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Abstract: Monitoring of dune erosion and accretion on the high-energy macrotidal Vougot 

beach in North Brittany (France) over the past decade (2004–2014) has revealed significant 

morphological changes. Dune toe erosion/accretion records have been compared with 

extreme water level measurements, defined as the sum of (i) astronomic tide; (ii) storm surge; 

and (iii) vertical wave runup. Runup parameterization was conducted using swash limits, 

beach profiles, and hydrodynamic (Hm0, Tm0,–1, and high tide water level—HTWL) data sets 
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obtained from high frequency field surveys. The aim was to quantify in-situ environmental 

conditions and dimensional swash parameters for the best calibration of Battjes [1] runup 

formula. In addition, an empirical equation based on observed tidal water level and offshore 

wave height was produced to estimate extreme water levels over the whole period of dune 

morphological change monitoring. A good correlation between this empirical equation 

(1.01Hmoξo) and field runup measurements (Rmax) was obtained (R2 85%). The goodness of 

fit given by the RMSE was about 0.29 m. A good relationship was noticed between dune 

erosion and high water levels when the water levels exceeded the dune foot elevation. In 

contrast, when extreme water levels were below the height of the toe of the dune sediment 

budget increased, inducing foredune recovery. These erosion and accretion phases may be 

related to the North Atlantic Oscillation Index. 

Keywords: macrotidal beach; runup; storm; dune; erosion; extreme water level; NAO 

 

1. Introduction 

Extreme events such as storms or hurricanes play a major role in dune erosion [2–7]. In these 

conditions, the foredune is severely scarped due to flooding processes that exacerbate wave attack on 

the dune foot [6,8–17]. Based on this principle, Sallenger et al. [18] and Ruggiero et al. [19] proposed 

different models designed to assess the foredune’s sensitivity to erosion generated by the impact of storm 

waves. This methodological approach was used for assessing the vulnerability of barrier islands to 

hurricanes along the eastern coast of the USA [7,18] and analyzing decadal-scale variations in dune 

erosion and accretion rates on the Sefton coast in northwest England [20]. These models examine the 

relationship between the extreme water level elevation and relevant beach morphology corresponding to 

the height of dune foot. Extreme water level is defined as the sum of (i) astronomic tides; (ii) storm 

surges; and (iii) vertical wave runup, including both setup and swash. Sallenger [18] has defined four 

storm-impact regimes (swash, collision, overwash, and inundation) related to increased water levels 

from storms that shift the runup and location of wave attack higher on the profile, making berms or 

foredunes more vulnerable to erosion and overtopping. In this storm-impact scaling model, the borders 

between the impact regimes represent thresholds across which the magnitudes and processes of dune 

erosion are substantially different. Ruggiero’s [19] model appears simpler; it simply examines predicted 

extreme water elevations with measured elevations of the junctions between the beach face and the toe 

of foredunes or sea cliffs. The aim is to evaluate the frequency with which water can reach the property, 

providing an evaluation of the susceptibility to potential erosion. 

If storm surge (wind and pressure surge) can be deduced from the observed tide using tide gauge 

measurements, estimation of wave runup is a more complicated issue because of the complex processes 

driving the swash zone [21]. It corresponds to the time-fluctuating vertical position of the swash limit 

on the upper part of the beach, and was first studied in relation to engineering structures such as dykes [22] 

or rock-rubble structures [23]. It is defined as the difference between discrete water elevation maxima 

and still water level corresponding generally to observed tide level [21,24,25]. The complexity of 

processes that govern the swash zone are related to incident band wave energy transferred to both higher 
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and lower frequencies through the surf zone [26]. Therefore, wave runup is largely dependent on 

environmental conditions such as the local beach slope (synthesized through dissipative to reflective 

context generally given by Iribarren number [27]) and the infragravity-to-incident offshore wave energy 

which dominates the inner-surf zone [24,28–30]. A simple formula was first proposed by [23] using 

significant wave height (Hs) and slope (S): 

SH sR  (1)

Battjes [1,27] has shown that runup was better related to a morphodynamic component defined by a 

dimensionless surf similarity parameter called the Iribarren number, expressed by the following equation: 

o
s

ξ
H

R
C  (2)

where C is a constant, and ξo is the Iribarren number given by [17]: 

1/2
oo

o )/L(H

tanβ
ξ   (3)

where tanβ is the beach slope, Ho corresponds to significant offshore wave (equivalent to Hs in deep 

water), and Lo is deep water wavelength. 

Following this approach, a statistical analysis of wave run-up (R2%) was proposed by Holman from 

field data collected on a natural intermediate-to-reflective beach (beach slope tanβ from 0.07 to 0.2) [25]. He 

found a clear relationship between the 2% exceedence value of runup normalized by Hs and ξo, and fit 

this equation to field data collected at Duck, NC (USA) using the intermediate depth (18 m) Hm0 and Tpic 

(where Hm0 is wave height estimates based on spectral moments, and Tpic is the period associated with 

the largest wave energy known as the peak period). Based on the laboratory tests, Mase [31] developed 

a predictive equation using deep water wave parameters for irregular wave runup on uniform 

impermeable slopes (tanβ from 0.03 to 0.2). He found that the runup was approximately twice as large 

as values measured in the field by Holman [25], and explained this discrepancy by the effect of beach 

profile geometry. The runup spectrum measured on natural sandy beaches on the coast of New South 

Wales (Australia) indicated proportionality between the best-fit of runup elevation distribution and the 

beach slope for a steeper beach (tanβ ≥ 0.10). For the flatter beaches (tanβ ≤ 0.10), the slope became 

largely unimportant and the vertical scale of the runup distribution was scaled directly with (HoLo)0.5 [32]. 

