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Abstract

We study the long-time behavior of variants of the telegraph process with position-
dependent jump-rates, which result in a monotone gradient-like drift toward the ori-
gin. We compute their invariant laws and obtain, via probabilistic couplings argu-
ments, some quantitative estimates of the total variation distance to equilibrium. Our
techniques extend ideas previously developed for a simplified piecewise deterministic
Markov model of bacterial chemotaxis.
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1 Introduction

1.1 The model and main results

Piecewise Deterministic Markov Process (PDMP) have been extensively studied in the
last two decades (see [6, 7, 15] for general background) and have recently received renewed
attention, motivated by their natural application in areas such as biology [22, 8], commu-
nication networks [9] or reliability of complex systems, to name a few. Understanding the
ergodic properties of these models, in particular the rate at which they stabilize towards
equilibrium, has in turn increased the interest in the long-time behavior of PDMPs.

In this paper we pursue the study of these questions on PDMP models of bacterial
chemotaxis, initiated in [10, 11] by means of analytic tools, and deepened in [13] and [20]
on simplified versions that can be seen as variants of Kac’s classic “telegraph process” [16].

We consider the simple PDMP of kinetic type (Zt)t≥0 = ((Yt,Wt))t≥0 with values in
R× {−1,+1} and infinitesimal generator

Lf(y, w) = w∂yf(y, w) +
(
a(y)1{yw≤0} + b(y)1{yw>0}

)
(f(y,−w)− f(y, w)), (1)

where a and b are nonnegative functions in R. That is, the continuous component Y evolves
according to dYt

dt = Wt and represents the position of a particle on the real line, whereas
the discrete component W represents the velocity of the particle and jumps between +1
and −1, with instantaneous state-dependent rate given by a(y) (resp. b(y)) if the particle
at position y approaches (resp. goes away from) the origin. This process describes, in a
naive way, the motion of flagellated bacteria as a sequence of linear ”runs”, the directions
of which randomly change at rates that depend on the position of the bacterium. The
emergence of macroscopical drift is expected when the response mechanism favors longer
runs in specific directions (reflecting the propensity to move for instance towards a source
of nutriments). We refer the reader to [22] for a scaling limit of the processes introduced
in [10, 11] that leads to simplified models like (1).

In the particular case where the jump rates are constants such that b > a > 0, the
convergence to equilibrium of the process (1) has been investigated in a previous work [13],
where fully explicit and asymptotically sharp (in the natural diffusive scaling limit of the
process) bounds were obtained. We also refer the reader to [20] for the study of related
models in the circle, relying on a spectral decomposition, and to [21] for a general approach
to some kinetic models including the above one, based on functional inequalities.

In the present work we will consider position dependent jump-rates which throughout
will be assumed to satisfy:

Hypothesis 1.1. Function b (resp. a) is measurable, even, non decreasing (resp. non
increasing) on [0,+∞), bounded from below by b > 0 (resp. a > 0). Moreover we assume
that b(y) > a(y) for all y 6= 0.

In the sequel, b̄ stands for supy>0 b(y) ∈ [b,∞] and sgn : R→ {−1,+1} denotes de function

sgn(y) = 1{y≥0} − 1{y<0}.

Let us denote by µy,wt the law of Zt = (Yt,Wt) when issued from Z0 = (y, w). The
following is a our main result:

Theorem 1.2 (Convergence to equilibrium). There exists κ > 0, K > 0, and λ > 0 such
that for any y, ỹ ∈ R and w, w̃ ∈ {−1,+1},∥∥∥µy,wt − µỹ,w̃t

∥∥∥
TV
≤ Keκ|y|∨|ỹ|e−λt. (2)
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The constants above can be expressed in terms of the functions a and b following the
lines of the proof. We will try to provide as explicit as possible bounds in each of its steps.

The proof of Theorem 1.2 relies on a probabilistic coupling argument, reminiscent of
Meyn-Tweedie-Foster-Lyapunov techniques, see [19, 17]. Variants of this type of methods
have been developed in several previous works on specific instances of PDMP [4, 2, 1, 18].
The model under study in the present paper is harder to deal with, since the vector fields
that drive the continuous part are not contractive.

Our approach will be based on extensions of some ideas and methods developed in [13].
However, due to the non constant jump-rates we will have to work with explicit couplings
of jump-times, for two copies of the process found at different positions. Moreover, we
will need to make use of some discrete time Markov process embedded in their trajecto-
ries (reminiscent of [3]), in order to obtain controls of the global coupling time. These
additional technicalities prevent us from getting estimates as explicit as in [13].

