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Abstract. In a recent series of papers [1–3], a statistical model that accounts for correlations between
topological and geometrical properties of a two-dimensional shuffled foam has been proposed and compared
with experimental and numerical data. Here, the various assumptions on which the model is based are
exposed and justified: the equiprobability hypothesis of the foam configurations is argued. The range of
correlations between bubbles is discussed, and the mean field approximation that is used in the model is
detailed. The two self-consistency equations associated with this mean field description can be interpreted
as the conservation laws of number of sides and bubble curvature, respectively. Finally, the use of a “Grand-
Canonical” description, in which the foam constitutes a reservoir of sides and curvature, is justified.
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1 Intro

Foams, granular materials, biological systems, or glasses
share the common feature of being out-of-equilibrium sys-
tems from the point of view of standard statistical me-
chanics: either these systems possess a large number of
metastable states in which they are trapped within a usual
range of temperature (e.g.: foam or granular materials at
rest, glassy systems); or a flux of energy is continuously
injected from non-thermal sources and is lost through in-
ternal friction, allowing them to explore their phase space
(e.g.: sheared or tapped granular systems, biological cells).
As these systems involve many individual objects (bub-
bles, grains, cells, or atoms), there is a strong motivation
to treat them with thermodynamic methods. The pioneer-
ing work of Edwards on granular matter [4,5] has shown
how the powerful arsenal of statistical physics can be ex-
tended to out-of-equilibrium systems. Because of the per-
fect space-filling property of a foam (i.e. without gaps nor
overlaps), and the high deformability of its constituents
(bubbles), its metastable states are described by a set of
well established rules [6,7]. For that reason, foams are very
good candidates of out-of-equilibrium model systems.

Recently, a new statistical description has been pro-
posed to describe the structural properties of a two-
dimensional (2D) dry foam [1]. The model succeeded to
reproduce, without any adjusting parameter, the correla-
tion between geometry (distribution of bubble size) and
topology (distribution of side number) for foams with
moderate size dispersities [2,3]. No semi-empirical laws
(such as Aboav-Weaire or Lewis laws [6,7]) are used in
this approach; instead, laws that correlate geometry and

topology properties for individual bubbles and for the en-
tire foam are deduced from the model. Interplay between
geometrical and topological features of a foam is crucial
in determining e.g. rheological properties or coarsening
rate. Although the primary goal of this approach is to
describe the statistical properties of foams which are uni-
formly shuffled, it may also describe disorders in foams at
rest, if the foam production process involves uniform shuf-
fling. Furthermore, because of the resemblance of many
epithelial tissues with densely packed soap bubbles [8],
this approach could be extended to biological tissues. Al-
though first comparisons with numerical and experimental
data show a remarkable agreement [2,3], this theoretical
model is based on successive assumptions which need to
be tested.

The aim of the present paper is to establish solid foun-
dations to this theoretical framework, by discussing and
testing the validity of the different underlying hypothe-
ses. In particular, the mean field approach used in the
model is detailed, and one shows that the associated self-
consistency equations can be interpreted as the conserva-
tion equations of two scalar quantities. The validity of the
hypotheses are tested with simulations of shuffled foams.
Simulations are well suited because they allow to have
precise measures on the pressure inside every bubble and
curvature of their sides, which cannot be easily done in
experiments.

The structure of the paper is as follows: Section 2 sum-
marizes the main results of the model and its success to
reproduce experimental and numerical data. Section 3 re-
views the geometrical, topological and mechanical laws
that govern the structure of a foam at rest. Because of
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these space-filling constraints, bubble shapes are corre-
lated. In Section 4, mechanical and thermal shufflings are
defined and compared, and the postulate of equiprobabil-
ity of the visited states is discussed. Section 5 presents
a mean field theory in which correlations between neigh-
bouring bubbles are disregarded, but correlation between
the geometry (size) of a bubble and its topology (number
of sides) is taken into account. Within the frame of this ap-
proximation, two invariants are identified in a 2D shuffled
foam, i.e. quantities that are exchanged by the bubbles but
whose sum is preserved through the elementary topologi-
cal process of neighbour swapping (T1 event). The mean
field approximation is then tested with numerical simula-
tions. Section 6 discusses the validity of the assumptions
made to use a grand-canonical description: the short cor-
relation length between the bubbles, and the extensivity
of the state variables. Finally, Section 7 discusses possible
extensions of the model to three-dimensional foams and
other cellular systems.

2 Main results of the model

In this section, one briefly recalls the main predictions
of the model, and its success to reproduce, without any
adjusting parameter, the correlations between topological
and geometrical properties of a foam. The model concerns
soft (or liquid), two-dimensional foams in the low density
limit, so bubbles have polygonal shapes; their structures
are governed by space-filling constraints that are detailed
in Sect. 3. Here density is far below the jamming transi-
tion point [9] and is not a control parameter of the system.
One focuses on time scales much shorter than those typ-
ical of bubble coarsening and coalescence, so the bubbles
preserve their integrity and size. Strictly, the area Ai and
pressure Πi of any bubble i depend on the specific ar-
rangement of all the bubbles, and so their values fluctuate
in a shuffled foam; only the amount of gas that it con-
tains is conserved. However, as discussed in Appendix A,
the area and pressure fluctuations with foam configura-
tions are usually very small [7] and so Ai can be equated
with its average value: Ai ' Ai, where the upper bar de-
notes a time average or, assuming ergodicity, an averaging
over the foam configurations (ensemble average). Hence,
each bubble can be unambiguously identified with its area
rather than the amount of gas it contains. To simplify the
expressions hereafter, it is convenient to introduce the ef-
fective radius Ri =

√
Ai/π, i.e. the radius of the circle

which has the same surface area.
There are experimental and numerical evidence [10]

that the geometrical (size) and topological (number of
sides) features of a bubble are correlated: in a 2D monodis-
perse foam (one bubble size), most of the bubbles are 6-
sided. Conversely, in a polydisperse foam, the larger bub-
bles have statistically more sides than the smaller ones.
Correlations between geometrical and topological quanti-
ties of a foam are characterized by the conditional prob-
ability P (n|R) for a bubble to have n sides, given its size
R (conditional side number distribution). The model pre-

dicts [1]:

P (n|R) = 1

ξ (R)
exp

[
−β
√
π

3εR
n(n− 6) + µn

]
, (1)

where ξ(R) =
∑
n≥nmin

exp
[
−β
√
π

3εR n(n− 6) + µn
]
is the

partition function of the bubble. nmin is the minimal num-
ber of sides of a bubble, often taken as equal to 3 in the
literature, but in principle nmin = 2 is not forbidden by the
space-filling constraints. There is no free parameter in the
model: ε ' 3.72, while β and µ are implicitly related to the
(known) size distribution P (R) through: ∂ lnΞ/∂β = 0
and ∂ lnΞ/∂µ = 6N , where Ξ is the partition function of
the entire foam, defined through

lnΞ = N
∫ ∞

0

P (R) ln ξ(R)dR. (2)

No assumption is made on the shape of the size distribu-
tion P (R); it can be unimodal or not. For a given P (R),
the equations of the model can be solved numerically. The
model predicts an order-disorder transition at a small, but
finite, size dispersity [3]. Below this transition point (crys-
tallisation threshold), all bubbles are 6-sided cells: the
foam is topologically ordered. For a bidisperse foam, the
transition occurs at the large-to-small size ratio 7/5 = 1.4.
Above this point, analytical approximations can be de-
rived: the truncated and discrete normal distribution (1)
is evaluated by treating n as a continuous variable [2,3].
This approximation yields analytic expressions for β et µ:

β−1 =
6
√
π

ε

(
〈R−1〉 − 〈R〉−1

)
, (3)

µ−1 = 3
(
〈R〉〈R−1〉 − 1

)
, (4)

Here the brackets denote an averaging over the bubbles
that compose the foam (space average): for any quantity xi
attached to every bubble i, 〈x〉 =∑Ni=1 xi/N . Introducing
p(R,n), the proportion of bubbles with size R and number
of sides n, this average can also be expressed as 〈x〉 =∑
{R,n} p(R,n)x(R,n). It should not be confused with the

time (or ensemble) average defined above.
Eqs. (3)-(4) allow to express the average side number

of a bubble with size R:

n(R) ' 3

(
1 +

R

〈R〉

)
. (5)

The topological disorder σn/〈n〉 =
√
〈n2〉 − 〈n〉2/〈n〉 can

also be expressed as a function of the (known) moments
of the size distribution:

(
σn
〈n〉

)2

=
1

4

(
〈R〉〈R−1〉+ 〈R2〉〈R〉−2 − 2

)
. (6)

In principle, the analytic expressions (3),(4)(5),(6) are
valid only for sufficiently high polydispersity of size. In
practice, these are very good approximations down to the
crystallisation threshold [3].
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Predictions on individual [Eq. (5)] and global [Eq.
(6)] topology-geometry correlations agree well with ex-
perimental and numerical data of foams that are shuf-
fled, either thermally or mechanically [2,3]. Nevertheless,
because of the very different nature of these two shuf-
fling mechanisms, one does not expect to observe such
agreement for higher shear rate or higher temperature,
nor for all statistical properties of the foam. In particular,
one expects the two shuffling mechanisms present different
barrier-crossing statistics [11,12].

