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1 Discussion of Theorem [3l
Note that . .
ul? (y) < Z {A0v? + A7} H (1 —rv/2), (S1)
i=1 k=i+1
where & is given by , and
Ao = 2L%k71d (S2)
AL =202 M dm 4+ L)+ dLA (T + (m4+ L)) (m T+ 67 m+ L)) . (S3)

If (vk)k>1 is a constant step size ,y, = <y for all k£ > 1, then a straightforward consequence of
Theorem |3 and if the following result, which gives the minimal number of iterations n and
a step-size v to get Wa(d,~Q%, 7) smaller than e > 0.

Corollary 1 (of Theorem . Assume and H@ Let x* be the unique minimizer of U. Let
z €R? and € > 0. Set for all k € N, v, = v with

 2A0k 4 (4T H(ABR T + €2A)) 12
7= 4A1I{71
n = [2(ky)~" {—log(e?/4) + log(2d/m)}] .

Then Wa(6,+Q7,m) < e.

A(m+ L), (S4)

Note that if  is given by (S4), and is different from 1/(m + L), then v < €(4A;x~1)~1/? and
257 Aoy + A1v?) = €2 /2. Therefore,

72 (/) { Ao+ e(Ar/(47) 2}

It is shown in [Il Corollary 1] that under for constant step size for any € > 0, we can choose
v and n > 1 such that if for all k > 1, vy, = =, then |[v*Q] — ||y < € where v* is the Gaussian
measure on R? with mean x* and covariance matrix L~'I;. We stress that the results in [T
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p:explicit’bound 'k alpha ‘

corollary 1] hold only for a particular choice of the initial distribution v*, (which might seem a
rather artificial assumption) whereas Theorem (3| hold for any initial distribution in Py (R%).

We compare the optimal value of v and n obtained from Corollary [If with those given in
[1l Corollary 1]. This comparison is summarized in Table [If and Table [2} for simplicity, we
provide only the dependencies of the optimal stepsize 7 and minimal number of simulations n
as a function of the dimension d, the precision € and the constants m, L. It can be seen that the
dependency on the dimension is significantly better than those in [I, Corollary 1].

Parameter d € L m
Theorem [3] and d T e[ L2 m?
[1 Corollary 1] d2 e L2 m

Table 1: Dependencies of ~y

Parameter d € L m
Theorem [3[ and dlog(d) | e ?|log(e)] | L? | Nlog(m)|m=3
[1, Corollary 1] d3 e 2log(e)] | L3 | [log(m)|m—2

Table 2: Dependencies of n

1.1 Explicit bounds for v, = y1k* with « € (0, 1]

We give here a bound on the sequences (ugll)('y))nzo and (qu) (7))n>o0 for (vk)k>1 defined by

v < 1/(m+ L) and v, = vk~ for a € (0,1]. Also for that purpose we introduce for t € R*,

@ -1/ for B A0
¥s(t) = {log(t) for 5=0. (85)
We easily get for a > 0 that forall n,p > 1, n <p
Yi—a(p+1) —%1-0a(n) < Z k™" <t1-a(p) —¥1-a(n) + 1, (S6)
k=n
and for a € R )
D kT <1 alp+1) =1 a(n) +1. (S7)
k=n

1. For a = 1, using that for all t € R, (1 +¢) < e’ and by and , we have
1

uD(y) < (n+ 1) ulP(y) < (n4 1) /2 ZAj(¢K71/2—1—j(n +1)+1).
j=0

2. For a € (0,1), by and Lemma [14] applied with ¢ = [n/2], where [-] is the ceiling
function, we have

uD(y) < exp (—rn%1-aln +1)/2)
1
w? (1) < DA (2"_17{+1(”/2)_“(j+1) + 71 ($1-agn([n/2]) + 1)
7=0

x exp{=(rm/2)(W1-a(n+1) —¥1-a([n/2])}) - (S8)

tab:comparison‘dalalyan

tab:comparison’dalalyan
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1.2 Optimal strategy with a fixed number of iterations

Corollary 2. Let n € N* be a fired number of iteration. Assume H@ and (Yg)k>1 s a
constant sequence, v =y for all k > 1. Set

v+ 2 2(kn) " (log(kn/2) + log(2(|x — 2*||* 4 d/m)) — log(2x~ ' Ay))
v- = 2(kn) " (log(kn/2) + log(2(||lz — 2*||* + d/m)) — log(26~ " (Ag + 2A1(m + L)1) .

