
HAL Id: hal-01176066
https://hal.science/hal-01176066v1

Submitted on 14 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimising Energy Consumption of Design Patterns
Adel Noureddine, Ajitha Rajan

To cite this version:
Adel Noureddine, Ajitha Rajan. Optimising Energy Consumption of Design Patterns. International
Conference on Software Engineering, May 2015, Florence, Italy. �hal-01176066�

https://hal.science/hal-01176066v1
https://hal.archives-ouvertes.fr


Optimising Energy Consumption of Design Patterns
Adel Noureddine, Ajitha Rajan

School of Informatics
The University of Edinburgh

adel.noureddine@ed.ac.uk, arajan@staffmail.ed.ac.uk

Abstract—Software design patterns are widely used in soft-
ware engineering to enhance productivity and maintainability.
However, recent empirical studies revealed the high energy
overhead in these patterns. Our vision is to automatically detect
and transform design patterns during compilation for better
energy efficiency without impacting existing coding practices.
In this paper, we propose compiler transformations for two
design patterns, Observer and Decorator, and perform an initial
evaluation of their energy efficiency.

I. INTRODUCTION

Software design patterns [1] are time-tested solutions to
recurring design problems, and are widely used by practition-
ers to provide improved code readability, maintainability and
reuse. They also facilitate communication between software
engineers. In recent years, energy consumption has emerged
as an important design constraint when writing software, espe-
cially in the domain of embedded systems where a strict power
budget is imposed [2].This observation led researchers to eval-
uate existing design patterns with respect to energy efficiency.
Recent studies [3], [4], [5] found that some, not all, design
patterns negatively impact energy consumption (up to 712% on
embedded hardware). This leads us to the question we explore
in this paper, How can we improve the energy efficiency
of design patterns while retaining the essential benefits
of improved code readability, maintenance and reuse?
The answer, we believe, lies through compiler optimisations
that have the potential for energy savings with no changes
to existing software or hardware. Existing studies to improve
energy efficiency using compilers rely on optimised use of
hardware features such as dynamic frequency and voltage
scaling. Optimisations targeting software design patterns for
energy efficiency is entirely novel. We believe this approach
has the potential to change the current state of practice
since (1) Developer coding practices remain unaffected, (2)
Benefits of using design patterns are retained, (3) Energy
consumption of software is reduced. In this paper, we study the
Observer and Decorator patterns that consistently performed
poorly across all empirical studies, including ours. We pro-
pose energy efficient transformations for programs with these
design patterns. The program transformations are to be carried
out during the compilation stage. As an initial evaluation,
we manually transformed 11 programs with the Decorator
and Observer patterns and tried to optimise object creations
and function calls specific to these patterns. We found our
transformations achieved average energy gains of around 10%.
Our vision for the future is that given a program with design

patterns, we will automatically detect and transform patterns
at the compilation stage for improved energy consumption.
Our approach addresses the need for energy-aware software
while retaining the benefits of design patterns in software
engineering.

II. MOTIVATION AND PREVIOUS WORK

Existing studies using compiler optimisations for improving
energy consumption propose techniques that optimise applica-
tions’ usage of hardware features. Approaches include using a
mapping algorithm to run different components of an applica-
tion on different chip cores while independently varying their
voltages [6], using dynamic compilers with dynamic voltage
scaling (DVS) techniques [7], using compiler-directed DVS for
reducing network-on-chip energy [8], or proposing a petri net
based model for setting frequencies in multiple clock domain
micro-architectures [9].

Our proposed approach of using compiler optimisations to
improve energy efficiency of software code design has not
been previously explored. However, recent studies investigated
the energy benefits of transforming applications based on
the execution environment. In [10], a software framework
was introduced to transform applications for energy efficiency
based on developer’s input and energy profiling. The approach
requires manual input and creating, running and measuring
multiple variations of the application in order to choose
one efficient transformation. In contrast, our approach does
not require developers’ manual input or additional energy
measurements. In [11], the authors proposed an approach to
rewrite web applications in order to reduce the energy required
to display these web pages in a mobile device.

There have been recent studies evaluating energy consump-
tion of design patterns by comparing programs with de-
sign patterns against functionally equivalent programs without
these patterns. In [3], the authors compared the energy con-
sumption of 6 design patterns on mobile phones. They found a
high overhead for the Prototype, Decorator and Factory design
patterns (33%, 133%, and 15.9% overhead, respectively). The
authors in [4] compared the energy consumption of 3 design
patterns. Their results show a negligible energy overhead for
the Factory and Adapter patterns, and around 44% energy
overhead for the Observer pattern. Finally, Sahin et al. studied
the energy consumption of 15 design patterns in [5]. Their
results show a high energy overhead for the Factory, Decorator
and Observer patterns (712%, 21.55%, and 62%, respectively).



