N

N

An Approach for the Automated Analysis of Network
Access Controls in Cloud Computing Infrastructures
Thibaut Probst, Eric Alata, Mohamed Kaaniche, Vincent Nicomette

» To cite this version:

Thibaut Probst, Eric Alata, Mohamed Kaéniche, Vincent Nicomette. An Approach for the Automated
Analysis of Network Access Controls in Cloud Computing Infrastructures. 8th International Confer-
ence on Network and System Security (NSS 2014), Oct 2014, Xi’an, China. pp.1-14, 10.1007/978-3-
319-11698-3_ 1. hal-01176045

HAL Id: hal-01176045
https://hal.science/hal-01176045
Submitted on 14 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01176045
https://hal.archives-ouvertes.fr

An Automated Approach
for the Analysis of Network Access Controls
in Cloud Computing Infrastructures

T. Probst!, E. Alata!, M. Kaaniche!, V. Nicomette'

LCNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France
{probst,ealata,kaaniche,nicomett } @laas.fr

Abstract. This paper describes an approach for automated security
analysis of network access controls in operational Infrastructure as a Ser-
vice (IaaS) cloud computing environments. Our objective is to provide
automated and experimental methods to analyze firewall access control
mechanisms aiming at protecting cloud architectures. In order to de-
termine the accessibilities in virtual infrastructure networks and detect
unforeseen misconfigurations, we present an approach combining static
and dynamic analyses, along with the analysis of discrepancies in the
compared results. Our approach is sustained by experiments carried out
on a VMware-based cloud platform.

Keywords: security, accessibility analysis, cloud computing, firewall, network.

1 Introduction

Cloud computing is an emerging paradigm which allows the easy hosting and
management of infrastructures, platforms and applications, while reducing de-
ployment and operation costs. Providers propose to clients different kinds of
resources as services. To satisfy these needs, various technologies like virtual-
ization, new networking concepts, Web services, are mixed in complex architec-
tures. This complexity, along with the presence of many different actors (service
providers and consumers, developers, vendors, brokers, etc.) that cannot trust
each other, make such environments vulnerable to many security threats [1-3]
and raise security concerns for the clients and the providers. To cope with these
threats, various security mechanisms can be deployed in the cloud, including
firewalls or Identity Access Management (IAM) tools, and Intrusion Detection
and Prevention Systems (IDS/IPS). The first category aims to implement net-
work access controls, while the second one aims to detect (and possibly block)
attacks in a network or on a host. Cloud environments constantly evolve over
time as clients can add or remove instances and users or modify configurations,
which could have impacts on the cloud security. Therefore, it is important for
the client and the provider to monitor and analyze at a regular basis the security
level of cloud infrastructures, in order to adapt and improve the configuration

of the security tools. In this paper, we focus on analyzing cloud computing fire-
walls access controls, because they have a direct impact on network accessibility
(or reachability) in virtual infrastructures. An accessibility is the first support
of attack vectors, hence finding accessibilities is the first step in building attack
scenarios and assessing the efficiency of security mechanisms. Various types of
firewalls can be deployed in the cloud either in the client’s network topology (and
thus configured by the client), or at the hypervisor level (and thus configured by
the cloud administrator). As a consequence, controls on cloud firewalls are often
balanced between the clients and the provider.

The configuration of such firewalls is generally tedious and error prone due
to the increasing complexity of virtualized infrastructures. Therefore, efficient
methods are needed to analyze network accessibilities in an operational con-
text and identify potential discrepancies with those defined and desired by the
clients. Two methods can be used for this purpose: 1) static analysis of de-
vices configuration; 2) dynamic analysis by sending traffic over the network.. In
traditional network environments, static analysis is generally preferred because
dynamic analysis is more intrusive and hardly doable on production environ-
ments. However, actual static analysis tools are often not designed to support
the analysis of end-to-end accessibilities. Also, such tools may fail to reveal all
possible network accessibilities, in particular when hidden and implicit access
control rules are enforced at different layers of the virtualized infrastructures.
We argue that such access control rules could be revealed by dynamic analy-
sis approaches that could complement static accessibility analysis techniques.
Therefore, our research is aimed at providing automated ways (both static and
dynamic) to determine network accessibilities in a client’s infrastructure and look
for potential discrepancies in the results. We provide the following contributions:

— A static analysis method of cloud components configurations.
— A dynamic analysis method of cloud components.