Assume~t € (O, (m+ L)fl) .Then, the optimal choice of v to minimize the bound on Wa(6,Q7, )
given by Theorem@ belongs to [y_,yT]. Moreover if v = v, , then the bound on W2(0,Q7, ) is
equivalent to 4Ag(k°n)~tlog(kn/2) as n — +oo.

Similarly, we have the following result.

Corollary 3. Assume and H@ Let (i)k>1 be the decreasing sequence, defined by v, =
Yak~™%, with o € (0,1). Let n > 1 and set

Yo £ 2(1 — a)r(2/n) = log(xn/(2(1 — a)))

Assume Yo € (0,(m+ L)~t). Then the bound on W3 (5,Q7,m) given by Theorem@ is smaller
for large n than 8(1 — a)Ag(k%n)~tlog(kn/(2(1 — a))).

Proof. Follows from (S1)), and the choice of 7,. 0O

2 Discussion of Theorem
Based on Theorem [ we can follow the same discussion than for Theorem [3} Note that
ulP (y) < Z {Bovy +B1;'} H (1 —rv/2), (59)
i=1 k=i+1

where « is given by , and

By &' d (2L2 + e NE2)3 + 4L4/(3m))) : (S10)
Bi = d (ks 'L*+ L*(1/(6(m+ L)) + m™)) . (S11)

The following result gives the minimal number of iterations n and a step-size v to get Wa(d,+Q7, )
smaller than € > 0, when (v;)g>1 is a constant step size, v = for all k£ > 1.

Corollary 4 (of Theorem @ Assume H@ and H@ Let x* be the unique minimizer of U.
Let x € R? and € > 0. Set for all k € N, v, = v with

v =(e/2)r " (Bo + By(m+L)"")~1/?, (S12)
n = [2(ky) " {—log(e?/4) + log(2d/m)}] . (S13)
Then Wy (6, Q7 ,m) < e.

We provide only the dependencies of the optimal stepsize 7 and minimal number of simula-
tions n as a function of the dimension d, the precision € and the constants m, L, L in Table
and Table [
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Parameter d € L m
Theorem@ and d=Y2 | e | L7722 | m?2
Table 3: Dependencies of ~y
Parameter d € L m

Theoremlgland d*?log(d) | e tlog(e)| | LY? | Jlog(m)|m=3

Table 4: Dependencies of n

2.1 Explicit bounds for v, = v k* with « € (0, 1]

We give here a bound on the sequence (uslg) (7))n>0 for (yx)k>1 defined by v < 1/(m + L) and

Y = 1k~ for a € (0, 1]. Bounds for (ug)(’y))nzo have already been given in Section[1.1} Recall
that the function 9 is defined by (SH).

1. For o = 1, using that for all t € R, (1 +¢) < e’ and by and , we have

2

ulP () < (n+1)7/2 Z Bjm1(Wyyy/2-1-j(n+1) +1).
=1

2. For a € (0,1), by and Lemma |14 applied with ¢ = [n/2], where [-] is the ceiling
function, we have

uP(7) <> B (2»:*17{“(71/2)*“““) +91 7 (Wr1-ag+2)([n/2]) +1)
j=1
x exp{—(k71/2)(P1-a(n+1) —1-a([n/2]))}) . (S14)

2.2 Optimal strategy with a fixed number of iterations

Corollary 5. Let n € N* be a fized number of iteration. Assume H@ H@ and (Vi)k>1 s
a constant sequence, v = v* for all k > 1, with

v* = 4(kn)"t {log(mn/Q) +log(2(||x — =*|> + d/m))} .
Assume v* € (0,(m+ L)~*). Then the bound on W§(0,Q7, ) given by Theorem@ is of order
O(Bo(k2n)21og?(n)) as n — 4oo.
Similarly, we have the following result.

Corollary 6. Assume H@ and H@ Let (vk)r>1 be the decreasing sequence, defined by
Vi = Yok ™%, with o € (0,1). Let n > 1 and set

T 2 2(1 = @) (2/n)! log(kn/ (2(1 ~ )

Assume v, € (0,(m+ L)~1). Then the bound on W3 (5,Q7,m) given by Theorem@ is smaller
for large n than O(Bo(k*n)~2log?(n)).

Proof. Follows from (S9), (S14) and the choice of 7q. O

tab:comparison’gammal
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3 Generalization of Theorem (3|

In this section, we weaken the assumption 3 < 1/(m + L) of Theorem [3] We assume now:

G1. The sequence (vg)k>1 is non-increasing, and there exists p > 0 and ny such that (14+p)yn, <
2/(m+1L).