3 Space-filling constraints in a foam at rest

A 2D foam is a partition of the plane without any gaps or
overlaps, and its structure must obey a set of well estab-
lished physical, geometrical, and topological constraints
[6,7]. The physical constraints follow from the mechanical
equilibrium throughout the system: the balance of film
tensions at every vertex yields Plateau’s laws: the edges,
or Plateau borders, meet in threes at a vertex, at an an-
gle of 120◦ with each other. The balance of normal forces
across each film yields Young-Laplace’s law: every edge
is an arc of circle, whose algebraic curvature κij is pro-
portional to the pressure difference between the adjacent
bubbles i and j:

κij = −κji =
Πj −Πi

γ
, (7)

where γ is the 2D film tension, and Πi and Πj are the 2D
pressures in bubble i and j, respectively (by convention,
κij ≥ 0 when the center of curvature is outside the cell
i, i.e.: when Πj ≥ Πi). It must be emphasized that at
microscopic scale the interface is not smooth, because of
thermal fluctuations. In fact, Young-Laplace’s law relates
the mean curvature to the mean bubble pressures.

There is also a constraint on every bubble because of
the fixed amount of gas that it contains. This constraint
is often replaced, for simplicity (see Appendix A), by a
constraint on every bubble area (incompressible gas).

Euler’s rule is a topological constraint which relates
the number of bubbles N , with those of Plateau borders
NPb, and vertices Nv in a foam that covers all the 2D
space:

N −NPb +Nv = χ, (8)

where χ is the Euler-Poincaré characteristic (e.g. χ = 0 for
a toroidal space, χ = 2 for a spherical one). The formula
can also be applied to a foam that partially covers the 2D
space (free cluster), by including the surrounding air as
an extra bubble.

Finally, the Gauss-Bonnet theorem relates geometry
and topology of every bubble i:

∑

j∈N(i)

lijκij =
π

3
(ni − 6), (9)

where N(i) represents the set of the ni bubbles that neigh-
bor bubble i, and lij is the length of the edge common to
bubbles i and j.

The constraints listed above substitute for the steric
repulsion (excluded volume) that lies in hard-core granu-
lar materials: as a consequence, there is no limit on the
number of neighbours that a bubble can have (while in
a monodisperse disk packing, no more than 6 neighbours
can fit around a disk because of steric exclusion). Curva-
ture and length of the sides can adapt to satisfy Young-
Laplace’s and Plateau’s laws; this induces an increase of
pressure difference between the central bubble and its
neighbours. Geometry and topology of the bubbles are
then correlated through these space-filling constraints.

4 Shuffled foams

4.1 Mechanical and thermal shuffling of foams

From the point of view of standard thermodynamics, a
liquid foam at rest is an out-of-equilibrium system: it has
many metastable states, but the energy required to jump
from one metastable state to another is much higher than
the thermal energy kBT within a usual range of temper-
ature. Thus, in absence of coarsening and coalescence, it
takes an indefinitely long time to escape from an energetic
valley. Actually, the temperature required to trigger a T1
event is far above the vaporizing temperature of the liquid
phase, which makes thermal shuffling inaccessible exper-
imentally. Numerically, on the other hand, this mode of
shuffling is easy to handle. This can be done with Monte
Carlo simulations (see Appendix B). Such a system is at
thermodynamic equilibrium, and the probability of being
in a given configuration follows the Boltzmann distribu-
tion.

Mechanical shuffling also confers dynamics to the foam
and can be achieved both numerically and experimentally.
However, such a system is still out of thermodynamic
equilibrium: energy is injected (in the form of mechani-
cal work) to the system by a non-thermal source, which
is then dissipated during the rearrangements associated
with T1 events [13].

4.2 Gentle shuffling of foams

Foams can explore their phase space by various shuffling
mechanisms. One restricts this study to gentle shufflings,
defined as follows.

For thermally shuffled foams, the range of fluctuation
allowance used in simulations is Θ ∼ γ〈R〉: enough to
trigger T1s and shuffle the foam but too small to initiate
bubble fragmentation or nucleation, or to eject bubbles
from a cluster.

For mechanically shuffled foams, one assumes that
shuffling is very slow when compared to the typical re-
laxation time associated with a T1 event: the transient
states can then be neglected in the ensemble of accessible
states: foam passes instantaneously from one metastable
state to another. Moreover, one considers only shuffling
mechanisms where the bubble areas, and hence the total
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foam area, are preserved. Because of the high deformabil-
ity of its constituents, such a restriction is always possi-
ble for a foam, unlike for jammed hard granular systems.
Continuity of the trajectories in the phase space is then
ensured [14]. One also supposes that T1 events occur ho-
mogeneously within the foam. This assumption certainly
restrains the mode of shuffling: for instance, simple shear
is not a good shuffling process in this perspective, as the
T1s are localized near the box boundaries (shear banding
phenomenon) [15,16]. Conversely, a random, non periodic,
shuffling should satisfy this hypothesis. It seems that such
an experiment has never been done yet.

Thus, for both shuffling mechanisms, the structure of
the foam evolves though T1 events exclusively, and bubble
preserve their integrity.

4.3 Equiprobability hypothesis

By analogy with the fundamental postulate of statisti-
cal mechanics [17], one assumes that, under a gentle and
homogeneous shuffling, all the accessible microstates of a
large foam (N � 1) are visited with equal probability.

One may wonder whether or not the equiprobability
hypothesis must be restricted to the states with same en-
ergy, as it is postulated for thermal systems at equilibrium.
Actually, the answer depends on the origin of the shuffling.

For foams which are mechanically shuffled, the answer
to this question is still a large field of investigation: as
previously mentioned, such system is out-of-equilibrium
from the point of view of conventional thermodynamics
[4,5,11,12].

For thermally shuffled foams, equiprobability is re-
stricted to states with same energy. However, in the gentle
shuffling regime considered here, the temperature range
(∼ γ〈R〉) is just enough to trigger T1s but too small
to initiate bubble fragmentation, disappearance, or nu-
cleation. Therefore, variations of energy between the vis-
ited states are small. Fig. 1 shows the fluctuations ob-
served for different quantities attached to a single bubble
i within a thermally shuffled foam, using Cellular Potts
Model simulations (see Appendix B). As expected (see Ap-
pendix A), variations of the bubble area are much smaller
than those of the pressure difference |Πi − Π〈j〉|, where
Π〈j〉 =

∑
j∈N(i)Πj/ni is the instantaneous average pres-

sure in the bubbles that belong to N(i), the neighbour-
hood of bubble i. Energy fluctuations are also very small.
Almost no energy is exchanged between bubbles, which
justifies that the Boltzmann weighting can be neglected
in a gentle thermal shuffling. This is also consistent with
previous studies that show that the difference of energy
between metastable states are less than 2% for a 2D foam
[18,19]. In the mean-field approximation detailed in Sect.
5, bubbles have constant perimeters: the energy of every
bubble, and hence of the entire foam, are fixed.