Before delving into the proof of Theorem 1.2, we point out the explicit form of the
equilibrium of the process (Y,W ) and its relation to one dimensional diffusion processes
in a convex potential.

Proposition 1.3 (Invariant distribution). The invariant distribution of (Y,W ) on R ×
{−1,+1} is given by

µ(dy, dw) =
1

CF
e−F (y)dy ⊗ 1

2
(δ−1 + δ+1)(dw)

where CF :=
∫
Re
−F (y) dy <∞ and F is the convex function

y ∈ R 7→ F (y) =

∫ y

0
sgn(z)(b(z)− a(z)) dz. (3)

The domain of the Laplace transform of µ is (−b̄+ a, b̄− a)× {−1,+1}.

Example 1.4 (Laplace and Gaussian equilibria). If a and b are constant functions, then

µ(dy, dw) =
b− a

2
e−(b−a)|y|dy ⊗ 1

2
(δ−1 + δ+1)(dw).

If a is a constant function and b is the map y 7→ a+ |y|, then

µ(dy, dw) =
1√
2π
e−y

2/2dy ⊗ 1

2
(δ−1 + δ+1)(dw).

Figure 1 compares in the latter case the empirical law of Yt to its invariant measure at
increasing time instants.

Proof of Proposition 1.3. We first note that the constant CF is finite as soon as the func-
tions a and b satisfy Hypothesis 1.1, since z 7→ b(z)− a(z) is non decreasing and positive
on (0,∞). Furthermore,

lim
y→+∞

1

y

∫ y

0
(b(z)− a(z)) dz = b̄− a.

This ensures that the Laplace transform of µ is finite on (−b̄ + a, b̄ − a) × {−1,+1} and
infinite on the complement. For any function f ∈ C1 on R × {−1,+1} with compact
support one has, from the definition of F ,

Lf(y, 1) + Lf(y,−1) = ∂y(f(y, 1)− f(y,−1))− sgn(y)(b(y)− a(y))(f(y, 1)− f(y,−1))

= ∂y(f(y, 1)− f(y,−1))− F ′(x)(f(y, 1)− f(y,−1)).
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Figure 1: Empirical distribution of Yt starting at (5,−1) for t ∈ {2, 6, 10, 14, 18, 22} with
a(y) = 1 and b(y) = 1 + |y|.

An integration by parts ensures that∫
(∂yf(y, 1)− ∂yf(y,−1))e−F (y) dy =

∫
(f(y, 1)− f(y,−1))F ′(y)e−F (y) dy,

which yields
∫
Lf(y, w)µ(dy, dw) = 0. In other words, µ is an invariant measure for L.

The next result is independent of the previous and can be seen as a generalization
of the renormalisation of the telegraph process studied by Kac [16] (see also [14], [13]).
It shows that, under the suitable scaling, process (1) behaves like the diffusion processes
expected from Proposition 1.3:

Theorem 1.5 (Diffusive scaling). For each N ≥ 1 let aN , bN : R → R+ be jump-rates
satisfying Hypothesis 1.1 such that y 7→ aN (y) + bN (y) is of class C1 and

i) aN(0) + bN(0)→∞,

ii) bN −aN → 2c1 and
a′N+b′N
aN+bN

→ 2c2 locally uniformly for some functions c1, c2 : R→ R

when N → ∞. Let (Y
(N)
t ,W

(N)
t )t≥0 denote the process driven by (1) with a = aN , b = bN

and assume that Y
(N)

0 → ξ0 in law as N →∞. Then, the sequence of processes(
ξ

(N)
·

)
N≥1

:=
(
Y

(N)
τN (·)

)
N≥1

,

with τN the solution of τ ′N(t) = 1
2(aN(Y

(N)
τN (t)) + bN(Y

(N)
τN (t))), τN(0) = 0, weakly converges in

C([0,∞),R) when N →∞ to the solution ξt of the stochastic differential equation

dξt = dBt − (sgn(ξt)c1(ξt) + c2(ξt)) dt , (4)

where (Bt)t≥0 is a standard Brownian motion independent from ξ0.

