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ON USUAL, VIRTUAL AND WELDED KNOTTED OBJECTS UP TO HOMOTOPY

BENJAMIN AUDOUX, PAOLO BELLINGERI, JEAN-BAPTISTE MEILHAN, AND EMMANUEL WAGNER

Abstract. We consider several classes of knotted objects, namely usual, virtual and welded pure braids and
string links, and two equivalence relations on those objects, induced by either self-crossing changes or self-
virtualizations. We provide a number of results which point out the differences between these various notions.
The proofs are mainly based on the techniques of Gauss diagram formulae.

1. Introduction

In this note, we study several variations of the notion of pure braids and string links. Recall that string
links are pure tangles without closed components, which form a monoid that contains the pure braid group
as the group of units. As usual in knot theory, these objects can be regarded as diagrams up to Reidemeister
moves. When allowing virtual crossings in such diagrams, modulo a suitably extended set of Reidemeister
moves, one defines the notions of virtual pure braids and virtual string links. Another related class of object
is that of welded knotted objects. Welded knots are a natural quotient of virtual knots, by the so-called
Overcrossings Commute relation, which is one of the two forbidden moves in virtual knot theory. What
makes this Overcrossings Commute relation natural is that the virtual knot group, and hence any virtual
knot invariant derived from it, factors through it. These welded knotted objects first appeared in a work of
Fenn-Rimanyi-Rourke in the more algebraic context of braids [10].
The study of these three classes (usual, virtual and welded) of knotted objects is currently the subject of an
ongoing project of Bar-Natan and Dancso [4, 5, 3], which aims at relating certain algebraic structures to the
finite type theories for these objects.

Works of Habegger and Lin [14] show that, in the usual case, any string link is link-homotopic to a pure
braid, and that string links are completely classified up to link-homotopy by their action on the reduced free
group RFn. Here, the link-homotopy is the equivalence relation on knotted object generated by self-crossing
changes, and the reduced free group is the smallest quotient of the free group Fn where each generator
commutes with all of its conjugates.
In [2], the authors gave welded analogues of these results, recalled in Theorems 4.1 and 4.2 below. There, it
appears that the right analogue of link-homotopy in the virtual/welded setting is the notion of v-equivalence,
which is the equivalence relation on virtual knotted objects generated by self-virtualization, i.e. replacement
of a classical self crossing by a virtual one.

This note contains a series of results which analyse further the various quotients of usual, virtual and
welded pure braids and string links up to link-homotopy and v-equivalence, and the relations between them.
The summary of our results, stated and proved in Section 4, is given in Figure 1 below. Although all notation
and definitions needed for this diagram will be given in Section 2, let us outline here that

• Pn and SLn stand for the (usual) sets of pure braids and string links on n strands, and the prefix v
and w refer to their virtual and welded counterpart, respectively;

• the superscripts v and cc refer respectively to the equivalence relations generated by self-virtualization
and self-crossing change.

Acknowledgments. We wish to thank Dror Bar-Natan and Arnaud Mortier for numerous fruitful discussions.
This work is supported by the French ANR research project “VasKho” ANR-11-JS01-00201.

2. Definitions

Before we define below the main objects of this note, let us fix a few notation that will be used throughout.
We set n to be a non negative integer, and we denote by ~1, n� the set of integers between 1 and n.
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Figure 1. Connections between usual/virtual/welded pure braids and string links.
All statements hold for n ≥ 2 except for the blue “�”, which become isomorphisms for n = 2

Denote by I the unit closed interval. We fix n distinct points {pi}i∈~1,n� in I.
We will also use the following algebraic notation. Let Fn be the free group on n generators x1, . . . , xn. We

denote by RFn := Fn
/{

[xi; g−1xig]
∣∣ i ∈ ~1, n�, g ∈ RFn

} the reduced free group on n generators. Let G be
either Fn or RFn with its chosen system of generators; we define

• AutC(G) :=
{

f ∈ Aut(G)
∣∣ ∀i ∈ ~1, p�,∃g ∈ G, f (gi) = g−1gig

}
, the group of basis-conjugating

automorphisms of G;
• Aut0C(G) :=

{
f ∈ AutC(G)

∣∣ f (x1 · · · xn) = x1 · · · xn
}

.

