& +\left\{\beta^{-1} \gamma_{1}^{j-2} \prod_{k=1}^{N-1}\left(1+\gamma_{k}^{2} \beta\right)\right\} \prod_{k=N}^{n+1}\left(1-\varpi \gamma_{k}\right)
\end{aligned}
$$

(ii) For all $\ell \in\{N, \ldots, n\}$,

$$
\sum_{i=N}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi\right) \gamma_{i}^{j} \leq \exp \left(-\sum_{k=\ell}^{n+1} \varpi \gamma_{k}\right) \sum_{i=N}^{\ell-1} \gamma_{i}^{j}+\frac{\gamma_{\ell}^{j-1}}{\varpi}
$$

Proof. By definition of N we have

$$
\begin{align*}
& \sum_{i=1}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi+\gamma_{k} \beta\left(\gamma_{k}-\tau\right)_{+}\right) \gamma_{i}^{j} \\
& \leq \sum_{i=N}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi\right) \gamma_{i}^{j}+\left\{\sum_{i=1}^{N-1} \prod_{k=i+1}^{N-1}\left(1+\gamma_{k}^{2} \beta\right) \gamma_{i}^{j}\right\} \prod_{k=N}^{n+1}\left(1-\gamma_{k} \varpi\right) \tag{S23}
\end{align*}
$$

Using that $\left(\gamma_{k}\right)_{k \geq 1}$ is nonincreasing, we have

$$
\begin{aligned}
\sum_{i=1}^{N-1} \prod_{k=i+1}^{N-1}\left(1+\gamma_{k}^{2} \beta\right) \gamma_{i}^{j} & \leq \sum_{i=1}^{N-1} \frac{\gamma_{i}^{j-2}}{\beta}\left\{\prod_{k=i}^{N-1}\left(1+\gamma_{k}^{2} \beta\right)-\prod_{k=i+1}^{N-1}\left(1+\gamma_{k}^{2} \beta\right)\right\} \\
& \leq \beta^{-1} \gamma_{1}^{j-2} \prod_{k=1}^{N-1}\left(1+\gamma_{k}^{2} \beta\right)
\end{aligned}
$$

Plugging this inequality in (S23) concludes the proof of (i). Let $\ell \in\{N, \ldots, n+1\}$. Since $\left(\gamma_{k}\right)_{k \geq 1}$ is nonincreasing and for every $x \in \mathbb{R},(1+x) \leq \mathrm{e}^{x}$, we get

$$
\begin{aligned}
\sum_{i=N}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi\right) \gamma_{i}^{j} & =\sum_{i=N}^{\ell-1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi\right) \gamma_{i}^{j}+\sum_{i=\ell}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi\right) \gamma_{i}^{j} \\
& \leq \sum_{i=N}^{\ell-1} \exp \left(-\sum_{k=i+1}^{n+1} \varpi \gamma_{k}\right) \gamma_{i}^{j}+\gamma_{\ell}^{j-1} \sum_{i=\ell}^{n+1} \prod_{k=i+1}^{n+1}\left(1-\gamma_{k} \varpi\right) \gamma_{i} \\
& \leq \exp \left(-\sum_{k=\ell}^{n+1} \varpi \gamma_{k}\right) \sum_{i=N}^{\ell-1} \gamma_{i}^{j}+\frac{\gamma_{\ell}^{j-1}}{\varpi}
\end{aligned}
$$

Lemma S10. Let $\left(\gamma_{k}\right)_{k \geq 1}$ be a nonincreasing sequence of positive numbers, $\varpi, \beta, \tau>0$ be positive real numbers, and $N \geq 1$ satisfying the assumptions of Lemma Sg. Let $\mathrm{P} \in \mathbb{N}^{*}, C_{i} \geq 0$, $i=0, \ldots, \mathrm{P}$ be positive constants and $\left(u_{n}\right)_{n \geq 0}$ be a sequence of real numbers with $u_{0} \geq 0$ satisfying for all $n \geq 0$

$$
u_{n+1} \leq\left(1-\gamma_{n+1} \varpi+\beta \gamma_{n+1}\left(\gamma_{n+1}-\tau\right)_{+}\right) u_{n}+\sum_{i=0}^{\mathrm{P}} C_{j} \gamma_{n+1}^{j+2}
$$

Then for all $n \geq 1$,

$$
\begin{aligned}
u_{n} \leq\left\{\prod_{k=1}^{N-1}\left(1+\beta \gamma_{k}^{2}\right)\right\} \prod_{k=N}^{n}\left(1-\gamma_{k} \varpi\right) u_{0} & +\sum_{j=0}^{\mathrm{P}} C_{j} \sum_{i=N}^{n} \prod_{k=i+1}^{n}\left(1-\gamma_{k} \varpi\right) \gamma_{i}^{j+2} \\
& +\left\{\sum_{j=0}^{\mathrm{P}} C_{j} \beta^{-1} \gamma_{1}^{j} \prod_{k=1}^{N-1}\left(1+\gamma_{k}^{2} \beta\right)\right\} \prod_{k=N}^{n}\left(1-\varpi \gamma_{k}\right)
\end{aligned}
$$

