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Supplement to “Non-asymptotic convergence
analysis for the Unadjusted Langevin Algorithm”

. * . . KK
Alain Durmus and Eric Moulines

LTCI, Telecom ParisTech & CNRS, 46 rue Barrault, 75634 Paris Cedex 13, France,
e-mail: *alain.durmus@telecom—paristech.fr; **eric.moulines@telecom—paristech.fr

1. Discussion of Theorem 16

Note that . .
ul? (y) < Z {A0? + A1} } H (1 —ky/2), (S1)
i=1 k=i+1
where k is given by (12), and
Ao & 20%k71d (S2)
AL E 2Lk rdm + L)+ dLA (kT + (m4+ L)) (m T + 67 (m 4+ L)) . (S3)

If (yk)k>1 is a constant step size ,y, = v for all k& > 1, then a straightforward consequence of
Theorem 16 and (S1) is the following result, which gives the minimal number of iterations n and a
step-size v to get Wa(d.+Q7, m) smaller than e > 0.

Corollary S1 (of Theorem 16). Assume H1 and HS3. Let x* be the unique minimizer of U. Let
z € R? and € > 0. Set for all k € N, v, =~ with

v = ~2Aon ™ + (42:(:f2)f—1 i) i A(m+ L), (S4)
n = [2(ky) " {—log(e?/4) + log(2d/m)}] . (S5)

Then Wa(0,-Q),m) < e.

Note that if 7 is given by (S4), and is different from 1/(m + L), then v < e(4A;5~1)~1/2 and
25 Y (Aogy + A1y?) = €2/2. Therefore,

72 (@n/4) {Ao + (A /(4m)) 2}

It is shown in [S1, Corollary 1] that under H3, for constant step size for any € > 0, we can choose
v and n > 1 such that if for all k > 1, 4, = 7, then |[v*Q) — 7|l < € where v* is the Gaussian
measure on R? with mean z* and covariance matrix L~11;. We stress that the results in [S1,
corollary 1] hold only for a particular choice of the initial distribution v*, (which might seem a
rather artificial assumption) whereas Theorem 16 hold for any initial distribution in P2(R%).

We compare the optimal value of v and n obtained from Corollary S1 with those given in [S1,
Corollary 1]. This comparison is summarized in Table 1 and Table 2; for simplicity, we provide only
the dependencies of the optimal stepsize v and minimal number of simulations n as a function of
the dimension d, the precision € and the constants m, L. It can be seen that the dependency on the
dimension is significantly better than those in [S1, Corollary 1].
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Parameter d € L m

Theorem 16 and (30) | d=! | €2 | L™2

SNJ

[S1, Corollary 1] d2 | e | L2 | m
TABLE 1
Dependencies of

Parameter d € L m
Theorem 16 and (30) | dlog(d) | e 2|log(e)| | L? | |log(m)|m™3
[S1, Corollary 1] d? e 2 |log(e)| | L? | [log(m)|m=2
TABLE 2

Dependencies of n

1.1. Ezxplicit bounds for v, = v1k* with o € (0,1]

We give here a bound on the sequences (u%l)(ﬂy))nzo and (ug)(”y))nzo for (vk)k>1 defined by v <
1/(m+ L) and v = 71k~ for a € (0,1]. Also for that purpose we introduce for t € R¥,

- or
W@_{“ /B for B#0

S6
log(t) for 5=0. (56)

We easily get for a > 0 that forall n,p > 1, n <p

P
Y1-a(p+1) —¢1-0(n) < Z k=" <t1-a(p) —¥1-aln) +1, (S7)
k=n
and for a € R )

Dk < ap+1) —1aln)+ 1. (S8)

k=n
1. For a = 1, using that for all t € R, (1+¢) < e’ and by (S7) and (S8), we have

1
u () < (n+ )72 uP () < (nH )TN A @y o1 (nF 1)+ 1)

Jj=0

2. For a € (0, 1), by (S7) and Lemma 39 applied with ¢ = [n/2], where [-] is the ceiling function,
we have

ul (v) < exp (—rn¥i—a(n +1)/2)
1
u@() < 3 A, (26797 (/270 47 (g ([n/2]) 4 1)
=0

x exp{=(k71/2)%1-a(n+1) —¥1-a([n/2]))}) . (59)
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1.2. Optimal strategy with a fired number of iterations

Corollary S2. Assume H1, H3, and (v)k>1 i a constant sequence, vy, = v for all k > 1. Let
n > 1, and set

7 £ 2(sm) " (log(wn/2) + log (2l — a* 2 + d/m)) ~ log(2s~Ag))

def

- = 2(rn) " (log(rn/2) + log(2(||x — =*||* + d/m)) — log(2&™" (Ag + 2A1(m + L) 1)) .