However, they run their experiments on an FPGA board as
opposed to an operating system on a regular computer.

The generalisation of these results is limited by the char-
acteristics of the execution environments (e.g., mobile phone,
FPGA boards) and the small number of design patterns in the
experiments. Although energy is crucial in mobile devices,
it is also an important economic factor on desktop computers
and servers. To corroborate the results for energy consumption
of design patterns, we conducted an empirical evaluation on a
modern computer with 21 design patterns, taken from Huston’s
website [12].

Empirical Study on Energy Usage

The design pattern examples in our study are written in C++
(14 patterns: Mediator, Observer, Strategy, Template, Visitor,
Abstract, Builder, Factory, Prototype, Singleton, Bridge, Dec-
orator, Flyweight and Proxy) and in Java (7 patterns: Chain,
Command, Interpreter, Iterator, State, Adapter and Compos-
ite). We used OpenJDK 1.7.0 65 to compile and run the Java
patterns, and Clang 3.5 [13] to compile the C++ patterns. We
used JOLINAR 2 [14] to estimate the energy consumption of
our code at runtime. We ran our experiments on a Lenovo
Thinkpad X220, with an Intel Core i5-2540M CPU topping
at 2.60GHz. We measured the CPU energy overhead (positive
or negative) of a program using a design pattern against a
program version without the pattern1. We ran each version of
each example 100,000 times in a loop in order to get enough
execution data for a valid energy estimation, and we repeated
each experiment 10 times. The results from our experiments
are shown in Figure 1.

Fig. 1. The energy overhead of design patterns.

As can be seen in Figure 1, the patterns with high energy
overhead (>10%) are Observer (30.63%), Decorator (12.24%)
and Mediator (26.61%). Our results follow a similar trend to
the one presented in [5]. The exact percentages for energy
overhead vary slightly since our experiments were run on an
actual end-user computer rather than a specific FPGA board.

Having ascertained the energy usage of design patterns,
the next step was to select and optimise design patterns that
consistently consumed high energy. We picked the Decorator

1Memory energy consumption, which according to our model is linear with
memory usage was measured but was found to be negligible compared to the
CPU energy. Execution time overhead was, in most examples, below 1%, with
the exception of Mediator (7.9%) and Decorator (16%) patterns.

and Observer patterns since they have a high overhead (greater
than 10% across all studies), and are widely used. We did not
pick the Mediator pattern because it is less popular, and shares
behaviour with the Observer pattern (e.g., both aim to reduce
coupling).

III. REDUCING THE ENERGY FOOTPRINT OF DESIGN
PATTERNS

We analyse and optimise the Observer and Decorator patterns
using the following steps,

1) We ran experiments to check if existing compiler optimi-
sations reduce the energy overhead of the patterns.

2) Existing optimisations were found to be insufficient in
step 1, so we propose a set of transformation rules
targeted at improving energy overhead.

3) We evaluate our approach over several small examples
(discussed in further detail in the following sections).

For each of the examples in our study we have 3 versions,
without: a version that does not use the design pattern,
with: a version that uses the design pattern, and
optimised: a version where we optimise the with design

pattern version for energy efficiency.
We iterate the examples 1 million times for each experiment
run and repeat the experiment 10 times to mitigate the effect
of any hidden bias.

A. Decorator Pattern

The Decorator design pattern is a structural pattern. The
goal in this pattern is to attach additional responsibilities to
an object dynamically [1]. We detail the 3 steps in our analysis
and optimisation of the Decorator pattern.

1) Compiler Optimisations: We varied the optimisation
flags (e.g., O1, O2 and O3) on the Clang compiler for both
versions, with and without the Decorator pattern. Energy con-
sumption while enabling compiler optimisations drops from
9.82 Joules (using O0 flag in Clang) to 9.61 Joules (with O3
flag) on average for the without version, and from 11.38 (O0)
to 11.11 (O3) Joules for the version with the Decorator pattern.
The reduction observed when using compiler optimisations
for each version is explained with the number of CPU guest
instructions (collected through Valgrind’s Lackey tool [15]).
These instructions drop from 3 billion to 2.6 billion for the
without version, and from 5.5 billion to 4.6 billion for the
with version when compiler optimisations are enabled. Clang’s
optimisation -O flags activate a number of LLVM’s analysis
and transformation passes on the LLVM intermediate represen-
tation (IR) code. These passes perform low-level transforma-
tions such as deleting dead loops or dead code, merging basic
blocks or combining redundant instructions. Although Clang’s
optimisations allow energy reductions within each version,
we still observe the same overhead of 15.6% (on average)
between the with and without versions. In other words, existing
compiler optimisations are not sufficient to improve the energy
consumption resulting from the design pattern.



