
HAL Id: hal-01176046
https://hal.science/hal-01176046

Submitted on 14 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automated Approach to Generate Web Applications
Attack Scenarios

Eric Alata, Mohamed Kaâniche, Vincent Nicomette, Rim Akrout

To cite this version:
Eric Alata, Mohamed Kaâniche, Vincent Nicomette, Rim Akrout. An Automated Approach to Gen-
erate Web Applications Attack Scenarios. The 6th Latin-American Symposium on Dependable Com-
puting (LADC-2013), Apr 2013, Rio de Janeiro, Brazil. pp.78-85, �10.1109/LADC.2013.22�. �hal-
01176046�

https://hal.science/hal-01176046
https://hal.archives-ouvertes.fr

An automated approach to generate Web applications attack scenarios

Eric Alata∗‡, Mohamed Kaâniche∗† Vincent Nicomette∗‡ Rim Akrout∗‡

CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France
Université de Toulouse, LAAS

F-31400 Toulouse, France
Université de Toulouse, INSA, LAAS

F-31400 Toulouse, France
Email: {firstname.name}@laas.fr

Abstract—Web applications have become one of the most
popular targets of attacks during the last years. Therefore it
is important to identify the vulnerabilities of such applications
and to remove them to prevent potential attacks. This paper
presents an approach that is aimed at the vulnerability assess-
ment of Web applications following a black-box approach. The
objective is to detect vulnerabilities in Web applications and
their dependencies and to generate attack scenarios that reflect
such dependencies. Our approach aims to move a step forward
toward the automation of this process. The paper presents the
main concepts behind the proposed approach and an example
that illustrates the main steps of the algorithm leading to the
identification of the vulnerabilities of a Web application and
their dependencies.

Keywords-Security, vulnerability scanner, vulnerability de-
tection algorithm

I. INTRODUCTION

Web applications are extremely popular today because
they provide a vast variety of services and can be easily
maintained and updated. Unfortunately, Web vulnerabilities
have also become in the recent years a major threat to
computer systems security. This is reflected by various vul-
nerability statistics and threat reports (see e.g., the IBM X-
force 2012 mid-year trend and risk report which shows that
Web application vulnerabilities including SQL injections and
Cross-Site Scripting occupy the top highest positions in com-
puter threats [22]). The recent experimental study published
in [21] based on the monitoring of more than 8,000 Web sites
also indicates that Web applications include a large number
of residual vulnerabilities and a high percentage of such
vulnerabilities are generally not fixed. To cope with these
threats, several solutions have been developed to prevent,
detect or tolerate potential intrusions such as firewalls, Web
vulnerability scanners, and intrusion detection system. Such
techniques can be used during the development phase and
also during the operation phase.

A large number of vulnerability scanners have been de-
veloped [3], including commercial products (e.g., Acunetix
WVS, WebInspect, AppScan), open source tools (e.g., W3af,
Wapiti, Nikto, Skipfish), as well as other publicly available
tools such as Secubat [2]. Given the high complexity of
current Web sites that include different technologies and a

large number of pages to be analyzed, these tools provide a
useful support for the identification of vulnerabilities in such
systems. Nevertheless, several recent reports have shown that
state-of-the art Web application scanners fail to detect a
significant number of vulnerabilities and have pointed out
the need to improve their detection effectiveness, and to
enhance the automation capabilities offered by such tools
[4], [5], [6], [7], [8], [9].

Generally, existing vulnerability scanners are not designed
to automatically identify causal dependencies between vul-
nerabilities and to build attack scenarios that include the
exploitation of multiple vulnerabilities. Indeed, each vulner-
ability is generally detected independently. In our context
a causal dependency exists between two vulnerabilities A
and B if B can be exploited only once A is exploited.
The identification of such attack scenarios should allow
the detection of some hidden vulnerabilities that can only
be revealed once other vulnerabilities are detected and
exploited. Such information should be useful to improve the
security of complex Web applications and to remove residual
vulnerabilities that are not easy to detect with traditional
Web scanners.