Proof. This is a consequence of a straightforward induction and Lemma S9.(i).

erpolate ${ }^{\prime}$ diffusion'annexe

Proposition S11. Assume $\boldsymbol{H}\left[1, \boldsymbol{H}\left[2\right.\right.$ and $G\left[1\right.$. Let x^{\star} be the unique minimizer of U. Let $\zeta_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right),\left(Y_{t}, \bar{Y}_{t}\right)_{t \geq 0}$ such that $\left(Y_{0}, \bar{Y}_{0}\right)$ is distributed according to ζ_{0} and given by (12). Then for all $n \geq 0$ and $t \in\left[\Gamma_{n}, \Gamma_{n+1}\right]$:

$$
\mathbb{E}\left[\left\|Y_{t}-\bar{Y}_{t}\right\|^{2}\right] \leq \tilde{u}_{n}^{(1)} \mathbb{E}\left[\left\|Y_{0}-\bar{Y}_{0}\right\|^{2}\right]+\tilde{u}_{n}^{(4)}+\tilde{u}_{t, n}^{(5)}
$$

where

$$
\begin{align*}
& \tilde{u}_{n}^{(1)}(\gamma) \stackrel{\text { def }}{=}\left\{\prod_{k=1}^{n_{1}-1}\left(1+L^{2}(1+\rho) \gamma_{k}^{2}\right)\right\} \prod_{k=n_{1}}^{n}\left(1-\kappa \gamma_{k} / 2\right) \tag{S24}\\
& \tilde{u}_{n}^{(4)}(\gamma) \stackrel{\text { def }}{=} \sum_{i=n_{1}}^{n} \gamma_{i}^{2} f\left(\gamma_{i}\right) \prod_{k=i+1}^{n}\left(1-\kappa \gamma_{k} / 2\right) \\
& \\
& \quad+\mathrm{f}\left(\gamma_{1}\right)\left(L^{2}(1+\rho)\right)^{-1}\left\{\prod_{k=1}^{n_{1}-1}\left(1+\gamma_{k}^{2}(1+\rho) L^{2}\right)\right\} \prod_{k=n_{1}}^{n}\left(1-\kappa \gamma_{k} / 2\right)
\end{align*}
$$

-eq:def'suiteAnnexeUn"
and S26 becomes

$$
\begin{equation*}
\left\|Y_{t}-\bar{Y}_{t}\right\|^{2} \leq\left\|Y_{\Gamma_{n}}-\bar{Y}_{\Gamma_{n}}\right\|^{2}+((m+L) / 2) \int_{\Gamma_{n}}^{t}\left\|\bar{Y}_{s}-\bar{Y}_{\Gamma_{n}}\right\|^{2} \mathrm{~d} s \tag{S28}
\end{equation*}
$$

Therefore, by the previous inequality, it remains to bound the expectation of $\left\|\bar{Y}_{s}-\bar{Y}_{\Gamma_{n}}\right\|^{2}$. By (12) and using $\nabla U\left(x^{\star}\right)=0$,

$$
\left\|\bar{Y}_{s}-\bar{Y}_{\Gamma_{n}}\right\|^{2}=\left\|-\left(s-\Gamma_{n}\right)\left(\nabla U\left(\bar{Y}_{\Gamma_{n}}\right)-\nabla U\left(x^{\star}\right)\right)+\sqrt{2}\left(B_{s}-B_{\Gamma_{n}}\right)\right\|^{2} .
$$

Then taking the expectation, using the Markov property of $\left(B_{t}\right)_{t \geq 0}$ and $\mathbf{H} 1$, we have

$$
\begin{equation*}
\mathbb{E}\left[\left\|\bar{Y}_{s}-\bar{Y}_{\Gamma_{n}}\right\|^{2}\right] \leq\left(s-\Gamma_{n}\right)^{2} L^{2} \mathbb{E}\left[\left\|\bar{Y}_{\Gamma_{n}}-x^{\star}\right\|^{2}\right]+2\left(s-\Gamma_{n}\right) d \tag{S29}
\end{equation*}
$$

The proof follows from taking the expectation in S28, combining (S25)-S29, and using Theorem S7.