Ruessink et al. [29] came to the same conclusion by examining runup under highly dissipative conditions 

(beach slope from 0.01 to 0.03) at Terschelling (The Netherlands). They found that the significant 

infragravity swash height (Rig) was about 30% of the offshore wave height H0, and that the slope in the 

linear H0 dependance of Rig amounted to only 0.18, considerably smaller than the value of 0.7 observed 

on steeper beaches by Guza and Thornton [24]. More recently, a synthesis of empirical parameterization 

of extreme R2% runup, based on several natural beach and laboratory experiments, indicated that in an  

infragravity-dominated dissipative context, the magnitude of swash elevation was dependent only on 

offshore wave height and wavelength [21]. In an intermediate and reflective context with complex 

foreshore morphology, beach slope was on the contrary much more important in practical applications 

of the runup parameterization. Therefore, the authors have elaborated different runup equations 

according to the beach morphodynamic context. For a dissipated state (ξo < 0.3), Formula (4) is used, 
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while for an intermediate state (0.3 < ξo < 1.25) it is recommended to use Formula (5). Formula (6) is 

used for a reflective state (ξo > 1.25): 

R2% = 0.043 (H0L0)1/2 (4)

  0 01/2
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  (5)

R2% = 0.73βf (H0L0)1/2 (6)

where R2% corresponds to the height reached by 2% of the highest runups, βf is the slope calculated  

by the whole length of the upper part of the beach, and H0 and L0 are deepwater wave height and 

wavelength, respectively. 

In a recent study, a methodological approach for calculating runup from the analysis of morphodynamic 

conditions on macrotidal sandy beach in Vougot (Brittany, France) was published [33]. The goal of this 

work was to improve simple parameterization for a maximum runup elevation based on the earlier 

empirical formula produced by Battjes [1]. The method was based on field measurements of wrack lines 

related to the highest high-tide swash runup elevation and the analysis of morphological and 

hydrodynamic conditions. This allowed us to calibrate runup formula effectiveness on a macrotidal 

sandy beach and to determine the best slope parameters to estimate runup in this coastal environment 

that has a tidal range of about 7 m. The results suggest that on the macrotidal sandy beach, the slope of 

the active section of the upper beach should be used to obtain the most relevant estimation of observed 

runup elevations (Figure 1). The work presented in this paper extends the analysis of runup on the same 

study site (Vougot beach in north western Brittany) in order to estimate extreme water levels. Based on 

the Sallenger [18] and/or Ruggiero [19] models, the aim is to evaluate the frequency with which these 

extreme water levels have reached the toe of the dunes, providing an evaluation of the susceptibility to 

potential erosion. First, a new parametrization of the runup equation was accomplished following the 

same methodological approach as Cariolet and Suanez [33]. This analysis was based on a new data set 

obtained between June 2012 and June 2013 and includes the one used in the previous study [33]. 

Secondly, calibration of a general empirical formula based on tide and offshore wave measurements was 

achieved in order to predict extreme water levels over the last decade (2004–2014). Thirdly,  

the relationship between the elevation of extreme water levels and relevant beach morphology (in this 

case the toe of the dune) was analyzed from 2004 onwards, this being the period during which the survey 

of dune morphological changes started. The aim was to identify and explain the dune system’s phases 

of erosion and recovery related to long term meteo-oceanic condition variations. Emphasis was put on 

storms events causing erosion and retreat of dune fronts. 

2. Geomorphological and Hydrodynamic Setting 

The study area is the Vougot beach located on the North coast of Finistère in Brittany (France)  

(Figure 2). The general morphological setting comprises large rocky outcrops representing the 

submerged part of the Léon plateau. Contact between the coastal platform and the continental part of the 

plateau consists of a partly tectonic scarp 30 to 50 m high. In the Vougot beach area, the scarp is 

disconnected from the sea by the existence of a dune which was formed during the Holocene [34]. This 
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dune, anchored on the Zorn abandoned cliff, stretches over about 2 km in a southwest to northeast 

direction (Figure 2b). It culminates at an altitude of 13 m (NGF) (i.e., above sea level—asl); the altimetric 

reference NGF refers to French datum. In our case this reference is situated 3.5 m above the lowest 

astronomic tide level (LAT). It represents a massive dune complex 250 to 400 m wide. Over the last 

decades, the dune of Vougot beach has experienced erosion. A historical shoreline change analysis based 

on a series of aerial photographs and field measurements from 1952 to 2014 shows that the retreat of the 

dune principally affected the eastern part of Vougot beach. Erosion was caused by the construction of 

the Enez Croas Hent jetty in 1974 (Figure 2b), which completely modified the hydrodynamics and 

interrupted the westward sand drift, inducing an increase in sediment loss for the Vougot beach/dune 

system [35]. Calculation of erosion rates over the 1978–2000 period (following the building of the jetty 

in 1974) showed that the maximum retreat of the dune reached −0.6 m/year; and this rate has increased 

from −0.6 m/year to −1.5 m/year over the last decade (from 2000 to 2009) due to the impact of a major 

storm on 10 March 2008 [35,36]. However, from spring 2008 to summer 2013, almost five years of dune 

recovery occurred. It was characterized by dune progradation reaching +12 m on the zones with the most 

accretion [37]. Finally, during the winter of 2013–2014, a cluster of about 12 storm events hit the coast 

of Brittany with an exceptional frequency [38]. Dune erosion of Vougot beach during this period 

(between December 2013 and March 2014) reached almost −15 m on the most retreated part. Therefore, 

the maximum retreat of the dune between 2008 and 2014 was about −0.7 m/year.  

 

Figure 1. Method used by Cariolet and Suanez [33] to calculate beach slope for the runup 

calculation. The lower bound corresponds to the limit of the profile section where changes 

of elevation are the most significant. This section concerns the upper part of the profile, and 

it is called “active section”. This limit of 43 m has been defined by calculating the standard 

deviation of height changes of the beach profiles (gray lines) measured between April 2008 

and November 2010 (see Table 1). The upper bound corresponds to field measurements of 

the swash height given by the water mark limit or wrack line deposit. 
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Figure 2. Location map. Regional setting and Roscoff tidal gauge station (a); local setting 

and location point where offshore wave data (Hm0 and Tm0,–1) were calculated using (WW3) 

modeling (b); and aerial photography of Vougot beach showing the beach/dune profile 

location and both wave/water level and atmospheric pressure sensors (c). 