Remark 1.6 (Diffusion in a convex potential). The drift term in (4) is odd since aN and

bN are even. Notice from point ii) above that aN (y)+bN (y)
aN (0)+bN (0) = e2

∫ y
0 c2(s)ds+o(1) uniformly on

compact sets as N →∞. Hence aN (y) + bN (y)→∞ for all ≥ 0 by i), and c2 = 0 if and
only if aN (y) + bN (y) ∼ aN (0) + bN (0) for each y ≥ 0. Thus, any diffusion with generator
of the form 1

2f
′′(y)−U ′(y)f ′(y) for an even convex potential U can be obtained as a limit,

taking for instance aN (y) = aN (0) −→∞ and bN (y) = aN (0) + 2U ′(y).
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The remainder of the paper is organized as follows. In the next subsection we briefly
recall generalities on the coupling approach to long-time convergence in total variation
distance. We also define therein the reflected version of process (1), a detailed study
of which is crucial for proving Theorem 1.2. Section 2 is devoted to the study of jump
and hitting times of the latter process. A coalescent coupling for it is then constructed
in Section 3 and the corresponding convergence estimates are established. The proof of
Theorem 1.2 is achieved in Section 4. Finally, Theorem 1.5 is proved in Section 5.

1.2 Preliminaries

In the sequel we will use the notation
L
= meaning “equal in law to” and E(λ) for an

exponential random variable with mean 1/λ.
Recall that the total variation distance between two probability measures η and η̃ on

a measurable space X is given by

‖η − η̃‖TV = inf
{
P(X 6= X̃) : X, X̃ random variables with L(X) = η, L(X̃) = η̃

}
. (5)

If η and η̃ are absolutely continuous with respect to a measure ν with respective densities
f and f̃ then

‖η − η̃‖TV =
1

2

∫ ∣∣∣f − f̃ ∣∣∣ dν = 1−
∫
f ∧ f̃ dν.

See [17] for alternative definitions of this distance and its main properties. A pair of
stochastic processes (Ut, Ũt)t≥0 constructed in the same probability space, for which an
almost surely finite random time T satisfying Ut+T = Ũt+T for any t ≥ 0 exists, is called
a coalescent coupling. The random variable

T∗ = inf
{
t ≥ 0 : Ut+s = Ũt+s ∀s ≥ 0

}
is then called the coupling time. It follows in this case that∥∥∥L(Ut)− L(Ũt)

∥∥∥
TV
≤ P(T∗ > t).

A helpful notion in obtaining an effective control of the distance is stochastic domination
(see [17] for a complete introduction).

Definition 1.7 (Stochastic domination). Let S and T be two real random variables with
respective cumulative distribution functions F and G. We say that S is stochastically
smaller than T and we write S ≤sto. T , if F (t) ≥ G(t) for any t ∈ R.

In particular, for a couple (Ut, Ũt) as above, Chernoff’s inequality yields∥∥∥L(Ut)− L(Ũt)
∥∥∥

TV
≤ P(T > t) ≤ E

(
eλT
)
e−λt (6)

for any non-negative random variable T such that T∗ ≤sto. T , and any λ ≥ 0 in the domain
of the Laplace transform λ 7→ E

(
eλT
)

of T .
We will use these ideas to obtain the exponential convergence to equilibrium for (Y,W )

in Theorem 1.2, and in Theorem 1.9 below for its reflected version (X,V ) which we now
introduce. The Markov process ((Xt, Vt))t≥0 is defined by its infinitesimal generator:

Af(x, v) = v∂xf(x, v) +

(
a(x)1{v=−1} + b(x)1{v=1} +

1{x=0}

1{x>0}

)
(f(x,−v)− f(x, v)), (7)

where the maps a and b satisfy Hypothesis 1.1. The term 1{x=0}(1{x>0})
−1 means that V

flips from −1 to +1 as soon as X hits zero. In other words, X is reflected at zero.
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Remark 1.8. Given a path ((Yt,Wt))t≥0 driven by (1), a path of ((Xt, Vt))t≥0 can be
constructed taking

Xt = |Yt|, V0 = sgn(Y0)W0

and defining the set of jump times of V to be

{t > 0 : ∆Vt 6= 0} = {t > 0 : ∆Wt 6= 0} ∪ {t > 0 : Yt = 0}.

Since W does not jump with positive probability when Y hits the origin, one can also
construct a path of ((Yt,Wt))t≥0 from an initial value y ∈ R and a path ((Xt, Vt))t≥0

driven by (7): set σ0 = 0 and (σi)i≥1 for the successive hitting times of the origin and

(Yt,Wt) = (−1)isgn(y)(Xt, Vt) if t ∈ [σi, σi+1).