As an outcome, network accessibilities are provided for both methods, along with
an analysis of the discrepancies in firewall access controls by comparing results
along with the client’s network security policy that we consider provided by the
client'. Qur approach is aimed at taking into account cloud security constraints
by protecting the virtual infrastructures during the audits. This is achieved by
running the static and dynamic accessibility analysis on a clone of the cloud
infrastructure. Moreover, we leverage cloud advantages to perform quicker and
deeper audits and we make the process fully automated.

The rest of the paper is organised as follows. Section 2 introduces our ap-
proach. Section 3 describes the main phase of our approach about analysis of
network access controls. Section 4 presents a VMware-based testbed environ-
ment to validate our approach, along with the experimental results. Section 5
discusses related work. Finally, conclusion and future work are provided.

! The definition and retrieval of a cloud security policy, along with its implementation
as filtering rules, are out of the scope of our contributions.

2 Overview of the Approach: Assumptions and Principles

In this section, we recap the main assumptions we consider in our approach, and
then we explain its principles.

Main assumptions Our approach focuses on the virtual infrastructure level,
that is why the considered cloud service model is IaaS. A virtual infrastructure
is defined as a set of virtual datacenters (vDC), where a vDC includes virtual
machines (VMs), networks, firewalls and storage. We assume thate the firewalls
apply stateful packet inspection, and we consider two different types of virtual
firewall commonly found in the cloud:

— Edge firewall: gateway for client’s networks that routes, filters and translates
inbound or outbound traffic. It is generally controlled by the client.

— Hypervisor-based firewall: introspects the traffic sent and received by VMs
disregarding the topology. It can act on different scopes, which allows the
creation of rules inside each client’s network and applied to traffic to and
from VMs of this network. There is a set of rules for each scope. This kind
of firewall is generally managed by the provider, though some cloud portals
can give the client access to certain scopes.

The security analysis should not disturb the client’s business. It is intended to
be fully automated (it does not need human intervention). The security analysis
can be performed on demand (audits can be run on the client’s will). Provided
results correspond to the state of the system at the time when the analysis is run.
These reports should be relevant to the actors (clients, provider) that control
the analyzed tools. The accessibility analysis operations are run on behalf of the
provider, and therefore using administrator rights on the cloud components.

Principles Our two-phase approach, illustrated in Figure 1, allows the au-
tomated analysis of network access controls in a client’s virtual infrastructure
deployed in a cloud. The first phase prepares the infrastructure to be analyzed
by retrieving essential information from the infrastructure and cloning it, so the
following steps can be done properly. It can be summarized as follows:

1. Fetch the configuration from the client’s vDCs: users’ privileges, IP address-
ing, network connections, etc.

Preparation of infrastructure Analysis of network access controls

Client’s information [User-defined acce55|b|llt|es|
Conflgured
acce55|b|I|t|es
nfrastructure m AnaIyS|s of é
clonlng |nfrastructure Dynamic Observed discrepancies Report
analy5|s acce55|b|I|t|es

|Infrastructure to evaluate]

Fig. 1. Overall process

2. Create new vDCs from the configuration information.

Copy VMs, networks, firewalls, to the newly created datacenters.

4. Reset cloned VMs administrator password by using single-user mode. This
avoids to ask the client any password for further actions on the cloned VMs.

@

The second phase analyzes access controls statically and dynamically to generate
a security analysis report containing the accessibilities found by both methods.
These are also compared to the user-defined accessibilities to perform an analysis
of discrepancies in the results. This second phase is the core of our contributions
and is developed in the next sections. During the audit process, we do not need
to know any supplementary information, beyond what is supplied in a traditional
cloud subscription process. All the other information we need are automatically
retrieved using APIs provided by the cloud infrastructure and without human
intervention. We take advantage of cloud computing embedded technologies to
run audit operations described later on (cloning infrastructures, deploying and
executing programs...).

