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Automorphisms with quasi-discrete spectrum,

multiplicative functions and average

orthogonality along short intervals

H. El Abdalaoui, M. Lemańczyk∗, T. de la Rue

July 14, 2015

Abstract

We show that Sarnak’s conjecture on Möbius disjointness holds in
every uniquely ergodic model of a quasi-discrete spectrum automorphism.
A consequence of this result is that, for each non constant polynomial
P ∈ R[x] with irrational leading coefficient and for each multiplicative
function ν : N → C, |ν| ≤ 1, we have
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as M → ∞, H → ∞, H/M → 0.

1 Introduction

The central result of this paper is the following.

Theorem 1. Let S be a uniquely ergodic continuous map defined on a compact
metric space Y . Let ν be the unique S-invariant (ergodic) Borel probability
measure on Y . Assume that the measure-theoretic system (Y, ν, S) has quasi-
discrete spectrum. Then, for each multiplicative function ν : N → C, |ν| ≤ 1,
each f ∈ C(Y ) with

∫
Y
f dν = 0 and each y ∈ Y , we have

(1) lim
N→∞

1

N

∑

n≤N

f(Sny)ν(n) = 0.

If, moreover, we know that limN→∞
1
N

∑
n≤N ν(n) = 0, then (1) holds re-

gardless of the value of
∫
Y
f dν. In particular, by taking ν = µ, the classical

Möbius function: µ(1) = 1, µ(p1 . . . pk) = (−1)k for different prime numbers
p1, . . . , pk and µ(n) = 0 for other values of n ∈ N, we obtain the validity of
Sarnak’s conjecture [31] in the class of systems under consideration. Recall that
Sarnak’s conjecture states that, if T is a continuous map of a compact metric
space X with zero topological entropy, then 1

N

∑
n≤N f(T nx)µ(n) → 0 for each

f ∈ C(X) and x ∈ X . Sarnak’s conjecture has been proved to hold in several
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cases [1–3,6–9,11,15,16,22,26,28–32]. Automorphisms with quasi-discrete spec-
trum have zero measure-theoretic entropy, hence the topological entropy will be
equal to zero in each uniquely ergodic model of them.

So far, the only automorphisms for which Sarnak’s conjecture was known to
hold in each of their uniquely ergodic model were those whose prime powers are
disjoint in the sense of Furstenberg [12]. This assertion is already present in [8],
see also [2]. However, it is easy to see that even irrational rotations do not
enjoy this strong disjointness property (indeed, powers have “large” common
factors). But Theorem 1 is known to hold for them [8]. On the other hand,
irrational rotations have many other uniquely ergodic models. For those in
which eigenfunctions are continuous, e.g. symbolic models like Sturmian models
[5], Sarnak’s conjecture has also been proved to hold in view of a general criterion
on lifting Sarnak’s conjecture by continuous uniquely ergodic extensions, [3],
[9], [32]. However, there are topological models of irrational rotations in which
eigenfunctions are not continuous. Indeed, each ergodic transformation admits
even a uniquely ergodic model which is topologically mixing [25] .

An important tool for the proof of Theorem 1 is provided by a general crite-
rion for an ergodic automorphism T to satisfy Sarnak’s conjecture in each of its
uniquely ergodic model. The criterion is, roughly, to establish an approximative
disjointness of sufficiently large relatively prime powers.

Definition 1. We say that the measure-theoretic dynamical system (X,µ, T )
has Asymptotical Orthogonal Powers (AOP) if, for any f and g in L2(µ) with∫
X
f dµ =

∫
X
g dµ = 0, we have

(2) lim
r,s→∞,

r,s different primes

sup
κ ergodic joining
of T r and T s

∣∣∣∣
∫

X×X

f ⊗ g dκ

∣∣∣∣ = 0.

We would like to emphasize that this AOP property can even be satisfied
for an automorphism T for which all non-zero powers are measure-theoretically
isomorphic (Example 1). Further remarks on the AOP property are discussed
in Section 5: we show that it implies zero entropy, but give also examples of
zero-entropy automorphisms which do not have AOP.

Theorem 2. Assume that T is a totally ergodic automorphism of a standard
Borel probability space (X,B, µ), and that it has AOP. Let S be a uniquely
ergodic continuous map of a compact metric space Y , and denote by ν the unique
S-invariant probability measure. Assume that the measure-theoretic systems
(X,µ, T ) and (Y, ν, S) are isomorphic. Then, for each multiplicative function
ν : N → C, |ν| ≤ 1, each f ∈ C(Y ) with

∫
Y
f dν = 0 and each y ∈ Y , we have

lim
N→∞

1

N

∑

n≤N

f(Sny)ν(n) = 0.

In particular, Sarnak’s conjecture holds for S.