Theorem S12. Assume $\boldsymbol{H} 1, \boldsymbol{H} 2$ and $\boldsymbol{G} 1$. Then for all $\mu_{0} \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ and $n \geq 1$,

$$
\begin{equation*}
W_{2}^{2}\left(\mu_{0} Q_{\gamma}^{n}, \pi\right) \leq \tilde{u}_{n}^{(1)}(\gamma) W_{2}^{2}\left(\mu_{0}, \pi\right)+\tilde{u}_{n}^{(2)}(\gamma), \tag{S30}
\end{equation*}
$$

where $\left(\tilde{u}_{n}^{(1)}\right)_{n \geq 0}$ is given by (S24) and

$$
\begin{align*}
\tilde{u}_{n}^{(2)}(\gamma) \stackrel{\text { def }}{=} \sum_{i=n_{1}}^{n} \gamma_{i}^{2} \phi\left(\gamma_{i}\right) & \prod_{k=i+1}^{n}\left(1-\kappa \gamma_{k} / 2\right) \\
& +\phi\left(\gamma_{1}\right)\left(L^{2}(1+\rho)\right)^{-1}\left\{\prod_{k=1}^{n_{1}-1}\left(1+\gamma_{k}^{2}(1+\rho) L^{2}\right)\right\} \prod_{k=n_{1}}^{n}\left(1-\kappa \gamma_{k} / 2\right), \tag{S31}
\end{align*}
$$

where

$$
\phi(\gamma)=\left\{2 \kappa^{-1}+\left(1+\rho^{-1}\right) \gamma\right\}\left(d L^{2}+d L^{4} \gamma /(2 m)+d L^{4} \gamma^{2} / 12\right)
$$

Proof. Let ζ_{0} be an optimal transference plan of μ_{0} and π. Let $\left(Y_{t}, \bar{Y}_{t}\right)_{t \geq 0}$ with $\left(Y_{0}, \bar{Y}_{0}\right)$ distributed according to ζ_{0} and defined by 12). By definition of W_{2} and since for all $t \geq 0, \pi$ is invariant for $P_{t}, W_{2}^{2}\left(\mu_{0} Q^{n}, \pi\right) \leq \mathbb{E}\left[\left\|Y_{\Gamma_{n}}-X_{\Gamma_{n}}\right\|^{2}\right]$. Then the proof follows from Proposition S11 since Y_{0} is distributed according to π and by (7), which shows that $\delta \leq d / m$.

3.1 Explicit bound based on Theorem $\mathbf{S 1 2}$ for $\gamma_{k}=\gamma_{1} k^{\alpha}$ with $\alpha \in(0,1]$

We give here a bound on the sequences $\left(\tilde{u}_{n}^{(1)}(\gamma)\right)_{n \geq 1}$ and $\left(\tilde{u}_{n}^{(2)}(\gamma)\right)_{n \geq 1}$ for $\left(\gamma_{k}\right)_{k \geq 1}$ defined by $\gamma_{1}>0$ and $\gamma_{k}=\gamma_{1} k^{-\alpha}$ for $\alpha \in(0,1]$. Recall that $\boldsymbol{\psi}_{\beta}$ is given by S5). First note, since $\left(\gamma_{k}\right)_{k \geq 1}$ is nonincreasing, for all $n \geq 1$, we have

$$
\begin{align*}
\tilde{u}_{n}^{(2)}(\gamma) \leq \sum_{j=0}^{1} \mathrm{C}_{j} & \sum_{i=n_{1}}^{n} \gamma_{i}^{j+2} \prod_{k=i+1}^{n}\left(1-\kappa \gamma_{k} / 2\right) \\
& +\sum_{j=0}^{1} \mathrm{C}_{j}\left(L^{2}(1+\rho)\right)^{-1} \gamma_{1}^{j}\left\{\prod_{k=1}^{n_{1}-1}\left(1+\gamma_{k}^{2}(1+\rho) L^{2}\right)\right\} \prod_{k=n_{1}}^{n}\left(1-\kappa \gamma_{k} / 2\right), \tag{S32}
\end{align*}
$$

where

$$
\mathbf{C}_{1}=\mathrm{b} d L^{2}, \mathrm{C}_{2}=\mathrm{b}\left(d L^{4} /(2 m)+\gamma_{1} d L^{4} / 12\right), \mathrm{b}=2 \kappa^{-1}+\left(1+\rho^{-1}\right) \gamma_{1}
$$

1. For $\alpha=1$ and $n_{1}=1$, by (S6) and (S7), we have

$$
\begin{aligned}
& \tilde{u}_{n}^{(1)}(\gamma) \leq(n+1)^{-\kappa \gamma_{1} / 2} \\
& \tilde{u}_{n}^{(2)}(\gamma) \leq(n+1)^{-\kappa \gamma_{1} / 2} \sum_{j=0}^{1} C_{j}\left\{\gamma_{1}^{j+2}\left(\boldsymbol{\psi}_{\kappa \gamma_{1} / 2-1-j}(n+1)+1\right)+\left(L^{2}(1+\rho)\right)^{-1} \gamma_{1}^{j}\right\} .
\end{aligned}
$$