3 Analysis of Firewall Access Controls

This section presents how we analyze network access controls in a virtual infras-
tructure managed by virtual firewalls, in order to provide accessibilities statically
and dynamically (in addition to the user-defined one) and look for potential dis-
crepancies in those results. An accessibility is defined as an authorized service
from a source to a destination. The set of accessibilities is modeled in an accessi-
bility matrix. The 1°¢ dimension of the matrix references the source VMs (rather
than an IP address, because when sending traffic, one does not necessarily know
what would be the source address if the machine has several interfaces) or a
machine external to the client’s networks, and the 2”? dimension references the
destination IP addresses. Table 1 gives an example of such a matrix. As men-
tioned previously, there are two main ways to conduct an accessibility analysis:
statically or dynamically. We do it both ways: by extracting and analyzing infor-
mation from the cloned cloud components configuration (this method falls into
the static analysis category); by performing experiments: sending traffic such
as network sweeps in order to verify the effective possible communications (this
method falls into the dynamic analysis category). We define a discrepancy as
an accessibility that has not been noticed in the matrix of configured accessi-
bilities (generated from static analysis), in the matrix of observed accessibilities
(generated from dynamic analysis), and in the user-defined accessibility matrix.

Destinations
IP A1 |IP B1|IP B2| IP C1
VM A Service W
Sources|VM B|Service X Service Y
VM C|Service Z
Table 1. Example of accessibility matrix

3.1 Static Analysis

To build the accessibility matrix from static analysis, we need to deduce from the
cloud configuration all the authorized communications on well-known services
from: 1) VMs to IP addresses; 2) VMs to an external location (out of client’s in-
frastructure, and represented as 0.0.0.0); 3) an external location to IP addresses.
Deduced accessibilities are modeled as predicates in the form of:
accessibility(X, SPROTO,SPORT,Y, DPROTO, DPORT): there is an acces-
sibility from X, on source protocol SPROTO and port SPORT, to Y, on des-
tination protocol DPROTO and port DPORT.
To generate these end-to-end accessibility predicates, we need to take into ac-
count the network topology and the routing/filtering/NAT rules applied to pack-
ets. Indeed, we have to care about the interactions of rules within a firewall (for
example, a rule can cancel the action of another one) and accross the topology
(to memorize the actions done on packets). Furthermore, cloud computing net-
working and security rules use concepts like grouping (of addresses or objects),
as well as service (protocol and port/subprotocol) definitions that need to be
taken into account when designing static rule analysis tools. We also modeled
two kinds of cloud firewalls: edge and hypervisor-based firewalls (cf. section 2).
The static analysis tool we designed is composed of two main modules: a
configuration parser and a logic engine. The configuration parser extracts in-
formation from each cloud component configuration and translates them into
predicates, and the logic engine uses these predicates in logic rules to generate
accessibility predicates. That is why we chose the Prolog language to develop
a scalable and efficient logic engine able to quickly and coherently deduce the
accessibilities.

Configuration Parser The configuration parser is used to retrieve the infor-
mation (in a specific format, which is mostly XML) from components configu-
ration, so it is vendor-specific. Then it transforms this information into Prolog
predicates understood by the logic engine. Here are a few examples of Prolog
predicates generated by the configuration parser:

vm(X): X is a VM.

edge_gateway(X): X is an edge firewall.

introspect_network(N): N is a network scope of a hypervisor-based firewall.
network(X, N): X is part of network N.

route(X,Y,G): X has route to Y with G as next hop.

service(PROTO, PORT, S): S is a service composed of PROTO and PORT.
snat(W, X, SPROTO,SPORT, T, TPROTO,TPORT): W translates X,
source protocol SPROTO, source port SPORT into T, TPROTO, TPORT.
e allow/block(W, N, X, SPROTO,SPORT,Y,S): W has a filtering rule of or-
der N that allows/blocks traffic from source X, on protocol SPROTO and
port SPORT to destination Y, on service/service group S.

We developed a configuration parser for VMware vCloud and Linux-based VMs,
which corresponds to our targeted environment, as detailed in section 4. We use a

provided REST API and Shell scripts to retrieve XML files from VMs, firewalls,
and cloud management modules. Then, we run XSLT processing in conjunc-
tion with Python to parse and transform XML into Prolog logic predicates. We
designed a XSLT sheet for each configuration we need to parse?.

Logic Engine The logic engine runs an internal logic (set of Prolog rules us-
ing the previously presented predicates) upon the submission of an accessibility
request. Accessibility requests aim to generate the accessibility predicates, as
stated earlier. Let us consider the following requests:

o accessibility(vm-372,tcp, any,’172.16.2.66’, tcp, DPORT).
e accessibility(’0.0.0.0°, icmp, any,’192.168.1.150°, icmp, DPORT).