2.1. Usual, virtual and welded knotted objects. In this section, we introduce the main objects of this note.

Definition 2.1. An n-component virtual string link diagram is an immersion L of n oriented intervals t
i∈~1,n�

Ii

in I × I, called strands, such that

• each strand Ii has boundary ∂Ii = {pi}× {0, 1} and is oriented from {pi}× {0} to {pi}× {1} (i ∈ ~1, n�);
• the singular set of L is a finite set of transverse double points.
• a decoration is added at each double point, and the decorated double point is called either a classical

crossing or a virtual crossing, as indicated in Figure 2.

A classical crossing where the two preimages belong to the same component is called a self-crossing.

Up to isotopy, the set of virtual string link diagrams is naturally endowed with a monoidal structure by
the stacking product, and with unit element the trivial diagram ∪

i∈~1,n�
pi × I.

Two virtual string link diagrams are equivalent if they are related by a finite sequence of generalized
Reidemeister moves, represented in Figure 3.
As is well known, virtual and mixed Reidemeister moves imply the more general detour move, which re-
places an arc going through only virtual crossings by any other such arc, fixing the boundary [17].

We denote by vSLn the quotient of n-component virtual string link diagrams up to isotopy and generalized
Reidemeister moves, which is a monoid with composition induced by the stacking product. We call its
elements n-component virtual string links.
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: positive
33

++

: negative

virtual classical

Figure 2. Virtual and classical crossings

RI : ↔ ↔ RII : ↔

RIIIa : ↔ RIIIb : ↔

classical Reidemeister moves

vRI : ↔ vRII : ↔ vRIII : ↔

virtual Reidemeister moves

mRIIIa : ↔ mRIIIb : ↔

mixed Reidemeister moves

Figure 3. Generalized Reidemeister moves on diagrams; here, all lines are pieces of strands
which may belong to the same strand or not, and can have any orientation.

Definition 2.2. An n-component virtual string link diagram is monotone if it intersects I × {t} at exactly n
points for all t ∈ I.

We denote by vPn the submonoid of vSLn of monotone elements, up to monotone transformations. This
monoid is in fact the group of virtual pure braids studied in [6].

Remark 2.3. One could also consider vPn to be the set of diagrams admitting a monotone representative (up
to non-monotone transformations). The question of whether these to definitions agree is equivalent to that
of the embedding of vPn into vSLn; see Question 5.2.



4 B. AUDOUX, P. BELLINGERI, J.B. MEILHAN, AND E. WAGNER

As explained in the introduction, there is a natural quotient of virtual knot theory, where one of the
forbidden move is allowed.

Definition 2.4. We define the Overcrossings Commute (OC) move as

OC : ←→ .

We denote by wSLn := vSLn
/
OC the quotient of vSLn up to OC moves, which inherits a monoid structure

from the stacking product. We call its elements n-component welded string links.
We denote by wPn the submonoid of wSLn of monotone elements up to monotone transformations.

This monoid is in fact the welded pure braid group studied, for instance, in [4]. Thus, we will freely call
welded pure braids the elements of wPn.

Remark 2.5. Unlike in the virtual case, the welded pure braid group is known to be isomorphic to the subset
of wSLn admitting a monotone representative, see [2, Rem. 3.7].

Warnings 2.6.

• The following Undercrossings Commute (UC) move

UC : ←→× ,

was forbidden in the virtual context and is still forbidden in the welded context.
• Virtual and welded notions do not coincide, even for n = 1, where we get respectively the notion of

virtual and welded long knots (see [4], and also Section 4, for a summary of results).

Let us now turn to the classical versions of these objects.

Definition 2.7. An n-component string link is an embedding L = t
i∈~1,n�

Ii of n disjoint copies of the oriented

interval I in the the standard cube I3 such that Ii runs from pi × {0} to pi × {1} for all i ∈ ~1, n�. We denote
by SLn the set of n-component classical string link up to isotopy. It is naturally endowed with a monoidal
structure by the stacking product, with unit ∪i∈~1,n�{pi} × I. Borrowing the terminology of [4, 5], we shall
call such string links usual in order to distinguish them from the virtual and welded ones.

Any usual string link can be generically projected in I3 onto a virtual string link diagram with classical
crossings only. Hence SLn can be described as the set of virtual string link diagrams with no virtual crossing,
modulo the classical Reidemeister moves only. Note that the question of whether the map from SLn to vSLn

and/or to wSLn is injective remains open.
We also denote by Pn the (usual) pure braid group on n strands, which can likewise be seen as the set of

monotone virtual string links with no virtual crossing. Recall from [10] that this map is well-defined and is
an embedding of Pn in vPn and in wPn.