Using the fact that, in uniquely ergodic models, the average behavior of
points is uniform, we will prove that uniquely ergodic models of automorphisms
with AOP enjoy a stronger form of Sarnak’s conjecture, in which the sequence
output by the system is allowed to switch orbit from time to time.
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Theorem 3. Let (X,T ) be uniquely ergodic, and let µ be the unique T -invariant
probability measure. Assume that, for any uniquely ergodic model (Y, S) of
(X,µ, T ), the conclusion of Theorem 2 holds. Let 1 = b1 < b2 < · · · be an
increasing sequence of integers with bk+1 − bk → ∞. Let (xk) be an arbitrary
sequence of points in X. Then, for each multiplicative function ν : N → C,
|ν| ≤ 1 and for each f ∈ C(X) with

∫
X
f dµ = 0, we have

(3) lim
K→∞

1

bK+1

∑

1≤k≤K

∑

bk≤n<bk+1

f(T nxk)ν(n) = 0.

Again, if we take ν = µ, the conclusion holds even if
∫
X
f dµ 6= 0.

One of the main results of the paper, Theorem 6, says that all quasi-discrete
spectrum automorphisms have AOP. Quasi-discrete spectrum automorphisms
(see Section 3.3 for a precise definition) have been first studied by Abramov [4].
They admit special uniquely ergodic models which are of the form Tx = Ax+b,
where X is a compact, Abelian, connected group, A is a continuous group
automorphism and b ∈ X (with some additional assumptions on A and b).
It has already been proved by Liu and Sarnak in [26] that, in these algebraic
models, Sarnak’s conjecture holds. As a consequence of Theorem 2, we obtain
that it holds in every uniquely ergodic model of any of these systems (in fact,
Theorem 2 directly gives Theorem 1).

In Section 4.2, we apply Theorem 3 in a special situation of such algebraic
models which are built by taking affine cocycle extensions of irrational rotations
(see [12]). This leads to the following theorem.

Theorem 4. Assume that ν : N → C, |ν| ≤ 1, is multiplicative. Then, for each
increasing sequence 1 = b1 < b2 < · · · with bk+1 − bk → ∞ and for each non
constant polynomial P ∈ R[x] with irrational leading coefficient, we have

1

bK+1

∑

k≤K

∣∣∣∣∣∣

∑

bk≤n<bk+1

e2πiP (n)
ν(n)

∣∣∣∣∣∣
−→ 0 when K → ∞.

It has been noted to us by N. Frantzikinakis that the particular case P (n) =
αn, which we present in Section 4.1, follows from a recent result of Matomäki,
Radziwi l l and Tao [27]. We can also reformulate Theorem 4 in the following
way.

Theorem 5. Assume that ν : N → C, |ν| ≤ 1, is multiplicative. For each non
constant polynomial P ∈ R[x] with irrational leading coefficient, we have

1

M

∑

M≤m<2M

1

H

∣∣∣∣∣∣

∑

m≤n<m+H

e2πiP (n)
ν(n)

∣∣∣∣∣∣
−→ 0

as M → ∞, H → ∞, H/M → 0.

2 Main tools

2.1 Joinings

Let (X,B, µ) be a standard Borel probability space. We denote by C2(X,µ)
the corresponding space of couplings: ρ ∈ C2(X,µ) if ρ is a probability on
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X×X with both projections equal to µ. The space C2(X,µ) is endowed with a
topology which coincides with the weak topology when X is a compact metric
space. In this topology, convergence of a sequence of couplings (ρn) to some
coupling ρ is characterized by

∀f, g ∈ L2(µ),

∫

X×X

f ⊗ g dρn −−−−→
n→∞

∫

X×X

f ⊗ g dρ.

This topology turns C2(X,µ) into a compact metrizable space. For example,
the formula

d(ρ1, ρ2) :=
∑

k,ℓ≥1

|
∫
fk ⊗ fℓ dρ1 −

∫
fk ⊗ fℓ dρ2|

2k+ℓ

where {fk : k ≥ 1} is a linearly L2-dense set of functions of L2-norm 1 yields a
metric compatible with the topology on C2(X,µ).

Now, let T be a totally ergodic automorphism of (X,B, µ), that is, Tm is
assumed to be ergodic for each m 6= 0. Let J(T r, T s) stand for the set of joinings
between T r and T s, i.e. those ρ ∈ C2(X,µ) which are T r × T s-invariant. By
Je(T r, T s) we denote the subset of ergodic joinings, which is never empty when
both T r and T s are ergodic.

2.2 The KBSZ criterion

We will need the following version of the result of Bourgain, Sarnak and Ziegler
[8] (see also [23], [17]).

Proposition 1. Assume that (an) is a bounded sequence of complex numbers.
Assume, moreover, that

(4) lim sup
r,s→∞

different primes


lim sup

N→∞

∣∣∣∣∣∣
1

N

∑

n≤N

arnasn

∣∣∣∣∣∣


 = 0.