The logic engine is asked to return the accessibility predicates associated to all
open TCP ports from vim-372 to 172.16.2.66, and then all the open ICMP sub-
protocols from 0.0.0.0 (external networks) to 192.168.1.150.

To process such accessibility requests, we designed an algorithm based on a
set of Prolog rules, as shown on Figure 2. Starting from the source, the algorithm
checks routing, NAT and filtering rules (using the initial parameters) on each
edge firewall node of the route from the source to the destination. In our model,
an edge firewall can also act as a simple router that allows all the traffic. Then,
it checks routing from the destination to the source, but it does not verify filter-
ing there because we consider stateful inspection firewalls. Eventually, it checks
filtering at the hypervisor-based firewall, if present, for the appropriate scopes
(source and destination network scopes, or the global scope by default).

The algorithm execution tune depends on the number of accessibility requests
to execute, because each request may process thousands of Prolog rules. For ex-
ample, to check whether a traffic is allowed on a firewall, the algorithm first
looks for a rule which allows this traffic, where the source and destination can
take several values: an IP address, an IP address range, a group, a network, a list
of IP addresses, keywords like ”any”, ”internal” and "external”, etc. The "any”
keyword can also be found for destination protocol and port values. Then, we
verify that there is no potential denying rule with a smaller order (to take into
account the cancellation of an allowing rule) than the previously found accept-
ing rule. All these possible combinations lead to an exponential computational
complexity (and can make accessibility requests take too long, which is not ac-
ceptable in a cloud audit process). To reduce the execution time, a maximum of
rules are precompiled (once and for all) to generate all the associated predicates
(for example all the allowed traffic on every firewall, i.e. traffic from/to each
VM on every destination protocol and port combinations). Also, the jobs that
perform the accessibility requests are multithreaded.

3.2 Dynamic Analysis

In dynamic analysis, real network packets are sent to determine the open ports on
some targets. Generally, a port scanner is used from a remote machine controlled

2 We chose not to provide details on XSLT sheets as they are implementation details.

X, SPROTO,SPORT,
Y,DPROTO,DPORT
N
<IsXanIP N, /TsXavirtual \ Y
address? 7" _machine? >
Y.
Y IsYan 1P\ X< Al <

"\ address? /' [l | 4
" @D+

Is there an IP address

A i to X to

use to go to Y?
Y

Is there a route to Y/
on W with Z as next
hop edge firewall?

Is there a source
NAT rule on Z that
translates X into T2,

Is there a destination NAT
Y/ ruleonZ that translates Y \N
into T and DPROTO/DPORT
into TPROTO/TPORT?

Y.
Is traffic from Xto Y’
on DPROTO/DPORT
allowed on Z?

e]
DPROTO € TPROTO
DPORT € TPORT
< W < 7)€
< Y <
Y Is there a route to X l_A_I

Is W directly
connected to X?,

on W with Z as next
hop edge firewall?

Is there a destination NAT

rule on Z that translates X

into T and SPROTO/SPORT

into TPROTO/TPORT?
Y

Is there a source
NAT rule on Z that
translates Y into T?

Y X€T
N /s there a hypervisor- DPROTO < TPROTO
based firewall A? DPORT <TPORT
Is trafic from X to Y
Y,
f:\st:rmer:cier:;:p > f;‘st:rme:‘ier:;:, on DPROTO/DPORT L
i pe % i pe ot allowed on A on SY?

Is trafic from X to Y
on DPROTO/DPORT
allowed on A on SX?

Is trafic from X to Y on
DPROTO/DPORT allowed
on a global scope?

Fig. 2. Accessibility request processing algorithm

by the auditor. Common concerns of this method include the completeness of
the results: the remote machine has to be set in all the possible network seg-
ments to determine all the possible accessibilities. Furthermore, this one-sided
method relies on the ability to interpret network responses in order to determine
accessibilities, and this is hard to do in connectionless traffic like UDP.