Remark 2.8. Unlike the class of usual knotted objects, which is intrasically topological, virtual and welded
objects are diagrammatical in nature. However, both theories enjoy nice topological interpretations.
It is now well known and understood [8, 18] that virtual knot theory can be realized topologically as the
theory of knots in thickened surfaces modulo handle stabilization. Note that the Overcrossings Commute
relation is not satisfied in this topological setting.
A topological realization of welded theory is given by considering a certain class of surfaces embedded
in 4-space. In particular, welded string links map surjectively onto the monoid of ribbon tubes studied in
[2]. This had first been pointed out by Satoh for the case of welded knots [24], but some key ideas already
appeared in early works of Yajima [25].
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2.2. Self-local moves and homotopy relations. In this note, we consider two types of equivalence relations
on the above usual/virtual/welded objects, both generated by self-local moves.

Definition 2.9. Two virtual string link diagrams are related by a self-virtualization if one can be obtained
from the other by turning a classical self-crossing into a virtual one. We call v–equivalence the equivalence
relation on vSLn and wSLn generated by self-virtualization.

We denote respectively by vSLv
n and wSLv

n the quotient of vSLn and wSLn under v–equivalence, which are
monoids with composition induced by the stacking product. We also denote by vPv

n ⊂ vSLv
n and wPv

n ⊂ wSLv
n

the respective subsets of elements having a monotone representative.
In the context of usual string links, there is also a natural notion of crossing change, which is a local move

that switches a positive classical crossing to a negative one, and vice-versa. If we further require that the two
strands involved belong to the same component, we define a self-crossing change.

The classical notion of link-homotopy is the equivalence relation on usual (string) links generated by
self-crossing changes. It was introduced for links by Milnor in [20], and later used by Habegger and Lin for
string links [14], in order to “study (string) links modulo knot theory”, and focus on the interactions between
distinct components. More precisely, link-homotopy on usual string links allows not only to unknot each
component individually, but also simultaneously, since every usual string link is link-homotopic to a pure
braid.

Thanks to the interpretation in terms of local crossing changes, the notion of link-homotopy can be
extended to the whole monoids vSLn and wSLn.

Definition 2.10. We call cc-equivalence the equivalence relation on virtual knotted objects generated by
self-crossing changes.

We denote the quotient of vSLn under cc-equivalence by vSLcc
n . In addition, we denote by vPcc

n the image
of vPn in vSLcc

n . We shall use similar notation in the usual and welded cases.
Since a crossing change can be realized by a sequence of two (de)virtualization moves, the cc-equivalence

is clearly sharper than the v–equivalence. It is also a priori a more natural extension of the classical situation.
However, as already noted in [2], it appears not to be the relevant notion for the study of welded string links
“modulo knot theory”; this is recalled in further details in Section 4.1.

3. Gauss diagram formulae for virtual and welded string links

In this section, we recall the main tools for proving the results of this paper, namely Gauss diagram
formulae [11, 13, 23].

3.1. Gauss diagrams. We first roughly review the notion of Gauss diagrams.

Definition 3.1. A Gauss diagram is a set of signed and oriented (thin) arrows on n ordered and oriented
vertical (thick) strands, up to isotopy of the underlying strands. Endpoints of arrows are called ends and are
divided in two parts, heads and tails, defined by the orientation of the arrow (which goes by convention from
the tail to the head). An arrow having both ends on the same strand is called a self-arrow.

Examples of Gauss diagrams can be found in Figures 5 to 10 in the next section. As these figures
also illustrate, Gauss diagrams serve as a combinatorial tool for faithfully encoding virtual/welded knotted
objects. Indeed, it is well known that to any virtual string link diagram L, there is a unique associated Gauss
diagram GL, where the set of classical crossings in L is in one-to-one correspondence with the set of arrows
in GL, and that this correspondence induces a bijection between vSLn and the set of Gauss diagrams up to
the natural analogues of classical Reidemeister moves1 of Figure 3. See [11, 13] for the knot case.