Assume v € (0, (m + L)1) . Then, the optimal choice of v to minimize the bound on Wa(8,Q7, )
given by Theorem 16 belongs to [y—,yT]. Moreover if v = ~, then the bound on W3(6,Q7, ) is
equivalent to 4Aq(k?n)~tlog(kn/2) as n — +oo.

Similarly, we have the following result.

Corollary S3. Assume H1 and H3. Let (yx)r>1 be the decreasing sequence, defined by vy, = yo k™,
with o € (0,1). Let n > 1 and set

Yo £ 2(1 — a)s (2/n)'~ log(xn/(2(1 — a)))

Assume 74 € (0,(m+ L)™'). Then the bound on W§(5,Q7, ) given by Theorem 16 is smaller for
large n than 8(1 — a)Ag(k?n)~tlog(kn/(2(1 — a))).

Proof. Follows from (S1), (S9) and the choice of 4. O

2. Generalization of Theorem 16

In this section, we weaken the assumption 3 < 1/(m + L) of Theorem 16. We assume now:

G1. The sequence (i )k>1 is non-increasing, and there exists p > 0 and ny such that (1 + p)yn, <
2/(m+1L).

Under G1, we denote by
no = min{k € N | v, <2/(m+ L)} (S10)

We first give an extension of Theorem 14. Denote in the sequel ()1 = max(-,0). Recall that under
H3, z* is the unique minimizer of U, and « is defined in (14)

Theorem S4. Assume H1, H3 and G1. Then for alln,p € N*, n <p,
[ o= a1 k0@2(do) < Enp(o,)
R
where
def . = 2
By p(p10,7) 2 exp (—va D L%ﬁ) [ la = 1P ofao)
k=n k=n

n()—l

P n()—l
+2dk + Qd{ IT Gro—aZ? =t (1 + L%,f)} exp <— S Em+ > 'y,me> . (S11)
k=n k=n

k=n
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Proof. For any v > 0, we have for all z € R%:
/Rd ly = &*|* Ry (x,dy) = [l& = yVU (x) = 2*||* + 2+ .

Using that VU (2*) = 0, (12) and H1, we get from the previous inequality:

[ = Ry < (0= w o =71 4 (5 -
R

<n(y) |z — 2*|” + 27d,

where n(y) = (1—sy+~vL(y—2/(m+L))4). Denote for all k > 1, g, = n(vx). By a straightforward
induction, we have by definition of Q? for p,n € N, p <mn,

[ =1 @i (da) <an/ ool + )Y TT w812

i=n k=i+1

* 2
m—l—L) IVU(x) — VU (x*)||” + 2vd

with the convention that for n,p € N, n < p, Hp = 1. For the first term of the right hand side, we
simply use the bound, for all z € R, (1 + z) < €%, and we get by G1

P no—1
[T m <exp ( Z Kk + Z L2”Yk> ; (513)
k=n

where ng is defined in (S10). Consider now the second term in the right hand side of (512).

no—1
ZHnmSZ H (1= rm)vi+ Y an%
i=n k=1i+1 i=no k=i+1 i=n k=i+1
P D D no—1 no—1 D
_wz{ 1 <1—mk>—n<1—mk>}+{z I <1+L2~yz>%} [T 0w
1=ng \k=i+1 k=1 i=n k=i+1 k=ng

(S14)

Since (yx)k>1 is nonincreasing, we have

i 1:[ (14 L5) 7 = Z(%Lz)l{ ﬁ (1 +L*7) - 1:[ (1+L27§)}

i=n k=it+1 i=n k=i k=i+1
’n,()fl
< I (imoa L)' (1 4+ L7)
k=n

Furthermore for k < ng v > 2/(m + L). This implies with the bound (1 + z) < e® on R:

H (1= k) <exp ( Z fi%) exp <OZ Ii’}%) < exp ( Z Ii’}%) exp (02 kaL> .

k:no

Using the two previous inequalities in (S14), we get

P P no—1 no—1
Z H my < k4 { H (Yng—1L*) ™" (14 L?; }exp < Z KYk + Z wkmL> . (S15)

i=n k=i+1 k=n
Combining (S13) and (S15) in (S12) concluded the proof. O
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We now deal with bounds on WQ(MQQPY, 7) under G1. But before we preface our result by some
techincal lemmas.