For $n_{1}>1$, since $\left(\gamma_{k}\right)_{k \geq 0}$ is non increasing, using again S6], S7), and the bound for $t \in \mathbb{R}$, $(1+t) \leq \mathrm{e}^{t}$

$$
\begin{aligned}
\tilde{u}_{n}^{(1)}(\gamma) & \leq(n+1)^{-\kappa \gamma_{1} / 2} \exp \left\{\kappa \gamma_{1} \boldsymbol{\psi}_{0}\left(n_{1}\right) / 2+L^{2}(1+\rho) \gamma_{1}^{2}\left(\boldsymbol{\psi}_{-1}\left(n_{1}-1\right)+1\right)\right\} \\
\tilde{u}_{n}^{(2)}(\gamma) & \leq(n+1)^{-\kappa \gamma_{1} / 2} \sum_{j=0}^{1} C_{j}\left(\gamma_{1}^{j+2}\left(\boldsymbol{\psi}_{\kappa \gamma_{1} / 2-1-j}(n+1)-\boldsymbol{\psi}_{\kappa \gamma_{1} / 2-1-j}\left(n_{1}\right)+1\right)\right. \\
& +\left(\gamma_{1}^{j} /\left(L^{2}(1+\rho)\right) \exp \left\{\kappa \gamma_{1} \boldsymbol{\psi}_{0}\left(n_{1}\right) / 2+L^{2}(1+\rho) \gamma_{1}^{2}\left(\boldsymbol{\psi}_{-1}\left(n_{1}-1\right)+1\right)\right\}\right) .
\end{aligned}
$$

Thus, for $\gamma_{1}>\kappa / 2$, we get a bound in $\mathcal{O}\left(n^{-1}\right)$.
2. For $\alpha \in(0,1)$ and $n_{1}=1$, by (S6) and Lemma S9 (ii) applied with $\ell=\lceil n / 2\rceil$, we have

$$
\begin{aligned}
\tilde{u}_{n}^{(1)}(\gamma) & \leq \exp \left(-\left(\kappa \gamma_{1} / 2\right) \boldsymbol{\psi}_{\alpha-1}(n+1)\right) \\
\tilde{u}_{n}^{(2)}(\gamma) & \leq \sum_{j=0}^{1} C_{j}\left\{\gamma_{1}^{j+2}\left(\boldsymbol{\psi}_{1-\alpha(j+2)}(\lceil n / 2\rceil)+1\right) \exp \left\{-\left(\kappa \gamma_{1} / 2\right)\left(\boldsymbol{\psi}_{1-\alpha}(n+1)-\boldsymbol{\psi}_{1-\alpha}(\lceil n / 2\rceil)\right)\right\}\right. \\
& \left.+2 \kappa^{-1} \gamma_{1}^{j+1}(n / 2)^{-\alpha(j+1)}+\gamma_{1}^{j} \exp \left\{-\left(\kappa \gamma_{1} / 2\right) \boldsymbol{\psi}_{\alpha-1}(n+1)\right\}\right\} .
\end{aligned}
$$

For $n_{1}>1$ and $\lceil n / 2\rceil \geq n_{1}$, since $\left(\gamma_{k}\right)_{k \geq 0}$ is non increasing, using again S66, and Lemma S9.(ii) applied with $\ell=\lceil n / 2\rceil$, and the bound for $t \in \mathbb{R},(1+t) \leq \mathrm{e}^{t}$, we get
$\tilde{u}_{n}^{(1)}(\gamma) \leq \exp \left\{-\kappa \gamma_{1}\left(\boldsymbol{\psi}_{\alpha-1}(n+1)-\boldsymbol{\psi}_{1-\alpha}\left(n_{1}\right)\right) / 2+L^{2}(1+\rho) \gamma_{1}^{2}\left(\boldsymbol{\psi}_{1-2 \alpha}\left(n_{1}-1\right)+1\right)\right\}$
$\tilde{u}_{n}^{(2)}(\gamma) \leq \sum_{j=0}^{1} \mathrm{C}_{j}\left\{2 \kappa^{-1} \gamma_{1}^{j+1}(n / 2)^{-\alpha(j+1)}\right.$
$+\gamma_{1}^{j+2}\left(\boldsymbol{\psi}_{1-\alpha(j+2)}(\lceil n / 2\rceil)-\boldsymbol{\psi}_{1-\alpha(j+2)}\left(n_{1}\right)+1\right) \exp \left\{-\left(\kappa \gamma_{1} / 2\right)\left(\boldsymbol{\psi}_{1-\alpha}(n+1)-\boldsymbol{\psi}_{1-\alpha}(\lceil n / 2\rceil)\right)\right\}$
$+\left(\gamma_{1}^{j} /\left(L^{2}(1+\rho)\right) \exp \left\{-\kappa \gamma_{1}\left(\boldsymbol{\psi}_{\alpha-1}(n+1)-\boldsymbol{\psi}_{1-\alpha}\left(n_{1}\right)\right) / 2+L^{2}(1+\rho) \gamma_{1}^{2}\left(\boldsymbol{\psi}_{1-2 \alpha}\left(n_{1}-1\right)+1\right)\right\}\right\}$.