1Note that there are no Gauss diagram analogues of the mixed and virtual Reidemeister moves, since virtual crossings are simply
not materialized in Gauss diagrams.
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Likewise, welded diagrams are faithfully encoded by equivalence classes of Gauss diagram up to the
following Tails Commute (TC) move, which is the Gauss diagram analogue of Overcrossings Commute:

TC : η

ε

←→
ε

η

,

where the signs ε and η are arbitrary.
Finally, the next observation allows to study the two homotopy relations introduced in Section 2.2. At

the level of Gauss diagrams, the cc-equivalence is generated by the local move which switches both the
orientation and the sign of a self-arrow; the v-equivalence, on the other hand, is simply generated by the
removal of a self-arrow.

3.2. Gauss diagrams formulae. We now review Gauss diagrams formulae. First, let us define an arrow
diagram to be an unsigned Gauss diagram i.e. an arrow diagram on n strands of n intervals with unlabeled
arrows (see [22]).

Given a Gauss diagram G, there is an associated formal linear combination of arrow diagrams

i(G) :=
∑
G′⊆G

σ(G′)AG′ ,

where the sum runs over all subdiagrams of G, σ(G′) denotes the product of the signs in the subdiagram G′

and AG′ is the arrow diagram obtained from G′ by forgetting the signs.
The Z-module Ån generated by arrow diagrams on n strands comes equipped with a natural scalar product

(−,−), defined by (A, A′) = δA,A′ for any two arrow diagrams A and A′. So given any formal linear combi-
nation F of arrow diagrams in Ån, one can define a map on the set of Gauss diagrams on n strands 〈F;−〉 by
setting

〈F; G〉 :=
(
F, i(G)

)
for any Gauss diagram G. Roughly speaking, this map counts with signs subdiagrams of G.

We can define in this way a map on the set of virtual diagrams by setting 〈F; L〉 := 〈F; GL〉, for any virtual
string link diagram L with associated Gauss diagram GL. We say that F is the defining linear combination of
the map 〈F;−〉. Now, such a map does not, in general, factor through the generalized Reidemeister moves.
We recall below a simple criterion, due to Mortier [21], which gives a sufficient condition for getting a virtual
string link invariant in this way. To state this criterion, we need a few more definitions.

A degenerate arrow diagram is an arrow diagram where two arrow ends are allowed to coincide. We
denote by Dn the abelian group freely generated by degenerate arrow diagrams on n strands, modulo the
relations

= + ; = + .

Two arrow ends are called adjacent if they are met consecutively when running along some strand. An
internal edge of an arrow diagram is a portion of a strand cobounded by two distinct adjacent arrow ends.
We define a linear map d : Ån → Dn by sending any arrow diagram A on n strands to

d(A) :=
∑

internal edges e of A

(−1)↑e .η(e).Ae,

where Ae ∈ Dn denote the degenerate arrow diagram obtained by shrinking e to a point, ↑e∈ {0; 1; 2} is the
number of arrow heads bounding e, and η(e) ∈ {±1} is given by

η(e) =

{
−1 if the two arrows cobounding e do not cross in A,
+1 otherwise,

with the convention that two arrows do not cross in an arrow diagram if, when running along the n strands
I1 to In, in order and following the orientations, we meet the two ends of one of these arrows consecutively.

Theorem 3.2. Let F ∈ Ån be a linear combination of arrow diagrams on n strands:
(1) if F does not contain any arrow with adjacent ends, then 〈F;−〉 is invariant under move RI;
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(2) if F does not contain two arrows with adjacent heads and adjacent tails, then 〈F;−〉 is invariant
under move RII;

(3) if 〈F;−〉 is invariant under move RII and if d(F) is zero inDn, then 〈F;−〉 is invariant under moves
RIII;

(4) if F does not contain any pair of adjacent arrow tails, then 〈F;−〉 is invariant under OC;
(5) if, for each diagram of F which has a self-arrow ~a, the diagram obtained by reversing the orientation

of ~a also appears in F with opposite sign, then 〈F;−〉 is invariant under cc-equivalence;
(6) if F does not contain any self-arrow, then 〈F;−〉 is invariant under v-equivalence.

The only difficult part of the statement is the invariance under RIII and it is due to A. Mortier. It can be
found in [21] where it is stated as an equivalence in the context of virtual knots. However, the arguments
adapt verbatim to the case of virtual string links. Actually, Mortier pointed out the fact that each point in
Theorem 3.2 is also an equivalence in the string link case (this fact can be proved using a suitable Polyak
algebra).

Example 3.3. As an example, let us consider the two invariants v2,1 and v2,2, defined in [13] by

v2,1 =

〈
,−

〉
and v2,2 =

〈
,−

〉
.