Lemma S5. Assume H1 and HS. Let (5 € Po(RIxR?), (Y;,Y)i>0 such that (Yo, Y o) is distributed
according to (o and given by (21). Let (Fi)i>0 be the filtration associated with (By)i>o with Fo, the
o-field generated by (Yo,Yo). Then for alln >0, 1 >0 and e2 > 0,

— 2
E”Tn {HYFHJA _YFn+1H }
— 2
< {1 = ynt1 (5 = 261) + Y1 L1+ €2)ymg1 — 2/(m + L))+ } ||Yr, = Yo, ||
#9241 (1/2e1) + (1+ i) (02 + (L7011/2) [V, = 2*|* + L4921, /12)

Proof. Let n >0 and ¢; > 0, and set A, = Yp, — 7pn by definition we have:

2
2 2
EZ0 [ Ansal*] = Al + B

|/Fn+1 {VU(Y;) = VU(Yr,)} ds
Tn

Cpg1
= Bt (A0, VU(VR,) = VUTr, ) =2 [ BP0 (4, (VU(Y) - TU(YE, D ds]

I'n

Using the two inequalities | (a,b) | < e1]|al|® + (4€1)71||b]|? and (12), we get
= 2
EZ [|AnsalP] < {1 = (s = 260)}H|Anl® = 2941/ (m + L) [ VU (V) = VU(Tr, )|
2] 1 Fnta

| A o
+ E7 / {VU(Ys) = VU(Yr,)}ds E7 [||VU(YS) —VU(an)HQ] ds .

261 Ty

Using [la+b||> < (14 e2) [lal]* + (1 + ;1) [|b]|* and the Jensen’s inequality, we have
2
= 2
< (I +e)ymn [VUOL,) - VU,

j Y -
FEFrn | / {VU(}/S) — VU(YFH)} ds
r

n

+Yns1(1+ & )E

Fn+1 2
[ 1o - vu,)iPes)
This result and H1 imply,

7 [[Ansal?] < {1 = 1 = 260) + 31 LT+ 2)ms1 — 2/(m+ D)4 } A

Y

(4 & Y + 2a) ) /

EZt [|VU(Y,) - VUG, )P ds . (516)
I

By H1, the Markov property of (Y;)¢>0 and (66), we have
Fn+1
[ BT [IV0 ) - VU )IP] ds < 22 (a0 + APt 12 (9/2) ¥, - 7]7)
r

n

Plugging this bound in (S16) concludes the proof. O
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Lemma S6. Let (i)k>1 be a nonincreasing sequence of positive numbers. Let w, 3 > 0 be positive
constants satisfying w? < 43 and T > 0. Assume there exists N > 1, vy < 7 and yyw < 1. Then
foralln>0,5>2

(i)
n+1l n+1 ) n+1 n+1
Yo I a-mw+wbn—n)v <> [T @ —nw)
i=1 k=i+1 i=N k=i+1

P N-1 n+1 )
" | | (L+28) I I (1 — @)
k=1 k=N

(i) For all £ € {N,...,n},

n+1 n+1 n+1 /—1 ’Yj_l
j j 4
> 1 (1—vw)ﬁ§exp<—§ ww) (i

i=N k=i+1 i=N
Proof. By definition of N we have

n+1 n+1

ST = ww +wBow — 7))

i=1 k=i+1
n+1l n+l N—-1 N-1 n+

<> I a=w=)+ + {Z IT @++28)~ }H 1 — @) . (S17)
1=N k=1+1 i=1 k=i+1 k=N

Using that (y;)r>1 is nonincreasing, we have

2

N—-1 N—

[T +8)Af <

i=1 k=i+1 =1

132
Z

{Jhl 1+7i8) — Aﬁl (1+v§ﬂ)}

—1
H 147i8)

| A

Plugging this inequality in (S17) concludes the proof of (i). Let £ € {N,...,n+ 1}. Since (x)k>1
is nonincreasing and for every z € R, (1 + x) < e”, we get

n+1l n+1 ) /—1 n+1 ) n+1l n+1
ST - => [ O-w@)d+>. [ G—w=)
1=N k=i+1 1=N k=i+1 i=f k=i+1
-1 n+1 . - ntl n+l
<> exp (— > ww) YA I - ww)
i=N k=i+1 i={ k=i+1
n+1 {— ,ijl
gexp( zmk) Yot e
=
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Lemma S7. Let (yx)k>1 be a nonincreasing sequence of positive numbers, w, 3,7 > 0 be positive

real numbers, and N > 1 satisfying the assumptions of Lemma S6. Let P € N*, C; >0,i=0,...,P
be positive constants and (un)n>0 be a sequence of real numbers with ug > 0 satisfying for alln >0