For these reasons, one can safely disregard the energy
weighting of the probability distribution, and not distin-
guish thermally from mechanically shuffled foams. Indeed,
in spite of the profound difference of these two modes of
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Fig. 1. Typical fluctuations for different quantities attached
to bubble i: area Ai (purple curve), energy Ei (green curve),
and pressure difference |Πi −Π〈j〉| (blue curve), where Π〈j〉 =∑

j∈N(i)Πj/ni. Curves are shown on two different graphs be-
cause of the difference in amplitude of the fluctuations. Bubble
perimeter is not shown, as it is barely distinguishable from the
energy curve. Topological charge qt(ni) = 6 − ni (red curve)
is also drawn to indicate the T1 events in which bubble i is
involved.

shuffling, experimental and numerical data collapse ex-
tremely well [2,3] in the gentle shuffling regime. To sum-
marize, the energy plays a role in the selection of the ac-
cessible states (since they correspond to the local minima
of energy), but not in the discrimination of these different
accessible states, in the gentle shuffling regime.

It is not granted that the ensemble of the microstates
visited by a succession of T1 processes, V, is equal to the
ensemble of states which are compatible with the space-
filling constraints listed in Sect. 3, E. Actually, it has been
established [20,21] that V is a proper subset of E (V ( E)
in the case of a biperiodic foam that initially contains
hexagonal bubbles only: configurations with a unique pair
of 5-7 defects as depicted on Fig. 2 cannot be visited by
a succession of T1 moves in such a foam. This is because
the dynamics must obey to a local conservation law on
the number of sides of the four bubbles involved in a T1
event. Nevertheless, one expects the difference between
V and E to become marginal as N increases. Moreover,
for a real, bounded foam, the total number of sides is
allowed to fluctuate (see Sect. 5.3), and defects can appear
or disappear easily during T1s at the outer boundary. For
that reason, it can be reasonably conjectured that V ' E
for a large foam. The number of accessible states is then
assumed to be Ω = Card(E).

4.4 Degrees of freedom of a gently shuffled foam

To perform a statistical description of the foam structural
properties, one needs to enumerate the microstates which
correspond to the same macroscopic state. A detailed de-
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Fig. 2. Illustration of a metastable state which satisfies all
the space-filling constraints, but which is not visited by a suc-
cession of T1 events from an unbounded hexagonal foam: in
this configuration, the foam has only two non-hexagonal bub-
bles: one 5−sided bubble (in green) and one 7−sided bubble
(in purple).

scription giving positions and momenta at the atomic scale
is too cumbersome to handle, and one must use instead a
coarse-grained description in which the state of the foam
refers to its structure (topology and geometry) at the bub-
ble scale. For instance, the complete knowledge of the con-
tour of every bubble fully describes a metastable state [22].
Actually, contours are not independent in a foam at rest,
because of the space-filling constraints. The minimal num-
ber of degrees of freedom that are required to describe a
foam metastable state is still an open question [19,23–26].
Probably the most comprehensive study on this domain
has been carried out by C. Moukarzel which has identified
a set of 4N independent variables to fully describe any
metastable configuration of a foam that tiles the plane
[26]. However, these variables have no direct physical in-
terpretation. Here instead, one assumes that a microstate
L of the foam is correctly described by the number of
sides ni, geometric center location ri and pressure Πi of
every bubble: L ≡ {ni, ri, Πi; i = 1, 2, . . . ,N}. Although
pressure fluctuations are small, the fluctuation of pressure
difference between adjacent bubbles can be large (see Ap-
pendix A). That is why they must be taken into account
in the description of a microstate.

With this set of variables, the microstate of the foam L
is given by the microstate `i = (ri, ni, Πi) of every bubble
i, which is convenient to apply a mean field description.
However, this choice is not crucial for the rest of the pa-
per: the statistical description presented here only requires
that a microstate of the foam is adequately described by
the variables {ni}, plus possible other degrees of freedom
which must be independent of the {ni}.

When a bubble i is directly involved in a T1, its asso-
ciated variables (ri, ni, Πi) vary together, inducing corre-

lations between them. However, bubble positions {rk} are
continuous variables and have some uncertainty attached
to them [27]. Thus, after few T1 events, ri and (ni, Πi)
can be fairly treated as independent variables: at a given
value of (ni, Πi) correspond many different values of ri,
and vice-versa. Note that the same kind of assumption is
done in the statistical mechanics of a gas (Stosszahlansatz
or molecular chaos hypothesis [17]) to justify the inde-
pendence of positions and momenta of the particles. In
addition, thanks to the high deformability of the bubbles,
(ni, Πi) are almost independent of the relative positions
of the N − 1 other bubbles {rj − ri, j 6= i}. Therefore,
the variables {ri} and {ni, Πi} can be treated as two sets
of variables that are independent from each other.

It is shown in the next Section that, within a mean
field description, variables {ri} and {ni} are sufficient to
properly describe a foam microstate.

5 Mean Field Approximation

Because of the space-filling constraints (see Sect. 3), bub-
bles are correlated objects : a change in the geometry or
topology of a bubble affects the geometry and topology of
the other bubbles.

Therefore, the number of accessible states cannot be
simply obtained by enumerating the possible distributions
of the N sides over the N bubbles: many of these dis-
tributions are not compatible with the space-filling con-
straints. A perfect description taking all these constraints
into account is illusive. Instead, a mean field approach
is proposed, in which the fluctuations of the neighbour-
hood of a bubble with given size R and given number of
sides n are neglected. To legitimate this approximation,
one shows below that in most cases these correlations are
in fact short-ranged.

5.1 Screening of bubble correlations

One discusses how the bubble microstates `i ≡ (ni, ri, Πi)
are correlated to each other. One should first study how
they are altered by a unique T1 event in the foam: clearly,
only the four bubbles involved in the T1 have their ni that
vary. The pressure field is a priori modified on a longer
range: previous studies [19,28] have shown that the ex-
tra pressure due to a topological charge qt(n) (a bubble
with n 6= 6 sides) within a regular foam of hexagonal bub-
bles decreases logarithmically (as for the electric potential
generated by a point charge in a 2D dielectric medium).
However, a large foam must contain in same proportion
positive (qt = 6−n > 0) and negative (qt < 0) topological
charges. For instance, a T1 event in a hexagonal foam pro-
duces two positive and two negative topological charges
simultaneously. Their antagonist effects on the pressure
field screen their correlations on a typical lengthscale of
one bubble size. This “screening” effect is further enhanced
in a disordered foam [28].

Displacements are also very localized: Figure 3 shows
the superposition of the pictures of a dry foam before and
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(a) (b)

Fig. 3. Superposition of the metastable states of a foam before
and after a T1 event; (a) experimental foam, excerpt from [29];
(b) numerical foam (Surface Evolver), excerpt from [28].

after a T1 event, either experimentally or numerically. Es-
sentially the four bubbles directly involved in the T1 event
have their positions and geometries modified; the rest of
the foam structure is unperturbed. Thus, as long as the
bubble i is not involved in a T1 event, it remains almost in
the same microstate `i: its number of sides ni is fixed, and
the change of its position ri and pressure Πi are impercep-
tible. Precisely, the fluctuations of position δri due to T1s
elsewhere in the rest of the foam are small compared to the
bubble size Ri. Therefore, as long as T1 events remain di-
luted (no “avalanche” effects), correlations between bubble
microstates `i are short-ranged: the variables (ni, ri, Πi)
of a bubble are primarily correlated to those of its first
neighbours. It can be noticed that correlations of bubble
displacements are also short-ranged. This situation is very
different from what is observed in dense packings of hard-
core particles: because of steric exclusion, the positions
of the particles are not independent, yielding macroscopic
correlation length of the displacement. Direct measures of
bubble displacements in partially wet foams (liquid frac-
tion ' 10%) confirm the short correlation length of bubble
displacements, typically of a few bubble radii [30,31], and
hence much lower than what is observed in dense granular
packings of hardcore particles [31].