2) Transformation Rules: Our transformations for energy
efficiency optimises the number of object creations and func-
tion calls in the pattern. These instructions cannot be improved
by existing compiler optimisations as such transformation
requires specific knowledge of the pattern. The transforma-
tion rules for the Decorator pattern are presented below and
illustrated in Figure 2:

1) Identify object instantiations using the Decorator classes.
For each such instantiation, perform steps 2 and 3

2) Create a sub-class that encapsulates all the attributes and
functions of the decorator classes used in this instan-
tiation. For example, we create SimpleWindowHorizon-
talVertical sub-class when we identify a SimpleWindow
object being decorated with both HorizontalScrollBar and
VerticalScrollBar decorators.

3) Substitute the object instantiation using decorated classes
with instructions to create an object of the new sub-class.

The proposed transformation replaces multiple object con-
structions (an object and its decorators) with a single object
creation (an object from the added sub-class). It is worth
noting that other transformations of the Decorator pattern for
energy efficiency may exist. We, however, have not investi-
gated other transformations since the goal in this paper is
to show that a transformation of design pattern for energy
optimisation is possible rather than comparing and presenting
the best possible transformation.

Fig. 2. An example of Decorator pattern transformation.

We plan to encode the proposed transformation as a com-
piler optimisation (into existing compilers such as Clang [13])
in the future. In the next section, we evaluate the energy gains
from our transformation.

3) Empirical Evaluation: We used 6 programs with the
Decorator design pattern from GitHub with sizes ranging from
77 to 198 SLOC. We manually transformed each of these
programs using our rules in the previous Section III-A2. The
results, in Figure 3, show a marked improvement in the energy
overhead after applying our transformation. On average, we
achieve a 12.23% reduction in the energy overhead with our
transformations, with improvements ranging from 4.71% up
to 25.47%. The difference in percentage improvements across
our examples is due to the extent to which the pattern is
used in them. For example, the Pizza program decorates
objects with one decorator while the Sandwich program has
multiple decorators associated with an object. As a result, our
transformation removes more object creations in the Sandwich
program, and thus a larger percentage energy gain, than in the
Pizza program.

Fig. 3. The energy impact of the transformation rules on the Decorator design
pattern.

Functional correctness: In order to validate that our
transformations did not modify the functionality of the pro-
grams, we compared the outputs of both versions, with and
optimised for all 6 programs using a diff utility. We found the
outputs from both versions were a perfect match in all our
experiments.

In the next section, we study the Observer pattern, and
propose a set of transformation rules in order to reduce its
energy footprint.

B. Observer Pattern

The Observer design pattern is a behavioural pattern. The
goal in this pattern is to maintain a one-to-many relation
between subject and objects [1], allowing observer objects to
be notified and updated automatically whenever the subject
changes its state. We detail the 3 steps in our analysis and
optimisation of this pattern.

1) Compiler Optimisations: We apply Clang’s optimisa-
tions to both the with Observer pattern and without versions.
Energy consumption drops from 9.85 to 9.36 Joules on average
for the without version, and from 13.25 to 10.17 Joules
for the with version due to the reduction in the number of
CPU guest instructions. In contrast to the Decorator pattern,
Clang’s optimizations were effective in reducing the energy
overhead between the with and without versions, from 34.5%
down to 8.64%, on average. Nevertheless, a considerable
energy overhead remains and we attempt to reduce this in
our transformation of the Observer pattern.

2) Transformation Rules: In this pattern, every change in
the subject’s state is notified to all observers who then execute
an update function. It is usually the case that each of those
update functions will constitute a get of the updated subject’s
state. This get operation is typically repeated across updates
in all the observers. We also inline subscribe/unsubscribe
function calls.

Our transformation of the Observer pattern optimises the
repeated get operation by querying the subject state once and
reusing it in all the observer updates. We hypothesize that
transforming multiple function calls and memory accesses into
a single call will allow a reduction in the energy consumption.



Note that, unlike the Decorator pattern which is structural and
creates multiple objects, there is no opportunity to optimise
object instantiations in the Observer pattern since it focuses
on the communication between objects.

As before, these transformations are to be applied during
compilation, so as to retain the advantages of the design pattern
for the developer. We applied these transformations manually
on the source code of the examples in the next Section and
plan to encode them into a compiler in the future.

3) Empirical Evaluation: We transform 5 different pro-
grams using the Observer design pattern and report the en-
ergy consumption overhead when applying our transformation
rules. The programs are taken from GitHub repositories and
their sizes range from 80 to 123 SLOC. The results, in
Figure 4, show varying improvements in the energy overhead
for the different examples. On average, we achieve a 6.95%
reduction in the energy overhead with our transformations,
with improvements ranging from 4.32% up to 13.02%. As
with the Decorator pattern, the percentage improvements vary
based on the extent to which the pattern is used in the different
examples (e.g., number of observers and number of update
notifications).