Offshore incident waves obtained over the period 1979–2002 show that they come mostly from the 

west–northwest direction (242°) (Figure 2a). The most frequent wave height (Hm0) is between 1.5 and 3 m 

with an average height reaching 2.2 m, and the most frequent period (Tpic) is between 9 and 11 s, with 

an average period of 10.6 s. The maximum wave height and period related to storm events reached 
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respectively 14 m and 20 s. Because of a tidal range reaching about 7 m between MHWS and MLWS, 

the Vougot beach is characterized as a macrotidal environment. The beach profile of the section studied 

is characterized by different morphodynamic environments according to the composite slope and 

concave beach (Figure 3). The lower part of the tidal beach, between MHWN and MLWN, is mainly 

associated with low Iribarren parameter values of ≤0.3 and a very gentle slope, tanβ, reaching 0.034 to 

0.014. These morphodynamic conditions correspond to a dissipative environment. In contrast, the upper 

beach, between MHWN and HAT, is characterized by intermediate conditions with Iribarren values 

>0.72 and beach slope tanβ reaching 0.18 between HAT level and the foot of the dune. Therefore, 

depending on the tide’s water level, waves break at high tide on different morphodynamic environments. 

Under neap tide conditions, wave-breaking processes are related to rather dissipative conditions, while 

under spring tides, intermediate to moderately reflective conditions (Iribarren parameters up to 1.6) 

prevail. This environmental context is important because the behavior of runup under dissipative 

conditions is different than during reflective and intermediate conditions [21,39]. 

 

Figure 3. (Red line): Mean cross-shore profile of the surveyed Vougot beach section.  

(Blue spot): The standard deviation of profile elevation change rates (see Figure 1). 

Morphodynamic conditions (dissipative to reflective conditions) have been analyzed along 

the concave beach profile using Iribarren value. 

3. Methods 

3.1. Monitoring of Dune Morphological Changes 

The monthly monitoring of dune morphological changes started in July 2004. It consisted of 

beach/dune profile measurements carried out along the cross-shore transect presented in Figure 2c, using 

a Trimble 5700/5800 Differential GPS. Data points described by three coordinate values (x, y, z) were 

collected in Real Time Kinematic (RTK) mode. Measurements were calibrated using the geodesic 
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marker from the French datum and the geodesic network provided by the IGN located about 2 km from 

the study area. Several control points set up in the field were used to assess the accuracy of the survey 

reaching ±4–5 cm (X and Y) and ±1–2 cm (Z). These values were used to calculate the margin of error 

associated with the dune sediment budget. 

3.2. Survey of Beach Profile and Maximum Swash Elevation (Runup) Rmax 

Between July 2012 and June 2013, 59 measurements of beach profile and maximum swash elevation 

were carried out using the same method as the one followed in the previous study by Cariolet and  

Suanez [33]. Maximum swash elevation was determined by the wrack deposit and/or the limit of the 

water mark identified by a tonal change from dark wet foreshore sand to light dry sand on the upper 

beach (Figure 4a). We assume that this limit corresponded to the highest level reached by the runup 

during the previous high tide. Therefore, it corresponds to Rmax (maximum runup) instead of the generally 

used random variable R2% that corresponds to vertical runup distance exceeded by two percent of wave 

runups. In addition to the swash elevation measurement, the beach/dune profile was also measured in 

order to recover the morphological parameters needed to analyze runup processes. These measurements 

were acquired along the same transect and according to the same DGPS method as described previously. 

This data set was added to the 31 surveys conducted as part of the study of Cariolet and Suanez [33].  

In total, a set of 90 morphological and runup measurements was used in this study (Figure 4b and Table 1). 

 

Figure 4. The limit between dry and wet sand (water mark) at the level of high tide deposit 

(wrack line) shows the level reached by the swash processes (a); DGPS measurement  

of beach/dune profiles and the maximum runup elevation reached during the previous  

high tide (b). 

Table 1. Overview of environmental conditions and dimensional swash parameters where 

Hm0 (m), Tm0,–1 (s), and L0 (m) correspond to WW3 offshore wave, Rmax (m) is runup field 

measurements, and HTWL (m) is high tide water level. 

Date Hm0 (m) Tm0,–1 (s) L0 (m) Slope (tanβ) ξ0 Rmax (m) HTWL (m) 