Unt1 < (1= Ynt1@ + BYn1 (Vo1 — T)4 )tn + Z Cﬂfzﬁ

Then for alln > 1,

unﬁ{l:[(lﬂLﬂ%f)}ﬁ(l—%w uo+ZCZ H (1 - yw) ¥+

k=1 k=N 7=0 i=N k=i+1
‘Nf n
ch571’7{ [T @+28) H (1 — )
j=0 k=1 k=N

Proof. This is a consequence of a straightforward induction and Lemma S6-(i). O

Proposition S8. Assume H1, H3 and G 1. Let x* be the unique minimizer of U. Let (o €
Pa(RY x RY), (Y4, Y1)i>0 such that (Yo,Yo) is distributed according to (o and given by (21). Then
foralln >0 and t € [Ty, Tpya]:

E [Hn _?tﬁ < aE [HYO - Yoyﬂ +a® +a®

where
ny1—1 n
aM () d_"'f{ ] a+z2a +p)~y,§)} I a=rw/2) . (518)
k=1 k=n,

ni—1 n
+ () (L1 +p) " { [T a+~a+ p)L2>} IT @ =rw/2),

k=1 k:nl

where for v > 0,
= {2671+ (L+ p )y} (dL? + 0Ly /2 + dL*?/12)
§ = max;>, {e*QmFHE [HYO - x*ﬂ . e*QmFH)(d/m)} ,
and

_ gm+L ((t—T,)°L?
G € = (( 2 El,n<uo,v)+<t—rn)2d),

where Ey n(po,7) is given by (S11) and po is the initial distribution of Y.
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Proof. Lemma S5 with €3 = /4 and €3 = p, G1, Lemma S6, (65) imply for all n > 0
E[[[¥r, = V|’ < @D G)E [|Yo = Fo*] + a0 () . (S19)

Now let n > 0 and ¢ € [I'y,I'11]. By (21),

1o =¥l = |y, = Ve | -

2/t (VU(Y,)=VU(Yr,),Ys —Y,)ds. (S20)

n

Moreover for all s € [I'),, Ty41], by (12) we get
(VU(Y;) = VU(Yr,),Y: = Vs) = (VU(Y:) - VU(Y1,).Ys = Y1, + Y1, = Vs)
> (m+ L)~ ||VU(Y,) = VUFr)||" + (VU (Y,) - VU(¥r,). Y, Vo) . (S21)

Since |(a,b)| < (m+ L)~ ||la||* + (m + L) ||b||* /4, we have

(VU(Yy) —VU(Yr,),Yr, —Y,) >

—(m+ L) |VUY) = VUT )| = (m+ L) [V =V, || /4
Using this inequality in (S21), we get
(VU(Y,) = VU(Vr,),Ys = Y) = =(m+ L) |V, = Vr, |* /4,

and (S20) becomes

t
1Y~V < |[¥e, — Vo |2+ ((m + L)/2)/ |7, — Ve, || ds (522)
I

Therefore, by the previous inequality, it remains to bound the expectation of |Y s — YT, ||2. By (21)
and using VU (z*) = 0,

IV, = Ve = |-~ L)(VUFr,) - VU @) + VEB, ~ Br,)|

Then taking the expectation, using the Markov property of (B;);>o and H1, we have

E[[[Vs = Vr.|’] < (s = Tw)L%E || Tr, — & [*] +2(s = Tu)d.. (S23)

The proof follows from taking the expectation in (522), combining (S19)-(S23), and using Theo-

rem S4. O
Theorem S9. Assume H1, H3 and G 1. Then for all uo € Po(R?) andn > 1,

W3 (1oQYy, m) < @ ()W (no, ) + a2 (7) (S24)

where (ﬁ,(zl))nzo is given by (S18) and

n

)< Z% o(vi) [] - rwm/2)

i=ni k=i+1

ni—1 n
+ o) (L1 +p)) { [[Ta+xa+ p)LQ)} [T —rm/2), (s25)
k

k=1

:r

=ni
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where
v) = {26+ (1 + p )y} (dL? + dL*y/(2m) + dL*4?/12) .