Then, for each multiplicative function ν : N → C, |ν| ≤ 1, we have

(5) lim
N→∞

1

N

∑

n≤N

an · ν(n) = 0.

The proof of this proposition follows directly from [8] by considering a version
of their result omitting a finite set of prime numbers.

Proof of Theorem 2. We begin by observing that the condition of having AOP
is an invariant of measure-theoretic isomorphism. Therefore, if it holds for
(X,µ, T ), it also holds in each of its uniquely ergodic model. Let us fix such a
model (Y, ν, S). Take y ∈ Y and f ∈ C(Y ) with

∫
Y
f dν = 0. Let ε > 0. In

view of (2), for some M ≥ 1, whenever r, s ≥ M are different prime numbers,
we have for each κ ∈ Je(Sr, Ss)

(6)

∣∣∣∣
∫

Y×Y

f ⊗ f dκ

∣∣∣∣ ≤ ε.
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Now, let r, s ≥ M be different prime numbers, and select a subsequence (Nk)
so that

(7)
1

Nk

∑

n≤Nk

δ(Srny,Ssny) → ρ.

Then, by the unique ergodicity of S, which implies the unique ergodicity of Sr

and Ss, it follows that ρ ∈ J(Sr, Ss). Let

ρ =

∫

Je(Sr,Ss)

κ dP (κ)

stand for the ergodic decomposition into ergodic joinings between Sr and Ss of
ρ (here, we use again that the non-trivial powers of S are ergodic). Since f is
continuous, in view of (7), we have

1

Nk

∑

n≤Nk

f(Srny)f(Ssny) →

∫

Y×Y

f ⊗ f dρ.

But, in view of (6),

∣∣∣∣
∫

Y ×Y

f ⊗ f dρ

∣∣∣∣ =

∣∣∣∣∣

∫

Je(Sr,Ss)

(∫

Y ×Y

f ⊗ f dκ

)
dP (κ)

∣∣∣∣∣ ≤ ε.

It follows that

lim sup
N→∞

∣∣∣∣∣∣
1

N

∑

n≤N

f(Srny)f(Ssny)

∣∣∣∣∣∣
≤ ε.

We have obtained that condition (4) holds for an := f(Sny), n ≥ 0, and the
result follows from Proposition 1.

2.3 Special uniquely ergodic models

Our idea in this section will be, given a uniquely ergodic system (X,T ) (with µ
as unique invariant probability measure), to build many new uniquely ergodic
models of the measure-theoretic system (X,µ, T ). Any such model will depend
on the choice of an increasing sequence of integers 1 = b1 < b2 < · · · with
bk+1 − bk → ∞, and of an arbitrary sequence of points (xk) in X .

We define a sequence y = (yn) ∈ XN by setting yn := T nxk whenever
bk ≤ n < bk+1:

y = (Tx1, . . . , T
b2−1x1, T

b2x2, . . . , T
b3−1x2, T

b3x3, . . .).

Let S denote the shift in XN, where XN is considered with the product topology,
and set

Y := {Sny : n ≥ 0} ⊂ XN.

Proposition 2. The topological dynamical system (Y, S) defined above is uniquely
ergodic. The unique S-invariant probability measure on Y is the graph measure
ν determined by the formula

ν(A1 ×A2 × . . .×Am ×X × . . .) := µ(A1 ∩ T−1A2 ∩ . . . ∩ T−m+1Am).

Moreover, the measure-theoretic dynamical system (Y, ν, S) is isomorphic to
(X,µ, T ).
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Proof. We first prove that y is generic for the measure ν defined in the statement
of the proposition. Indeed, let κ be a probability measure on Y for which y is
quasi-generic, i.e. assume that there exists a sequence of integers Nj → ∞ such
that

1

Nj

∑

n≤Nj

δSny → κ.

For fixed j ≥ 1, the projection of the left-hand side on the first coordinate is

νj :=
1

Nj


 ∑

b1≤n<b2

δTnx1
+

∑

b2≤n<b3

δTnx2
+ . . .

+
∑

bk−1≤n<bk

δTnxk−1
+

∑

bk≤n<bk+u

δTnxk


 ,

where bk + u = Nj < bk+1. Then, the difference the pushforward of νj by T
and νj is

T∗νj − νj =
1

Nj

(
δT b2x1

− δTx1
+ δT b3x2

− δT b2x2
+ . . .+

δT bkxk−1
− δ

T
bk−1xk−1

+ δT bk+u+1xk
− δT bkxk

)
,

and this measure goes weakly to zero as bk+1 − bk → ∞. Hence the limit
of νj is T -invariant and, by unique ergodicity, the projection of κ on the first
coordinate has to be equal to µ. Now, using again bk+1 − bk → ∞, we see that
the proportion of integers n ≤ Nj such that the second coordinate of Sny is
not the image by T of the first coordinate of Sny go to zero as j → ∞, and it
follows that, κ-almost surely, the second coordinate of z ∈ Y is the image by T
of the first coordinate of z. The same argument works for any coordinate and
we conclude that κ = ν.