08 April 2008 0.6 8.1 101 0.118 1.502 0.95 4.36 

29 August 2008 1.0 8.3 107 0.061 0.623 0.30 3.10 

29 September 2008 0.8 7.5 88 0.093 1.004 0.74 3.80 
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Table 1. Cont. 

12 January 2009 3.6 12.9 261 0.096 0.825 3.24 4.01 

13 February 2009 1.8 11.0 188 0.107 1.111 1.46 4.14 

29 April 2009 1.7 8.7 119 0.071 0.591 0.93 3.37 

17 December 2009 0.8 10.0 156 0.080 1.100 0.75 3.56 

22 December 2009 1.0 8.0 101 0.067 0.680 0.67 3.22 

23 December 2009 1.0 7.9 98 0.056 0.559 0.64 2.97 

30 December 2009 1.6 10.5 171 0.073 0.749 1.11 3.40 

04 January 2010 1.6 8.3 107 0.110 0.906 1.06 4.19 

07 January 2010 2.3 6.6 69 0.058 0.319 0.69 3.09 

13 January 2010 2.8 11.6 210 0.054 0.462 1.36 3.03 

14 January 2010 2.6 11.8 217 0.069 0.635 1.43 3.36 

16 January 2010 2.3 11.9 223 0.091 0.903 1.52 3.83 

21 January 2010 2.8 12.9 261 0.054 0.525 1.40 3.04 

28 January 2010 2.0 7.5 88 0.049 0.324 0.89 2.86 

01 February 2010 1.5 6.6 68 0.123 0.837 1.57 4.53 

03 February 2010 1.8 7.6 90 0.111 0.781 1.63 4.23 

05 February 2010 2.9 11.5 207 0.068 0.570 1.14 3.35 

05 February 2010 4.5 13.5 285 0.049 0.393 1.75 2.95 

06 February 2010 4.1 12.0 226 0.039 0.293 1.02 2.41 

26 February 2010 2.1 6.0 56 0.065 0.336 1.01 3.24 

28 February 2010 1.5 5.6 50 0.124 0.710 1.50 4.56 

03 March 2010 1.1 5.7 50 0.127 0.846 1.26 4.62 

29 March 2010 1.2 7.6 89 0.113 0.965 1.08 4.28 

31 March 2010 4.5 9.2 132 0.114 0.616 3.47 4.52 

10 June 2010 1.3 6.2 61 0.051 0.347 0.47 2.87 

13 July 2010 1.1 8.6 116 0.097 0.991 0.64 3.89 

12 October 2010 1.8 6.3 62 0.082 0.482 0.63 3.61 

08 November 2010 2.6 7.3 82 0.115 0.648 1.67 4.39 

05 July 2012 1.7 9.2 132 0.097 0.847 1.50 3.95 

02 October 2012 2.6 10.7 180 0.086 0.712 1.97 3.73 

17 October 2012 3.6 12.5 246 0.123 1.018 3.36 4.63 

02 November 2012 2.8 8.9 123 0.080 0.531 1.58 3.60 

06 November 2012 1.5 6.8 72 0.033 0.225 0.57 2.24 

12 November 2012 1.9 9.7 146 0.078 0.686 1.73 3.52 

19 November 2012 1.6 9.3 134 0.076 0.697 1.44 3.46 

23 November 2012 3.3 11.5 205 0.039 0.306 1.00 2.45 

26 November 2012 2.4 8.5 112 0.065 0.440 1.06 3.25 

30 November 2012 1.0 9.6 144 0.077 0.903 0.10 3.49 

03 December 2012 3.0 10.4 170 0.058 0.434 1.51 3.13 

06 December 2012 1.7 10.0 157 0.036 0.337 1.27 2.39 

11 December 2012 1.1 7.6 89 0.063 0.575 0.68 3.15 

13 December 2012 0.8 10.8 183 0.107 1.584 1.21 4.13 

14 December 2012 1.8 11.3 198 0.125 1.304 2.48 4.64 

17 December 2012 4.8 12.2 233 0.097 0.678 3.38 4.14 

07 January 2013 1.8 10.8 181 0.034 0.337 0.58 2.25 
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Table 1. Cont. 

08 January 2013 1.8 10.8 184 0.038 0.384 0.55 2.50 

09 January 2013 1.8 12.1 227 0.053 0.596 0.47 2.92 

16 January 2013 1.1 6.7 71 0.098 0.774 1.05 3.91 

23 January 2013 4.0 13.1 266 0.038 0.312 1.54 2.33 

24 January 2013 2.4 10.9 187 0.041 0.362 1.07 2.63 

25 January 2013 2.1 11.2 195 0.053 0.502 0.85 2.95 

27 January 2013 3.1 10.1 160 0.089 0.635 2.11 3.81 

28 January 2013 5.1 13.9 301 0.074 0.567 3.25 3.68 

29 January 2013 5.0 14.3 318 0.089 0.708 3.91 3.98 

04 February 2013 2.7 9.4 139 0.038 0.270 1.01 2.43 

05 February 2013 5.7 11.9 220 0.039 0.241 1.35 2.20 

06 February 2013 6.1 12.4 242 0.040 0.251 1.50 2.29 

07 February 2013 3.3 9.3 136 0.040 0.259 1.09 2.53 

14 February 2013 3.1 10.2 163 0.094 0.678 1.83 3.93 

19 February 2013 1.8 12.5 242 0.031 0.361 0.65 1.60 

21 February 2013 1.5 7.4 87 0.032 0.240 0.99 1.87 

22 February 2013 1.9 8.5 112 0.034 0.266 0.54 2.30 

04 March 2013 0.9 5.6 49 0.057 0.422 0.12 2.99 

05 March 2013 0.5 4.8 36 0.042 0.359 0.22 2.63 

10 March 2013 1.5 12.7 250 0.095 1.211 1.43 3.89 

14 March 2013 1.2 5.5 48 0.104 0.656 0.98 4.04 

28 March 2013 0.9 7.2 82 0.109 1.038 0.98 4.17 

29 March 2013 0.9 6.8 73 0.116 1.058 0.86 4.32 

08 April 2013 1.9 11.1 191 0.081 0.814 1.24 3.57 

09 April 2013 2.0 8.4 111 0.099 0.734 1.19 3.98 

07 May 2013 1.7 12.4 241 0.062 0.747 0.95 3.15 

09 May 2013 2.4 9.0 126 0.076 0.546 1.51 3.50 

23 May 2013 1.5 6.8 73 0.063 0.438 0.84 3.17 

23 May 2013 2.2 6.4 65 0.072 0.396 1.09 3.40 

24 May 2013 1.8 6.2 60 0.077 0.440 1.17 3.49 

25 May 2013 2.1 6.3 63 0.086 0.466 1.32 3.71 

27 May 2013 0.6 7.6 91 0.104 1.246 1.04 4.04 

12 June 2013 1.6 8.2 106 0.060 0.499 1.02 3.10 

13 June 2013 2.8 9.3 135 0.049 0.344 0.99 2.92 

14 June 2013 1.4 8.6 114 0.045 0.405 1.08 2.73 

18 June 2013 0.9 9.1 128 0.034 0.408 0.10 2.39 

19 June 2013 1.9 7.8 94 0.035 0.249 0.14 2.36 

20 June 2013 1.9 7.9 97 0.043 0.305 0.45 2.69 

21 June 2013 1.6 9.4 138 0.057 0.530 0.91 3.02 

23 June 2013 3.8 9.9 154 0.091 0.578 1.89 3.91 

24 June 2013 2.7 8.9 124 0.089 0.605 1.89 3.79 

25 June 2013 1.1 7.8 95 0.096 0.911 0.78 3.89 
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3.3. Hydrodynamic Condition Measurements 

Wave analysis is based on two data sets acquired between June 2012 and June 2013. The first one 

corresponds to records taken on the intertidal zone using the OSSI-010-003C pressure sensor (accuracy  

±1.5 cm specification) (Ocean Sensor Systems, Inc®, Coral Springs, FL, USA), which was deployed 

along the morphological profile mentioned above, at −2.5 m asl which corresponds about to the low water 

spring tide level (Figure 2c). A recording frequency of 5 Hz was chosen to reproduce as accurately as 

possible the wave spectrum. The sensor was calibrated before and after each deployment by comparing 

the pressure measured at the low tide level (when the sensor is out of the water and thus measures 

atmospheric pressure) with the atmospheric pressure recorded in situ. The atmospheric pressure was 

measured using the HOBO U20 Water Level Logger sensor (Onset Computer Corporation®, Bourne, MA, 

USA) which was positioned on the outside wall of the nautical center (Figure 2c). The second set of wave 

data concerns simulations acquired from the WAVEWATCH III model (WW3), which reproduced  

the offshore wave conditions at the calculation point 4°29′24′′ W, 48°40′12′′ N at a water depth of  

18.3 m [40,41]. 