5.2 Isotropic (regular) bubble model

The proposed Mean Field Approximation (MFA) consists
in neglecting the fluctuations of the neighbourhood of each
bubble with given size R and number of sides n. In other
terms, the geometry of such a bubble is equated with the
one obtained from averaging over all the foam configura-
tions for which the number of sides of this bubble is n.
Since all the constraints listed in Sect. 3 are satisfied for
every configuration L of the foam, one looks for an aver-
age bubble geometry that satisfies these constraints too.
Assuming that the foam is homogeneous and isotropic,
the bubble is surrounded by a uniform foam (identical
bubbles): all sides are equivalent and the geometry must
correspond to the geometry of a regular n-sided cell, for
which sides are identical in shape and length (see Fig. 4).

(a)

120°

(b)

Fig. 4. (a): Real two-dimensional foam in one of its metastable
states. (b): Mean-field approximation: each bubble i is a regular
cell surrounded by a uniform and isotropic foam, resulting form
the averaging of the positions and side numbers of the N − 1
other bubbles.

The geometry of such regular cell is entirely deter-
mined by its size and number of sides [19,32]. In par-
ticular, the curvature of each side is

√
π(n− 6)/ (3ε(n)R)

(by convention, the curvature is chosen positive when its
center is outside the bubble).

ε(n) is the elongation of the cell (ratio of perimeter to
square-root of area).

it is a very slowly decreasing function, lying between
ε(2) ' 3.78 and ε(∞) ' 3.71. In fact, 2-sided cells are sel-
dom observed in gently shuffled foams, and ε(3) already
drops down to ' 3.74. Exact expression of ε(n) is given
in refs [1,19,32]. Hereafter, this weak dependence is ne-
glected, and one notes ε = ε(6) ' 3.72. It can be noticed
that this approximation implies that the perimeter of a
bubble does not depend on its number of sides; hence, the
energy of every bubble, and thus of the entire foam, is
fixed. The restriction of the equiprobability hypothesis to
the configurations of same energy discussed in Sect. 4.3 is
superfluous within this MFA.

The regular bubble (rb) model presented here assumes
that the difference of pressure between a bubble i and its
neighbourhood depends primarily on the size and number
of sides of that bubble, and not on the size polydispersity
of the foam. This may fail for very large size-dispersity
values.

It will be useful to introduce also the bubble curvature
of a n−sided bubble, defined as the sum of the algebraic
curvatures of its sides. For the regular bubble, its expres-
sion is:

κrb(R,n) =

√
π

3

n (n− 6)

εR
. (10)

The side curvature of such a bubble is just κrb(R,n)/n.

5.3 Self-consistency equations

By construction, a regular bubble satisfies most of the
constraints listed in Sect. 3. Only two sorts of constraints
are not automatically satisfied in an idealized foam where
all the bubbles have regular shapes: a global constraint
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caused by the Euler’s formula [Eq. (8)], and local con-
straints caused by the Young-Laplace’s law [Eq. (7)] at
every Plateau border. In the following, one shows that
the MFA consists rigorously in replacing these local con-
straints by a second global constraint. Consider first the
rather academic case of a foam with no boundary, i.e.
that covers entirely the 2D space. Since all the vertices of
such a foam are 3-connected, Eq. (8) yields the first global
constraint:

N∑

i=1

ni = 6(N − χ). (11)

To derive the second global constraint, it can be first
noticed that since a bubble with ni sides belongs to the
neighbourhood of ni different bubbles in an unbounded
foam, pressures in adjacent bubbles must obey the follow-
ing identity:

N∑

i=1

niΠi =

N∑

i=1

∑

j∈N(i)

Πj , (12)

In fact, this identity over bubble pressures also holds for
any other quantity xi.

Equations (11) and (12) are satisfied for every configu-
ration L of the foam. Therefore they must also be true on
average. Let pL be the probability for the foam to be in
configuration L, pi(n) =

∑
{L→ni=n} pL, the probability

that bubble i has n sides, and

∆̂Π(Ri, ni) =
∑

{L→ni=n}

pL(Πi −Πj)/pi(n), (13)

the pressure difference between bubble i and its neigh-
bours, averaged over all configurations for which ni = n
(this partial averaging is denoted by the symbol )̂. Av-
eraging of Eqs (11) and (12) over all foam configurations
{L} leads to:

N∑

i=1

∑

n≥nmin

pi(n)n = N, (14)

N∑

i=1

∑

n≥nmin

pi(n)n∆̂Π(Ri, n) = 0, (15)

where N = 6(N − χ) is the sum of side numbers. On the
other hand, the MFA presented above consists in neglect-
ing the fluctuations of the neighbourhood for every bubble
i of given size Ri and number of sides ni:

∑

j∈N(i)

(Πi −Πj) ' ni∆̂Π(Ri, ni). (16)

Neglecting these fluctuations in Eq. (12) yields:

N∑

i=1

ni∆̂Π(Ri, ni) = 0 (17)

for every foam configuration. Introducing P (n|R = Ri),
the proportion of bubbles with size Ri that have n sides,
this equation rewrites:

N∑

i=1

∑

n≥nmin

P (n|R = Ri)n∆̂Π(Ri, n) = 0. (18)

As explained in Sect. 5.1, correlation lengths are short
(compared with the system size) for a foam far from the
crystallization transition. By design, correlation length is
zero in the MFA. Averaging over all the configurations of
bubble i (time or ensemble average) can then be equated
with averaging over all the bubbles that have same size
than bubble i within the foam (spatial average), i.e.:
pi(n) = P (n|R = Ri). Then, Eqs (15) and (18) are iden-
tical.

This result shows that the MFA consists in replacing
the local constraints [Eq. (7)] by a unique global con-
straint. This reduction of the number of constraints is
accompanied by a reduction of the number of degrees of
freedom necessary to describe a foam microstate L, as
the regular bubble model relates pressures {Πi} and side
numbers {ni}.

The mean bubble curvature is defined as

κ̂(Ri, ni) = −ni∆̂Π(Ri, ni)/γ. (19)

Using the geometry of a regular bubble [Eq. (10)],
κ̂(Ri, ni) ≡ κrb(Ri, ni), and Eq. (15) becomes:

N∑

i=1

∑

n≥nmin

pi(n)κrb(Ri, n) = 0. (20)

For a foam, γ is a constant that has been dropped out.
However, for the extension of the model to other cellular
systems, like epithelial tissues, interfacial tension can have
different values [8], and the regular bubble model must be
adapted accordingly.

Equalities (14) and (20) hold for foams with no bound-
aries.

They can be easily extended to the case of a free bubble
cluster (i.e. a foam that does not cover all the 2D space), or
a set of individual bubbles within a larger foam. Assuming
again pi(n) = P (n|R = Ri), one as:

N∑

i=1

∑

n≥nmin

P (n|R = Ri)n = N, (21)

N∑

i=1

∑

n≥nmin

P (n|R = Ri)κrb(Ri, n) = K, (22)

where N and K are the total number of sides and total
bubble curvature of the N bubbles that constitute the
system, respectively. Eqs (21) and (22) constitute self-
consistency equations of the MFA. A foam with no bound-
ary can be seen as the special case where N = 6(N − χ)
and K = 0. Otherwise, N and K are fluctuating variables;
N and K represent their respective values averaged over
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all the microstates of the foam. Clearly, N and K are in-
dependent variables: there are many ways of distributing
N sides to the N bubbles, leading to different values of K
(and vice-versa when N � 1).

For a free cluster, adjacency of bubbles imposes that
sides cancel in pairs, except for those at the boundary of
the cluster. The curvature K is then reduced to the sum
of the curvatures of the sides that belong to the outer
boundary B:

K =
∑

j∈B
κj0 =

∑

j∈B

Π0 −Πj

γ
, (23)

where Π0 is the surrounding pressure. Values of K and
N (and therefore of K and N) are restricted within a
certain range: K < 0 since the pressure in any bubble
of the cluster is higher than the external pressure [25].
Combining Euler’s rule [Eq. (8)] and Plateau’s law gives
NPb = 3(N +1−χ) for a cluster. Since two adjacent bub-
bles share the same Plateau border, each Plateau border
in the bulk contributes to two bubble sides, while each
Plateau border at the outer boundary contributes to only
one bubble side. Thus, N < 6(N + 1− χ).

Self-consistency equations (21) and (22) are also valid
for a foam that fills a container; in that case N fluctuates,
while K = K = 0.