Now, the fact that each z ∈ Y is also generic for the same measure ν is a
direct consequence of the following easy fact: If nj → ∞ and z = limj→∞ Snjy,

then either there exists z ∈ X such that z = (z, T z, T 2z, . . .), or there exist
z1, z2 ∈ X and ℓ ≥ 0 such that

z = (z1, T z1, . . . , T
ℓz1, z2, T z2, T

2z2, . . .).

Indeed, we can approximate any “window” z[1,M ] by Snjy[1,M ] = y[nj+1, nj+
M ], and when nj → ∞, such a window has at most one point of “discontinuity”,
that is, it contains at most once two consecutive coordinates which are not
successive images by T of some xk.

Finally, by the construction of ν, the map x 7→ (x, Tx, T 2x, . . .) is clearly an
isomorphism between (X,µ, T ) and (Y, ν, S).

Proof of Theorem 3. Apply the conclusion of Theorem 2 to the specific uniquely
ergodic model (Y, S) which is constructed above, starting from the point y and
taking an arbitrary continuous function of the first coordinate.
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3 Asymptotic orthogonality of powers for quasi-

discrete spectrum automorphisms

3.1 The key lemma

We say that c ∈ S1 is irrational if cn 6= 1 for each integer n 6= 0. Recall that
an ergodic automorphism T is totally ergodic if and only if all its eigenvalues
except 1 are irrational.

Lemma 1. Let c1 and c2 be irrational in S1. Then there exists at most one
pair (r, s) of mutually prime natural numbers such that cr1 = cs2.

Proof. Let (r, s) and (r′, s′) be two pairs of mutually prime natural numbers
satisfying cr1 = cs2, and cr

′

1 = cr
′

2 . Let d ∈ S1 be such that ds = c1. We have
(dr)s = cr1 = cs2. Multiplying if necessary d by an appropriate s-th root of the
unity, and using the fact that r and s are mutually prime, we can assume that
we also have dr = c2. The equality cr

′

1 = cr
′

2 now yields dr
′s = ds

′r. But d is
also irrational, hence r′s = sr′. Since (r, s) = 1 = (r′, s′), r = r′ and s = s′.

3.2 AOP for discrete spectrum

Recall that discrete spectrum automorphisms are characterized by the fact that
their eigenfunctions form a linearly dense subset of L2. They fall into the more
general case of quasi-discrete spectrum ones, but we nevertheless include a direct
proof that they have AOP as soon as they are totally ergodic, since this will
introduce the main ideas in a simpler context.

Assume that T is a totally ergodic, discrete spectrum automorphism of
(X,B, µ). Let c1 = 1, c2, c3, . . . ∈ S1 be its eigenvalues, and let f1, f2, . . . be
corresponding eigenfunctions: fi ◦T = ci · fi, |fi| = 1. Note that ci is irrational
and

∫
fi dµ = 0 whenever i ≥ 2. Let us prove that the AOP property holds for

T . Since the linear subspace spanned by f2, f3, . . . is dense in the subspace of
square integrable functions with zero integral, it is enough to show that, for any
fixed i, j ≥ 2,

∫
fi ⊗ fj dρ = 0, ∀ρ ∈ Je(T r, T s), if r and s are large enough and (r, s) = 1.

But we have ∫
fi ⊗ f j dρ =

∫
(fi ⊗ 1X) · (1X ⊗ f j) dρ,

where fi⊗1X is an eigenfunction for (T r×T s, ρ) corresponding to the eigenvalue
cri , while 1X ⊗ fj is an eigenfunction for (T r × T s, ρ) corresponding to csj . But,
if these two eigenvalues are different, the functions fi ⊗ 1X and 1X ⊗ fj are
orthogonal. It is then enough to observe that, by Lemma 1, the equality cri = csj
has at most one solution with (r, s) = 1.

Example 1. If we consider T an ergodic rotation whose group of eigenvalues
is of the form {e2πiqα : q ∈ Q} and α ∈ [0, 1) is irrational, then by the Halmos-
von Neumann theorem (e.g. [14]) it follows that all non-zero powers of T are
isomorphic. This is an extremal example of an automorphism with non-disjoint
powers for which the AOP property holds.
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3.3 Quasi-discrete spectrum

We denote by M = M(X,B, µ) the multiplicative group of functions f ∈
L2(X,B, µ) satisfying |f | = 1. Let T be an ergodic automorphism of (X,B, µ).
We define on M the group homomorphism WT by setting

WT (f) := f ◦ T/f.