They are easily seen to be invariants of virtual 1-string links. Indeed, for, say, the latter one, we have

d
( )

= − + − = 0 ∈ D1.

The invariant v2,1 is moreover a welded 1-string links invariant, while v2,2 is not, since the defining diagram
of the latter contains two adjacent arrow tails. As a matter of fact, the virtual string link K′′ of Figure 5 is
trivial in wSL1, but we have v2,2(K′′) = −1, while v2,2 clearly vanishes on the trivial 1-string link.

In the rest of the paper, we leave it as an exercise to the reader to check using Theorem 3.2 that each
invariant defined via an arrow diagram formula has the desired invariance properties.

4. Results on usual, virtual and welded braid-like objects

In this section, we recall some comparative results on usual, virtual and welded knotted objects, and
we provide further results comparing various notions of homotopy for these objects. They are roughly
summarized in Figure 1.

4.1. Some analogies between the usual and welded theories. Let us start by recalling a couple of results
from [2], on the v–equivalence for welded string links. On one hand, we have the following

Theorem 4.1 ([2]). Every welded string link is monotone up to self-virtualization.

This is a welded analogue of a result of Habegger an Lin [14], which states that any usual string link is
link-homotopic to a pure braid.

On the other hand, we have a classification result, analogous to [14, Thm. 1.7] in the usual case.

Theorem 4.2 ([2]). The monoids wSLv
n, wPv

n and AutC(RFn) are all isomorphic.

Note, moreover, that this classification of welded string links up to v–equivalence is achieved by a virtual
extension of Milnor invariants.

The next theorem illustrates the fact, suggested by the above results, that the v–equivalence can indeed
be seen as a natural extension of the usual link-homotopy to the welded case.

Theorem 4.3. Let L1, L2 ∈ SLn, and let ιw : SLn → wSLn be the natural map induced by the inclusion at the
level of diagrams. If ιw(L1) and ιw(L2) are v–equivalent, then L1 and L2 are cc-equivalent.

In other words, the notion of self-virtualization restricted to welded string links with only classical crossings
coincides with the usual self-crossing change.



8 B. AUDOUX, P. BELLINGERI, J.B. MEILHAN, AND E. WAGNER

Proof. Recall that Aut0C(RFn) is the set of automorphisms in AutC(RFn) which leave the product x1x2 · · · xn

invariant. Theorem 1.7 of [14] states that SLcc
n � Aut0C(RFn) and it is easily checked at the diagram level that

this isomorphism is compatible, through the map ιw, with the one of Theorem 4.2. Therefore if L1, L2 ∈ SLn

are v–equivalent, then they represent the same automorphism in AutC(RFn) which is actually in Aut0C(RFn)
since it corresponds to some usual string links. According to Theorem 1.7 of [14], this implies that ιw(L1)
and ιw(L2) are cc-equivalent. �

We will see below that the cc–equivalence, on the other hand, does not allow such generalizations, and
hence appears not to be the right notion to be considered in this context.

4.2. cc–equivalence for virtual and welded string links. In this section, we compare virtual and welded
pure braids and string links up to cc-equivalence.

In the case n = 1, the situation is rather simple and well-known.
Obviously, we have vPcc

1 � wPcc
1 � {1}, since the virtual and welded braid groups on one strand themselves

are trivial. In the string link case, however, virtual and welded objects differ:

Lemma 4.4. Self-crossing change is an unknotting operation for welded 1-string links, but isn’t for virtual
1-string links. In other words, we have wSLcc

1 � {1}, whereas vSLcc
1 � {1}.

Proof. Let us prove the first assertion. A welded string link on one strand has a Gauss diagram consisting
of a single vertical strand and several signed self-arrows, and a crossing change on this welded long knot
corresponds to switching both the sign and orientation of one arrow. So, for any two arrow ends that are
adjacent on the vertical strand, we may safely assume up to crossing changes that these are two arrow
tails, hence we may freely exchange their relative positions on the strand using TC. This implies that, up to
crossing change and TC, any Gauss diagram of a long knot can be turned into a diagram consisting of only
isolated arrows. By R1, such a Gauss diagram is clearly trivial.
We now turn to the virtual case. Consider the virtual long knot K0 shown in Figure 4, which is a string
link version of the Kishino knot. As pointed out in [9], the closure of K0 is a virtual knot which cannot be
unknotted by crossing changes. This proves that K0 is not cc-equivalent to the trivial long knot. �

o /

+
+

−
−

Figure 4. The virtual long knot K0, and its Gauss diagram.