Under we denote by

no = min{k € N | v, < 2/(m + L)} (S15)

Denote in the sequel (-); = max(-,0). Recall that under x* is the unique minimizer of U,
and £ is defined in (6)

theo:kind drift'annexe | Theorem S7. Assume HZ and G[1I Then for alln,p € N*, n <p

[ e = 1P io@h(da) < Buplio,)

where

no—1
Enp(1o,7) —eXP< Z%K'i‘ ZL2 )/ lz — 2*||? po(dz)

no—1 no—1
+2dk + Qd{ H (’yn0,1L2)_1 (1 + L2 }exp < Z KYk + Z vkmL> . 816) ‘—eq:def'borneKindDriftA

k=n k=n k=n

Proof. For any v > 0, we have for all z € R%:
[ =717 Ry ) = o = 4 VU @) = 27|+ 21
R
Using that VU (2*) = 0, and we get from the previous inequality:

=" 1PRy )

< (- ) o — 2| 4 (7 - ) IVU (@) — VU @) + 2d

() llz — a*|* + 244,

m—+ L

where n(y) = (1 — ky + vL(y — 2/(m + L));+). Denote for all & > 1, nr = n(yx). By a
straightforward induction, we have by definition of Q? for p,n € N, p <mn,

/ ||{L‘—.’L'*|| o Qp d,T < H nk/]R ||£L' - ||,u0 dl‘ 2d Z H NeYi » (817) ‘—eq:Iem'kind'drift'first'es

k=n i=n k=i+1

with the convention that for n,p € N, n < p, H = 1. For the first term of the right hand side,
we simply use the bound, for all z € R, (1 +z) < < e®, and we get by GI

p no— 1
H Nk < exp ( Z KYk + Z L2’}/k> 5 (818) ‘—eq:lem'kind'drift'secon(
k=n




where ng is defined in (S15)). Consider now the second term in the right hand side of (S17]).

no—1
ZHUWZSZ H (1=rm)vi+ Y an%
i=n k=i+1 i=ng k=i+1 i=n k=i+1
p p p
Sﬁ_lz{ 11 (1—f<é’Yk)—H(1—m’k)}
i=ng \(k=i+1 k=i
no—1 no—1 p
+ { Z H (1 + Lz’y]%) ’}/Z} H (1 — Ii’yk) (Slg) ‘—eq:lem'kind'drift'third'e
i=n k=i+1 k=no

Since (7yx)k>1 is nonincreasing, we have

OZ_: 1:[ (14 L273) 7 = OZ_:(%LQ)_l{ﬁ (1+L*7) - 1:[ (1+L2w§)}

i=n k=itl i=n k=i k=it1
no—1
< ] Gmor L7 (14 L2937
k=n

Furthermore for k < ng v > 2/(m + L). This implies with the bound (1 + z) <e” on R:

P no—1
H (1 — kyg) <exp < Z n'yk> exp (Z n'yk>
k=ng
no—1
< exp < Z n’yk> exp (Z ’ykmL> .

Using the two previous inequalities in (S19)), we get

p p no—1 no—1
Z H Nk < H71 + { H (7n0_1L2)71 (1 + L2 }exp < Z KYE + Z ’YkmL> 820) ‘—eq:lem'kind'drift'fourth

1=n k=i+1 k=n k=n

Combining (S18)) and ( - in - ) concluded the proof. O

We now deal with bounds on Wa(uoQY, 7) under G But before we preface our result by
some techincal lemmas.

er diffusion‘part1'annexe | - Lemma S8. Assume HI 1| and H@ Let (o € P2(R? x RY), (Y,Y )0 such that (Yo,Yo) is
distributed according to (o and given by . Let (Fi)i>0 be the filtration associated with (By)i>o
with Fy, the o-field generated by (Yo,Y o). Then for alln >0, €; > 0 and ez > 0,

E”Tn [HYFnH - ?Fn+1 HQ]

— 2
< {1 = yn1 (5 — 2€1) + Y1 LI + €2)Yng1 — 2/(m+ L))} ||[Yr, — Y1, ||
+9241(1/2e0) + (1+ g Y ynsn) (12 + (Liyns1/2) [¥r, = 2P + L1921, /12)



Proof. Let n >0 and €; > 0, and set A,, = Y, — Y, by definition we have:

2

/ VU, - VU, ) ds

n

2 2
E7 [ Ansal?] = 1Al + B ‘

This
= 2941 (A0, VU(Yr,) = VU (Yr,)) — 2 g E7T [(A, {VU(Ys) = VU(Yr,)}) ds] -

Using the two inequalities | (a,b) | < e1]|al|? + (4e1)7|6]|* and (), we get
= 12
E7n (1 8ns1]?] < {1 = tnsa (s = 2600} [A0]* = 29041/ (m + L) [ VU(¥r,) = VU (T, )|