Wave parameters such as wave height (Hm0) and period (Tm0,–1) were extracted from both data sets 

for the time periods corresponding to the high tide level (Figure 5). Results showed that the monitoring 

period was marked by a high variability of hydrodynamic conditions. Between the end of November 

2012 and mid-February 2013, ten episodes marked by high offshore waves (>4 m) were recorded, 

including the storm of 6 February, which was characterized by significant heights of >6 m. One can also 

note the two episodes of 14 May and 23 June, where the swells were often above 4 m. A validation of the 

offshore wave data set obtained using WW3 modeling was achieved by comparing these data to those 

measured in the tidal zone by a wave gauge sensor. The correlation shows a good relationship between 

both sets of data, especially for the wave height, with, however, less correlation regarding the periods 

(Figure 5). 

Analysis of the tides is also based on records taken in the tidal zone using gauge sensor OSSI-010-003C 

(Figure 2c). The observed water level was computed taking into account atmospheric pressure measured 

by the HOBO U20 Water Level Logger sensor (Onset Computer Corporation®, Bourne, MA, USA) set 

up on the study site (Figure 2c). It was then possible to calculate the pressure exerted by the water column 

and thus to calculate the height of the latter with the following expression: 

H (water level) = (Psensor − Patmosphere)/ρ.g (7)

where H is the height of the water column (in m), Psensor is the pressure measured by the sensor (in Pa), 

Patmosphere is the atmospheric pressure (in Pa), ρ is the density of water (=1025 kg/m3), and g is the 

acceleration of gravity (=9.81 m/s2). 

Water levels were smoothed to a moving average of 10 min to filter out deformations of the water 

surface related to wave action, and water levels corresponding to both daily high tides were extracted.  

A similar calculation was done using data recorded at a permanent tide gauge station near Roscoff 

located at about 30 km east of the study site (Figure 2). Both the time series from Guissény and Roscoff 

were used to estimate the differences in high tide water level between the two sites (Figure 6). As Figure 6b 

shows, more than 500 high tide level records were used for the statistical analysis, showing a very good 
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correlation between both the Roscoff and Guissény sites. The mean deviation is 18 cm, with variations 

between 25 cm for spring tides and 5 cm for neap tides (Figure 6c). 

 

Figure 5. Offshore (WW3) and shallow (OSSI) wave heights (a) and periods (b) obtained 

between July 2012 and June 2013. Correlations between offshore and shallow wave heights (c) 

and periods (d). 

 

Figure 6. Comparison between tide level (a) and daily high tide water levels (b) recorded at 

Vougot beach, using the OSSI-010-003C sensor, and at the permanent Roscoff tide gauge 

station. (c) Correlation between high tide water levels recorded at Vougot beach and at the 

permanent Roscoff tide gauge station. 
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Observed tide levels show that during the survey period some episodes characterized by high spring 

tide levels, with a tide coefficient close to 100 or higher, occurred (Table 2). When these events were 

combined with a storm, the measurement of runup elevation was considerably higher because of the 

storm surge effect. This is mainly the case for the following seven episodes: 17 October and  

17 December of 2012, 29 January, 11 February, 11 March, 28 May, and 23 June of 2013. 

Table 2. Inventory of high spring tide events characterized by a tide coefficient ≥100.  

In France, the magnitude of the tide from its average value is indicated by a coefficient 

expressed in hundredths, which lies between 20 and 120. A coefficient of 100 is associated 

with a maximum astronomical tidal range in Brest, calculated by the Service Hydrographique 

et Océanographique de la Marine (SHOM). It is defined as follows: C = (H − No)/U, where, 

H: high tide water level, No: mean water level at Brest: 4.13 m, U: height unit specific to the 

locality at Brest: 3.05 m. Tidal coefficients higher than 70 correspond to spring tides, below 

70 they correspond to neap tides. A tidal coefficient of 95 corresponds to mean spring tide 

level, 45 corresponds to mean neap tide level. 

Date and High Tide 
Time 

Tide 
Coefficient

Predicted Tide 
Level (m) 

Observed Tide 
Level (m)  

Surge (m) 

17/09/2012—(17:25) 104 4.3 4.34 0.04 
18/09/2012—(18:15) 106 4.29 4.27 −0.02 
19/09/2012—(06:20) 103 4.13 4.07 −0.06 
16/10/2012—(10:30) 107 4.27   
17/10/2012—(05:20) 109 4.36 4.73 0.37 
18/10/2012—(06:05) 105 4.29 4.55 0.26 
14/11/2012—(04:15) 104 4.26 4.22 −0.04 
15/11/2012—(05:00) 107 4.40 4.35 −0.05 
16/11/2012—(05:55) 104 4.36 4.39 0.03 
14/12/2012—(04:50) 104 4.32 4.66 0.34 
15/12/2012—(05:40) 104 4.38 4.58 0.20 
12/01/2013—(04:30) 102 4.23 4.38 0.15 
13/01/2013—(05:20) 106 4.39 4.42 0.03 
14/01/2013—(06:11) 104 4.37 4.31 −0.04 
11/02/2013—(05:11) 106 4.33 4.42 0.09 
12/02/2013—05:52) 106 4.35 4.32 −0.03 
12/03/2013—(04:50) 102 4.14   
13/03/2013—(05:27) 103 4.16 4.26 0.1 
28/03/2013—(17:20) 103 4.06 4.22 0.16 
29/03/2013—(05:40) 105 4.16 4.32 0.16 
26/04/2013—(16:55) 103 4.12 4.05 −0.07 
27/04/2013—(17:35) 106 4.18 4.15 −0.03 
26/05/2013—(17:20) 104 4.2 4.22 0.02 
27/05/2013—(18:15) 104 4.16 4.31 0.15 
24/06/2013—(17:15) 102 4.22 4.16 −0.06 
25/06/2013—(18:00) 105 4.27   
26/06/2013—(18:49) 103 4.15   