Fluctuations of N and K around their respective aver-
age values are characterized by δN/N and δK/K, where

δX =

√
X2 −X2

is the standard deviation of the vari-
able X, calculated over all foam configurations (δX must
not be confused with the standard deviation σX calcu-
lated on bubble population). It is shown in Appendix A
that these fluctuations become negligible as the number of
bubbles N increases. However, δN/N and δK/K scale as
N−α with exponents α > 0 that may differ from the value
1/2 characteristic of additive variables [17]: indeed, α de-
pends on the boundary conditions considered (free clus-
ter, unbounded foam, or set of separate bubbles). Since
fluctuations vanish in the limit N → ∞, the postulate
of equiprobability presented in Sect. 4.3 can be rephrased:
all the accessible states with same values of total curvature
(= K) and number of sides (= N) are equally probable.

5.4 Interpretation: invariants and conservation laws

Self-consistency equations (21) and (22) can be inter-
preted as the conservation laws of the numbers of sides
ni (or of the topological charge qt(ni)) and the cell curva-
tures κ(Ri, ni), respectively. Since only the four bubbles
directly involved in a T1 event have their ni and κi which
vary, these quantities are conserved locally. A tight paral-
lel can then be drawn between the dynamics of a shuffled
foam and of an ideal gas, as illustrated in Fig. 5: T1 events
in a shuffled foam play a role equivalent to the collisions
between molecules in a gas. As for the momentum and en-
ergy of point particles, the total number of sides and bub-
ble curvatures of the four bubbles involved in a T1 event
are preserved, i.e. they are the invariants associated with

the dynamics of the foam. However, it must be empha-
sized that the local conservation of bubble curvature is a
consequence of the MFA, in which κi depends primarily
on ni and Ai, and not on the detail of its neighbourhood.
For a real foam, the space-filling constraints listed in Sect.
3 generally imply a slight change of geometry of the sur-
rounding bubbles as well. For instance, a T1 swap event in
an initially regular hexagonal foam must induce a change
of curvatures of sides in the neighbouring bubbles in order
to satisfy the 120◦ angle condition).

Fig. 5. analogy between a collision in an ideal gas and a T1
event in a 2D shuffled foam, playing the role of elementary
“thermalization” process.

5.5 Validity of Mean field approximation

Mean field description requires that shuffling induces ho-
mogenization of the foam (no segregation of bubbles with
same size), such that the number of sides of a bubble is
decorrelated from its position within the foam. Experi-
ments [36] and simulations [37] support this hypothesis.

Mean field theories are known to work better when the
number of neighbours increases, as their fluctuations av-
erage out. Therefore, one expects the model to give better
results with bubbles having many sides (i.e. with larger
bubbles, statistically). More generally, the mean field ap-
proximation consists in neglecting the fluctuations of bub-
ble curvature. Thus, the approximation is expected to fail
near the crystallization transition predicted by the model
[3]. If this transition does exist, one expects to see an
avalanche of T1 events close to it. Although this order-
disorder transition is well identified in hard granular ma-
terials [38–41], it seems that it has never been studied
numerically or experimentally in foams.

In summary, the mean field theory consists in i) ne-
glecting the fluctuations of neighbourhood:

∑
j∈N(i)(Πi−

Πj) depends essentially on ni and Ai, and barely on the
specific foam configuration; and ii) assimilating the mean
bubble geometry with the geometry of a regular bubble.
These assumptions are tested with Potts simulations (see
Appendix B): Fig. 6 shows the values of Rκ̂(R,n) in a
tridisperse foam for the three bubble sizes and different
values of n. Tridispersity is a good compromise to have
several bubble sizes while keeping a large number of bub-
bles of same size. For a given n, the values correspond-
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ing to the different bubble sizes collapse very well, what
confirms that this quantity depends on n but not on R.
Moreover, its variation with n is in very good agreement
with the regular bubble model [Eq. (10)]. The error bars
and shaded area represent the amplitude of the fluctua-
tions (standard deviation) of Rκ(R,n) around its mean
value Rκ̂(R,n). In the inset is plotted the dimensionless
side curvature Rκ̂/n for the same data: they are aligned
on a straight line passing through 0 for n = 6, in agree-
ment with the regular bubble model [Eq. (10)]. It can also
be noticed that the relative amplitude of the fluctuations
decreases as n increases, as expected.
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Fig. 6. Dimensionless mean bubble curvature Rκ̂ vs.
n in a tridisperse foam. Orange symbols: small bubbles
(area= 200 pixels2); green symbols: medium bubbles (area=
400pixels2); blue symbols: large bubbles (area= 600 pixels2).
Proportion of small, medium and large bubbles are 0.319, 0.335
and 0.346, respectively. Red curve: regular bubble model [Eq.
(10)]. Error bars and shaded area indicate the fluctuations
(standard deviation) of Rκ(R,n). Inset: dimensionless mean
side curvature Rκ̂(R,n)/n for the same data.

Figure 7 shows the same quantities compiled for foams
with various size dispersities (bidisperse, tridisperse, and
normal distributions of bubble areas). Once again, it shows
a very good agreement with the regular bubble model [Eq.
(10)]. In particular, for a given value of n, the data cor-
responding to different foam polydispersity collapse very
well, which confirms that the mean bubble curvature does
not depend on the foam polydispersity, on the range of
polydispersity tested (σA/〈A〉 ≤ 0.8). A linear fit (see
inset) a(n − 6) to the mean side curvature yields a =
0.157± 0.004, which is very close from the value obtained
in the regular bubble model (a =

√
π/(3ε) ' 0.159).

It must be emphasized that although the MFA neglects
the anti-correlations between the number of sides of neigh-
bouring bubbles – often modelized by the Aboav-Weaire
law [6,7,33–35] – it takes into account the correlations
between the size and number of sides of every bubble.
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Fig. 7. Dimensionless mean bubble curvature Rκ̂ vs. n for
foams with various size dispersities: each point corresponds to
an averaging over the bubbles with same R and same n within
a given foam. Each foam contributes several points. Error bars
represent the Standard Error of the Mean (SEM). Red curve:
theoretical model [Eq. (10)]. Inset: dimensionless mean side
curvature Rκ̂/n vs. n for the same data. Red line: linear fit
y = a(n− 6), with a = 0.157± 0.004.

6 Ensemble equivalence

6.1 Position of the problem

In the mean field approximation, a microstate of the foam
is specified by the position and number of sides of every
bubble (L ≡ {ri, ni}). Since the {ri} and {ni} can be
treated as independent variables (see Sect. 4.4), the num-
ber of accessible states factorizes as Ω = Ω(g)Ω(t), where
Ω(g) is the number of configurations of the geometrical
variables {ri}, while Ω(t) is the number of arrangements
of the topological variables {ni} that are compatible with
the global constraints (21) and (22). Ω(t) is then a func-
tion of the two state variables K and N . The other state
variables are N1, . . . ,Np, the number of bubbles with re-
spective sizes R1, . . . , Rp, (or equivalently, N and the bub-
ble size distribution P (R)). For the sake of clarity, only K
and N are made explicit hereafter.

In order to study the correlations between bubble size
and side number, only Ω(t) needs to be evaluated.