The automatic identification of attack scenarios including
multiple dependent vulnerabilities requires the development
of new techniques allowing the automated exploitation of
vulnerabilities during the dynamic execution of an appli-
cation. This is not generally supported by existing Web
vulnerability scanners.

This paper proposes a methodology that is aimed at
addressing this gap by automatically building complex at-
tack scenarios for Web applications based on the dynamic
execution of the application following a black-box approach.
Our methodology builds on the Wasapy tool presented in
[10] and consists of three main steps: 1) the identification
of possible navigation traces through a Web application,
2) the creation of a reduced graph called navigation graph
including all the identified navigation traces, thus integrating
the different possible ways for a client to activate the Web
application, and 3) the identification and exploitation of
potential vulnerabilities by sending specially crafted requests
through the different links available from each node of the

navigation graph. This process has to be run iteratively as
the actual exploitation of a vulnerability may reveal new
possible browsing paths of the Web application. This itera-
tive process enables to exhibit causal dependencies between
vulnerabilities and to identify complex attack scenarios
composed of ordered execution of elementary exploitations
of these vulnerabilities.

The paper is structured into 6 sections. Section II briefly
presents related work connected to this paper. Section III
presents the main concepts of our methodology to establish
attack scenario for Web applications. Section IV presents
a concrete example of a Web application and proposes a
manual step-by-step execution of our methodology. This
section enables to informally illustrate our approach. Section
V briefly introduces some interesting hints regarding the
complexity of the algorithms of our methodology. Finally
Section VI concludes this paper and discusses future work.

II. BACKGROUND

The research work proposed in this paper is related both
to the Web vulnerability scanners technologies and to attack
graph methodologies.

Two main approaches are generally adopted by Web
security scanners in order to detect the presence of a vulnera-
bility in a Web application following a black-box approach1.
The first one relies on an error pattern matching algorithm
(W3af2, Wapiti3 and Secubat[2] are examples of tools
that adopt this approach) and the second one on the analysis
of similarities between the pages returned by the server
(e.g., the skipfish4 scanner developed by Google adopts
this approach). The error pattern matching approach consists
in sending specially crafted requests to the application and
looking for specific patterns in the responses (for instance,
database error messages for SQL injections). The basic idea
is that the presence of an error message in a HTML response
page means that the corresponding request has not been
sanitized by the application. The similarity approach consists
in sending to the Web application various specifically crafted
requests corresponding to possible injection attacks and
comparing the similarity of the corresponding responses
using a textual distance, in order to exhibit the responses
that indicate the presence of a vulnerability.

Whatever the approach used, these tools 1) detect each
vulnerability independently and 2) do not automatically
provide the specific attacks allowing the exploitation of
the identified vulnerabilities. As a consequence, they are
not designed to provide attack scenarios including the
exploitation of multiple vulnerabilities. The methodology
proposed in this paper uses a Web vulnerability scanner
(so called Wasapy, briefly presented in Section III) that

1White-box approaches are not addressed in this paper
2http://w3af.sourceforge.net
3http://wapiti.sourceforge.net
4http://code.google.com/p/skipfish/

is able to detect and actually exploit different types of Web
vulnerabilities including SQL injections, OS commanding,
File Include and XPath.

Building complex attack scenarios is the objective of
many research papers related to attack graphs. An attack
graph is a formalism that enables to formally represent the
combination of vulnerabilities that may be exploited by an
intruder to break into a system. An attack graph models
security vulnerabilities in a system and the possible attack
scenario (through paths in the graph) that may be used by an
intruder to achieve a specific goal. Various forms of attack
graphs have been proposed in the literature, such as [11],
[12], [13], [20]. Attack trees [17], [19] and Attack-Defense
trees [18] have also received increasing attention by the
security community to model attack scenarios. Nevertheless,
to our knowledge, the problem of how to automatically
generate attack scenarios from the dynamic execution of
Web applications has not been addressed so far. In [14], the
authors propose to use a use-case graph for the detection
of access-control flows in Web applications but this work is
focused on one specific vulnerability class and is not aimed
at providing attack scenarios including several classes of
vulnerabilities.