  



J. Mar. Sci. Eng. 2015, 3 687 

 

 

4. Results 

4.1. Calibration of Battjes (1971) Runup Formula 

Fit analysis between observed runup values and morphodynamic variables was achieved following 

the same methodological approach as the one used by Cariolet and Suanez [33]. Morphodynamic 

parameters such as Hm0ξ0 have been used to characterize runup processes in as far as it was demonstrated 

that these variables were best correlated with runup when using the slope of the active section. A new 

correlation between observed runup and Hm0ξ0 was calculated including the data set used by Cariolet 

and Suanez [33] (Figure 7). The relation can be expressed as: 

Rmax = 0.68Hm0ξ0 (8)

It gives the same result as the previous Cariolet and Suanez [33] study with a constant equal to 0.68 

(95% confidence intervals [0.65; 0.71]). 

 

Figure 7. Correlation between observed runup (Rmax) and Hm0ξ0. Equation Rmax = 0.68Hm0ξ0 

is obtained; it was Rmax = 0.67Hm0ξ0 from Cariolet and Suanez [33] previous study. 

4.2. Elaboration of a General Empirical Equation 

This part of the work focused on the parameterization of a general empirical equation that is no longer 

dependent on morphodynamic parameters obtained from high-frequency field measurements such as  

(i) the daily beach profile and (ii) the position of swash elevation along this profile. The approach is 

therefore to quantify the runup using hydrodynamic parameters such as offshore wave and water level, 

which are continuously recorded by wave and tide gauge stations. Morphological parameters such as the 

beach slope, tanβ, are meanwhile deduced from the mean beach profile assuming that the measurement 

of a daily beach profile is no longer taken, as we said earlier. However, the mean beach profile must be 

calculated from a series of measurements already available. In this case, the mean beach profile was 

calculated using all profile measurements recorded between June 2012 and June 2013. 

Considering the previous method exposed in Section 4.1, the main problem encountered when 

predicting wave runup on a beach with composite-slopes (or concave shape) is how to define the upper 



J. Mar. Sci. Eng. 2015, 3 688 

 

 

and lower bounds of the beach profile section for which the slope is calculated when they are no longer 

measured on the field. Following the approach of [21,42], the slope has been calculated using the 

observed high tide water level (HTWL) and a fraction of the offshore wave height (Hm0) from which the 

horizontal beach slope section (HBSS) was defined (Figure 8). Different correlation tests have shown 

that 1/4Hm0 gives the best result in this case. Therefore, the upper and lower bounds of the beach slope 

profile width is calculated as follows 

Boundup and low = HTWL ± 1/4Hm0 (9)

Swash runup is in this case best parameterized with a best-fit R2 (0.85) and RMSE (0.29 m).  

The coefficient of the regression line is 1.01 with 95% confidence intervals [0.97; 1.05]. In this case, the 

relationship can be expressed as (Figure 8). 

Rmax = 1.01Hm0ξ0 (10)

 

Figure 8. Method used to calculate beach slope for the runup calculation. It is based on 

measured tide level from which the beach section is defined. In contrast to the previous 

method, note that this approach is using the mean beach profile instead of daily beach profile. 

The use of wave height for the calculation of HBSS gives a physical meaningful approach that is 

applicable from low wave energy conditions to storm wave events. The width of this beach section 

ranges from 3 m (Hm0 = 0.6 m and HTWL = 4.4 m asl) to 80 m (Hm0 = 6.1 m and HTWL = 2.3 m asl), 

with an average value of 17 m and standard deviation of 14 m (the mean of Hm0 for the dataset is  

2.2 m, with standard deviation 1.2 m), depending on the position of the HTWL on the beach profile. 

Figure 9 shows an overview of the measured runup (Rmax) dependencies of estimated runup using both 

Equations (8) and (10), and Equations (4)–(6) of Stockdon et al. [21]. According to the 95% confidence 

intervals (see Figure 9), the three correlations show that the three equations give very similar results. 

Nevertheless, Equation (10) best fits the observed runup. 
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Figure 9. Overview of the measured runup (Rmax) dependencies of CHm0ξ0 for both 

Equations (8) and (10), and Equations (4)–(6) of Stockdon et al. [21]. 

4.3. Long-Term Dune Changes Related to Storm Event Erosion and Recover 

This part of the study focused on the relationship between the evolution of the dune sediment budget 

(in terms of accretion and erosion) and extreme water levels since July 2004. Following the “Property 

Erosion Model” method proposed by Ruggiero et al. [19] and/or the storm-impact scaling model 

proposed by Sallenger [18], the aim was to assess the sensitivity of the dune to extreme water levels by 

considering that erosion is experienced when the dune foot elevation is below extreme water level. 

Therefore, morphodynamic analysis was performed to identify the erosion stages related to extreme 

events, combining storm surge and high spring tide level, and on the other hand, the recover periods 

associated to calm wave conditions and/or low neap tide level. 

 

Figure 10. Envelop of beach/dune profiles measured from July 2004 to December 2014 (a); 

The front of the dune retreated during the two main storm events, which took place during 

the past 10 years (i.e., 10 March 2008 and 1 February 2014) inducing landward displacement 

of the foot of the dune (b). 
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Extreme water level was estimated for each daily high tide level by summing the swash runup 

elevation calculated from the Equation (10), and the measured tide level at Roscoff calibrated to the 

Vougot beach site. The altitude of the foot of the dune was obtained from monthly beach/dune profile 

measurements. However, the great morphological changes of the upper beach/dune section over the last 

ten years made it very difficult to identify this morphological proxy (Figure 10a). When we analyze in 

more detail the data set, three main phases related to strong dune erosion were identified. These three 

erosion phases have induced a landward displacement of the foot of the dune. As shown in Figure 10b, 

the foot of the dune was situated at 15.5 m from the head profile mark at the beginning of the survey.  