4 Explicit bounds on the MSE

Without loss of generality, assume that $\|f\|_{\text {Lip }}=1$. In the following, denote by $\Omega(x) \stackrel{\text { def }}{=}$ $\left\|x-x^{\star}\right\|^{2}+d / m$ and C a constant (which may take different values upon each appearance), which does not depend on m, L, γ_{1}, α and $\left\|x-x^{\star}\right\|$.

5 Explicit bounds based on Theorem 3

1. First for $\alpha=0$, recall by (S1), 20) and 21) we have for all $p \geq 1$,

$$
u_{p}^{(1)}(\gamma) W_{2}^{2}\left(\delta_{x}, \pi\right)+u_{p}^{(2)}(\gamma) \leq 2 \Omega(x)\left(1-\kappa \gamma_{1} / 2\right)^{p}+2 \kappa^{-1}\left(\mathrm{~A}_{0} \gamma_{1}+\mathrm{A}_{1} \gamma_{1}^{2}\right)
$$

where A_{0} and A_{1} are given by (S2) and (S3) respectively. So by Proposition 8 and Lemma 14, we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \exp \left(-\kappa N \gamma_{1} / 2\right) \Omega(x)}{\gamma_{1} n}+\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}\right)
$$

Therefore plugging this inequality and the one given by Theorem 9 in 23 implies:

$$
\begin{equation*}
\operatorname{MSE}_{f}(N, n) \leq C\left(\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}+\frac{\kappa^{-2}+\kappa^{-1} \exp \left(-\kappa N \gamma_{1} / 2\right) \Omega(x)}{n \gamma_{1}}\right) \tag{S33}
\end{equation*}
$$

So with fixed γ_{1} this bound is of order γ_{1}. If we fix the number of iterations n, we can optimize the choice of γ_{1}. Set

$$
\gamma_{\star, 0}(n)=\left(\kappa^{-1} \mathrm{~A}_{0}\right)^{-1}\left(C_{\mathrm{MSE}, 0} / n\right)^{1 / 2}, \text { where } C_{\mathrm{MSE}, 0} \stackrel{\text { def }}{=} \kappa^{-3} \mathrm{~A}_{0},
$$

and S33) becomes if $\gamma_{1} \leftarrow \gamma_{\star, 0}(n)$,

$$
\operatorname{MSE}_{f}(N, n) \leq C\left(C_{\mathrm{MSE}, 0} n\right)^{-1 / 2}\left(\kappa^{-1} \exp \left(-\kappa N \gamma_{\star, 0}(n) / 2\right) \Omega(x)+C_{\mathrm{MSE}, 0}\right)
$$

Setting $N_{0}(n)=2\left(\kappa \gamma_{\star, 0}(n)\right)^{-1} \log (\Omega(x))$, we end up with

$$
\operatorname{MSE}_{f}\left(N_{0}(n), n\right) \leq C\left(C_{\mathrm{MSE}, 0} / n\right)^{1 / 2} .
$$

Note that $N_{0}(n)$ is of order $n^{1 / 2}$.
2. For $\alpha \in(0,1 / 2)$, recall by (S1), 20) and 21) we have for all $p \geq 1$,

$$
\begin{equation*}
u_{p}^{(1)}(\gamma) W_{2}^{2}\left(\delta_{x}, \pi\right) \leq 2 \Omega(x) \prod_{i=1}^{p}\left(1-\kappa \gamma_{i} / 2\right) \tag{S34}
\end{equation*}
$$

So by Proposition 8, Lemma 14 (S6) and (S8), we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}}{(1-2 \alpha) n^{\alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)}{\gamma_{1} n^{1-\alpha}}\right)
$$

Plugging this inequality and the one given by Theorem 9 in 23 implies:

$$
\begin{equation*}
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}}{(1-2 \alpha) n^{\alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)+\kappa^{-2}}{\gamma_{1} n^{1-\alpha}}\right) \tag{S35}
\end{equation*}
$$

At fixed γ_{1}, this bound is of order $n^{-\alpha}$, and is better than (S33) for $\left(\gamma_{k}\right)_{k \geq 1}$ constant. If we fix the number of iterations n, we can optimize the choice of γ_{1} again. Set

$$
\gamma_{\star, \alpha}(n)=\left(\kappa^{-1} \mathrm{~A}_{0} /(1-2 \alpha)\right)^{-1}\left(C_{\mathrm{MSE}, \alpha} / n^{1-2 \alpha}\right)^{1 / 2}, \text { where } C_{\mathrm{MSE}, \alpha} \stackrel{\text { def }}{=} \kappa^{-3} \mathrm{~A}_{0} /(1-2 \alpha),
$$