To address this gap, we propose in this paper an approach
to build automatically an attack navigation graph that defines
attack scenarios in order to assess Web application security,
based on the dynamic analysis of the Web application
following a black-box approach. We consider the point of
view of the Web application developers who are interested
in analysing the behavior of their application in a context
where the attackers do not have access to the source code,
which is generally the case. This approach is described in
the next section.

III. OVERVIEW OF THE APPROACH

A. Definitions

Our approach aims at automatically building a graph that
represents the set of all possible navigations on a Web
site, including those that result from exploitations of the
Web site vulnerabilities. Let us call a navigation scenario
a sequence of requests sent by a client (a request consists
in the activation of a HTML link). A navigation state of a
client (i.e., a browser) is composed of 1) the HTML page
currently displayed by the browser and 2) the current values
of the cookies in the browser. A request sent by a browser
will provoke a change of the current navigation state. The
set of all the possible navigations can be represented by a
navigation graph. Each node of the graph corresponds to
a navigation state. An edge between two navigation states
S1 and S2 exists if a request whose execution leads to the
transition from S1 to S2 can be sent by the client. An edge
may correspond to a non malicious request (called “normal”
request) or to a request that exploits a vulnerability of the
Web site. A vulnerability graph is a particular case of a

Iteration

Iteration

Vulnerability

Figure 1. Principle of the algorithm

navigation graph that includes edges corresponding to the
exploitation of vulnerabilities.

A navigation graph is different from a traditional URL
graph composed of HTML pages describing the structure of
a Web site. Each node of such a graph generally corresponds
to a HTML page of the site and an edge between two nodes
identifies a link that enables to access the second page from
the first one. The difference mainly consists in the fact that
a navigation graph describes the different possible scenarios
for a user or an attacker to navigate through the URL graph.
Also, it is important to note that a navigation state does not
only depend on the currently accessed HTML page. Indeed,
a client can access a HTML page several times while being
in different navigation states. For instance, let us consider an
e-business Web site. It is possible to activate the payment
page after the client ordered some products or not. When
browsing this page, in the first case, the client is authorized
to pay for the products and in the second case, an error
message is returned. However, in these two situations, the
HTML page accessed is the same. The difference is due to
the content of the cookies, that indicate that products have
been ordered or not.

Our algorithm starts from the root URL of a Web site.
The navigation graph is built set by step, by identifying
the different possible navigations of the site resulting from
the execution of “normal” requests but also through the
exploitation of vulnerabilities of the Web site. As the ex-
ploitation of a vulnerability may reveal new pages, the
construction of the navigation graph is thus iterative. Our
approach is thus composed of two steps, so-called crawling
step and vulnerability identification step, that are iteratively
executed. These two steps are presented in Figure 1. The
transition from iteration i to iteration i+ 1 comes from the
exploitation of one or more vulnerabilities (detected during
iteration i) that lead to the creation of a new navigation
graph including the new navigation states and edges revealed
by the exploitation of the identified vulnerability(ies). The
next sections present these two steps as well as the whole
algorithm.

B. Crawling

The first step of the algorithm consists in crawling the
Web site to identify the different states resulting from the
navigation through the site. The algorithm starts from an
initial URL by removing all the cookies of the client in
order to ensure that the different navigations are indepen-
dent. Then, it navigates through the site and memorizes
all the requests sent to the site. If the currently visited
page includes several HTML links, one of these links is
chosen and the others are memorized to be analyzed later.
As the crawling of the Web site may be infinite, a threshold
indicating the maximum exploration depth of the site has to
be specified. The corresponding value of this threshold is an
input parameter of the algorithm.

When this threshold is reached or when the crawling does
not reveal new navigation states, the whole set of memorized
requests represents one navigation of the site. This step
is repeated to take into account all the HTML links that
were memorized and not used so far, until all the possible
navigation traces are obtained. This set of navigation traces
is the result of the crawling phase and is used to build a
first version of the navigation graph. The main issue when
building this graph is to obtain a minimal graph.