Let us state our results about the long time behavior of (X,V ).

Theorem 1.9. The invariant measure of (X,V ) is the product measure on R+×{−1,+1}
given by

ν(dx, dv) =
2

CF
e−F (x) dx⊗ 1

2
(δ−1 + δ+1)(dv).

where F and CF are given by (3). Moreover, denoting by νx,vt the law of (Xt, Vt) when
X0 = x and V0 = v, there exists λ > 0, K > 0 and c > 0 such that, for any x, x̃ ≥ 0 and
v, ṽ ∈ {−1,+1}, ∥∥∥νx,vt − νx̃,ṽt

∥∥∥
TV
≤ Ke−λtec(x∨x̃). (8)

Following the lines of the proof, the constants λ, K and c can be expressed in terms of
the jump rate functions a and b. Let us summarize some important random times involved
in the proof of Theorem 1.9 (all related to the reflected process):

• T(x,v) stands for the first jump time starting at (x, v) and ϕ(x,v) stands for its Laplace
transform,

• Z(x,v) stands for the first hitting time of (0,+1) starting at (x, v),

• Tc stands for the first crossing time of the continuous components of two paths,

• T∗ stands for the coupling time (i.e. from T∗ on the two paths are equal forever).

Roughly, we will let evolve both paths until the first crossing time Tc (which is stochasti-
cally controlled by hitting times of 0) and then couple the whole processes by using explicit
couplings of the jump-times. Notice that it is not obvious to deduce Theorem 1.2 from
Theorem 1.9.

2 Basic properties of the reflected process

2.1 Distribution of the jump times

Let us denote by T(x,v) the first jump time of the stochastic process (X,V ) starting from
(X0, V0) = (x, v) with infinitesimal generator defined by (7). This random time satisfies

T(x,v) = inf

{
t ≥ 0 :

∫ t

0
c(Xs) ≥ E

}
,

6



where E is an exponential variable with unit mean and c stands for the function b when
v = +1 and, when v = −1,

c(x) =

{
a(x) for x > 0,

+∞ for x ≤ 0.

The process (X,V ) being deterministic between jump times, we have

T(x,v) = inf

{
t ≥ 0 :

∫ t

0
c(x+ vs) ≥ E

}
.

Consequently, if B is the primitive of b with B(0) = 0, we have

T(x,+1) = B−1(E +B(x))− x, (9)

and if A is the primitive of a with A(0) = 0,

T(x,−1) =

{
x−A−1(A(x)− E) if E < A(x),

x otherwise.
(10)

The functions A−1 and B−1 are well defined since a and b are positive functions.

Lemma 2.1 (Law of jump times). Let x ∈ R+. The random variable T(x,+1) is absolutely
continuous with density given by

t 7→ b(t+ x)e−(B(t+x)−B(x))1(0,∞)(t).

The random variable T(x,−1) is a mixture of an absolutely continuous random variable and
the constant variable x. Its distribution is

e−A(x)δx + a(x− t)e−(A(x)−A(x−t))1[0,x](t)dt,

where δx denotes the Dirac mass at x and dt the Lebesgue measure on R.

Proof. We notice that T(x,+1) is almost surely finite since
∫∞

0 b(x+ s)ds = +∞. Let E be
an exponential variable with unit mean and t ≥ 0, then

P(T(x,+1) > t) = P
(∫ t

0
b(x+ s)ds < E

)
= e−

∫ t
0 b(x+s)ds.

We obtain the density of T(x,+1) by derivation. The distribution of T(x,−1) is similarly

obtained noting that P(E > A(x)) = e−A(x).

Lemma 2.2 (Laplace transform of jump times). Let x ≥ 0 be fixed. The Laplace transform
of T(x,+1) is finite on (−∞, b). Furthermore, if λ < b(x),

E
[
eλT(x,+1)

]
≤ b(x)

b(x)− λ
.

7



Proof. Let x ≥ 0 be fixed. Since b is non decreasing, we first we notice that T(x,+1) ≤sto.

E/b(x), where E is an exponential variable with mean 1. Then its Laplace transform is at
least defined on (−∞, b(x)) and is bounded from above by that of E/b(x) on this interval.