Let Ω(t)
(
KS , NS |K,N

)
be the number of mi-

crostates of the foam for which the curvature and number
of sides of a subset of bubbles S are KS and NS , respec-
tively. The probability that S hasNS sides and curvature
KS , given their total values N andK in the foam, is then:

P (KS , NS |K,N) =
Ω(t)

(
KS , NS |K,N

)

Ω(t)
(
K,N

) , (24)

However, the evaluation of Ω(t) is not trivial (its deriva-
tion, above the crystallization, is reported on the Ap-
pendix C) and does not yields a simple expression for
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P (KS , NS |K,N). Instead, a “grand-canonical descrip-
tion” is proposed:

the “small” subset of bubbles S within the foam ex-
change sides and curvature with the rest of the foam
through T1 events. The rest of the foam then constitutes
a reservoir R of sides and curvature. However, the micro-
and grand-canonical descriptions are equivalent for large
foams only if the system and the reservoir are weakly cou-
pled, that is, if the two following conditions are fulfilled:
i) short-range correlations between the bubbles to ensure
the statistical independence of S and R [42,43]. As dis-
cussed in Sect. 5.1, this is usually true in a real foam,
except near the cristallization threshold where avalanches
of T1s may occur. By definition, these correlations are
neglected in the MFA. Therefore, Ω(t)

(
NS ,KS |N,K

)

factorizes as

Ω(t)
(
KS , NS |K,N

)
= Ω

(t)
S (KS , NS )×

Ω
(t)
R

(
KR = K −KS , NR = N −NS

)
, (25)

where Ω(t)
S and Ω

(t)
R refer to S and R when isolated,

respectively.

ii) extensivity of the state variables that define a foam
macrostate. Therefore, one must check the extensivity of
N and K. This notion is often (mis)interpreted as a neg-
ligible contribution of the excess (or coupling) term when
two systems (with at least one of macroscopic size) are put
together [44,45]. As an illustration, the energy of Hamil-
tonian systems is extensive when the interactions between
the constituents are short-ranged. Clearly this is not the
case here for N and especially for K, which as only an
interface contribution. In this case the coupling contribu-
tion between two macroscopic systems is of the same order
of magnitude that their bulk contributions, and therefore
cannot be neglected. However, this condition is unneces-
sary and one shows below that N and K are extensive
quantities yet. Hence, the thermodynamic limit can be
properly defined. The notion of reservoir is properly de-
fined as well, i.e. its effective temperature and chemical
potential are not affected by the presence of the system
S in contact.

6.2 Extensivity and thermodynamic limit

The scalings of N and K with N depend whether one con-
siders a set of individual bubbles (taken within a larger
foam), or a cluster of bubbles. Clearly, in the first case,
both variables scale linearly with N . When bubbles are
clustered, their is a nonlinear contribution of the outer
boundary to the number of sides. From Euler’s rule [Eq.
(8)] and Plateau’s law, the number of edges (Plateau bor-
ders) of a cluster is directly related to its number of bub-
bles: NPb = 3(N+1−χ). Since two adjacent bubbles share
the same Plateau border, the number of sides is twice the
number of Plateau borders, except for those at the outer
boundary. Thus, the mean number of sides can be written

N = 6(N + 1− χ)− c
√
N , where c is a positive constant

which depends on the size distribution within the cluster.
While for N the contribution of the outer boundary

becomes negligible in comparison with the bulk term as
N increases, this is the one and only contribution for
K (since side curvatures cancel in pairs in the bulk):
K = −d

√
N/〈R〉, where once again d is a positive con-

stant which depends on the size dispersion within the clus-
ter For a foam enclosed in a container, d = 0. For an un-
bounded foam, c = d = 0. For a free cluster, an order of
magnitude for c and d can be estimated considering a cir-
cular cluster (radius Rc) of identical bubbles with radius
R, as shown on Fig. 8. The perimeter of this cluster can
be approximated as 2πRc ' Nb(2R), and its surface area
as πR2

c ' N (πR2), where Nb is the number of sides at the
boundary. Therefore, c = Nb/

√
N ' π. The radius of cur-

vature κ−10 of a side that belongs to the boundary tends
to 2R when N � 1. Therefore d = Nb/

√
Nκ0R ' π/2.

Fig. 8. Boundary of an idealized circular cluster made of iden-
tical bubbles.

Because of the boundary contribution, N and K are
not additive quantities: when two shuffled clusters S1 and
S2 – with respective mean numbers of sides N

0

1, N
0

2 and
respective mean curvature K

0

1, K
0

2 – are mixed together,
their total number of sides N1∪2 and total curvature K1∪2
are not equal to the sum of their values when they were
isolated. As an illustration, consider two identical clusters,
i.e.made with the same number of bubbles (N1 = N2) and
same distribution of bubble size (hence c1 = c2, d1 = d2
and 〈R〉1 = 〈R〉2). Then

N
0

1 = N
0

2 = 6

(
N1 +

1− χ
2

)
− c1

√
N1 (26)

and
N1∪2 = 6(2N1 + 1− χ)− c1

√
2N1. (27)

The excess number of sides, defined as N12 = N1∪2−N
0

1−
N

0

2 growths sublinearly with N1:

N12 = c1(2−
√
2)
√
N1 − 6. (28)
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Therefore, this contribution becomes negligible when N1

increases. The mean curvature for each individual cluster
is

K
0

2 = K
0

1 = −d1
√
N1/〈R〉1, (29)

and for the mixed clusters:

K1∪2 = −d1
√

2N1/〈R〉1. (30)

The excess curvature K12 = K1∪2 − K
0

1 − K
0

2, is here
of the same order of magnitude of the curvatures of the
individual clusters:

K12 = d1(2−
√
2)
√
N1/〈R〉1. (31)

Nevertheless, for separate bubbles as for clustered bub-
bles, N and K are extensive quantities, meaning that
N/N and K/N tend to finite limits as N → ∞ [46].
Moreover, fluctuations of N and K are always negligible
for large systems: δN/N → 0, δK/K → 0 when N → ∞
(see Appendix A) These results together show that the
thermodynamic limit exists for any large set of bubbles.
For clustered bubbles in particular, the limits of N/N
(' N/N ) and K/N (' K/N ) are universal, i.e. they
do not depend on c and d, or on the specific bubble size
distribution: N/N → 6 and K/N → 0. Eqs (21) and (22)
can then be rewritten as:

〈n〉 = 6, (32)
〈√

π

3

n(n− 6)

εR

〉
= 0, (33)

where 〈·〉 is the average defined in Sect. 2. One can specify
the conditions under which the larger system behaves as a
reservoir of sides and curvatures for the smaller one: sup-
pose that S2 is the larger system (i.e. containing more
degrees of freedom) and S1 is the smaller one. By def-
inition, the values of effective temperature and chemical
potential of a reservoir should not be affected by the pres-
ence of the smaller system, that is:

(
∂S2

∂K2

)

K2=K1∪2−K1

N2=N1∪2−N1

'
(
∂S2

∂K2

)

K2=K
0
2

N2=N
0
2

, (34)

(
∂S2

∂N2

)

K2=K1∪2−K1

N2=N1∪2−N1

'
(
∂S2

∂N2

)

K2=K
0
2

N2=N
0
2

. (35)

As shown in Appendix C, the derivatives ∂K2S2(K2, N2)
and ∂N2

S2(K2, N2) involve the quantities N2/N2 and
K2/N2. Therefore conditions (34) and (35) require
N2/N2 ' N

0

2/N2 and K2/N2 ' K
0

2/N2 when N2 be-
comes large.

Under gentle shuffling, the whole system (S1∪2) re-
mains clustered, so

N1∪2 = 6(N1 +N2 + 1− χ)− c
√
N1 +N2 (36)

and
K1∪2 = −d

√
N1 +N2. (37)

On the other hand, the number of configurations where
the N1 bubbles are dispersed when the two systems are
mixed is much larger than the number of configurations in
which S1 remains clustered, as is illustrated in Fig. (9).
Thus, N1 ∼ N1 and K1 ∼ N1. Finally, S2 constitutes
a cluster with N1 holes: N2 = N1∪2 − N1, and K2 =
K1∪2−K1. Therefore, the condition under which S2 acts
as a reservoir for S1 is:

√
N2 � N1, (38)

what is a more stringent condition than the one (N2 �
N1) required for additive quantities (i.e.: with no surface
contributions) [17].

Fig. 9. Illustration of two foam samples S1 and S2 � S1 that
are mixing together. At the initial stage, S1 (grey bubbles)
was clustered. Because of the agitation, bubbles do not remain
clustered but scatter in S2 (white bubbles). S2 is still clustered
but contains “holes”.