The construction of the minimal graph from the navigation
traces and the associated sequence of requests is similar
to a grammatical inference problem whose objective is to
find a minimal automaton that represents a language from
symbol sequences of this language (so-called words). In this
analogy, the automaton corresponds to the navigation graph
and the symbols correspond to requests. As a language may
include an infinite number of words, the algorithm must be
able to run based on a subset of the words of a language.
Two categories of grammatical inference algorithms exist: i)
those that infer the language only from sequences of words
that belong to the language and ii) those that consider all
the sequences of words. More details can be found in [15].
The RPNI algorithm [16] we chose, belongs to the second
category. This widely used algorithm presents a polynomial
time-based complexity, and is quite simple to implement.

Let us note that, at the end of the crawling step, the only
possibility to enrich the navigation graph is to consider a
vulnerability whose exploitation may add a new edge and
a new node to the graph. Thus, the automaton obtained
from this crawling phase is an input of the next step of
our approach aimed at vulnerability identification.

C. Vulnerability identification

The second step of our approach aims at identifying
vulnerabilities that may be exploited, based on the navigation
graph. The identification of vulnerabilities is performed for
each edge of the minimal automaton resulting from the
first step. As the number of edges is much smaller than
the number of requests sent during the crawling phase, the
identification is much faster. We assume that the exploitation

of a vulnerability depends on a particular navigation state
and is independent of the requests that lead to this state.
Thus, we only focus on one path from the initial state that
leads to this state, considering the shortest path.

As the algorithm is iterative, we have to pay attention
to not test twice the edges of a same state. Thus, for each
iteration, we only analyze the output edges of new states,
compared to the previous iteration. For each of these edges,
the vulnerability identification is performed on each request
parameter (called injection point) and is carried out by
Wasapy.
Wasapy allows the automated detection and exploitation

of different types of Web vulnerabilities including SQL
injections, OS commanding, File Include, XPath. The vul-
nerability detection and exploitation algorithm implemented
in Wasapy is briefly presented in the following considering
the example of SQL injections (for more details, see [10]).
It is based on: i) the automatic generation of inputs based on
a grammar that is specific to targeted vulnerabilities, and ii)
the classification of the corresponding responses using data
clustering techniques.

Three sets of requests are submitted at each injection
point:
• Rr corresponds to requests with randomly generated

data. These are very likely to generate error pages.
• Rii corresponds to syntactically invalid SQL injections

that are designed to lead to unsuccessful executions.
• Rvi corresponds to syntactically valid SQL injections.

The main issue is to automatically determine whether
they lead to a successful execution page or to a failed
execution page. To do so, these responses are compared
to those associated to Rr and Rii using a similarity
distance and data clustering.

Let us note Sr, Sii and Svi the responses associated to
Rr, Rii and Rvi respectively. Then, Rvi requests whose
responses are not similar to any of the responses from Sii

and Sr are considered valid SQL injections. For more details,
see [10].

D. Algorithm

The algorithm is presented in Figures 2, 3 and 4. A trace
corresponds to a navigation trace through the Web site.

The search vulns function in Figure 2 takes a navigation
trace as input parameter. The latest request of this naviga-
tion trace is analyzed to identify vulnerabilities, based on
Wasapy, considering different vulnerability classes (SQL
injections, XPATH injections, OS commanding, etc.). This
function returns a list of navigation traces and, for each
of them, the identified vulnerabilities. Each new navigation
trace includes one more navigation state that results from
the exploitation of one vulnerability. These new states are
then analyzed by the crwl function.