Note that (WT f) ◦ T = WT (f ◦ T ).
Let E0(T ) ⊂ S1 denote the group of eigenvalues of T , which we also consider

as a subgroup of (constant) functions in M . Then, for each integer k ≥ 1, we
inductively set

Ek(T ) := {f ∈ M : WT f ∈ Ek−1(T )}.

It is easily proved by induction on k that Ek(T ) is the subgroup of M
constituted of all f ∈ M satisfying W k

T f ∈ E0(T ), and that, by the ergodicity
of T ,

f ∈ Ek(T ) \ Ek−1(T ) ⇐⇒ W k
T f ∈ E0(T ) \ {1}.

The elements of
⋃

k≥0 Ek(T ) are called quasi-eigenfunctions. Clearly, Ek(T ) ⊂
Ek+1(T ), k ≥ 0.

We denote by Eirr
0 (T ) the set of irrational eigenvalues of T , and for each

k ≥ 1, we set
Eirr

k (T ) := {f ∈ Ek(T ) : W k
T f ∈ Eirr

0 (T )}.

Lemma 2. Let T be an ergodic automorphism of (X,B, µ), k ≥ 1 and f ∈
Eirr

k (T ). Then ∫

X

f dµ = 0.

Proof. We prove the result by induction on k. For k = 1, the conclusion holds
for each eigenfunction f whose eigenvalue is different from 1. Assume that the
result is proved for k ≥ 1, and consider f ∈ Eirr

k+1(T ). Set g := WT f ∈ Eirr
k (T ),

so that f ◦ T = gf . Then, for each n ≥ 1, we have

f ◦ T n = g(n) · f,

where
g(n) := g · g ◦ T · · · g ◦ T n−1 ∈ Ek(T ).

It follows that

(8)

∫

X

f · (f ◦ T n) dµ =

∫

X

g(n) dµ.

Observe now that

W k
T g

(n) = W k
T g ·W

k
T (g ◦ T ) · · ·W k

T (g ◦ T n−1) =
(
W k

T g
)n

=
(
W k+1

T f
)n

,

which is an irrational eigenvalue. We therefore have g(n) ∈ Eirr
k (T ), and by

induction hypothesis, ∫

X

g(n) dµ = 0.

Coming back to (8), we see that the spectral measure of f is the Lebesgue
measure on the circle, which implies the result.
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Lemma 3. Let T be an ergodic automorphism of (X,B, µ), k ≥ 1, and f ∈
Ek(T ). Then for each integer r ≥ 1,

W k
T rf =

(
W k

T f
)rk

.

Proof. Again, we prove the result by induction on k. For k = 1, take f ∈ E1(T )
and let c := WT f be the corresponding eigenvalue (for T ). Then

WT rf = f ◦ T r/f = cr = (WT f)
r
.

Now, assume the result is proved for k ≥ 1, and take f ∈ Ek+1(T ). Note that
WT rf ∈ Ek(T ), so that, using the induction hypothesis, we have

W k+1
T r f = W k

T r (WT rf ) =
(
W k

T WT rf
)rk

=
(
W k

T f ◦ T r/W k
T f

)rk
.

But W k
T f is an eigenfunction of T . Denoting by c := W k+1

T f the corresponding

eigenvalue, the right-hand side of the above equality becomes (cr)r
k

= cr
k+1

.

Proposition 3. Let T be a totally ergodic automorphism of (X,B, µ), k ≥ 1,
f ∈ Ek(T )\Ek−1(T ) and g ∈ Ek(T ). Then there exists at most one pair (r, s) of
mutually prime natural numbers for which we can find ρ ∈ Je(T r, T s) satisfying

∫

X×X

f ⊗ g dρ 6= 0.

Proof. Assume that r, s and ρ are as in the statement of the proposition. In
the ergodic dynamical system (X ×X, ρ, T r × T s), we have

W k
T r×T s (f ⊗ g) = W k

T rf ⊗W k
T sg,

where both W k
T rf and W k

T sg are eigenvalues of T by Lemma 3. This product is
therefore constant, let us denote it by c. It is an eigenvalue of T r × T s, and it
is also the product of two eigenvalues of T , hence it is also an eigenvalue of T .
This proves that f ⊗ g ∈ Ek(T r × T s). Since we assume that

∫
f ⊗ g dρ 6= 0,

Lemma 2 yields that W k
T r×T sf ⊗ g is not an irrational eigenvalue of T r × T s.

But, by the total ergodicity of T , the only eigenvalue of T which is not irrational
is 1. Using again Lemma 3, we get

c = 1 = W k
T r×T s (f ⊗ g) =

(
W k

T f
)rk

·
(
W k

T g
)sk

.