Similar results in the knot case can be found in [9, Sec. 1]; note however that, unlike in the usual case, the
closure map from virtual/welded long knots to virtual/welded knots is not an isomorphism [17].

Remark 4.5. It is still unknown whether the closure map used in the latter part of the proof, from cc-
equivalence classes of virtual long knots to virtual knots up to crossing changes, has a non trivial kernel.

Lemma 4.6. For n ≥ 1, there are distinct virtual and welded string links which are cc–equivalent, i.e. the
canonical projections vSLn // // vSLcc

n and wSLn // // wSLcc
n are not injective.

Proof. Recall from Section 3 that the invariant v2,1 from [13] is an invariant of welded (and in particular,
virtual) 1-string links. Clearly, the virtual string link K of Figure 5 is cc–equivalent to K′, shown in the same
figure. However, we have v2,1(K′) = −1, whereas v2,1 doesn’t detect K. This proves the statement in both
the virtual and welded settings. �

Recall from [12] that the canonical projection from the pure braid group to Pcc
n is not injective. The proof

of Goldsmith actually applies to the virtual and welded context:
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o /
+

+

o /
−

+

o /
+

−

K K′ K′′

Figure 5. The virtual string links K, K′ and K′′, and their Gauss diagrams.

Lemma 4.7. For n > 2, there are distinct virtual and welded pure braids which are cc–equivalent, i.e. the
canonical projections vPn // // vPcc

n and wPn // // wPcc
n are not injective.

Proof. Consider the pure braids G and G′ shown in Figure 6, which (implicitly) appear in Figure 2 of
[12]. As shown there, these two pure braids are cc–equivalent. The result then follows by noting that

o /

+

−

+

+

−

− −

−

o /

−

+

+

+

−

− −

−

G G′

Figure 6. The virtual pure braids G and G′, and their Gauss diagrams.

usual braids embed injectively in vPn and in wPn. Indeed, the latter inclusion follows immediately from the
interpretations of Pn and wPn in terms of automorphism groups of Fn (see the left rectangle in Figure 1), and
clearly implies the former. �

More strikingly, although any 1–component welded string link can be unknotted using crossing changes,
this cannot always be achieved simultaneously for all strands of a welded string link with two or more
components:

Lemma 4.8. For all n > 1, there are virtual and welded string links which are not cc–equivalent to any
welded pure braid, i.e. the inclusions vPcc

n
� � // vSLcc

n and wPcc
n
� � // wSLcc

n are not surjective.

Proof. Consider the welded 2-string link L′ of Figure 7 and the invariant S 2 : vSL2 → Z defined by

S 2 = 〈 − − + − + ,−〉.

Notice that S 2 is a welded 2-string link invariant, and is an invariant of cc-equivalence. Note also that S 2
does detect L′, since S 2(L′) = 1. Now, if L′ were cc-equivalent to a pure braid L̃, then it would admit a
representative whose Gauss diagram has only horizontal arrows. But then we would have S 2(L̃) = 0, since
the defining formula for S 2 contains no such diagram with only horizontal arrows. This proves that L′ is not
cc-equivalent to a pure braid, hence completes the proof in the welded case.
The result in the virtual case follows, by simply noting that the above argument applies equally well when
regarding L′ as a virtual string link. �

Remark 4.9. The above proof shows in particular that the monoids vSLcc
n and wSLcc

n are both non trivial
(this was already clear from Lemma 4.4 in the virtual case). It is easily checked that this is already the case
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o / −

+

o / +

−

L L′

o /
+

o /
−

B B′

Figure 7. The virtual 2-string links L, L′, B and B′, and their Gauss diagrams.

for vPcc
n and wPcc

n ; for example, the virtual pure braid B of Figure 7 has a non trivial virtual linking number
lk1/2 (see e.g. [13, Sec. 1.7]), which is a welded invariant.

4.3. Comparing cc and v–equivalences. We now compare the cc-equivalence and the v-equivalence for
welded knotted objects.

The 1-component case is again rather trivial. As seen in Lemma 4.4, the cc-equivalence yields different
quotients on vSL1 and wSL1. The v-equivalence, on the other hand, trivializes both: vSLv

1 � wSLv
1 � {1}.