The crwl function of Figure 3 enables to browse the Web
site from a navigation provided as input parameter. Before

Require: path = navigation trace
Ensure: vulns = set of navigations

1: vulns← ∅
2: for class ∈ classes do
3: vulns← vulns ∪ wasapy(path)
4: end for
5: return vulns

Figure 2. Vulnerability identification algorithm – search vulns

Require: path, dm
Ensure: new paths

1: remain← {path}
2: traces← ∅
3: d← |path|
4: while remain 6= ∅ ∧ d ≤ dm do
5: next← ∅
6: for trace ∈ remain do
7: free cookies()
8: for i ∈ [1, |trace|] do
9: links← get response(tracei)

10: end for
11: for link ∈ links do
12: next← next ∪ {trace⊕ link}
13: traces← traces ∪ {trace⊕ link}
14: end for
15: end for
16: remain← next
17: d← d+ 1
18: end while
19: return traces0

Figure 3. Crawling algorithm – crwl

starting the analysis of this navigation, the cookies are
removed. Then, the navigation is executed step by step, from
its first request to the last request (using the get response
function). The content of the response associated to this last
request is analysed in order to identify new HTML links.
The analysis is only made for this last request because
it corresponds to the new navigation state discovered by
the vulnerability identification step executed before. Each
HTML link identified in this response is used to build a new
navigation of the site. This operation is repeated iteratively
until all the HTML links have been discovered or until the
maximum exploration depth dm is reached. The set of the
new navigations discovered by crwl is saved in the traces
variable.

The main function of Figure 4 executes the two previous
functions. In this figure, the symbols N and N ′ correspond
to the set of nodes of the graphs G and G′. During the first
iteration, the crwl function explores the Web site while only
considering “normal” requests. Then, thanks to the RPNI

Require: urls
Ensure: (G, vulns)

1: G← RPNI(urls)
2: ntraces← urls
3: traces← urls
4: vulns← ∅
5: while |ntraces| 6= 0 do
6: for nt ∈ ntraces do
7: if |nt| < dm then
8: traces← traces ∪ crwl(nt, dm)
9: end if

10: end for
11: G′ ← RPNI(traces)
12: new nodes← N ′ \N
13: ntraces← ∅
14: for nn ∈ new nodes do
15: ptnn← shortest path(G′, nn)
16: if |ptnn| < dm then
17: nptv ← search vulns(ptnn)
18: for np ∈ nptv do
19: new vuln← np|np|
20: vulns← vulns ∪ {new vuln}
21: end for
22: ntraces← ntraces ∪ nptv
23: end if
24: end for
25: G← G′

26: end while
27: return (G, vulns)

Figure 4. Main algorithm

algorithm, a graph is built from the navigations obtained.
Each state of the graph is then analysed in order to identify
vulnerabilities (search vulns function). At the end of the
first iteration, all the navigation traces including at most
one vulnerability are identified. The exploitation of these
vulnerabilities may enable to discover new parts of the
Web site. Then, the next iteration begins. The beginning
of each iteration i of the main function corresponds to
the exploration of a sub-part of the site, more precisely the
part that has been discovered thanks to the exploitation of
the (i − 1)th vulnerability of the navigation. At the end of
the ith iteration, all the navigation traces including at most
i vulnerabilities are obtained. Finally, the main algorithm
stops when the maximum exploration depth is reached or
when no additional vulnerabilities can be identified.

IV. EXAMPLE

In order to illustrate our approach, we developed as an
example an e-commerce Web site for selling books, using
the php language and a msysql database. This site is
a simple proof of concept but it uses technologies and a
structure similar to “real” Web sites. Figure 5 presents the

T1: → index.html
T2: → index.html → about.html
T3: → index.html → login.php
T4: → index.html → login.php → index.html

Figure 6. List of navigation traces of the first iteration

URL graph of HTML pages describing the structure of the
Web site. A page is represented by an icon. An edge between
two pages corresponds to a HTML link in the source page
leading to the second page. Let us note that a particular
reflexive link exists for the display.php page. This page
enables to list the available books and includes a filtering
function in a particular form field. A user may then enter a
regular expression in this field and submit it to the site, in
order to update the list of books.

This site includes three vulnerabilities. The pages in-
cluding these vulnerabilities are identified by a star on
Figure 5. The first vulnerability is associated to the page
login.php. The exploitation of this vulnerability allows
an attacker to bypass the authentication thanks to a SQL
injection. The second vulnerability is associated to the page
display.php. It allows an attacker to dump the content of
the database. The last vulnerability is associated to the page
check.php. It allows an attacker to pay all the ordered
products without providing any credit card number. This
vulnerability cannot be exploited unless some products have
been added to the virtual shopping cart.