Let us now fix λ < b. Thus there exists z ≥ 0 such that λ < b(x+ z). The distribution
of T(x,+1) conditional on T(x,+1) > z is equal to the distribution of z + T(x+z,+1) and the
Laplace transform of T(x,+1) can be split as follows

E
[
eλT(x,+1)

]
= E

[
eλT(x,+1)1T(x,+1)≤z

]
+ E

[
eλT(x,+1)1T(x,+1)>z

]
=

∫ z

0
b(x+ t)e

∫ t
0 (λ−b(x+u))dudt+ e

∫ z
0 (λ−b(x+u))duE

[
eλT(x+z,+1)

]
.

which is finite from the definition of z.

Lemma 2.3 (Stochastic order for jump times). For 0 ≤ x̃ < x, we have

T(x,+1) ≤sto. T(x̃,+1) and T(x,−1) ≥sto. T(x̃,−1).

Proof. We first consider v = +1. Let E be an exponential variable with unit mean and

T(x,+1) := B−1(E +B(x))− x and T(x̃,−1) := B−1(E +B(x̃))− x̃

We have ∫ T(x,+1)

0
b(x+ s)ds = E =

∫ T(x̃,+1)

0
b(x̃+ s)ds

with b a non-decreasing function and x > x̃, then clearly T(x,+1) ≤ T(x̃,+1) (inequalities
are strict when the jump rates are strictly monotone functions). The proof is similar for
T(x,−1).

We now give helpful results in order to construct a coalescent coupling of two processes
starting from different initial data, which is in fact a generalization of a well known result
on exponential random variables. Indeed, when a < b are positive constants, the following
equalities in distribution hold:

E(b)
L
= E(a) ∧ E(b− a),

E(a)
L
= E(b) + εE′(a),

where random variables on the left hand side are independent and ε is Bernoulli with
parameter (1− a/b).

Lemma 2.4 (Decomposition of jump times, part I). For x ≥ x̃ ≥ 0, the identity in law

T(x,+1)
L
= T(x̃,+1) ∧ Z+

holds, with Z+ a random variable with values in (0,∞] independent of T(x̃,+1), such that

P(Z+ > t) = exp (−B(x+ t) +B(x) +B(x̃+ t)−B(x̃)) for all t ∈ [0, x̃). (11)

Moreover, there exists a coupling (T(x,+1), T(x̃,+1)) such that, almost surely,

T(x̃,+1) ≥ T(x,+1)

8



and, conditionally on {T(x,+1) = t},

T(x̃,+1)
L
= t+ ξtT̂(x̃+t,+1)

with T̂(x̃+t,+1)
L
= T(x̃+t,+1) and ξt a Bernoulli r.v. independent of T̂(x+t,+1) of parameter

βt :=
b(x+ t)− b(x̃+ t)

b(x+ t)
∈ [0, 1).

We observe that if b(x) goes to +∞ as x → ∞, we have Z+ < +∞ a.s., whereas
Z+ = +∞ a.s. if b(x) = b is constant.

Proof. Since b is a non-decreasing function, we have for any t ≥ 0,

B(t+ x)−B(x) ≥ B(t+ x̃)−B(x̃).

Using the representation (9) and the memoryless property of the exponential distribution,
we thus have for all t ≥ 0 that

P
(
T(x,+1) > t

)
= P(E > B(x+ t)−B(x))

= P
(
T(x̃,+1) > t

)
P(E > B(x+ t)−B(x)−B(x̃+ t) +B(x̃)).

The first statement follows. We next check that (T(x,+1), T(x̃,+1)) := (T(x̃,+1)∧Z+, T(x̃,+1)),
with (T(x̃,+1), Z+) as before, is the required coupling. Since

{T(x̃,+1) > Z+} = {T(x̃,+1) > T(x,+1)}, (12)

we deduce that T(x̃,+1) = T(x,+1) +
(
T(x̃,+1) − T(x,+1)

)
1{T(x̃,+1)>T(x,+1)}. Thus, we just need

to check that, conditionally on {Tx,+1 = t},

(1{T(x̃,+1)>T(x,+1)}, T(x̃,+1) − T(x,+1))
L
= (ξt, T̂(x̃+t,+1)).