Remember that W k
T f is irrational because f ∈ Ek(T )\Ek−1(T ), and T is totally

ergodic. It follows that W k
T g is also irrational, hence g ∈ Ek(T )\Ek−1(T ). Then

W k
T f and W k

T g are both eigenvalues of T which are different from 1, hence they
are both irrational. We only need now to apply Lemma 1 to conclude the proof.

Definition 2. T is said to have quasi-discrete spectrum if:

(9) T is totally ergodic,

and

(10) L2(X,B, µ) = span


⋃

k≥0

Ek(T )


 .
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Theorem 6. Let T be an automorphism of (X,B, µ) with quasi-discrete spec-
trum. Then it has the AOP property.

Proof. By the definition of quasi-discrete spectrum, it is enough to check that,
for any k ≥ 1 and any f, g ∈ Ek(T ), we have, for r, s mutually prime and large
enough and for each ρ ∈ Je(T r, T s),

∫

X×X

f ⊗ g dρ = 0.

But this immediately follows from Proposition 3.

4 Application to some algebraic models of dis-

crete and quasi-discrete spectrum transforma-

tions

4.1 Irrational rotation

Fix some irrational number α, and consider the transformation Rα : x 7→ x +
α on T. Then (T, Rα) is uniquely ergodic, and the corresponding measure-
theoretic dynamical system is totally ergodic and has discrete spectrum. It
therefore has AOP, and Theorem 3 applies in this case (we consider f(x) :=
e2πix). Then, for any multiplicative function ν, |ν| ≤ 1, any sequence (xk) of
points in T and any increasing sequence 1 = b1 < b2 < · · · with bk+1− bk → ∞,
we have

lim
K→∞

1

bK+1

∑

1≤k≤K

e2πixk

∑

bk≤n<bk+1

e2πinαν(n) = 0.

Now, for each k ≥ 1, we can choose xk ∈ T such that

e2πixk

∑

bk≤n<bk+1

e2πinαν(n) =

∣∣∣∣∣∣

∑

bk≤n<bk+1

e2πinαν(n)

∣∣∣∣∣∣
.

This proves Theorem 4 in the case of a polynomial of degree 1.

4.2 Affine transformations of the d-dimensional torus

To prove Theorem 4 in its full form, we generalize the preceding case by con-
sidering some transformation of the d-dimensional torus of the form

T : (x1, . . . , xd) 7−→ (x1 + α, x2 + x1, . . . , xd + xd−1).

This transformation is an affine transformation, it can be written as x 7→ Ax+b
where A = [aij ]

d
i,j=1 is the matrix defined by a1 := 1, ai−1,i = aii := 1 and all

other coefficients equal to zero, and b := (α, 0, . . . , 0). Taking again α irrational,
(Td, T ) is a uniquely ergodic dynamical system, and it is totally ergodic with
respect to the Haar measure on Td, which is the unique invariant measure [12].
Moreover, the corresponding measure-theoretic dynamical system has quasi-
discrete spectrum [4]. Hence it has AOP, and Theorem 3 applies again. In
particular, we will use this theorem with the function f(x1, . . . , xd) := e2πixd ,
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observing as in [10,12] that the last coordinate of T n(x1, . . . , xd) is the following
polynomial in n:

(
n

d

)
α +

(
n

d− 1

)
x1 + . . . + nxd−1 + xd.

Proof of Theorem 4. Consider a fixed polynomial P ∈ R[x], whose leading co-
efficient is irrational. Then we can always choose α, x1, . . . , xd so that

(
n

d

)
α +

(
n

d− 1

)
x1 + . . . + nxd−1 + xd = P (n) for all n.

Let 1 = b1 < b2 < · · · be a sequence of integers satisfying bk+1 − bk → ∞, and
define a sequence (xk) of points in Td by setting

xk := (x1, x2, . . . , xd−1, xd + tk),

where (tk) is a sequence of points in T to be precised later. Then, Theorem 3
applied to T gives

lim
K→∞

1

bK+1

∑

1≤k≤K

e2πitk
∑

bk≤n<bk+1

e2πiP (n)
ν(n) = 0.

Now, for each k we can choose tk ∈ T such that

e2πitk
∑

bk≤n<bk+1

e2πiP (n)
ν(n) =

∣∣∣∣∣∣

∑

bk≤n<bk+1

e2πiP (n)
ν(n)

∣∣∣∣∣∣
,

and this concludes the proof.

Proof of Theorem 5. Assume that the result is false. Then we can find a non
constant P ∈ R[x] with irrational leading coefficient, and two sequences (Mℓ)
and (Hℓ) with Hℓ → ∞, Hℓ/Mℓ → 0, satisfying for some ε > 0:

(11) ∀ℓ,
1

Mℓ

∑

Mℓ≤m<2Mℓ

1

Hℓ

∣∣∣∣∣∣

∑

m≤n<m+Hℓ

e2πiP (n)
ν(n)

∣∣∣∣∣∣
> ε.