1 [Tenr
oo [ Iv0) - vus,)
261

2
/ SO - VU(Fe ) s | as.
T

n

+E7 ‘

n

(821) ‘ —eq:distance’diffusion’pa

Using [la+b]|> < (14 e) [lal]® + (1 + €5 1) [|b]|* and the Jensen’s inequality, we have
2

| 2

< (1+ €))7y HVU(YF") -VU(Yr,)

Lot
B ‘/ VUYL - VU (T, )} ds
r

n

Tt
Yot EFTn l/ VU(Ys) — VU(YFH)HQdS] :
T

n

This result and imply,

70 [ Ans1l?] < {1 = a1k = 260) + 31 L1 + 2)ms1 — 2/(m+ D)4} [ An]

Thnta
+ ((1 + 62_1)’)/n+1 + (261)_1)/ E}-F” |:||VU( ) VU(YF")||2:| ds . (822) ‘—eq:distance'diffusion'fir‘
r

n

By the Markov property of (Y;):>0 and ((ii)), we have

Fn+1 P 9
[ e o) - vu e, ) s
r

< L2 (v + AL /124 (29010 /2) IV, — 27 )

Plugging this bound in ((S22]) concludes the proof. O

uite'recurrence 2'annexe | Lemma S9. Let (y;)k>1 be a nonincreasing sequence of positive numbers. Let w, > 0 be
positive constants satisfying w? < 48 and T > 0. Assume there exists N > 1, yv < 7 and
yvw < 1. Then for alln >0, j > 2

te'recurrence’2'1'annexe ‘ (Z)
n+l n+1l ) n+1l n+l
oI C—mwm+wBon -7 <> [ A—ww)y
i=1 k=i+1 i=N k=i+1

. j_QN—l n+1 )
W2 ] (1 +128) H (1 - @)
E—1 E—N



te'recurrence’2'2’annexe [ (ZZ) For all l € {N, ey n},

n+1 n+1l n+1 —1 7]‘_1
j j 4
ST == ! <exp (;w%> > oA T

i=N k=i+1 i=N

Proof. By definition of N we have

n+1l n+1

S I C—ww+ B —7)4)

i=1 k=i+1
n+1 n+1 N—1 N-1 n+1

< Z H 1-— ’ykw ’yz {Z H 1+ ’ykﬂ } H (]. - 'ykw) . (823) ‘—eq:suite'recurrence'2'1'
=N k=1+1 i=1 k=i+1 k=N

Using that (y%)r>1 is nonincreasing, we have

Plugging this inequality in (S23]) concludes the proof of Let £ € {N,...,n+ 1}. Since (x)k>1
is nonincreasing and for every z € R, (1 + ) < e, we get

n+1 n+1 {—1 n+1 n+1 n+1
S T a-wernt =% T a-wmet+ 3 0T a -
1=N k=1+1 1=N k=1+1 i1=f0 k=i+1
—1 n+1 n+1l n+1
-1
S zw) =S 0w
=N k=i+1 1=0 k=1+1

n+1 j—1
< exp < Z w7k> Z 77,

O

uite'recurrence annexe | Lemma S10. Let (7;)k>1 be a nonincreasing sequence of positive numbers, w, 5,7 > 0 be pos-
itive real numbers, and N > 1 satisfying the assumptions of Lemma[S9 Let P € N*, C; > 0,
i=0,...,P be positive constants and (un)n>0 be a sequence of real numbers with ug > 0 satisfying
foralln >0

Uny1 < (1= V1@ + BYns1 (a1 — 7)1 )n + Z Cﬂ%ﬁ

Then for allm > 1,

N—1 n
un<{H 1+5%}H 1 —y%w) uo+ZCZ H (1 — o) 4 2
k=N

k=1 3=0 i=N k=i+1

chﬁ ’Yl H (1+’le/8) H (1 —@y) -
k=1 k=N



rpolate’diffusion’annexe ‘

Proof. This is a consequence of a straightforward induction and Lemma [S9H(i) O

Proposition S11. Assume H[3 and G[1 Let x* be the unique minimizer of U. Let
Co € P2(RYx RY), (Y;,Y )0 such that (Yo,Y ) is distributed according to (o and given by .
Then for allm >0 and t € [y, Tpiq]:

E[[|Y: - V|| < aOE [|¥o - Vo] + a0 + a3

where )
ﬁgll)('y) ) { H (1 + L2(1 + p)’y%)} H (1 — I{’yk/2) 5 (824) ‘—eq:def'suite/—\nneern"
k=1 k:’ﬂl
il (y) 2 Z ) [ 0= rw/2)
=n1 k=i+1
ny—1 n
+ () (L2 (1 +p) 7" { [[a+wa+ p)Lz)} I = swr2),
k=1 k=n1

where for v > 0,
f(v) = {267+ (1 +p )y} (dL? + 6L*y/2 4+ dL**/12)
0 = max;>; {e_QmFHE {HYO - x*\lz} +(1- e_QmFH)(d/m)} ,

and

~ wm—+L [((t—T,)3L2

where Eq ,(po,7) is given by (S16) and uo is the initial distribution of Y.
Proof. Lemma [S§| with €, = k/4 and ez = p, Lemma imply for all n > 0

E[|[¥r, ~ Ve 7] < a0 ()R [[[Yo - Vo] +#9() (525) [ovimomcimincions

Now let n >0 and ¢t € [I',, Ty 11]. By ,

t
HY; — ?tHZ = HYFn — ?Fn H2 — 2/ <VU(Y;) — VU(?FH)7 YS — ?S> ds . (826) ‘—eq:difFerentiate'distancz
Fn

Moreover for all s € [T, T',41], by we get

<VU(YS) -VU(Yr,),Ys — 75> = <VU(YS) -VU(Yr,),Ys—Yr, +Yr, — Y5>
> (m + L)il HVU(Ys) — VU(?[‘n)HZ + <VU(}/5) — VU(?FH),?Fn — ?b> . (S27) ‘—eq:using'convexity'dist;

Since |(a,b)| < (m+ L)~ |jal|® + (m+ L) ||b]|* /4, we have

= \ = = _ — 2 = = 2
(VU(Ys) =VU(Yr,),Yr, —Ys) > —(m+L)""||VU(Ys) = VU(Yr,)|| =(m+L) |V =Y, || /4.
Using this inequality in (S27)), we get

(VU(Y.) = VU(Yr,),Ye = Vo) > —(m+ L) ||Vs = Vi, || /4,



ce'Euler'diffusion’annexe [

and (S26)) becomes

t
v, — Vil < ||, 77pn||2+((m+L)/2)/ V. — Ve, |2 ds (S28)

n

= = 2
Therefore, by the previous inequality, it remains to bound the expectation of ||YS —-Yr, H . By

and using VU (z*) = 0,
— — 2 _ 2
I7. = 7o, | = | =6 = L)(VUTr,) = VU @) + V(B — Br, )|
Then taking the expectation, using the Markov property of (B;):>o and we have
E[[[V: = Vr.|’] < (s = Tw)?L%E [|[Pr, — &*|°] +2(s — Tu)d.. (S29)

The proof follows from taking the expectation in (S28)), combining (S25)-(S29), and using The-
orem [ 0

Theorem S12. Assume H@ and , Then for all g € P2(RY) and n > 1,
W3 (10Q%, 7) < @l (V)W (o, m) + @2 (7) (S30)

where (aﬁ}))nzo is given by (S24) and

P =D o) [ - rwm/2)

i=ny k=i+1

+ o) (L* (1 +p) 7 { ﬁ (1 -+ +p)L2)} I @ =rw/2), (s31)

k=1 k:n1

where

o(v) = {267+ (L + p~ )y} (dL? + dL*y/(2m) + dL*y*/12) .

Proof. Let (o be an optimal transference plan of yy and 7. Let (Y, Y;)i>0 with (Yo, Y) dis-
tributed according to {y and defined by . By definition of W5 and since for all t > 0, 7 is
invariant for P;, W2(u0Q", 7) < E[||Yr, — Xr, ||*]. Then the proof follows from Proposition
since Yj is distributed according to 7 and by , which shows that 6 < d/m. O

3.1 Explicit bound based on Theorem for v, =y k® with a € (0, 1]

We give here a bound on the sequences (ﬁ%l)(v))nzl and (1153) (7v))n>1 for (vk)k>1 defined by
71 > 0 and v, = 11k~ for a € (0,1]. Recall that g is given by (S5). First note, since (yx)r>1

is nonincreasing, for all n > 1, we have

1 n n
PN < GY AT (- kw/2)
=0  i=ng k=it1

1 ni—1 n
+Y GLA(1+p) ' { [Ta+ra+ p)LQ)} [T —rw/2), (832)

=0 k=1 k=n1

where
C; = bdL? ,Cy = b(dL*/(2m) + v1dL*/12) \b =271 + (14 p~ Yy .