S35) becomes with $\gamma_{1} \leftarrow \gamma_{\star, \alpha}(n)$,

$$
\begin{aligned}
& \operatorname{MSE}_{f}(N, n) \\
& \quad \leq C\left(C_{\mathrm{MSE}, \alpha} n\right)^{-1 / 2}\left(\kappa^{-1} \exp \left\{-\kappa N^{1-\alpha} \gamma_{\star, \alpha}(n) /(2(1-\alpha))\right\} \Omega(x)+C_{\mathrm{MSE}, \alpha}\right)
\end{aligned}
$$

Setting $N_{\alpha}(n)=\left\{2(1-\alpha)\left(\kappa \gamma_{\star, \alpha}(n)\right)^{-1} \log (\Omega(x))\right\}^{1 /(1-\alpha)}$, we end up with

$$
\operatorname{MSE}_{f}\left(N_{\alpha}(n), n\right) \leq C\left(C_{\mathrm{MSE}, \alpha} / n\right)^{1 / 2}
$$

It is worthwhile to note that the order of $N_{\alpha}(n)$ in n is $n^{(1-2 \alpha) /(2(1-\alpha))}$, and $C_{\mathrm{MSE}, \alpha}$ goes to infinity as $\alpha \rightarrow 1 / 2$.
3. If $\alpha=1 / 2$, (S34) still holds. By Lemma 14, (S6) and (S8), we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1} \log (n)}{n^{1 / 2}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1 / 2} / 4\right\} \Omega(x)}{\gamma_{1} n^{1 / 2}}\right)
$$

Plugging this inequality and the one given by Theorem 9 in 23 implies:

$$
\begin{equation*}
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1} \log (n)}{n^{1 / 2}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1 / 2} / 4\right\} \Omega(x)+\kappa^{-2}}{\gamma_{1} n^{1 / 2}}\right) . \tag{S36}
\end{equation*}
$$

At fixed γ_{1}, the order of this bound is $\log (n) n^{-1 / 2}$, and is the best bound for the MSE. Fix the number of iterations n, and we now optimize the choice of γ_{1}. Set

$$
\gamma_{\star, 1 / 2}(n)=\left(\kappa^{-1} \mathrm{~A}_{0}\right)^{-1}\left(C_{\mathrm{MSE}, 1 / 2} / \log (n)\right)^{1 / 2}, \text { where } C_{\mathrm{MSE}, 1 / 2} \stackrel{\text { def }}{=} \kappa^{-3} \mathrm{~A}_{0}
$$

and S36) becomes with $\gamma_{1} \leftarrow \gamma_{\star, 1 / 2}(n)$,

$$
\begin{aligned}
& \operatorname{MSE}_{f}(N, n) \\
& \qquad \leq C\left(\frac{\log (n)}{n C_{\mathrm{MSE}, 1 / 2}}\right)^{1 / 2}\left(\kappa^{-1} \exp \left\{-\kappa N^{1 / 2} \gamma_{\star, 1 / 2}(n) / 4\right\} \Omega(x)+\frac{C_{\mathrm{MSE}, 1 / 2}}{\log (n)}\right)
\end{aligned}
$$

Setting $N_{1 / 2}(n)=\left(4\left(\kappa \gamma_{\star, 1 / 2}(n)\right)^{-1} \log (\Omega(x))\right)^{2}$, we end up with

$$
\operatorname{MSE}_{f}\left(N_{1 / 2}(n), n\right) \leq C\left(\frac{\log (n) C_{\mathrm{MSE}, 1 / 2}}{n}\right)^{1 / 2}
$$

We can see that we obtain a worse bound than for $\alpha=0$ and $\alpha \in(0,1 / 2)$.
4. For $\alpha \in(1 / 2,1]$, S34) still holds. By Lemma (14, (S6) and (S8), we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}}{n^{1-\alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)}{\gamma_{1} n^{1-\alpha}}\right)
$$

Plugging this inequality and the one given by Theorem 9 in 23 implies:

$$
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}}{n^{1-\alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)+\kappa^{-2}}{\gamma_{1} n^{1-\alpha}}\right)
$$

For fixed γ_{1}, the MSE is of order $n^{1-\alpha}$, and is worse than for $\alpha=1 / 2$. For a fixed number of iteration n, optimizing γ_{1} would imply to choose $\gamma_{1} \rightarrow+\infty$ as $n \rightarrow+\infty$. Therefore, in that case, the best choice of γ_{1} is the largest possible value $1 /(m+L)$.
5. For $\alpha=1$, S34 still holds. By Lemma (S6) and (S8), the bias is upper bounded by

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}}{\log (n)}+\frac{\kappa^{-1} N^{-\kappa \gamma_{1} / 2} \Omega(x)}{\gamma_{1} \log (n)}\right)
$$

Plugging this inequality and the one given by Theorem 9 in 23) implies:

$$
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~A}_{0} \gamma_{1}}{\log (n)}+\frac{\kappa^{-1} N^{-\kappa \gamma_{1} / 2} \Omega(x)+\kappa^{-2}}{\gamma_{1} \log (n)}\right) .
$$

For fixed γ_{1}, the order of the MSE is $(\log (n))^{-1}$. For a fixed number of iterations, the conclusions are the same than for $\alpha \in(1 / 2,1)$.