6.3 Grand-canonical description

One can now legitimately use a grand-canonical ensem-
ble to describe statistics of bubble shape. Without loss of
generality, one considers that S is composed of a single
bubble, with given size R (alternatively, one could pick
up a small subset of bubbles within the foam. That is the
procedure that has been used in [1]). Thus,

Ω
(t)
S (KS , NS ) =

{
1 if NS = n and KS = κrb(R,n),

0 otherwise.
(39)
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In agreement with Eqs (24) and (25), the probability for
the specified bubble to have n sides is:

P (n|R) = Ω
(t)
R (KR, NR)

Ω(t)
, (40)

where KR = K − κrb(R,n) and NR = N − n are the
respective curvature and number of sides of the reservoir
R, consisting of the N − 1 other bubbles. The entropy
of the reservoir associated with the topological degrees of
freedom {ni} is defined as SR = lnΩ

(t)
R . SR (KR, NR)

can be expanded near (K,N). As shown in Appendix C,
successive terms in the expansion are smaller by a factor
1/N , as for additive variables [17]. Therefore:

SR

(
KR = K − κrb, NR = N − n

)
= SR(K,N)

− ∂KRSR(K,N)κrb − ∂NRSR(K,N)n+O
(
N−2

)
,
(41)

and thus, in the limit N →∞:

Ω
(t)
R (KR, NR) = Ω

(t)
R

(
K,N

)
e−βκ(R,n)+µn, (42)

with
β = lim

N→∞

(
∂SR

∂KR

)

KR=K
NR=N

(43)

and
µ = − lim

N→∞

(
∂SR

∂NR

)

KR=K
NR=N

. (44)

β−1 and µβ−1 are the effective “temperature” and “chem-
ical potential” of the reservoir, respectively.

Eq. (40) eventually leads to the desired expression
(1) for the conditional probability P (n|R). It can be no-
ticed that one recovers the distribution intuited indepen-
dently by Schliecker and Klapp [47,48] and Sherrington
and coworkers [49,50], but here with an explicit depen-
dence on the bubble size R. This dependence is necessary
to reflect the correlations between topological and geomet-
rical properties.

To illustrate the accuracy of the model, Figure 10
compares the distributions predicted by the model with
those obtained from Potts simulations, for the same tridis-
perse foam as in Fig. 6. The agreement is good for the
conditional probabilities P (n|Rα) (α ∈ {1, 2, 3}), and
especially for the distribution of side number P (n) =∑
α P (Rα)P (n|Rα).

7 Conclusions and perspectives

In summary, the different assumptions on which the statis-
tical model is based have been systematically stated and
argued in the present study, providing solids foundations
to this theoretical framework.

This study also provides insights on possible improve-
ment and extension of the model: foam coarsening could
be taken into account to study the evolution of disorders
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Fig. 10. Theory vs Simulations: conditional probability
P (n|R) for (a) small, (b) medium, and (c) large bubbles of
a tridisperse foam (size ratios and number fractions are identi-
cal to those of Fig. 6; (d) distribution of number of sides P (n)
in the whole foam.

on long time scales. The model can also be extended to
biological tissues; in that case, shuffling can arise natu-
rally from cell activity. Energy must be adapted, and cell
division and apoptosis must be taken into account.

Extension to 3D foams can be envisaged, but is not
straightforward: unlike in 2D foams, the total number of
sides (nor the total number of faces) of a foam that tiles
the entire space is not imposed by the space-filling con-
straints in the limit N → ∞. Euler’s rule combined with
Plateau’s laws just allow to relate the mean number of
faces 〈f〉 to the mean number of sides 〈n〉 of a bubble [6]:

〈f〉 = 12

6− 〈n〉 . (45)

〈f〉 and 〈n〉 depend on the foam polydispersity [51]. More-
over, a T1 event in a 3D foam is the transformation of a
triangular face into a Plateau border. Consequently, not
all the faces of a bubble have the opportunity to be in-
volved in a T1, and the number of sides or faces are not
invariants of a 3D shuffled foam.
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Appendix A: fluctuations

Fluctuations of bubble areas, pressures, and curvatures

Strictly, the pressure and area of a bubble fluctuate with
configurations in a shuffled foam: only the number of gas
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molecules that it contains is conserved (in absence of foam
coarsening). The variations of area and and pressure as-
sociated with a T1 event are imposed by the space filling
constraints: consider for instance the transition from a reg-
ular, hexagonal foam to a new state obtained through a
single T1 process. Gauss-Bonnet formula [Eq. 9] require
that the sides of the 5 and 7 cells are curved, which imply
that the pressures in the bubbles are not identical any-
more. A T1 event is not an isochoric or isobaric process.
However, in simulations it is often easier to consider that
bubble areas are preserved (incompressible gas). It is thus
implicitly understood that the content of gas in the bub-
bles is not preserved in order to satisfy Young-Laplace and
Plateau laws.

Pressure and area of any bubble i are related through
the equation of state of the gas, so their fluctuations
have the same order of magnitude: typically δΠi/Πi =
−gδAi/Ai with g = O(1) (e.g. g = 1 for an isothermal
process, g = 3/2 for an adiabatic process when bubbles
contain a monoatomic ideal gas). However, these fluctu-
ations are generally very small: δAi/Ai ∼ δΠi/Πi � 1,
and a bubble can be unambiguously identified by its area
(which is then indistinguishable from its mean value Ai).
The criterion to discriminate the sizes of two bubbles i and
j is that |Ai −Aj |/(Ai +Aj) is much larger than δAi/Ai
and δAj/Aj .

It must be emphasized that although the pressure fluc-
tuations are generally negligible (δΠi/Πi � 1), the fluc-
tuations or the pressure difference between two neighbour-
ing bubbles i and j can be as large as |(δΠi− δΠj)/(Πi−
Πj)| ∼ O(1). The variation is specially important when
one of the bubbles, say bubble i, is directly involved in a
T1 event. In the frame of our mean field approximation,

Πi −Πj ' γκrb(Ri, ni) = γ

√
π

3

(ni − 6)

εRi
. (46)

Hence, the relative variation is ' 1/(ni−6), as ni increases
or decreases by one.

Fluctuations of K and N

The fluctuations of the total curvature K and total side
number N of a set of N bubbles depend on the specific
boundary conditions: for an unbounded foam, both K and
N are fixed and the fluctuations are trivially zero.

For a set of N individual bubbles taken in a larger
foam, the application of central limit theorem on these N
independent random variables yields: δN/N ∼ δK/K ∼
N−1/2.

When the N bubbles are clustered, their side numbers
an bubble curvatures are independent variables, because
of the space-filling constraints. However, one can obtain
the desired fluctuations with the following argument: let
us “cut” the outer boundary into b (b � 1) pieces. For a
large cluster, the number of sides of each one of them are
independent random variables, and then, using the central
limit theorem again, the fluctuations of the total number

of sides of the boundary Nb satisfy δNb/Nb ∼ Nb
−1/2

.
Similarly, the fluctuations of the total curvature follow
δK/K ∼ Nb

−1/2
. For a round cluster, Nb ∼ N 1/2, and

thus δK/K ∼ N−1/4. The total number of sides of the
cluster, N , and those belonging to the outer boundary, Nb
are related byN = 6(N+1−χ)−Nb. Therefore, for a large
cluster (N � 1), δN/N ∼ N−3/4. The decays of δK/K
and δN/N are then different from those corresponding to
a set of individual bubbles, and correct the scalings given
in [1]. The scaling δN/N ∼ N−3/4 also holds for a foam
enclosed in a container (while δK/K = 0). In all cases,
fluctuations become negligible as N →∞.

Appendix B: Cellular Potts model

The cellular Potts (or extended large-Q Potts) model has
been applied to studies in several fields of physics or biol-
ogy, among which: grain growth in metals, or coarsening
in foams [52], cell sorting [53], or foam under shear [29].
The model discretizes the continuous cellular pattern onto
a lattice, with an integer “spin” σk defined at each lattice
site k, chosen from {1, . . . ,N}. Thus spin values merely
act as labels for the N bubbles. Each bubble extends over
many lattice sites: typically, each bubble in the simulations
presented here covers approximately 300 lattice sites. The
Hamiltonian of the system reads:

H = J
∑

sites
〈k,l〉

(1− δσk,σl
) +

B

2

∑

bubbles
i

(
Ai −A0

i

)2

A0
i

(47)

The first sum is carried over neighbouring sites 〈k, l〉 and
represents the surface energy: each pair of neighbours hav-
ing unmatching indices determines a bubble wall and con-
tributes to the bubble wall surface energy. The surface ten-
sion γ is then proportional to J , the coupling strength be-
tween neighbouring sites, with a prefactor which depends
on the number of neighbours considered in the coupling.
In the simulations presented here, the energy is evaluated
with fourth nearest neighbour interactions (so each lattice
pixel interacts with 20 other pixels) to smooth the effect
of lattice anisotropy [19].