In the following, we illustrate the execution of the algo-
rithm considering a graph exploration depth threshold of 7.
During the execution of the crawler for the first iteration
of our algorithm, the first trace obtained corresponds to
the navigation through HTML pages without exploiting any
vulnerability. The corresponding graph is presented in Figure
7. Next, the vulnerability identification phase starts and
analyzes each edge of this graph. For each edge under test,
a navigation scenario is built, representing the path from the
first edge until this edge under test. The set of all these traces
is presented in Figure 6.

For each of these scenarios, Wasapy is then executed.
At this stage, the only accessible vulnerability corresponds
to a SQL injection during the authentication, i.e., trace T3.
Thus, at the end of the first iteration, the vulnerability graph
presented in Figure 8 is obtained. As this graph includes
one vulnerability, and thus, a new node and a new edge, the
second iteration begins.

During the second iteration, the crawler identifies the
pages that can be accessed as a consequence of the ex-
ploitation of the vulnerability identified during the previous
iteration. In order to reach these pages, it is necessary
to cross the edges index.html and login.php∗. The
set of the traces executed by the crawler for this sec-
ond iteration contains 65 traces. These traces reach either
display.php, add.php, delete.php, buy.php or
check.php. Once again, the vulnerability identification

Figure 5. Structure of the Web site

2

3

GET index.html GET login.php

1

GET about.html

0

GET index.html

Figure 7. Navigation graph of 1st iteration

2

3

GET index.html GET login.php

1

GET about.html

4

GET login.php

0

GET index.html

Figure 8. Vulnerability graph of 1st iteration

phase is executed for each new edge of this second iteration.
The graph obtained at the end of the algorithm execution
is presented in Figure 9. The algorithm stopped after 6
iterations, which means that no more vulnerabilities have
been discovered during the sixth iteration.

This graph contains 8 nodes and 19 edges. Nevertheless,
it represents 241 traces. The initial graph generated from
all the traces without using the RPNI reduction algorithm
contains 353 edges. The vulnerability graph is more com-
pact than the initial graph and leads to a more effective
vulnerability search. In addition, this graph provides enough

information to deduce causal dependencies between vulner-
abilities. For instance, the vulnerability associated to edge
3 cannot be identified and exploited before the exploitation
of the vulnerability associated to edge 4. Thus, there is a
causal dependency between these two vulnerabilities.

The number of executed traces used to obtain this graph
is important. Moreover, each of these traces includes several
requests. As a consequence, the number of requests is also
important. It seems thus important to study and estimate the
complexity of our approach.

Based on the graph presented in Figure 9, one can extract
different attack scenarios according to specific criteria. For
example, if one wants all the attack scenarios containing two
vulnerabilities, we need to extract from the graph the set of
paths that go through edges 4 and 3, or 4 and 9. An example
of such scenarios is given in figure 10.

V. COMPLEXITY OF THE ALGORITHM

In order to analyze the complexity of the proposed
algorithm, figure 11 presents the size of the navigation
graph corresponding to different values for the exploration
depth threshold. For these results, the algorithm is run on
a MacOSX laptop for our algorithm and a Linux desktop
(CPU Core2 Duo processor) for the server under test. The
execution duration increases with increasing values of the
threshold. However, the resulting reduced graph may not
change significantly (see, for instance, thresholds 4, 5 and
6). Increasing the threshold to d + 1 does not necessarily
allow to reach new pages or new vulnerabilities that cannot
be reached with threshold d. The threshold depends on the
site. Empirical experience shows that a threshold around 8
is generally sufficient and enables to access all the pages of
most Web sites.

The execution duration of the algorithm increases ac-
cording to threshold. For our example, the execution time
remains reasonable.