We are able to address these concerns, because we can easily control all the
machines part of the analysis and monitor the traffic effectively received by the
destinations. The proposed algorithm (Algorithm 1), is based on the elabora-
tion of pair-to-pair sessions, testing all the possible combinations amongst all
the VMs, and from VMs to the external location and vice-versa. A session com-
prises a server and a client. The client sends TCP, UDP and ICMP packets to
the server IP address (if it has several IP addresses, then other sessions will be
used) on well-known ports or subprotocols with a specific 4-octet payload we set
in the packets. The server listens for all incoming packets and applies two filters:
one to detect the specific payload; one to only capture packets addressed to it.
Indeed, a server machine could be client of another session. However, it cannot

be server twice at a time, which allows at most a total number of concurrent run-
ning servers equal to the number of VMs. Note that we set up a 2-second sleeping
time between the launch of the server and the client, to make sure that the server
is ready to receive packets. The client and server programs were developed us-
ing Python sockets and Scapy API. They are automatically deployed on all the
VMs prior to the execution of the algorithm. We use a three-dimension session
array (1°¢ dimension: clients; 2"¢ dimension: servers; 3"¢ dimension: servers IP
addresses) to report the done and undone sessions throughout the iterations of
the main algorithm. All the values of this array are initialized to false, except
when the server and the client are the same (we do not perform local sessions).
At the end of each iteration of the algorithm, the clients are monitored to know
whether their sending of packets is done so the servers can be interrupted and the
results retrieved from them. The algorithm starts by running the VMs to VMs
sessions, then the external location to VMs sessions (multithreaded, because the
external location can be client of all VMs at the same time), and finally the VMs
to the external location sessions sequentially. Let us note:

— NV as the total number of VMs.

— NIP; as the total number of IP addresses of VM i.

— NS = Z (1+ Z NIP;) + Z NIP; as the total number of

0<i<NV 0<ji;zjyv 0<i<NV

sessions. It is composed of the sessions from VMs to other VMs and the
external location, and sessions from the external location to VMs.

— NS; = NIP; x (NV — 1) the number of inter-VM sessions for a server .

— d as the delay between packet sendings.

— NP as the number of packets to be sent in each session.

An iteration is defined as the time needed to execute a session, which is
NP x d+ 2 (2 is the 2-second sleeping time between the launch of a server and
a client). Remember that several sessions can be executed in a single iteration.
When VMs have one IP address, N.S; = (NV —1), and this is also the number of
iterations for inter-VM exchanges (one session as a server per iteration for each
VM). However, VMs can have multiple IP addresses (known as multihoming),
and a VM cannot be server twice during the same iteration. The number of extra
inter-VM sessions related to a server ¢ due to multihoming is noted as NA; =
NS; — (NV —1). Multihoming entails max{/NA;} additional iterations (where
the extra sessions are executed in parallel according to the algorithm). Therefore,
we can deduce the number of iterations for inter-VM exchanges as NV — 1 +
max{NA;}. Sessions from the external location to VMs IP address are run in
parallel (max{NIP,;} iterations), and sessions from VMs to an external location
are run sequentially (N'V iterations). Adding the 2-second sleeping time present
in the get_access() function (to ensure the results of a session are generated on
a server before retrieving them), we get a global estimation time of:

T=2NV —1+max{NA;} + max{NIP;}) x (NP xd+2)+ NS x 2
In the formula, we do not take into account the time of code instructions and the
time needed to retrieve the accessibilities and write them on disk. Our algorithm

Algorithm 1 Dynamic analysis algorithm
Require: V: set of VMs and their IP addresses; M: session matrix;
this: external audit machine; this_ip: external audit machine IP address
Ensure: AM: accessibility matrix
1: still_sessions < True
2: while still_sessions do

3: still_sessions < False

4: forn € 1..Card(V) do

5: session_found < False; S < 0; vml < 1

6: while vml < Card(V') and !session_found do

T vm2 <1

8: while vm2 < Card(V) and !session_found do

9: ip 1

10: while M[vm1][vm2][ip] do ip++ end while

11: if |M[vm1][vm2][ip] and S N {V][vm1],V[vm2][ip]} == 0 then
12: still_sessions < True

13: run_server(V[vm2]);sleep(2); run_client(V]vml])
14: S+ S U {V[oml],V[vm2],V[vom2][ip]}

15: M[vml1][vm2][ip] < True; session_found < True
16: end if

17: vm2++

18: end while

19: vml++
20: end while
21: end for

22: for s € S do AM <« get_access(s) end for
23: end while

24: S « 0;

25: for vm € 1...Card(V) do

26: for ip € 1...Card(vm/[ip]) do

27: run_server(V[vm)); run_client(this); S < S U {this,V[vm],V[vm][ip]}
28: end for
29: end for

30: for s € S do AM < get_access(s) end for

31: for vm € 1...Card(V) do

32: run_server(this); run_client(V]vm]); AM <« get_access({V[vm],this,this_ip})
33: end for

has a linear execution time which depends on the number of VMs and IPs per
VM. A simple algorithm that would execute each session sequentially would have
an exponential execution time depending on the number of sessions (of course
the sleeping times we put would be needed and to be considered too).