Proof. Let (o be an optimal transference plan of jig and 7. Let (Y3, Y);>0 with (Y, Y ) distributed
according to (p and defined by (21). By definition of W5 and since for all ¢ > 0, « is invariant
for P, W2(uoQ", ) < E[||Yr, — Xr, ||*]. Then the proof follows from Proposition S8 since Yy is
distributed according to m and by (16), which shows that § < d/m. O

2.1. Explicit bound based on Theorem S9 for v, = v1k* with o € (0,1]

We give here a bound on the sequences (11511)(7))"21 and (11512)(7))"21 for (yx)k>1 defined by v >
0 and v, = 1k™* for @ € (0,1]. Recall that 9g is given by (S6). First note, since (yx)g>1 is
nonincreasing, for all n > 1, we have

1 n n
il SZBJ‘Z”Y H (1= kv/2)
j=0  i=mn, k=i+1
1 ) ni—1 n
+ Y B (L(1+p) { [T a+xza+ p)Lz)} IT (= rv/2), (s26)
j=0 k=1 k=ny
where

By = bdL? ,By = b(dL*/(2m) + v1dL*/12) ;b =2+ (1 4+ p )1 .
1. For « =1 and n; =1, by (S7) and (S8), we have
i (y) < (n+1)7n/?
1
WP (y) < (n+1)7 23 "B, {v{”(fl’ml/z—l—j(n +1)+ 1)+ (L2(1+ p))’lvi} :
j=0

For nq > 1, since (yx)k>0 is non increasing, using again (S7), (S8), and the bound for ¢ € R,
(14+1¢) <et

@) () < (n+1)7n /2 exp{mlwo (n1)/2+ L*(1+ ) (-1(m — 1) + 1)}

HD0) < (04 172 S By (1 W a1 51+ 1)~ e pa () + 1)
§=0

+(o /(L3 (1 + p)) exp {rmtpo(na) /2 + L1+ p)E @1 (m = 1) +1)}) .

Thus, for v1 > k/2, we get a bound in O(n~1).
2. For a € (0,1) and ny = 1, by (S7) and Lemma S6-(ii) applied with ¢ = [n/2], we have

a5 (7) < exp (= (k71/2)%a—1(n + 1))

P () S > B {Wf” (Y1-ag+2)([7/2]) + 1) exp {=(k71/2) $1-a(n + 1) — P1-a([n/2]))}

+2rr1 1 /2)7 0D o] exp {=(k71/2)%a—1(n + 1)}} '
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For ny > 1 and [n/2] > nq, since (7x)x>0 is non increasing, using again (S7), and Lemma S6-
(ii) applied with ¢ = [n/2], and the bound for t € R, (1 +t) < e?, we get

a1 () < exp {—rm@a-1(n+1) —91-a(n1))/2+ L*(1+ p)7} (@h1-20(n1 — 1) + 1)}
aP(y) <> B; {2ﬁ‘17{+1(n/2)‘“(j+1)
=0

+ 9 (W1—agr2) ([1/2]) = Y1_a(+2)(n1) + 1) exp {—(k11/2) @1-a(n + 1) — $1-a([n/2]))}
+(v]/(LA(1 + p)) exp {—rmWa1(n+1) —1-a(n1))/2+ L*(1 + p)1(@W1-24(n1 — 1) + 1)}}

3. Explicit bound on the MSE under strongly convex assumptions for v, = 1k~
with « € [0,1]

Without loss of generality, assume that || f[|;;, = 1. In the following, denote by Q(z) &z — 2*))* +

d/m and C a constant (which may take different values upon each appearance), which does not

depend on m, L,y1,a and ||z — x*||.

1. First for a = 0, recall by (S1), (29) and (30) we have for all p > 1,

up) (VW3 (80, m) + uP (7) < 2Q(2)(1 = m71/2)° + 267 (Aom1 + A7) |

where Ag and A; are given by (S2) and (S3) respectively. So by Proposition 18 and Lemma 39,
we have the following bound for the bias

k! exp(=rNv1/2)Q(x)
7nn

. 2 B
(B 0] - () < ( # A
Therefore plugging this inequality and the one given by Theorem 24 in (32) implies:

(S27)

MSE(N,n) SO(H_1A071+ K™% 4+ Kk~ exp( ﬁN71/2)Q(x)> '

nmn

So with fixed 77 this bound is of order ;. If we fix the number of iterations n, we can optimize
the choice of ~;. Set

Yeo(n) = (57 A¢) " (Cuseo/n)"/? | where Cuspo = £ Ag
and (S27) becomes if 1 + Y4,0(n),
MSE (N, n) < C(Cusg.on) /2 (k7 exp(—£NY4,0(n)/2)Qz) + Cuskyo) -
Setting No(n) = 2(k7x.0(n)) ! log(Q(z)), we end up with
MSE(No(n),n) < C(Cusg,o/n)"/> .