It retreated over more than 3 m during the big storm of 10 March 2008 [36,37], and retreated again over 

3 m during the storm of 1 February 2014 [38]. These three reference distances (15.5 m, 12 m, and 9.5 m) 

were used for the calculation of the dune foot height. 

 

Figure 11. Evolution of the dune sedimentary budget related to extreme water levels over 

the period from July 2004 to December 2014. 

The results show a good relationship between the negative sediment budget of the dune and phases 

during which extreme water levels exceed the height of the foot of the dune. On the contrary, when 

extreme water levels are below the height of the foot of the dune, the sediment budget increases  

(Figure 11). Seven phases of high extreme water levels are identified: from 28 October 2004 to  

12 February 2005 (maximum water level: 7.19 m 12 January 2005), from 03 November 2005 to  

31 March 2006 (maximum water level: 8.12 m 31 March 2006), from 08 October 2006 to  

20 March 2007 (maximum water level: 8.61 m 20 February 2007), the 10 March 2008 storm event  

(9.23 m), from 09 October 2010 to 20 February 2011 (maximum water level: 8.79 m  

09 November 2010), from 17 October 2012 to 11 February 2013 (maximum water level: 8.43 m  
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17 October 2012), and from 01 January 2014 to 03 March 2014 (maximum water level: 9.18 m  

04 January 2014) (Figure 11). For six of them, extreme water levels are well-related to an erosion phase 

of the dune, with the exception of the period from 09 October 2010 to 20 February 2011  

(Figure 12a–i). During this last period, three episodes characterized by extreme water levels higher than 

the foot of the dune were recorded without erosion of the dune (09 October 2010: 7.83 m;  

09 November 2010: 8.79 m; 20 February 2011: 8.56 m). However, we notice that these three extreme 

events have occurred during a long phase of dune recovery, which started in spring 2008 (post-storm of 

10 March 2008) and ended during the autumn of 2012 (Figure 12—From (j) to (l)). During these four 

years, the sediment budget of the dune increased considerably, inducing an elevation of the foot of the dune 

up to 2 m. Therefore, extreme water levels never hit the foot of the dune during this entire period except 

during the short stage mentioned above. The two major dune erosion stages which were recorded are 

related to the big storm event of 10 March 2008 [36,37], and to a cluster of storms occurring during the 

winter of 2013–2014 [38]. 

 

Figure 12. Photos illustrating dune erosion which occurred during the high extreme water 

levels phases inventoried in Figure 11: (a) post-12 January 2005 extreme water level; (b) a day 

before 31 March 2006 extreme water level; (c) post-20 February 2007 extreme water level; 

(d) 10 March 2008 storm event; (e) post-10 March 2008 storm event; (f) post-17 October 2012 

extreme water level; (g) post-04 January 2014 extreme water level; (h) post-02 February 2014 

extreme water level; and (i) 03 March 2014 storm event. Photos illustrating the dune recover 

phase post-storm of 10 March 2008 to September 2012 (j–l). 
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5. Discussion 

Following the previous study [33], this experiment has more deeply examined new parameterization 

of the runup formula [1] for predicting total swash elevation in the extreme water level calculation.  

The focus was put on parameters that provide a first-order description of the beach morphodynamic 

environment, such as deep wave height (Ho), period (T), and beach steepness tanβ, which are expressed 

in terms of the non-dimensional surf parameter (Iribarren number ξ0) [27]. Thus, measurements of local 

wave height have confirmed the validity of the use of the deep-water wave height (Ho at 18 m water depth) 

obtained by modeling. Similarly, in-situ measurements of water levels have improved the estimation of 

extreme water levels at the coast and determined the tidal range of the tide gauge shifts between Roscoff 

tide gauge station and the site of Guissény. The mean deviation is 18 cm, with variations between 25 cm 

for spring tides and 5 cm for neap tides. It is close to the 13 cm mean deviation calculated in the previous 

study that was based on a shorter data set and a less accurate method [33]. Concerning the beach 

steepness, the new set of data used in this study has confirmed the complexity of defining the best beach 

slope for use in the runup formula when the beach exhibits composite-slope and/or a concave profile. 

As demonstrated by Cariolet and Suanez [33], the slope of the active section of the upper beach gives  

a good fit in comparison to the field measurement (R2: 81%; RMSE of 33 cm). Nevertheless, a best-fit 

was obtained when beach slope was calculated using observed water level (R2: 85%; RMSE of 29 cm). 

This approach, based on sea level changes due to tides and/or storm surges, allows for better 

consideration of beach slope variations in the context of a concave beach profile. As already indicated 

by Mayer and Kriebel [43] the use of fixed bounds (upper or lower bounds) or an averaged planar slope 

for the calculation of beach steepness is therefore inappropriate when beaches exhibit complex morphology 

with a composite-slope, especially in a macrotidal environmental context. If we take into consideration 

the steep slope face of the upper concave beach (0.08 > tanβ > 1.8), this experiment also confirms  

the findings of Nielsen and Hanslow [32], attesting that the best-fit distribution is proportional to the 

surf similarity parameter (ξo) on intermediate to reflective beaches in agreement with Hunt’s formula for 

runup of regular waves on steep slopes. However, statistical tests have indicated that the reflective-specific 

Equation (5) of Stockdon et al. [21] was also best fitted to runup field measurements (Rmax), and therefore 

both Equations (8) and (10). 

Long-term erosion of the dune related to extreme water levels shows different pluri-decadal phases. 

From 2004 to 2006, the dune sediment budget indicated normal functioning characterized by erosion 

and high water levels during winter and accretion associated to low water levels during summer. 