Using (12), and the expression for the density of T(x̃,+1) together with (11), we get

P
(
T(x̃,+1) > T(x,+1) + r, T(x,+1) > s

)
=P

(
T(x̃,+1) > Z+ + r, Z+ > s

)
=

∫ ∞
s

[
b(x+ t)− b(x̃+ t)

b(x+ t)
e−(B(x̃+r+t)−B(x̃+t))

]
e−(B(x+t)−B(x))b(x+ t)dt

for all s, r ≥ 0. Alternatively,

P
(
T(x̃,+1) > T(x,+1) + r, T(x,+1) > s

)
=∫ ∞

s
P
(
T(x̃,+1) − T(x,+1) > r, T(x̃,+1) > T(x,+1)|T(x,+1) = t

)
e−(B(x+t)−B(x))b(x+ t)dt.

Taking derivative with respect to s in the two above integrals, one concludes by comparing
the two different obtained expressions.

The function a being non-increasing, we obtain an analogous result for T(x,−1):
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Lemma 2.5 (Decomposition of jump times, part II). For x > x̃ > 0, the identity in law

T(x̃,−1)
L
= T(x,−1) ∧ Z−

holds, with Z− a random variable with values in (0, x̃] independent of T(x,+1), such that

P(Z− > t) = exp (−A(x̃) +A(x̃− t) +A(x)−A(x− t)) for all t ∈ [0, x̃). (13)

Moreover, there exists a coupling (T(x,−1), T(x̃,−1)) such that, almost surely,

T(x,−1) ≥ T(x̃,−1)

and, conditionally on {T(x̃,−1) = t},

T(x,−1)
L
= t+ χtT̂(x−t,−1)

with T̂(x−t,−1)
L
= T(x−t,+1) and χt a Bernoulli r.v. independent of T̂(x−t,+1) of parameter

αt :=
a(x̃− t)− a(x− t)

a(x̃− t)
∈ [0, 1) if t < x̃ and αx̃ := 1.

Example 2.6 (Explicit laws for jump times). In the case b(x) = b+ x with b > 0 (as in
the TCP model studied in [9, 5]), T(x,+1) has the density

f(x,+1)(t) = (b+ x+ t)e−
(t+x+b)2−(x+b)2

2 1{t>0}

and an everywhere finite Laplace transform given by E[eλT(x,+1) ] = 1 + λη(x + b − λ),

with η(u) = e
u2

2

√
2π(1− Φ(u)) and Φ the cumulative distribution function of a standard

Gaussian variable. We also notice in this case that for 0 ≤ x̃ ≤ x,

T(x,+1)
L
= T(x̃,+1) ∧ E(x− x̃),

for E(x− x̃) an exponential variable of mean 1/(x− x̃) independent of T(x̃,+1), and

P
(
E(x− x̃) > T(x̃,+1)

)
= 1− (x− x̃)η(x+ b).

2.2 Hitting time of the origin

Let (x, v) ∈ R+ × {−1,+1}. We notice that

Z(x,+1)
L
= Z(x,−1) + Sx,

where Z(x,v) is the first hitting time of (0,+1) of a path starting from (x, v) and Sx is an
excursion above x independent of Z(x,−1). Consequently Z(x,−1) is stochastically smaller
than Z(x,+1).

The Laplace transform of the hitting time of zero starting from (x, v) was explicitly
computed in [13] in the case where a and b are both constant. Let us recall this result in
the following proposition.
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Proposition 2.7 (Hitting time of 0 for constant jump rates [13]). Let us define λc =
1
2(
√
b−
√
a)2 and, for any λ ≤ λc,

c(λ) =
b− a−

√
(a+ b− 2λ)2 − 4ab

2
and ψ(λ) =

a+ b− 2λ−
√

(a+ b− 2λ)2 − 4ab

2a
.

Then, for any λ ∈ (−∞, λc],

E
(
eλZ(x,−1)

)
= exc(λ) and E

(
eλZ(x,+1)

)
= ψ(λ)exc(λ).

Moreover, these Laplace transforms are infinite on (λc,∞).

If the jump rates a and b are not constant, the evolution away from the origin is no
longer invariant by translation. Consequently, we have to consider a new way to estimate
the distribution of the hitting time of zero.

Proposition 2.8 (Hitting time of 0 for general jump rates). Let M > 0 such that√
b(M)

a(M)
e
M
(√

b(M)−
√
a(M)

)2(
1− e−A(M)

)
< 1.

Then, the Laplace transform of the first hitting time Z(x,v) of (0,+1) starting from (x, v) ∈
R× {−1,+1} satisfies

E
[
eλZ(x,v)

]
≤ Ce

(x∨M)(b(M)−a(M))
2 for all λ ≤ 1

2
(
√
b(M)−

√
a(M))2,

where C > 0 is an explicit constant depending on M , a and b.