The second sum in Eq. (47), carried over all the bub-
bles that constitute the foam, is the compressive energy
of the bubbles. B is the bulk modulus of the gas, and A0

i
is the target area of the bubble i, .i.e the area that the
enclosed gas would occupy if its pressure were equal to the
surrounding pressure. It can be noticed that the expression
of the elastic term differs slightly from the one commonly
used in literature [19,29,53], because of the A0

i term in
the denominator. This makes no difference for monodis-
perse foams (just a rescaling of the bulk modulus). Here,
one must take the exact expression of compressive energy
for bubbles with different sizes. The system evolves using
Monte Carlo dynamics. The algorithm slightly differs from
the standard Metropolis algorithm: a site is chosen at ran-
dom, but its value is reassigned only if it is at a bubble
wall, and then only to one of its unlike neighbours. This
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has two effects: one disregards unrealistic states in which
bubble walls spontaneously emerge inside a bubble, and
speed up computations. The algorithm used also forbids
bubble fragmentation and satisfies the detailed balance
equation [54]. The probability of accepting the trial reas-
signment is P = 1 if the associated change of energy ∆H
is negative, and P = exp(−∆H/Θ) if ∆H ≥ 0. Θ defines
the fluctuation allowance of the Monte Carlo simulations.

Parallel tempering technique [55] has been used for
simulating the foam at different values of temperature si-
multaneously. This technique allows to sample the foam
dynamics efficiently at very low temperature.

Appendix C: microcanonical description

In this Appendix, the microcanonical entropy of a shuf-
fled foam above the cristallization threshold is derived.
The expressions obtained from the grand-canonical de-
scription are recovered. Although a little bit trickier, the
microcanonical description allows to establish the scal-
ing of the successive derivatives of the entropy with N ,
which is useful to give a quantitative definition of a reser-
voir [Eq. (38)] and to justify the expansion used in the
grand-canonical description [Eq. (41)]. As in the Grand-
canonical description, only Ω(t) needs to be evaluated to
study the correlations between topological and geometri-
cal features. One treats bubbles of same size as discernable
objects, the indiscernability factor being incorporated in
Ω(g). For simplicity, one assumes that nmin = 3. Accord-
ing to consistency equations (21) and (22), every accessible
configuration must satisfy:

N∑

i=1

R
1/2
i xi =

√
N〈R〉δ,

N∑

i=1

x2i = R2, (48)

with xi = π1/4(ni − 3)/
√
3εRi, δ = π1/4(N −

3N )/
√
3εN〈R〉 and R2 = 3

√
πN〈R−1〉/ε + K. To get

an analytic approximation of Ω(t), one treats the xi (or
ni) as continuous variables. Equalities (48) are respec-
tively the equations of a N−hyperplane lying at a dis-
tance δ from the origin O, and of a N−hypersphere of
radius R centered on O. Since K ∼ −

√
N and N ≥

3N � 1, one has 0 ≤ δ ≤ R. The intersection of these
two surfaces is the (N − 1)− hypersphere with radius
ρ =

√
R2 − δ2 and centered on P , the projection of O

on the hyperplane (see Fig. 7). Its surface is SN−1(ρ) =
2π(N−1)/2ρN−2/Γ [(N − 1)/2], where Γ is the Euler’s
Gamma function. SN−1(ρ)dρdδ is the hypervolume of the
region defined by the intersections of the hypershell of
thickness dρ = RdR/ρ = dK/(2ρ) with the two hyper-
planes lying at a distance δ and δ+dδ from O respectively,
with dδ = π1/4dN/

√
3εN〈R〉. Within the continuous ap-

proximation, the number of states Ω(t)(K,N ; dK, dN)
whose total curvature and number of sides lie between[
K,K + dK

[
and

[
N,N + dN

[
, respectively, is simply

the ratio of this volume to the hypervolume occupied by
one microstate, v =

∏N
i=1 δxi, with δxi = π1/4/

√
3εRi. It

Fig. 11. Illustration in three dimensions (N = 3) of the vol-
ume occupied by the accessible states (in red) in the xi-space.

yields:

Ω(t)(K,N ; dK, dN) =

eN〈lnR〉/2
2√
π

(3ε
√
π)N/2ρN

Γ
(N−1

2

) dρ

ρ

dδ

ρ
. (49)

dρ/ρ and dδ/ρ are slowly varying functions of N . Using
Stirling approximation for Γ when N � 1, the expression
of the entropy of the foam S(K,N) = lnΩ(t) simplifies to:

S(K,N) ' N
2

{
ln

[
2 e
√
π

(
9〈R−1〉

−
(
N

N − 3

)2

〈R〉−1
)

+ 6 e ε
K

N

]
+ 〈lnR〉

}
, (50)

where e is the Euler’s number. In the limit N →∞, K/N
and N/N tend to constant values (see Sect. 6.2), and the
entropy becomes extensive. In particular, for a reservoir
(that is, a large bubble cluster),K/N → 0 and N/N → 6,
and the entropy reads:

SR =
N
2

{
ln
[
18 e
√
π
(
〈R−1〉 − 〈R〉−1

)]
+ 〈lnR〉

}
. (51)

One can now justify the limitation up to first order
used in the grand-canonical description [Eq. (41)] for the
expansion of the entropy of the reservoir SR (KR, NR) =
lnΩR (KR, NR) near (K,N): using Eq. (50), it is easy to
see that, as N →∞,

(
∂p+qSR

∂Kp
R∂N

q
R

)

KR=K
NR=N

∼ N 1−(p+q), (52)

for any integers p, q ≥ 0. Therefore, successive terms in the
expansion are smaller by a factor 1/N , as it is for additive
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quantities. Note that such a scaling is not mandatory when
the entropy depends on non-additive quantities as it is the
case here. In particular, the first derivatives are:

(
∂SR

∂KR

)

KR=K
NR=N

=
3 e ε

Q
, (53)

(
∂SR

∂NR

)

KR=K
NR=N

= −
(
N

N − 3

)
2 e
√
π

〈R〉Q , (54)

with

Q = 2 e
√
π

(
9〈R−1〉 −

(
N

N − 3

)2

〈R〉−1
)

+ 6 e ε
K

N .

(55)
The two derivatives become intensive quantities in the
limit N → ∞. In agreement with Eqs (43) and (44),
the asymptotic values of the two derivatives define the
temperature and chemical potential of the reservoir. The
reader can easily check that their expressions are identi-
cal to those obtained from the grand-canonical description
[Eqs (3) and (4)] above the crystallization threshold. This
is not a surprise, as both derivations use the same ap-
proximation, in which the {ni} are treated as continuous
variables [2,3].

The grand partition function Ξ is related to S by:

lnΞ = S − βK + µN. (56)

Hence, maximization of S under fixed values of K and N
is formally equivalent to the minimization of the Grand
Potential J = −β−1 lnΞ (under fixed values of β and µ).

Note that the continuous approximation requires that,
for every i, δxi is much smaller than hi and R, i.e. N � 1
and N〈R−1〉 � R−1i . These conditions are ensured when-
ever there is a large number of bubbles with same size.
Moreover, the number of accessible states Ω(t) must be
large, which requires e〈lnR〉 18 eπ

(
〈R−1〉 − 〈R〉−1

)
> 1 for

large N . This is a lower bound to the range of polydis-
persity on which the continuous approximation is valid.
Indeed, at lower dispersity, the model predicts a crystal-
lization transition [3]. There is also an upper limit to the
range of validity of the continuous approximation: most
of the intersection between the two hypersurfaces must
lie in the space domain {xi ≥ 0, i = 1, . . . ,N} to satisfy
the constraints ni ≥ 3. The proportion of the intersection
lying in this space domain is not easy to calculate. Numer-
ically, it has been established that the condition is satisfied
whenever 〈R〉〈R−1〉 − 1 . 0.35 and (σn/〈n〉)2 . 0.4 [3].
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