10

‘ —eq:using convexity distz

‘ —eq:distance’interpolate’

—eq:borne-W2D"

—eq:def'u2’annexe”

‘ —eq:bound’u’'n"2’annexe’




1. For a =1 and n; =1, by and , we have

i) < (1)

=3}

1
PD(y) < (n+1)723 "¢ {Vf+2(¢mvl/2—1—j(” +1)+ 1)+ (LA + P))flvf} :
=0

For ny > 1, since (Y )k>0 is non increasing, using again , , and the bound for t € R,
(1+1) <e

() < (n+1)7 ”1/2exp{mlwo (m)/2+ L2 (14 p)y? (-1 (m1 = 1) + 1)}

WP (y) < (n+1)7rn/? Z & ('7{+2("/’ml/2—1—j(n +1) =Py j2-1-5(n1) + 1)
=0

+(o] (E2(1+ p)) exp {rmtpo(mn) /2 + L2(1+ p)R @-a(m = 1) +1)}) .
Thus, for 71 > x/2, we get a bound in O(n™1).
2. For a € (0,1) and n; =1, by and Lemma [S9{(ii)| applied with £ = [n/2], we have

D (y) < exp(—(ml/z)@bafl(n +1))

<ZC {71 ($1-ag+2)([1/21) +1) exp { (k71 /2) ($1-a(n + 1) — P1-a([n/2]))}

+2/-f1 T (n/2)= 0+ 4 exp{*("Wl/Q)’/’@—l(nJrl)}} '

For ny > 1 and [n/2] > ng, since (yx)k>o0 Is non increasing, using again , and
Lemma applied with ¢ = [n/2], and the bound for t € R, (1 +t) < ef, we get

M) < exp {=rn1(@a—1(n+1) =1 a(m))/2+ L1+ p)ri(@1-20(n1 — 1) + 1)}
) < Zc {2,.;*1 At (n/2) 0+

+ 7{+ (¢17a(j+2)(|—n/2-|) —P1-ag+2) (1) + 1) exp {=(k71/2)@1-a(n + 1) = P1-a([n/2]))}
(1 /(L2 4 p)) exp { =7 (a1 (n 4+ 1) = W1-a(m))/2+ L2(1+ p)rE@1-2a(m — 1) + 1)} }

4 Explicit bounds on the MSE

def

Without loss of generality, assume that ||f HLip = 1. In the following, denote by Q(z) =

|z — 2*||> + d/m and C a constant (which may take different values upon each appearance),
which does not depend on m, L,y;,« and ||z — z*||.

5 Explicit bounds based on Theorem

1. First for a = 0, recall by , and we have for all p > 1,
up (VW (6, m) + ) (7) < 20() (1 = w71 /2)P + 267 (Aor1 + Arrf)

nd MSE 'strongly convex ‘
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where Ag and A; are given by (S2)) and respectively. So by Proposition [8 and
Lemma [T4], we have the following bound for the bias

(E 7N ()] - =(F)} < C (,.;—1 exp(—kN71/2)Q(z)

mn

+ Ii_le’}/1> .

Therefore plugging this inequality and the one given by Theorem |§| in implies:
T exp(—feNm/Z)Q(x))

i

(833) ‘ —eq:bound"MSE’'gamma’

N[SEf(]\f7 n) <C (/ﬁl_le’yl +
So with fixed y; this bound is of order ;. If we fix the number of iterations n, we can
optimize the choice of ;. Set

Yeo(n) = (57 Ag) " (Cusk,0/n)"/? , where Cyspo < k%A
and ((S33) becomes if 1 < v, 0(n),
MSE(N,n) < C(Cnmsg,on) /2 (k7! exp(—k N7, 0(n)/2)Q(z) + Cuse,o) -
Setting No(n) = 2(kvx.0(n)) ! log(Q(x)), we end up with
MSE;(Ny(n),n) < C(Cmsg,o/n)"? .

Note that Ny(n) is of order n'/2.
. For a € (0,1/2), recall by (S, and we have for all p > 1,

p
U;S)I) (’)/)sz (5z, 7'(') < 29(1‘) H(l — H’Y,/Q) . (834) ‘ —eq:bound’for MSE'u'n’

i=1

So by Proposition Lemma and , we have the following bound for the bias

K~ Ao H-lexp{—mlzw-a/@(l—a))}sz(x)) .