Proof. We first notice that f(x, v) = eαx+βv with α, β > 0, is a Lyapunov function for the
infinitesimal generator A of ((Xt, Vt))t≥0 defined by (7). More precisely, we have

Af(x,+1) = f(x,+1)
[
α− b(x)

(
1− e−2β

)]
,

Af(x,−1) = f(x,−1)
[
−α+ a(x)

(
e2β − 1

)]
for all x > 0. If we choose α, β > 0 and a compact set K = [0,M ]× {−1, 1} such that

−α+ a(M)
(
e2β − 1

)
< 0 and α− b(M)

(
1− e−2β

)
< 0, (14)

by monotony of a and b there are ρ = ρ(α, β,M, a) > 0 to be specified and c > 0 such that

Af(x, v) ≤ −ρf(x, v) + c1K(x, v).

The Laplace transform of the first hitting time of [0,M) × {−1, 1} starting from (x, v),
denoted τ(x,v) := inf{t > 0 : (Xt, Vt) ∈ [0,M)×{−1, 1}}, can then classically be controlled
as follows:

f(Xt∧τ(x,v) , Vt∧τ(x,v))e
ρt = f(x, v) +

∫ t∧τ(x,v)

0
[Af(Xs, Vs) + ρf(Xs, Vs)] e

ρtds+Nt∧τ(x,v)

≤ f(x, v) +Nt∧τ(x,v)

11



where (Nt)t≥0 is a martingale with respect to the filtration generated by ((Xt, Vt))t≥0.
Taking the expectation in the previous inequality we deduce that, for x > M ,

E[eρτ(x,v) ] ≤ eα(x−M)+β(v+1). (15)

We next choose α, β > 0 in order to optimize ρ. For α, β,M > 0 satisfying (14), we set

ρ =
[
b(M)(1− e−2β)− α

]
∧
[
α− a(M)(e2β − 1)

]
.

First we choose α > 0 such that

2α = b(M)(1− e−2β) + a(M)(e2β − 1)

and then

β =
1

4
[log (b(M))− log (a(M))]. (16)

With this choice, we have

2α = b(M)− a(M) and ρ(M) =
1

2

(√
b(M)−

√
a(M)

)2
. (17)

Condition (14) is satisfied for any M > 0 since

−α+ a(M)
(
e2β − 1

)
= α− b(M)

(
1− e−2β

)
= −1

2

(√
b(M)−

√
a(M)

)2
.

We now obtain an estimate for the Laplace transform of Z(x,+1). Let M > 0 be arbitrarily
fixed for the moment and λ > 0 such that λ ≤ ρ(M). For x ≥M , we have

Z(x,+1)
L
= τ(x,+1) + Z(M,−1) (18)

where τ(x,+1) and Z(M,−1) are independent.
Let us denote by T1 and T2 the first two jumps of V . From Figure 2.2 we see that, before
a path starting from (M,−1) hits (0,+1), either

1. T1 = M , in which case we have Z(M,−1) = M ;

2. T1 < M and T2 > T1, in which case we have

Z(M,−1) = 2T1 + Z(M,+1) ≤sto. 2M + τ(M,+1) + Z̃(M,−1); or

3. T1 < M and T2 ≤ T1, and then

Z(M,−1) = T1 + T2 + Z(M−T1+T2,−1) ≤sto. 2M + Z̃(M,−1),

with Z̃(M,−1) an independent hitting time of zero starting from (M,−1).

Lemma 2.1 ensures that P(M,−1)(T1 = M) = e−A(M). As a consequence, if ϕ is the Laplace
transform of Z(M,−1), one has

ϕ(λ) ≤ e−A(M)eλM +
(

1− e−A(M)
)
e2λME

[
eλτ(M,+1)

]
ϕ(λ).

For any λ < ρ(M) we get, thanks to Hölder inequality and (15), that

E
[
eλτ(M,+1)

]
≤
(
E
[
eρ(M)τ(M,+1)

])λ/ρ(M)
≤ e2λβ(M)/ρ(M).

12



M

1.

2.

3.

T1 T2

Figure 2: The three different types of paths from (M,−1) to (0,+1).