4 Testbed and Experimental Results

Testbed Environment To validate the feasibility and efficiency of our algo-
rithms, we run our experiments on a cloud platform based on VMware which

Virtual Datacenter

Virtual Datacenter

Virtual Datacenter

Microsoft SQL Server

Virtual machine for

vCloud Director
- . O
audit operations

vCenter vShield Manager

vShield App! ! vShield App

—— —

Dell PowerEdge R620 Dell PowerEdge R620

Fig. 3. VMware-based experimental platform: scenario 1

is widely used for the deployment of IaaS clouds. This platform includes two
physical rack servers (Dell PowerEdge R620 with two Intel Xeon E5-2660 and
64Go of RAM) connected on a network switch (HP 5120-24G EI). The servers
run VMware vCloud Suite (VMware top TaaS solution). It includes a hypervisor
(VMware ESXi), cloud management software (vCenter, vCloud Director, Mi-
crosoft SQL Server), and cloud security management sofware (vShield Manager).
We deployed two scenarios: one is a small size virtual infrastructure composed
of one vDC to illustrate our approach; another one is a large size infrastructure
composed of three vDCs to explore the scalability of our approach. Figure 3
illustrates the experimental platform with scenario 1 and its layer 3 topology.
VMs run the Debian operating system. VMs and edge firewalls are connected
using distributed virtual switches. The audit operations are executed from a VM
equipped with 4 CPU cores and 4Go of RAM and running a Debian-based sys-
tem with the necessary tools and libraries. It is placed in the cloud management
network which is external to clients’ networks. In scenario 1, there are 3 VMs
(one IP address for two of them, two IP addresses for one of them). There are 8
possible inter-VM sessions. Adding the sessions related to the external location
(the VM for audit operations), we have a total of 15 sessions. We also imple-
mented a total of 30 routing, filtering and NAT rules on the firewalls in order to
implement the accessibility matrix shown in Table 2. In scenario 2, there are 23
VMs (one IP address for 22 of them, two IP addresses for one of them). There
are 528 inter-VM possible sessions. Adding the sessions related to the external
location, we have a total of 575 sessions. We also implemented a total of 120
routing, filtering and NAT rules on the firewalls. Table 3 summarizes the two
scenarios.

Destinations
172.16.2.1(172.16.2.2|192.168.1.150(172.16.2.66|0.0.0.0
vm-372 echo-request
vm-375| MySQL SSH
Sources vm-378| echo-reply
0.0.0.0 any

Table 2. User-defined accessibility matrix implemented in scenario 1

of |vDCs|VMs|Sessions|Networks|Edge |Hypervisor-based |Routing, NAT,
firewalls|firewall scopes Filtering Rules
Scenario 1| 1 3 15 3 2 3 30

Scenario 2| 3 23 575 7 5 7 120
Table 3. Examples scenarios

Prior to the execution of the static and dynamic analysis, we used a set of
embedded tools provided by VMware to perform the automated cloning phase of
the infrastructure. Note that in both scenarios, we consider a total of 587 known
TCP, UDP and ICMP services®.

Static analysis In scenario 1, there are 587 x 15 = 8805 accessibility requests
executed to build the accessibility matrix. Figure 4 is the accessibility graph
associated to the generated matrix. It took 22.61s to process the accessibility
requests. In scenario 2, there are 587 x 575 = 337525 accessibility requests, and
it took 4mn24s to run the algorithm. This shows that our logic engine is scalable,
where nearly 38 times more requests are only 12 times slower to execute.

0.0.0.0

0.0.0.0

UDP[any],ICMP[any], TCP[any] UDP[&

UDP[67]
m-372

UDP[any],ICMP[any], TCP[any] (UDP[67]

UDP[67] 172.16.2.1

192.168.1.150

TCP[22]

ICMP[echo-reply]

m-378

Fig. 4. Accessibility graph generated from static analysis in scenario 1

ICMP[echo-request]

Dynamic analysis In scenario 1, using 2-second sleeping times and a 10ms
inter-packet delay, the theoretical execution time of our alorithm would be (cf.
section 3.2) T = (6 — 14+ 2+2) x (587 x 0.01 + 2) + (15 x 2) = 1mn41ls. Running
the dynamic analysis on our testbed gave a real execution time of 2mn58s. The

3 We used the services used in the DARPA Internet network, commonly found under
the /etc/services file in Linux-based distributions.