By passing to a subsequence if necessary, we can also assume that for each ℓ,
Mℓ+1 > 2Mℓ + Hℓ. Rewriting the left-hand side of the above inequality as

1

Hℓ

∑

0≤r<Hℓ

1

Mℓ/Hℓ

∑

Mℓ≤m<2Mℓ

m=r mod Hℓ

1

Hℓ

∣∣∣∣∣∣

∑

m≤n<m+Hℓ

e2πiP (n)
ν(n)

∣∣∣∣∣∣
,

we see that for each ℓ there exists 0 ≤ rℓ < Hℓ such that

(12)
1

Mℓ/Hℓ

∑

Mℓ≤m<2Mℓ

m=rℓ mod Hℓ

1

Hℓ

∣∣∣∣∣∣

∑

m≤n<m+Hℓ

e2πiP (n)
ν(n)

∣∣∣∣∣∣
> ε.
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Now, set

{1 = b1 < b2 < . . .} :=

{1} ∪
⋃

ℓ

{m : Mℓ ≤ m < 2Mℓ + Hℓ and m = rℓ mod Hℓ},

and let Kℓ be the largest k such that bk < 2Mℓ. Observing that bKℓ+1/(2Mℓ) →
1, and using inequality (12), we get

lim inf
ℓ→∞

1

bKℓ+1

∑

k≤Kℓ

∣∣∣∣∣∣

∑

bk+1≤n<bk+1

e2πiP (n)
ν(n)

∣∣∣∣∣∣

≥ lim inf
ℓ→∞

1

2Mℓ

∑

Mℓ≤m<2Mℓ

m=rℓ mod Hℓ

∣∣∣∣∣∣

∑

m≤n<m+Hℓ

e2πiP (n)
ν(n)

∣∣∣∣∣∣
≥ ε/2,

which contradicts Theorem 4.

4.3 Algebraic models of general quasi-discrete spectrum

transformations

Assume that T is a quasi-discrete spectrum automorphism of (X,B, µ). Then,
in view of [4], [18], [19], up to measure theoretic isomorphism, we may assume
that:

(i) X is a compact, connected, Abelian group.

(ii) Tx = Ax + b, where A : X → X is a continuous group automorphism,
b ∈ X , and the group generated by (A− I)X and b is dense in X .

(iii) For each character χ ∈ X̂, there exists m ≥ 0 such that χ◦ (A−I)m = 1. 1

By (iii),
⋂

n≥0(A− I)nX = {0}, that is, T is unipotent, and by [20], [21], it
follows that T is minimal. Then, in view of [18], (T,X) is uniquely ergodic.

Theorem 7. Assume that T satisfies (i), (ii) and (iii). Let ν : N → C be

any multiplicative function, with |ν| ≤ 1. Then, for each 1 6= χ ∈ X̂ and each
increasing sequence 1 = b1 < b2 < . . . with bk+1 − bk → ∞ and each choice of
(zk) ∈ X, we have

1

bK+1

∑

k≤K

∣∣∣∣∣∣

∑

bk+1≤n<bk+1

χ(T nzk)ν(n)

∣∣∣∣∣∣
−→ 0 when K → ∞.

Proof. We have already noticed that (X,T ) is uniquely ergodic. Fix a character

1 6= χ ∈ X̂ . Using (iii), let m ≥ 0 be the smallest such that χ ◦ (A − I)m = 1.
Since χ 6= 1, we have m ≥ 1. Let Ym := (A− I)m−1X . Note that:

• Ym is a non-trivial subgroup of X (indeed, otherwise, χ◦ (A−I)m−1 = 1);

1Note that χ(Tx) = χ(x)
(

χ((A − I)x)χ(b)
)

, so by an easy induction, we obtain that
χ ∈ Em(T ) if m is the smallest such that χ ◦ (A− I)m = 1.

12



• Ym is connected (indeed, (A−I)m−1 is a continuous group homomorphism
and, by (i), Ym is the image of a connected space);

• χ(Ym) = S1 (by the previous observation).

Note that, for each y ∈ Ym, we have χ ◦A(y) = χ(y), and since AYm ⊂ Ym, we
also have χ◦An(y) = χ(y) for each n ≥ 1. Moreover, for each yk ∈ Ym, we have

(13) χ(T n(zk + yk)) = χ(Anyk)χ(T nzk) = χ(yk)χ(T nzk).

It follows by the above that, for each k ≥ 1, we can find yk ∈ Ym such that

∑

bk+1≤n<bk+1

χ(T n(zk + yk))ν(n) = χ(yk)
∑

bk+1≤n<bk+1

χ(T nzk)ν(n)

=

∣∣∣∣∣∣

∑

bk+1≤n<bk+1

χ(T nzk)ν(n)

∣∣∣∣∣∣

and the result follows by the AOP property of the system, and Theorem 3.