However, dune sediment budget slightly decreased during these two first years. From the winter of  

2006–2007 to the storm of 10 March 2008, the dune experienced a phase of significant sediment budget 

decrease related to several high extreme water level events. As mentioned earlier, this stage was followed 

by a long phase of dune recovery that ended during the winter of 2012–2013. The increase of the dune 

sediment budget was explained by supply from post-storm sediment transport between the upper 

intertidal beach and the lower intertidal beach—The nearshore to shoreface zone [37]. This sand supply 

took place during low extreme water levels associated with cold winters. The last phase was again 

characterized by a significant loss of dune sediment budget due to the erosion effects of the stormy 

winters of 2012–2013 and 2013–2014. 
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The inter-annual variability in dune erosion and accretion may be related to the winter North Atlantic 

Oscillation (NAO) index. Figure 13 presents NAO index fluctuation for the whole survey period  

(2004–2014). It shows three different phases that could be related to dune morphological changes. From 

2000 to 2008, a positive index (denoted NAO+) is observed (Figure 13). Generally, this is associated to 

strong southwesterly winds that bring warm air deep into Europe. This results in mild and wet winters 

characterized by active storms that hit Western Europe at the latitude of England and Brittany. The winter 

of 1989–1990 is a good example of this weather pattern [44,45], as well as the winter of 2013–2014, 

during which a cluster of a dozen storms hit the Brittany coast [38,46]. In contrast, the second phase, 

from 2008 to 2012, is characterized by a negative index (NAO−). In this context, western European areas 

suffer cold dry winters and storm tracks are shifted towards the south of Europe (North Spain and 

Mediterranean areas). These meteorological conditions are favorable for the regeneration of dune systems 

because the dry weather is generally associated with effective aeolian transit to the dune. At the same 

time, the absence of major winter storms plays an important role in the low erosion of the dunes during 

these periods. The third and last phase that began in the winter of 2012–2013 is characterized  

by a positive NAO index. It accompanied warm and stormy winters, especially the winter of  

2013–2014 [38,46]. Between December 2013 and March 2014, a cluster of about 12 storm events hit the 

coast of Brittany with an exceptional frequency. It was in February that these storm events were the most 

frequent and particularly virulent. The significant wave heights measured off Finistère reached, 

respectively, 12.3 and 12.4 m during the Petra and Ulla storms on 5 and 14 February. However, analysis 

of hydrodynamic conditions showed that only three episodes promoted extreme morphogenetic conditions 

because they were combined with high spring tide level. The first one occurred from 1–4 January, it was 

followed by events during 1–3 February, and 2 and 3 March. As indicated on Figure 12, these three 

events generated high extreme water levels and strong dune erosion. The maximum retreat of the front 

of the dune during this period reached more than −16 m [38]. 

 

Figure 13. North Atlantic Oscillation Index (NAO) from 1950 to 2015 [47].  

Consistent with this assumption, many studies have suggested that the North Atlantic Oscillation 

(NAO) may control the occurrence of storm events in the Atlantic, and thus potentially influence coastal 

morphological changes. The role of the NAO in coastal morphological dynamics has been suggested by 

Masselink et al. [48] to explain medium-term outer sand bar dynamics in the southwest of England 

(Perranporth). It was also suggested by Thomas et al., after analyzing beach rotation at South Sands 

Tenby in West Wales [49,50] and O’Connor et al. [51] concerning long-term shoreline and ebb channel 

evolution in northwest Ireland. The same conclusion was put forward by Vespremeanu-Stroe et al. [52] 

who showed that shoreline changes at decadal time scales were also driven by the NAO which controls 
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the storminess on the Danube delta coast. Nevertheless, analysis of long-term dune morphological 

changes on the Sefton coast (west England) indicated only a modest relationship between dune 

erosion/accretion rates and the North Atlantic Oscillation index [20]. The authors suggested that these 

dune erosion/accretion phases are also related to the long-term beach sediment budget that governs 

essential changes in the morphology of the nearshore and offshore zones. Similarly, Montreuil and 

Bullard indicated that the winter North Atlantic Oscillation phase was not a good indicator of storminess 

on the east coast of England but may be a useful proxy for quiescence [53]. For this specific coastal area, 

the authors found the Jenkinson daily weather type classification to be a better proxy for the occurrence 

of strong onshore storm winds. 

6. Conclusions 

The runup process is still relatively too complex to parameterize in a macrotidal environment where 

beach profiles exhibit a composite-slope. This morphology is quite often found in North Brittany along 

the Channel coast where the tidal range is considerable. This study revealed a number of points related 

to the runup processes: 

- The methodological approach of measuring the maximum swash elevation using wrack deposit 

and/or the limit of the water mark in the field is relatively easy to implement and requires much 

less post-treatment compared to classic video measurements. However, this method is extremely 

time consuming and does not allow for collection of a large dataset, which notably limits the 

statistical analysis. 

- This experiment confirms that the beach slope scaled with ξ0 plays a key role in the parameterization 

of the runup equation when the morphodynamic context of the beach is shifting from intermediate 

to reflective according to high–neap or spring–tide water level. In this context, beach slope may 

be much more important in runup elevation distribution than a wave component such as H0 or L0. 

- In comparison to the previous study of Cariolet and Suanez, the use of observed water level 

changes due to astronomical tide and/or storm surges for the calculation of beach slope gives 

better results (RMSE decreasing from 0.33 to 0.29 m for Equations (8) and (10), respectively). 

This is explained by the fact that both the upper and lower bounds defining the beach section on 

which the slope is calculated are shifting according to the sea level changes. Therefore, the slope 

values obtained are much more fair and accurate, especially when the beach profile is concave 

and tidal range is large (≈7 m), as is the case in this study. 

- Taking into account the environmental conditions and dimensional swash parameters of the 

Vougot beach, the Stockdon’s Equations (4)–(6) [21] may also be used with the appropriate beach 

slope value βƒ. 

- Dune retreat, and hence volume of sand eroded, depends on extreme water level (and therefore the 

frequency and intensity of each runup event) when its height is greater than that the toe of the dune. 

- A good relationship seems to be revealed between erosion phases of the dune due to high extreme 

water levels and NAO+. In contrast, NAO− is associated to phases of dune recovery during cold 

and non-stormy winters. 
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