Indeed, virtualizing all crossings of a welded (or virtual) long knot always yields the trivial element.
For n > 1, the situation is different:

Lemma 4.10. For all n > 1, there are virtual and welded string links which are v–equivalent but not cc-
equivalent, i.e. the canonical projections vSLcc

n
// // vSLv

n and wSLcc
n

// // wSLv
n are not injective.

Proof. Consider again the welded 2-string links L and L′ in Figure 7. As shown in the proof of Lemma 4.8,
L is not cc-equivalent to a pure braid. However, L′ is equivalent, up to self-virtualization to the pure braid B
shown in Figure 7. As for Lemma 4.8, the argument applies to both the virtual and welded context. �

This remains true when restricting to pure braid groups:

Lemma 4.11. For all n > 1, there are virtual and welded pure braids which are v–equivalent but not
cc–equivalent, i.e. the surjective maps vPcc

n
// // vPv

n and wPcc
n

// // wPv
n are not injective.

Proof. Let T and T ′ be the welded pure braids shown in Figure 8. On one hand, we have that T and T ′ are
v–equivalent. This is shown in Figure 9 below; in this figure, the first move is achieved by a sequence of
classical Reidemeister moves, the second is a pair of self-virtualizations, the third is a pair of detour moves,
and the final move is a planar isotopy. Note that, at the Gauss diagram level, this is merely an instance of a
more general result on commutation of arrows supported by two strands, stated in [2, Prop. 4.11].

On the other hand, T and T ′ are not cc-equivalent. This can be checked using the invariant Q2 defined by
the formula

Q2 = 〈 − + − + − ,−〉,

which is an invariant of welded 2-string links up to cc-equivalence. Indeed, it is straightforwardly checked
that Q2(T ) = 1, while Q2(T ′) = −1. �
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o /
+

+

o /
+

+

T T ′

Figure 8. The welded pure braids T and T ′, and their Gauss diagrams.

oo // oo // oo // oo //

Figure 9. The welded pure braids T and T ′ are v-equivalent.

Lemma 4.6 readily implies that the canonical projections vSLn → vSLv
n and wSLn → wSLv

n are not
injective for n ≥ 1, and the same observation holds for vPn → vPv

n and wPn → wPv
n by Lemma 4.7, for

n > 2. Actually, in the welded pure braid case, this remains true for n = 2:

Lemma 4.12. We have wP2 � wPv
2.

Proof. One can easily prove that any automorphism in AutC(RF2) can be written as ξη1,η2 for some η1, η2 ∈

N, where ξη1,η2 (x1) = xη1
2 x1x−η1

2 and ξη1,η2 (x2) = xη2
1 x2x−η2

1 , and that ξη1,η2ξη3,η4 = ξη1+η3,η2+η4 . This implies
that wPv

2 � AutC(RF2) � Z2, while it is well-known that wP2 = F2 (see for instance[10]). �

Remark 4.13. Lemma 4.3 can also be proved using the invariant Q2 used for Lemma 4.11. Indeed, it already
follows from [2, Prop. 4.11] that wPv

2 is abelian, so it suffices to show that this is not the case for wP2. This is
a consequence of the fact that Q2 distinguishes the welded pure braids T and T ′ of Figure 8. More generally,
since Q2 is an invariant of cc-equivalence, we have we have from this observation that none of vP2, vPcc

2 ,
wP2 and wPcc

2 is abelian.

4.4. Comparing virtual and welded objects. As pointed out in [4, Sec. 3.1], welded long knots are strictly
weaker than virtual long knots, in the sense that there exist non trivial virtual long knots which are trivial
up to OC. For example, as already noted at the end of Section 3, the virtual long knot K′′ shown on the
right-hand side of Figure 5 is trivial up to OC, yet it is non trivial as virtual long knot, since it is detected by
the invariant v2,2 defined in Section 3. This implies that, more generally, we have

Lemma 4.14. For all n ≥ 1, there are distinct virtual string links which are equal as welded string links, i.e.

vSLn
� // // wSLn .

Remark 4.15. It may be worth mentioning that knottedness of each individual component is not the only
obstruction to having vSLn isomorphic to wSLn. Actually, the following example shows that this also can’t
be valid among string links with trivial components. Let L be the virtual 2-string link shown in Figure 7,
which is equivalent in wSL2 to the virtual pure braid B represented in the same figure. Now, let V2 : vSL2 →

Z be the invariant introduced in [19] and defined by the Gauss diagram formula

V2 = 〈 − − ,−〉.