To analyse the complexity of the proposed algorithm
when applied to other Web sites, let us focus on the most
consuming elementary operation: the get response(tracei)

S1: → index.html → login.php∗ → display.php → display.php∗

S2: → index.html → login.php∗ → display.php → add.php → display.php → display.php∗

S3: → index.html → login.php∗ → display.php → add.php → display.php → buy.php → check.php∗

Figure 10. Example of attack scenario from the graph

6

1

0 7 9

3

8

2

1

4

42

0

2

5 6 03

10

8

5

0

7

0

10

0 3 6

5

0 display.php
1 login.php
2 index.html
3 display.php vuln.
4 login.php vuln.
5 add.php
6 delete.php
7 check.php
8 about.html
9 check.php vuln.
10 buy.php

Figure 9. Final vulnerability graph

Depth Threshold 2 3 4 5 6 7 8
Nodes 2 5 6 6 6 9 9
Edges 4 6 11 11 11 19 19
Vuln. 1 1 2 2 2 3 3
Duration 2s 2s 5s 11s 20s 50s 1m55s

Figure 11. Experimental results

operation, which requires to send one request on the net-
work and wait for the corresponding response. The worst
execution case is considered, in order to provide the most
pessimistic estimation.

Let n be the maximum number of links in HTML pages
of the Web site. Let d be the maximum exploration depth
and l be the number of Wasapy executions for each scenario,
in order to discover vulnerabilities. The Web site is a tree
of arity n and depth d. Such a tree includes at most nd × d
nodes. As a consequence, the number of generated traces is
less than nd×d. The distance between each of the nodes and
the root being less than d, the number of requests to the Web
site is thus less than nd×d×d× l. We can consider that the
complexity of the algorithm is nd, which is in adequation
with the evolution of the duration presented in the figure 11.
Further details about how the complexity of the algorithm
is assessed are described in [23]

An improvement of the execution time can be obtained by
taking into account the fact that for many Web sites, several
URLs implement similar functions and can be considered
as equivalent. This is typically the case of e-commerce Web
sites where the HTML pages pointing to different products
have a similar structure. More precisely, in a Web site that
contains various information, URLs used to process this
information by the same function often follow a specific
format5. By considering the equivalence between URLs
based on their format, it is possible to dramatically reduce
the vulnerability graph of the site by focusing on the unique
URLs, and hence the number of requests to be sent to build
the navigation graph can be significantly decreased.

VI. CONCLUSION

In this paper, we have proposed a novel methodology
aiming at identifying potential attack scenarios targeting
Web applications based on the dynamic analysis of the ap-
plication following a black-box approach. Our methodology
is able to automatically exhibit causal dependencies between
vulnerabilities and to identify attack scenarios exploiting in
a ordered way these vulnerabilities. This approach has been

5For instance, the two URLs site.com/a?id=2 and site.com/a?id=3 use
the same format.

successfully tested and illustrated on a simple but realistic
Web application including several vulnerabilities. The first
results are promising. They have to be confirmed with
experiments on various and more complex Web applications
to experimentally assess the scalability of our approach.
These experiments are currently carried out. At this stage
of our research, the proposed approach is able to addresses
the vulnerabilities that are covered by the Wasapy tool,
including SQL, Xpath, and LDAP injections, and also OS
Commanding and File Include vulnerabilities. Future work
will also be focussed on extending our approach to cover
other types of vulnerabilities such as Cross-Site Scripting
vulnerabilities.

ACKNOWLEDGMENT

This work was supported by the Agence Nationale de la
Recherche through project DALI and by the french project
Secure Virtual Cloud.

REFERENCES

[1] Mitre, “2011 CWE/SANS Top 25 most dangerous soft-
ware errors”, Document version 1.03, September 2011,
http:://www.cwe.mitre.org/top25

[2] K.Stefan, E. Kirda, C. Kruegel, N. Jovanovic,“SecuBat: a web
vulnerability scanner”, Proc. of the 15th Intl. Conf. on World
Wide Web (WWW ’06), Edinburgh, Scotland, 2006

[3] Sectools Website, “Top 10 vulnerability scanners”, http://
sectools.orf/web-scanners.html

[4] J.Fonseca, M.Vieira, H.Madeira, “Testing and Comparing Web
vulnerability scanning tools for SQL injections and XSS at-
tacks”, Proc. IEEE Symposium Pacific Rim Dependable Com-
puting (PRDC’07), Victoria, Australia, pp. 330–337, USA,
2007

[5] J. Bau, E. Bursztein, D. Gupta, J. Mitchell, “State of the art:
Automated black-box web application vulnerability testing”,
Proc. 2010 IEEE Symposium on Security and Privacy, Oak-
land, USA, 2010.