Fig. 4. Energy impact of the transformation rules on the Observer design
pattern.

Functional correctness: As with the Decorator pattern
experiments, we compare outputs before and after applying the
transformations. For all experimental runs of all 5 programs,
the outputs from both the with and optimised versions were a
perfect match. These results serve as initial evidence that our
transformations do not change the functionality of the code
using the design pattern.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present an approach to improve the energy
efficiency of software by optimising design patterns automat-
ically at compile time. We explored simple transformations
for the Observer and Decorator patterns and found energy
reductions in the range of 4.32% to 25.47%.

Our vision for achieving energy efficient software is to
have compiler optimisations that detect and transform de-

sign patterns for improved energy consumption. We will
leverage existing research for automated detection of design
patterns [16], [17], [18], [19], [20]. We, then, plan to build
compiler transformations in compiler frameworks such as
LLVM/Clang. We will establish functional correctness of the
compiler transformations and perform empirical evaluations
investigating energy gains on industry sized software. The pro-
posed approach not only addresses the need for energy efficient
software, but also ensures that current coding practices remain
unaltered, a feature desirable for industry adoption.

REFERENCES

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[2] James Pallister, Simon J. Hollis, and Jeremy Bennett. Identifying com-
piler options to minimize energy consumption for embedded platforms.
The Computer Journal, 58(1):95–109, 2015.

[3] Christian Bunse and Sebastian Stiemer. On the energy consumption
of design patterns. In 2nd Workshop EASED@BUIS Energy Aware
Software-Engineering and Development, pages 7–8, 2013.

[4] Andreas Litke, Kostas Zotos, Er Chatzigeorgiou, and George
Stephanides. Energy consumption analysis of design patterns. In Inter-
national Conference on Machine Learning and Software Engineering,
pages 86–90, 2005.

[5] C. Sahin, F. Cayci, I.L.M. Gutierrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh. Initial explorations on design pattern energy usage.
In 1st International Workshop on Green and Sustainable Software,
GREENS’12, pages 55–61, June 2012.

[6] O. Ozturk, M. Kandemir, and G. Chen. Compiler-directed energy re-
duction using dynamic voltage scaling and voltage islands for embedded
systems. Computers, IEEE Transactions on, 62(2):268–278, Feb 2013.

[7] Qingsong Shi, Tianzhou Chen, Xiao Liang, and Jiangwei Huang. Dy-
namic compilation framework with dvs for reducing energy consumption
in embedded processors. In International Conference on Embedded
Software and Systems, ICESS’08, pages 464–470, July 2008.

[8] Guangyu Chen, Feihui Li, Mahmut Kandemir, and Mary Jane Irwin.
Reducing noc energy consumption through compiler-directed channel
voltage scaling. In ACM SIGPLAN PLDI Conference, PLDI ’06, 2006.

[9] Arun Rangasamy, Rahul Nagpal, and Y.N. Srikant. Compiler-directed
frequency and voltage scaling for a multiple clock domain microarchi-
tecture. In 5th Conference on Computing Frontiers, CF’08, 2008.

[10] Irene Manotas, Lori Pollock, and James Clause. Seeds: A software
engineer’s energy-optimization decision support framework. ICSE 2014,
pages 503–514, New York, NY, USA, 2014. ACM.

[11] Ding Li, Angelica Huyen Tran, and William G. J. Halfond. Making
web applications more energy efficient for oled smartphones. ICSE
2014, pages 527–538, New York, NY, USA, 2014. ACM.

[12] Vince Huston. Hutson Design Patterns. http://www.vincehuston.org/dp/.
[13] clang: a C language family frontend for LLVM. http://clang.llvm.org/.
[14] Adel Noureddine. Towards a Better Understanding of the Energy

Consumption of Software Systems. Theses, Université des Sciences et
Technologie de Lille - Lille I, March 2014.

[15] Valgrind’s Lackey. http://valgrind.org/docs/manual/lk-manual.html.
[16] Jing Dong, Yajing Zhao, and Tu Peng. A Review of Design Pattern

Mining Techniques. International Journal of Software Engineering and
Knowledge Engineering, 19:823–855, 2009.

[17] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S.T. Halkidis.
Design pattern detection using similarity scoring. In IEEE TSE,
32(11):896–909, Nov 2006.

[18] Nija Shi and R.A. Olsson. Reverse engineering of design patterns from
java source code. In ASE’06, pages 123–134, Sept 2006.

[19] Jason McC. Smith and David Stotts. Spqr: Flexible automated design
pattern extraction from source code. In ASE’03, pages 215–224, 2003.

[20] Z. Balanyi and R. Ferenc. Mining design patterns from c++ source code.
In ICSM’03, pages 305–314, Sept 2003.