0.0.0.0

0.0.0.0

UDP[any],ICMP[any], TCP[any] (UDP[67]

UDP[any],ICMP[any], TCP[any] UDP[6 UDP[67]

vm=375

¥m-372
Camnieaz > ((s21s81150 D ||VoPsn (1721621)

TCP[22]

ICMPlecho-reply, router-solicitation, traceroute, photuris]

:m-378

Fig. 5. Accessibility graph generated from dynamic analysis in scenario 1

TCMP[echo-request, address-mask-reply]

overhead is explained by code instructions. Figure 5 is the accessibility graph
associated to the generated matrix. In scenario 2, the duration was 47mn46s with
a lms inter-packet delay and 0.5-second sleeping times, which is an acceptable
result given the size of the infrastructure in this case, and the total number of
packets sent (337 525 packets). Note that the inter-packet delay and the sleeping
times parameters have to be adjusted according to the capacity of the physical
hardware and the size of the infrastructure to analyze. It took 1h16mn08s using
the parameters from scenario 1 (2-second sleeping times and a 10ms inter-packet
delay), and 56mn47s with a 5ms inter-packet delay and 1-second sleeping times.

Discrepancy analysis Here are the discrepancies reported from scenario 1:

— 0.0.0.0 — 172.16.2.1, 172.16.2.2 (UDP 67): not defined but configured.

— 172.16.2.1 — 172.16.2.2 (UDP 67,68): not defined but configured.

— 172.16.2.2 — 172.16.2.1 (UDP 67,68): not defined but configured.

— 0.0.0.0 — 172.16.2.1, 172.16.2.2 (UDP 67): not defined but observed.

— 172.16.2.1 — 172.16.2.2 (UDP 67,68): not defined but observed.

— 172.16.2.2 — 172.16.2.1 (UDP 67,68): not defined but observed.

— vin-378 — 172.16.2.1 (router-solicitation, traceroute, photuris): not config-
ured but observed.

— vin-372 — 172.16.2.66 (addr-mask-reply): not configured but observed.

These discrepancies can be explained because VMware firewalls let pass more
traffic than expected in some rules (here some ICMP management subprotocols
when allowing ”echo-request” or ”echo-reply” traffic) and implicitly configure
some rules (here UDP port 67 and 68 traffic when activating DHCP features).

5 Related Work

Network accessibilities are built by discovering the hosts and analyzing connec-
tivity between them. They could be derived either statically, based on network
equipments configuration (analyzing routing, filtering and NAT rules); or dy-
namically, by running port scans. In [4], the authors rigorously formulate the

problem of reachability in networks. While this is useful as grounding work to
understand well this problem, they do not provide methods to collect network in-
formation and their model does not handle complex NAT. Furthermore, they do
not provide a practical algorithm or experimental results showing the scalability
of their approach. The approach presented in [5], about computing accessibil-
ity matrices and expressing accessibility queries, is thorough and very relevant.
Their data structures, algortihms and query language were a basis to build our
static analysis approach, though we kept it simpler and more adapted to cloud
networks. We also believe that using an imperative language (Prolog) rather
than a declarative one (C++) is more adapted to compute complex accessibility
queries. [6, 7] are good examples of analysis of filtering configurations but are re-
stricted to a device scope. They do not compute end-to-end accessibilities which
are needed in our context.

Considering the general topic of cloud security audits, one can mention the
approaches presented in [8, 9], in addition to the publication of recommandations
and guidance on security assessments by the Cloud Security Alliance (CSA) [10].
In [8], cloud infrastructures are analyzed using accessibility graphs and vulnera-
bility discovery to build attack graphs and find shortest paths as critical attack
scenarios. Although the proposed approach is judicious, their static analysis
model includes only one global firewall and thus does not address rules consis-
tency and interactions in complex network topologies. We can also cite the work
in [11] on static flow analysis in virtualized infrastructures, where interaction of
cloud ressources are generated as a graph model. However, they do not take into
account filtering rules at the upper levels. Furthermore, both [8] and [11] do not
propose a dynamic analysis method to verify network accessibilities. In [9], the
authors provide an automated audit system as a service for cloud environments,
along with a language to define a cloud security policy. The goal of this system
is to allow automatic auditing of VMs following user-defined policies. The policy
scenarios are quite thorough and tend to model the security requirements a cloud
would have to meet, including network access controls. Although it can audit
systems in real time, their solution requires embedding agents within each of
the key points of the infrastructure, which is not feasible in proprietary clouds.
Our approach is more lightweight as we preserve the original components and
execute programs in the VMs only for the time of the analysis.