Note that Ny(n) is of order n'/2.
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2. For a € (0,1/2), recall by (S1), (29) and (30) we have for all p > 1,
P
ulH (VW3 (80, m) < 20(x) [J(1 = 57i/2) - (S28)
=1

So by Proposition 18, Lemma 39, (S7) and (S9), we have the following bound for the bias

N 2 K Aov1 klexp {—rmN'TT/(2(1 — a)) } Q)
(B (1) - =) f?C’<(1_.2a)na'+ 'l ) |

Plugging this inequality and the one given by Theorem 24 in (32) implies:

MSE; (N, n) < C < K Agm1 n K exp { = N7/ (2(1 — @)} Q(2) + /@2>  (s29)

(1 —2a)n> mnt-e

At fixed 7y, this bound is of order n~%, and is better than (S27) for (yx)r>1 constant. If we
fix the number of iterations n, we can optimize the choice of v; again. Set

Yea(n) = (K A0/(1 — 20)) " (Crnisk.a/n' ~2%) 2 | where Crysp.o = £ 2A0/(1 — 2a) ,
(S29) becomes with v1 + vs,o(n),
MSE; (N, n)
< O(Cusk,an) 2 (K exp {=6N"" % 0 (n)/(2(1 — a))} Qz) + CryisEoa) -
Setting No(n) = {2(1 — a)k ™ yx.0(n) log(Q(x)) }/1=) we end up with
MSE(Ny(n),n) < C(Crsg.a/n)Y?

It is worthwhile to note that the order of N,(n) in n is n(1_2a)/(2(1_0‘)), and CusEi,« goes to
infinity as @« — 1/2 .

3. If @« = 1/2, (S28) still holds. By Lemma 39, (S7) and (S9), we have the following bound for
the bias

K~ Aoy log(n)  Kklexp {—rky NY/2/4} Q(x)
+ e .

{&ﬁmm—ﬂﬁf§0< -

Plugging this inequality and the one given by Theorem 24 in (32) implies:

(S30)

Aoy log(n) kT lexp {—rnNV2/4} Q(z) + k2
MSE;(N,n) < C ( o T .

At fixed 1, the order of this bound is log(n)n~'/2, and is the best bound for the MSE. Fix
the number of iterations n, and we now optimize the choice of ;. Set

Yey1/2(n) = (57 A0) " (Crnisg,1/2/ log(n)) /2 | where Cyisg,12 = Ao |
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and (S30) becomes with 1 < 7, 1/2(n),
MSE (N, n)

log(n) 1/2 1 1 CwmsE,1/2
<O —=2— — kN2~ 44 Q —=m 2 )
< (HCMSW) i Lexp {=RN2, (/4] 00a) + SR

Setting Ny /o(n) = (4671, 1/2(n) log(Q(z)))?, we end up with

log(n)Cuse,1 /2 ) 12

n

We can see that we obtain a worse bound than for o = 0 and « € (0,1/2).
. For a € (1/2,1], (S28) still holds. By Lemma 39, (S7) and (S9), we have the following bound
for the bias

(Bl () - m()} <€ (K;A?l p oo el o) W) -

Plugging this inequality and the one given by Theorem 24 in (32) implies:

-~ - —km N1 /(2(1 - Q —2
MSE;(N,n) <C ('i 1’6071 45 exp {—km /(1_( @)} Qz) + K ) |
m n ¢

For fixed 71, the MSE is of order n'~®, and is worse than for o = 1/2. For a fixed number of
iteration n, optimizing v; would imply to choose 71 — 400 as n — 4o0. Therefore, in that
case, the best choice of v; is the largest possible value 1/(m + L).

. For a =1, (S28) still holds. By Lemma 39, (S7) and (S9), the bias is upper bounded by

K Agm1 m_lN_’”lmQ(x))

~N _—
{Eolm (N == ()} SC( log(n) 71 log(n)

Plugging this inequality and the one given by Theorem 24 in (32) implies:

-1 —1pT—K71/2 -2
MSEf(N,n)SC<K Aoy kTIN Qz) +k >

log(n) 71 log(n)

For fixed 71, the order of the MSE is (log(n))~!. For a fixed number of iterations, the conclu-
sions are the same than for o € (1/2,1).
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