We have that V2(L) = −1, whereas V(P) vanishes on B.
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The invariant V2 can moreover be symmetrized into

V∗2 = 〈 − − + − + ,−〉.

which is invariant under self-crossing change. The same example proves then that vSLcc
n � wSLcc

n for n ≥ 2.

By comparing the corresponding group presentations, given for instance in [4, Sec. 2], it can be seen that
the group vP2is isomorphic to wP2. This remains true up to cc-equivalence, i.e. we have vPcc

2 � wPcc
2 . Up to

v-equivalence, the isomorphism even holds for string links, i.e. we have vSLv
2 � wSLv

2, as a consequence of
[2, Prop. 4.11].

However, as soon as the number of strands is greater than 3, it is a general fact that, even up to cc or
v–equivalence, the virtual and welded quotients are actually distinct:

Lemma 4.16. For all n > 2, there are virtual pure braids which are distinct, even up to cc or v-equivalence,
but are equivalent as welded pure braids.

o /

−

−
o /

−

−

C C′

Figure 10. The virtual pure braids C and C′, and their Gauss diagrams.

It follows that the welded projections of vPn, vPcc
n , vPv

n, vSLn, vSLcc
n and vSLv

n are all non injective.

Proof. Consider the virtual pure braids C and C′ shown in Figure 10. As obvious from the Gauss diagram
point of view, they are equivalent in wP3, but they are distinct in vP3, vPcc

3 and vPv
3. Indeed, the virtual string

link invariant

(1) M2 = 〈 − − ,−〉,

which is invariant under self-crossing change and self-virtualization, satisfies M2(C) = 1 but M2(C′) = 0. �

5. Some open questions

All the connections between the different notions and quotients of string links are summarized in Figure
1. However, several questions remain open, and some are listed below.

Question 5.1. Do usual string links embed in their virtual or welded counterparts ?

This should be compared with the fact, used in the proof of Lemma 4.7, that Pn embeds into both vPn and
wPn. Note that showing that the map SLn → wSLn is injective would also give an affirmative answer in the
virtual case.

Question 5.2. Is the inclusion map vPn → vSLn injective ?

As noted in Remark 2.3, this is equivalent to showing that the virtual pure braid group vPn is isomorphic to its
quotient under non-monotone transformations. Recall that the analogous maps Pn → SLn and wPn → wSLn

for usual and welded objetcs are both injective. It is also known that Pn embeds in wSLn (see e.g. [2]), which
implies that Pn embeds in vSLn as well.

Question 5.3. Are welded pure braids the only invertibles in wSLn ? Are they in wSLcc
n ? Likewise, are

virtual pure braids the only invertibles in vSLn, vSLcc
n and vSLv

n ?
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This is a natural question in view of the usual case, where pure braids form the group of units in SLn, as
shown in [15].

Question 5.4. Is the map vPv
n ↪→ vSLv

n surjective ? In other words, is any virtual string link monotone up to
self–virtualization ?

By Theorem 4.1, the answer is affirmative in the welded case. Also, as stated above, we have vSLv
2 � wSLv

2 �
Z2 by [2, Prop. 4.11], hence an affirmative answer in the 2-strand case. In the general case, however, the
answer seems likely to be negative; for example, the virtual string link depicted below is a good candidate
for a counter-example, although the techniques used in the present paper do not apply:

.

Question 5.5. Is the cc-equivalence trivial on vP2 and/or wP2 ?

In the usual case, P2 is known to coincide with Pcc
2 . This follows from the fact that the automorphism of RF2

associated to the generator of Pcc
2 (which is the image of the generator of P2 = Z) has no finite order.

Finally, recall from the introduction that one of the main features of welded knotted object is that they are
realized topologically as ribbon 2-knotted objects in 4-space, via Satoh’s Tube map. Although less central
in the present note, the following question seems worth adding.

Question 5.6. Is the Tube map, from welded string links to ribbon tubes [2], injective ?

This question is in general open, see [4, 5]. It is true when restricting to welded braids by [7] and to string
links up to self-virtualization [2], but fails in the case of welded knots [16].
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AixMarseille Université, I2M, UMR 7373, 13453 Marseille, France
E-mail address: benjamin.audoux@univ-amu.fr
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Université Grenoble Alpes, IF, 38000 Grenoble, France
E-mail address: jean-baptiste.meilhan@ujf-grenoble.fr

IMB UMR5584, CNRS, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
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