6 Conclusion and Perspectives

In this paper, we have described the basics of our approach to automatically an-
alyze network access controls in cloud computing virtual infrastructures. It aims
at identifying accessibilities managed by virtual firewalls, considering a combi-
nation of static and dynamic analysis methods to derive accessibilities, along
with the analysis of discrepancies in the results. The proposed methodology
was designed to take into account the constraints inherent to cloud computing
with limited impact on the provider and client’s business. Experiments have
been carried out on a VMware-based cloud platform to illustrate the feasibil-

ity and scalability of our approach. The developed tools shall be integrated in
an industrial secured cloud computing framework. Having designed a generic
approach, we can plan to extend our VMware-based prototype to other IaaS
solutions. This would result in the development of adapted configuration parsers
and XSLT sheets, and customize the use of provided APIs to manipulate the
ressources.

Ongoing work includes the extension of the evaluation of cloud security tools
to IDS/IPS mechanisms. We are currently exploring the construction and exe-
cution of attack scenarios from the accessibilities found, in order to assess the
efficiency of deployed IPS/IDS probes [12]. We intend to keep the evaluation
process fully automated and without any impact on the client’s business.

References

1. Jensen, M., Schwenk, J., Gruschka, N., Tacono, L.L.: On technical security issues
in cloud computing. In: Cloud Computing, 2009. CLOUD’09. IEEE International
Conference on, IEEE (2009) 109-116

2. Studnia, I., Alata, E., Deswarte, Y., Kaaniche, M., Nicomette, V., et al.: Survey of
security problems in cloud computing virtual machines. Proceedings of Computer
and Electronics Security Applications Rendez-vous (C&ESAR 2012) (2012) 61-74

3. Oktay, Sahingoz: Attack types and intrusion detection systems in cloud comput-
ing. In: Proceedings of the 6th International Information Security & Cryptology
Conference. (2013) 71-76

4. Xie, G.G., Zhan, J., Maltz, D.A., Zhang, H., Greenberg, A., Hjalmtysson, G., Rex-
ford, J.: On static reachability analysis of ip networks. In: INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE. Volume 3., IEEE (2005) 2170-2183

5. Khakpour, A., Liu, A.X.: Quarnet: A tool for quantifying static network reachabil-
ity. Michigan State University, East Lansing, Michigan, Tech. Rep. MSU-CSE-09-2

2009

6. 1(\/Ialrm)orstein7 R., Kearns, P.: A tool for automated iptables firewall analysis. In
Association, U., ed.: ATEC ’05: Proceedings of the annual conference on USENIX
Annual Technical Conference. (2005) 44-44

7. Nelson, T., Barratt, C., Dougherty, D.J., Fisler, K., Krishnamurthi, S.: The mar-
grave tool for firewall analysis. In: USENIX Large Installation System Adminis-
tration Conference. (2010)

8. Bleikertz, S.: Automated security analysis of infrastructure clouds. Master’s thesis,
Norwegian University of Science and Technologys (2010)

9. Doelitzscher, F.; Ruebsamen, T., Karbe, T., Knahl, M., Reich, C., Clarke, N.:
Sun behind clouds-on automatic cloud security audits and a cloud audit policy
language. International Journal On Advances in Networks and Services 6(1 and
2) (2013) 1-16

10. Alliance, C.S.: Secaas implementation guidance: Security assessments. (2012)

11. Bleikertz, S., Grof}; T., Schunter, M., Eriksson, K.: Automated information flow
analysis of virtualized infrastructures. In: Computer Security-ESORICS 2011.
Springer (2011) 392415

12. Probst, T., Alata, E., Kaaniche, M., Nicomette, V., Deswarte, Y.: An approach for
security evaluation and analysis in cloud computing. SAFECOMP 2013 FastAb-
stract (2013)