BN -=(h)) < <<1 “jn P

Plugging this inequality and the one given by Theorem |§| in implies:

K Agm1 kTl exp {—rN'T/(2(1 — )} Qz) + k72
(1 —-2a)n> ynl—e

MSEf(N, n) <C <

(835) ‘ —eq:bound’'MSE'gamma
At fixed 71, this bound is of order n~%, and is better than (S33) for (yx)k>1 constant. If
we fix the number of iterations n, we can optimize the choice of v, again. Set

Yea(n) = (57 A/ (1 — 2)) "1 (Cnisp,a/n' 72*) 2 | where Cuspo = £ 2Ag/(1 — 2a) ,
becomes with v1 < v o (1),
MSE; (N, n)
< C(Cusp.an) 2 (57 exp { =N "%v,0(n)/(2(1 — @)} Qz) + CusE.a) -

Setting N (n) = {2(1 — @) (kyx.a(n)) "  log(Q(x))}/ =) we end up with
MSE¢(Na(n),n) < C(Cumsg,a/n)"? .

It is worthwhile to note that the order of N,(n) in n is n(1=20)/2(1-a) "and CMSE, o gO0es
to infinity as @ — 1/2 .

12



3. If & = 1/2, (S34) still holds. By Lemma and , we have the following bound
for the bias

KL og(n Kk Yexp {—km 1/2 Oz
{Ew[ﬁév(f)]—ﬂ(f)}zéC( Ao log(n) , <7 exp o /4} <>>.

Plugging this inequality and the one given by Theorem |§| in implies:

K Aovilog(n) | wlexp {—r N2 /4} Q) + k2
172 + 1/2
n y1n

MSEf(N, n) < C ( > . (836) ‘—eq:bound'MSE'gamma‘

At fixed 71, the order of this bound is log(n)n~'/2, and is the best bound for the MSE.
Fix the number of iterations n, and we now optimize the choice of ;. Set

Ye,1/2(n) = (H_lAO)_l(CMSE,l/Q/IOg(n))l/Q , where Cyisg,1/2 = RT3A
and (S36]) becomes with v1 <= 7, 1/2(n),
MSE (N, n)
log(n) 1/2 _ 1 CusE,1/2
<o (280 kN2, 4l o ZMSBL/2)
N (nCMSE,l/Z " exp{ " 7 ,1/2(n)/ } (x) * log(n)
Setting Ny 2(n) = (4(k7s,1/2(n)) "' log(Q(z)))?, we end up with

log(n)CMSE,1/2)1/2

We can see that we obtain a worse bound than for & = 0 and o € (0,1/2).

4. For a € (1/2,1], (S34) still holds. By Lemma and (S8), we have the following
bound for the bias

{B.[7N () -m(H)}Y <C (Hlevl N kT texp {—rm N'7/(2(1 — a))} Q@;)) |

npl-—o ’ylnl—“
Plugging this inequality and the one given by Theorem |§| in implies:

KAy K texp {—rm N/ (2(1 — @)} Qx) + w2
nl-—o + ,71”1—04 !

MSE(N, n) < C<

For fixed 71, the MSE is of order n!~%, and is worse than for a = 1/2. For a fixed number
of iteration n, optimizing ~; would imply to choose v; — +00 as n — 4oc0. Therefore, in
that case, the best choice of 77 is the largest possible value 1/(m + L).

5. For v = 1, (S34)) still holds. By Lemma and , the bias is upper bounded by
A kTINTFN/2Q)(x)
E, [+ (f)] — 7 2 o (n oM )
(Bl (D] = m(1)} < log(n) 7 log(n)
Plugging this inequality and the one given by Theorem |§| in implies:
KAy KTINTEN2Q(x) + FL_Q>
log(n) 71 log(n) '

For fixed 7, the order of the MSE is (log(n))~!. For a fixed number of iterations, the
conclusions are the same than for a € (1/2,1).

MSE(N,n) < C(
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5.1 Explicit bound based on Theorem [6]
1. First for a = 0, recall by , and we have for all p > 1,

d"MSE strongly’convexD ‘

ulD (VW3 (80, m) + ulP (7) < 2Q(2)(1 — Kk71/2)P + 26 (Bon1 + B17?)

where By and B; are given by (S10) and (S11|) respectively. So by Proposition 8| and
Lemma[I4] we have the following bound for the bias

{Ex[ﬁ_N(f)] B w(f)}2 <C (nlexp(—/@N%/Q)Q(x) 4 H—lBO%z) .