[6] A. Doupé, M. Cova, G. Vigna, “Why Johnny can’t pentest :
An analysis of black-box web vulnerability scanners”, Proc.
DIMVA 2010.

[7] AnantaSec: Web Vulnerability Scanners Evaluation
(January 2009), http://anantasec.blogspot.com/2009/01/web-
vulnerability–scanners-comparison.html

[8] Suto, L.: Analyzing the Accuracy and Time Costs of Web
Application Security Scanners, Feb 2010.

[9] E.Fong, V.Okun, “Web application Scanners: Definitions and
Functions”, In Proc. of HICSS-40Conferee, Hawaii, USA, Jan
2007.

[10] A.Dessiatnikoff, R.Akrout, E.Alata, M.Kaâniche,
V.Nicomette, “A Clustering Approach for Web Vulnerabilities
Detection”, Proc. 17th IEEE Pacific Rim Intl. Symposium
on Dependable Computing (PRDC’11),Pasadena, CA, USA,
2011

[11] Ingols, K., Lippmann, R., Piwowarski, K.: Practical at-
tack graph generation for network defense. In: 22nd Annual
Computer Security Applications Conference (ACSAC), Miami
Beach, Florida (December 2006)

[12] Phillips, C., Swiler, L.P.: A graph-based system for network-
vulnerability analysis. In: NSPW 1998: Proc. of the 1998
workshop on New security paradigms, pp. 71–79. ACM Press,
New York (1998)

[13] Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.:
Automated generation and analysis of attack graphs. In: Proc.
of the 2002 IEEE Symposium on Security and Privacy, pp.
254–265 (2002)

[14] G.Noseevich, A.Petukhov, “Detecting Insufficient Access
Control in Web Applications”, In SysSec Workshop, pp. 11–
18, Los Alamitos, CA, USA, 2011

[15] P. Dupont,“Regular Grammatical Inference from Positive and
Negative Samples by Genetic Search: the GIG Method”, Proc.
of the 2nd Intl. Colloquium on Grammatical Inference and
Applications (ICGI ’94), pp. 236–245, London, UK, 1994

[16] Dupont, P., “Incremental regular inference”, Proc. of the
Fourth Intl. Colloquium on Grammatical Inference and Ap-
plications (ICGI ’96), pp. 222–237, 1996.

[17] B., Schneier, Modeling security threats, Dr Dobb’s journal,
December 1999.

[18] Kordy, B., Mauw, S., Radomorovic, S., Schweitzer,
P.,Foundations of Attack-Defense Trees, Proc. of Formal As-
pects of Security and Trust (FAST 2010), LNCS Volume 6561,
pp. 80–95.

[19] Mauw, S., Oostdijk, M., Foundations of attack trees, Infor-
mation Security and Cryptology-ICISC 2005, LNCS Volume
3935, pp. 186–198.

[20] Noel, S., Jajodia, S., and Singhal, A., Measuring Security
Risk of Networks Using Attack Graphs, International Journal
of Next-Generation Computing, 1 (1), pp. 135–147, 2010.

[21] Grossman, J., The State of Website Security, IEEE Security
and Privacy, July-August 2012, 10 (4), pp. 91–95.

[22] IBM X-Force 2012 Mid-year Trend and
Risk Report, September 2012, http://www-
01.ibm.com/common/ssi/cgi-bin/ssialias?infotype=SA
&subtype=WH&htmlfid=WGL03014USEN

[23] Akrout, R., ”Web Applications Vulnerability Analysis
and Intrusion Detection Systems Assessment”, PhD The-
sis, University of Toulouse, October 2012 (in French),
http://homepages.laas.fr/rakrout/PhD Thesis.pdf.