5.1 Explicit bound based on Theorem 6

1. First for $\alpha=0$, recall by (S9), (20) and (21) we have for all $p \geq 1$,

$$
u_{p}^{(1)}(\gamma) W_{2}^{2}\left(\delta_{x}, \pi\right)+u_{p}^{(3)}(\gamma) \leq 2 \Omega(x)\left(1-\kappa \gamma_{1} / 2\right)^{p}+2 \kappa^{-1}\left(\mathrm{~B}_{0} \gamma_{1}+\mathrm{B}_{1} \gamma_{1}^{2}\right)
$$

where B_{0} and B_{1} are given by $(\mathrm{S} 10$ and (S11) respectively. So by Proposition 8 and Lemma 14 , we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \exp \left(-\kappa N \gamma_{1} / 2\right) \Omega(x)}{\gamma_{1} n}+\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}^{2}\right)
$$

Therefore plugging this inequality and the one given by Theorem 9 in 23 implies:

$$
\begin{equation*}
\operatorname{MSE}_{f}(N, n) \leq C\left(\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}^{2}+\frac{\kappa^{-2}+\kappa^{-1} \exp \left(-\kappa N \gamma_{1} / 2\right) \Omega(x)}{n \gamma_{1}}\right) \tag{S37}
\end{equation*}
$$

So with fixed γ_{1} this bound is of order γ_{1}. If we fix the number of iterations n, we can optimize the choice of γ_{1}. Set

$$
\gamma_{\star, 0}(n)=\left(\kappa \mathrm{B}_{0} n\right)^{-1 / 3},
$$

and S33) becomes if $\gamma_{1} \leftarrow \gamma_{\star, 0}(n)$,

$$
\operatorname{MSE}_{f}(N, n) \leq C\left(\mathrm{~B}_{0}^{-1 / 2} n\right)^{-2 / 3}\left(\kappa^{-4 / 3} \exp \left(-\kappa N \gamma_{\star, 0}(n) / 2\right) \Omega(x)+\kappa^{-5 / 3}\right)
$$

Setting $N_{0}(n)=2\left(\kappa \gamma_{\star, 0}(n)\right)^{-1} \log (\Omega(x))$, we end up with

$$
\operatorname{MSE}_{f}\left(N_{0}(n), n\right) \leq C\left(\mathrm{~B}_{0}^{-1 / 2} \kappa^{5 / 2} n\right)^{-2 / 3}
$$

Note that $N_{0}(n)$ is of order $n^{1 / 3}$.
2. For $\alpha \in(0,1 / 3)$, recall by (S9), 20) and we have for all $p \geq 1$,

$$
\begin{equation*}
u_{p}^{(1)}(\gamma) W_{2}^{2}\left(\delta_{x}, \pi\right) \leq 2 \Omega(x) \prod_{i=1}^{p}\left(1-\kappa \gamma_{i} / 2\right) \tag{S38}
\end{equation*}
$$

So by Proposition 8, Lemma $14,(\sqrt{\mathrm{~S} 6)}$ and $(\overline{\mathrm{S} 14)}$, we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}^{2}}{(1-3 \alpha) n^{2 \alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)}{\gamma_{1} n^{1-\alpha}}\right)
$$

Plugging this inequality and the one given by Theorem 9 in 23) implies:

$$
\begin{equation*}
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}^{2}}{(1-3 \alpha) n^{2 \alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)+\kappa^{-2}}{\gamma_{1} n^{1-\alpha}}\right) . \tag{S39}
\end{equation*}
$$

If we fix the number of iterations n, we can optimize the choice of γ_{1} again. Set

$$
\gamma_{\star, \alpha}(n)=\left(n^{1-3 \alpha} \kappa \mathrm{~B}_{0} /(1-3 \alpha)\right)^{-1 / 3}
$$

-eq:bound'MSE'gamma

S39) becomes with $\gamma_{1} \leftarrow \gamma_{\star, \alpha}(n)$,
$\operatorname{MSE}_{f}(N, n) \leq C\left(\mathrm{~B}_{0}^{-1 / 2} n\right)^{-2 / 3}\left(\kappa^{-4 / 3} \exp \left(-\kappa N \gamma_{\star, 0}(n) /(2(1-\alpha))\right) \Omega(x)+\kappa^{-5 / 3}(1-3 \alpha)^{-1 / 3}\right)$.
Setting $N_{\alpha}(n)=\left\{\left(\kappa \gamma_{\star, \alpha}(n)\right)^{-1} \log (\Omega(x))\right\}^{1 /(1-\alpha)}$, we end up with

$$
\operatorname{MSE}_{f}\left(N_{\alpha}(n), n\right) \leq C\left(\mathrm{~B}_{0}^{-1 / 2} \kappa^{5 / 2} n\right)^{-2 / 3}
$$