5 Remarks on the AOP property

Remark 1. The class of measure-theoretic dynamical systems with AOP is
stable under taking factors, since any ergodic joining of the actions of T r and
T s on a factor σ-algebra extends to an ergodic joining of T r and T s. It is also
close by inverse limits, since it is enough to check (2) for a dense subclass of
functions f in L2.

Proposition 4. If T satisfies (2) then T is of zero entropy.

Proof. Because of Remark 1, it is enough to show that there exists a Bernoulli
automorphism with arbitrarily small entropy for which (2) fails.

Fix δ > 0 and let T be the shift on X = {0, 1}Z considered with Bernoulli
measure µ = (δ, 1 − δ)⊗Z. Given r ≥ 1, consider the map ϕr : X → X ,

ϕr((xi)i∈Z) := (xri)i∈Z

for each (xi)i∈Z ∈ X . Then, ϕr ◦ T
r = T ◦ ϕr and ϕr yields a homomorphism

(factor map) from (X,µ, T r) onto (X,µ, T ) (because the laws of the independent
processes (Xi)i∈Z, Xi((xj)j∈Z) = xi and (Xri)i∈Z are the same). Moreover, the
extension

(14) ϕr : (X,µ, T r) → (X,µ, T ) is relatively Bernoulli

(see e.g. [14]) since ϕ−1
r (B) has the complementary independent sub-σ-algebra

given by the smallest T r invariant sub-σ-algebra making the variables X1, . . . , Xr−1-
measurable.

Take now r 6= s ≥ 1 to obtain the joining κr,s defined as

(15)

∫
g ⊗ h dκr,s :=

∫
E(g|ϕ−1

r (B))(ϕ−1
r (x))E(h|ϕ−1

s (B))(ϕ−1
s (x)) dµ(x).
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In view of (14), κr,s is ergodic. Now, consider f ∈ L2(X,B, µ) defined by
f((xi)i∈Z) := x0. We claim that

(16) E(f |ϕ−1
r (B))(ϕ−1

r (x)) = f(x) = x0.

Indeed, given x = (xi)i∈Z ∈ X ,

ϕ−1
r (x) = {y ∈ X : yir = xi for each i ∈ Z}

and on that fiber we have a relevant Bernoulli measure as the conditional mea-
sure. Note however that f is constant on the fiber, in other words, f is measur-
able with respect to ϕ−1

r (B). Since (16) holds also for ϕs, using additionally (15),
it follows that ∫

f ⊗ f dκr,s = ‖f‖2L2(X,B,µ) > 0,

which excludes the possibility of satisfying (2).

Remark 2. There exist some zero-entropy automorphisms for which the AOP
property fails. Indeed, we will show that it does not hold for horocycle flows.
We have the classical relation between the geodesic and the horocycle flow: for
each s, u ∈ R, we have

guhsg
−1
u = he−2us.

Set r = e−2us. Assume now that r 6= s are coprime natural numbers, r, s →
∞ but we also assume that r/s → 1. For such pair (r, s), the number u is
determined by e−2u = r/s, so u is close to zero. We can hence assume that
gu, whose graph ∆gu is an ergodic joining of hr = (h1)r and hs = (h1)s,
belongs to the compact set of joinings {∆gt : t ∈ [0, 1]}. Since a graph joining
is clearly never equal to the product measure, there is a positive distance of
{∆gt : t ∈ [0, 1]} from the product measure in the relevant space of couplings.
Therefore, (2) fails to hold.
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cle flows. In From Fourier analysis and number theory to radon transforms
and geometry, volume 28 of Dev. Math., pages 67–83. Springer, New York,
2013.

[9] T. Downarowicz, S. Kasjan, Odometers and Toeplitz subshifts revisited in
the context of Sarnak’s conjecture, preprint.

[10] M. Einsiedler, T. Ward, Ergodic Theory with a view towards Number The-
ory, Graduate Texts in Mathematics 259, Springer-Verlag London Limited
2011.

[11] S. Ferenczi, C. Mauduit, On Sarnak’s conjecture and Veech’s question for
interval exchanges, preprint.

[12] H. Furstenberg, Strict ergodicity and transformations of the torus, Ameri-
can J. of Math., 83 (1961), 573-601.

[13] H. Furstenberg, Recurrence in ergodic theory and combinatorial number
theory. Princeton University Press, Princeton, N.J., 1981. M. B. Porter
Lectures.

[14] E. Glasner, Ergodic theory via joinings, volume 101 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI,
2003.

[15] B. Green, On (not) computing the Möbius function using bounded depth
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T-extensions of rotations, to appear in Monatshefte Math.

[25] E. Lehrer, Topological mixing and uniquely ergodic systems, Israel J. Math.
57 (1987), 239-255.
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