7n

Therefore plugging this inequality and the one given by Theorem |§| in implies:

24k exp(—kN71/2)Q
MSEf(N,n)SC(m‘lBo'yf+H + 5L exp(—kNy:1 /2) <x>> |

(837) ‘ —eq:bound'MSE ' gamma

nyi

So with fixed ~; this bound is of order ;. If we fix the number of iterations n, we can
optimize the choice of ;. Set

Y0(n) = (5Bon) /%,
and becomes if 1 < Y4, 0(n),
MSE (N, n) < C(By/*n) /% (17473 exp(~ kN o(n) /2)2a) + 5~%/%) .
Setting No(n) = 2(kv+.0(n)) ! log(Q(z)), we end up with
MSE(No(n),n) < C(By */2k5/%n)~2/3 .

Note that Ny(n) is of order n'/3.

2. For a € (0,1/3), recall by (S9), and we have for all p > 1,

p
( )( )W2 ((Sgg,ﬂ' < QQ H 1 — /w,/Z (838) ‘—eq:bound'for'MSE'u'n'i
=1

So by Proposition [§ Lemma [14] and (S14)), we have the following bound for the bias

(B, [+ (f)] - W(f)}Q <o <( Kk~ 1Byy2 N k~Lexp {—rm N'=*/(2(1 — a))} Q(ﬂt)) '

1 —3a)n?e mnt—e
Plugging this inequality and the one given by Theorem |§| in implies:

K 1Boy? kTl exp {—rmN'T/(2(1 — )} Qz) + k72
(1 —3a)n? ynl—e

MSEf(N, Tl) < C (

(839) ‘ —eq:bound’"MSE ' gamma

If we fix the number of iterations n, we can optimize the choice of v; again. Set

’)’*,a(n) = (nl_sa“BO/(l - 30‘))_1/3 )

14



(S39) becomes with vy < vx,a(n),

MSE; (N, n) < C(By /?n)=2/3 (,54/3 exp(—Nv0(n)/(2(1 — a))Qa) + £~/3(1 — 3a)’1/3> .

Setting Ny (n) = {(kyx.a(n)) " log(Q(x))}/ =) we end up with
MSE f(Na(n),n) < C(By /?k%/2n)~2/3 .
It is worthwhile to note that the order of N, (n) in n is n(t=3)/B1-a)),

. If o =1/3, (S38) still holds. By Lemma and (S14]), we have the following bound
for the bias

B (D) - () <C (KlBllf/iog(”) y oo oo V) Q<I)> |

1n2/3

Plugging this inequality and the one given by Theorem |§| in implies:

Kk 'Bpy2log(n) k™ lexp {—ryiN?/3/4} Q(z) + k2
n2/3 + POYE

MSEf(N, n) < C ( ) . (840) ‘—eq:bound'MSE'gamma'

At fixed 71, the order of this bound is log(n)n~=2/3, and is the best bound for the MSE.
Fix the number of iterations n, and we now optimize the choice of ;. Set

Ye,1/2(n) = (kBo log(n)) /%,

and (S40) becomes with v1 < v, 1/2(n),

log(n)Bo )/
MSEf(N,n) < C (Og(52)0> (574/3 exp {—KN1/2'Y*71/2(71)/4} Q(z) + n*5/3> .

Setting Ny /2(n) = (4(k7,,1/2(n)) "' log(Q(x)))?/?, we end up with

log<n)Bo)” ’

MSEf(Nl/Q(n),TL) S C ( PE)

We can see that we obtain a worse bound than for & = 0 and « € (0,1/3).

. For a € (1/3,1], (S38) still holds. By Lemma and (S14), we have the following
bound for the bias

(B.7N ()] - ()} <C (”_15071 N k= lexp {—ry N/ (2(1 — )} Q(x)) |

nl-—a ,ylnlfa
Plugging this inequality and the one given by Theorem |§| in implies:

Kk 1Bom N kTt exp { =k N'T/(2(1 — )} Qz) + k72
nl—a ’}/171170‘ '

MSEf(N, n) < C <

For fixed 71, the MSE is of order n'~%, and is worse than for o = 1/2. For a fixed number
of iteration n, optimizing ; would imply to choose y; — +00 as n — 4o00. Therefore, in
that case, the best choice of 7 is the largest possible value 1/(m + L).
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5. For ae =1, (|S34) still holds. By Lemma and , the bias is upper bounded by

AN (V] ()2 K1Boy1  kTINTRNM/2Q(x)
{Em [T ()] (f)} <C ( log(n) 71 log(n) )

Plugging this inequality and the one given by Theorem |§| in implies:

-1 —1n—K71/2 -2
MSEf(N,n)<C<’€ Boyi | 'N Qz) +r ) .

log(n) 71 log(n)

For fixed 7, the order of the MSE is (log(n))~!. For a fixed number of iterations, the
conclusions are the same than for a € (1/2,1).
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