It is worthwhile to note that the order of $N_{\alpha}(n)$ in n is $n^{(1-3 \alpha) /(3(1-\alpha))}$.
3. If $\alpha=1 / 3,(\mathrm{~S} 38$) still holds. By Lemma (S6) and (S14), we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}^{2} \log (n)}{n^{2 / 3}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{2 / 3} / 4\right\} \Omega(x)}{\gamma_{1} n^{2 / 3}}\right)
$$

Plugging this inequality and the one given by Theorem 9 in (23) implies:

$$
\begin{equation*}
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}^{2} \log (n)}{n^{2 / 3}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{2 / 3} / 4\right\} \Omega(x)+\kappa^{-2}}{\gamma_{1} n^{2 / 3}}\right) \tag{S40}
\end{equation*}
$$

At fixed γ_{1}, the order of this bound is $\log (n) n^{-2 / 3}$, and is the best bound for the MSE. Fix the number of iterations n, and we now optimize the choice of γ_{1}. Set

$$
\gamma_{\star, 1 / 2}(n)=\left(\kappa \mathrm{B}_{0} \log (n)\right)^{-1 / 3}
$$

and S40 becomes with $\gamma_{1} \leftarrow \gamma_{\star, 1 / 2}(n)$,

$$
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\log (n) \mathrm{B}_{0}}{n^{2}}\right)^{1 / 3}\left(\kappa^{-4 / 3} \exp \left\{-\kappa N^{1 / 2} \gamma_{\star, 1 / 2}(n) / 4\right\} \Omega(x)+\kappa^{-5 / 3}\right)
$$

Setting $N_{1 / 2}(n)=\left(4\left(\kappa \gamma_{\star, 1 / 2}(n)\right)^{-1} \log (\Omega(x))\right)^{3 / 2}$, we end up with

$$
\operatorname{MSE}_{f}\left(N_{1 / 2}(n), n\right) \leq C\left(\frac{\log (n) \mathrm{B}_{0}}{\kappa^{5} n^{2}}\right)^{1 / 3}
$$

We can see that we obtain a worse bound than for $\alpha=0$ and $\alpha \in(0,1 / 3)$.
4. For $\alpha \in(1 / 3,1]$, (S38) still holds. By Lemma 14 , (S6) and (S14), we have the following bound for the bias

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}}{n^{1-\alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)}{\gamma_{1} n^{1-\alpha}}\right)
$$

Plugging this inequality and the one given by Theorem 9 in (23) implies:

$$
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}}{n^{1-\alpha}}+\frac{\kappa^{-1} \exp \left\{-\kappa \gamma_{1} N^{1-\alpha} /(2(1-\alpha))\right\} \Omega(x)+\kappa^{-2}}{\gamma_{1} n^{1-\alpha}}\right)
$$

For fixed γ_{1}, the MSE is of order $n^{1-\alpha}$, and is worse than for $\alpha=1 / 2$. For a fixed number of iteration n, optimizing γ_{1} would imply to choose $\gamma_{1} \rightarrow+\infty$ as $n \rightarrow+\infty$. Therefore, in that case, the best choice of γ_{1} is the largest possible value $1 /(m+L)$.
5. For $\alpha=1$, S34 still holds. By Lemma (S6) and (S8), the bias is upper bounded by

$$
\left\{\mathbb{E}_{x}\left[\hat{\pi}_{n}^{N}(f)\right]-\pi(f)\right\}^{2} \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}}{\log (n)}+\frac{\kappa^{-1} N^{-\kappa \gamma_{1} / 2} \Omega(x)}{\gamma_{1} \log (n)}\right)
$$

Plugging this inequality and the one given by Theorem 9 in 23) implies:

$$
\operatorname{MSE}_{f}(N, n) \leq C\left(\frac{\kappa^{-1} \mathrm{~B}_{0} \gamma_{1}}{\log (n)}+\frac{\kappa^{-1} N^{-\kappa \gamma_{1} / 2} \Omega(x)+\kappa^{-2}}{\gamma_{1} \log (n)}\right)
$$

For fixed γ_{1}, the order of the MSE is $(\log (n))^{-1}$. For a fixed number of iterations, the conclusions are the same than for $\alpha \in(1 / 2,1)$.

References

[1] A. Dalalyan. Theoretical guarantees for approximate sampling from a smooth and log-concave density. submitted 1412.7392, arXiv, December 2014.

[^0]: ${ }^{1}$ LTCI, Telecom ParisTech 46 rue Barrault, 75634 Paris Cedex 13, France. alain.durmus@telecom-paristech.fr
 ${ }^{2}$ Centre de Mathématiques Appliquées, UMR 7641, Ecole Polytechnique, France. eric.moulines@polytechnique.edu