Thanks to (16), if M is chosen in order that√
b(M)

a(M)
e
M
(√

b(M)−
√
a(M)

)2(
1− e−A(M)

)
< 1

then for any λ ≤ ρ(M), ϕ is finite and

ϕ(λ) ≤ e−A(M)eλM

1−
(
1− e−A(M)

)
e2λ(M+β(M)/ρ(M))

.

Combining (18) and (15) with the previous estimate completes the proof in the main case
x ≥M . If x ≤M then

Z(x,−1) ≤sto. Z(M,−1) and Z(x,+1) ≤sto. M + τ(M,+1) + Z̃(M,−1),

and one can conclude as in the previous case.

3 The coupling time for the reflected process

This section is dedicated to the construction of a coalescent coupling of two paths of the
reflected process driven by (7) starting from two different initial conditions.

3.1 The first crossing time

Let us consider (x, v) and (x̃, ṽ) two initial data with x̃ < x. The first crossing time of two
paths (X,V ) and (X̃, Ṽ ) starting respectively from (x, v) and (x̃, ṽ) is defined by

Tc = Tc(x, v, x̃, ṽ) = inf
{
t ≥ 0 : Xt = X̃t

}
.

Since (Xt)t≥0 is continuous, Tc is stochastically smaller than the hitting time of zero Z(x,v)

of the initially upper path, whatever the joint law of the pair. The first crossing point XTc

is such that

XTc ≤ sup
t∈[0,Z(x,v)]

Xt − (x− x̃) ≤ 1

2

(
Z(x,v) + x̃− x

)
. (19)

Notice that at time Tc the two velocities are opposites.
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3.2 A way to stick the two paths

In what follows we assume that (X0, V0) = (x,+1) and (X̃0, Ṽ0) = (x,−1) and construct
two paths which are equal after a coalescent time T∗(x). The successful coupling consists
in producing a jump of (exactly) one of the two velocities V or Ṽ at a crossing time of their
position components X and X̃. We will use the coupled jump-times studied in Lemmas
2.4 and 2.5 in order to minimize the time required to do so, in the spirit of [13].

To be more precise, given x > 0 fixed, let us denote by U+ and U− (respectively L−
and L+) the first and the second inter-jump time lapses of the path starting from (x,+1)
(resp. starting from (x,−1)). These random variables are constructed as follows. We first
choose U+ with distribution T(x,+1) and L− with distribution T(x,−1) independently. We
then define U− and L+ in such a way that (U+, L+) and (U−, L−) have the laws of the
couplings defined in Lemmas 2.4 and 2.5 respectively and that L+−U+ and U−−L− are
independent conditionally on (U+, L−). More precisely, conditionally on U+ and L−, we
introduce two independent Bernoulli variables ξ and χ with

P(ξ = 1|U+, L−) =
b(x+ U+)− b(x− L− + U+)

b(x+ U+)
and

P(χ = 1|U+, L−) =
a(x− L−)− a(x+ U+ − L−)

a(x− L−)
1{L−<x} + 1{L−=x}

and two independent random variables L+ − U+ and U− − L− with the same law as
Tx+U+−L−,+1 and Tx+U+−L−,−1 respectively. Then we set

L+ := U+ + ξ(L+ − U+) and U− := L− + χ(U− − L−).

Figure 3 shows the four possible outcomes. Those where exactly one of the Bernoulli
variables is equal to 1 allow us to stick the paths at time U+ + L− (i.e. on the rightmost
corner of the rectangle): the velocities of the two paths are the same right after that
instant, and the overshot length (beyond the rectangle’s corner) determined by the previous
coupling is compatible with the law of the two marginal processes from that moment on
(because of their Markov property). We then say that the coupling attempt succeeded,
and this happens conditionally on (U+, L−) with probability

P(ξ = 0, χ = 1|U+, L−) + P(ξ = 1, χ = 0|U+, L−) =[
b(x− L− + U+)

b(x+ U+)

(
1− a(x− L− + U+)

a(x− L−)

)
+

(
1− b(x− L− + U+)

b(x+ U+)

)
a(x− L− + U+)

a(x− L−)

]
1{L−<x}

+
b(U+)

b(x+ U+)
1{L−=x}.

(20)

Observe that the success or failure of the coupling attempt is determined by the
Bernoulli random variables ξ and χ. If the coupling attempt fails, the two trajectories
cross or bounce off of each other at time U+ + L− and by similar reason as before the
(already determined) lengths (L+−U+) and (U−−L−) can be used to restart two (upward
and downward) trajectories from x− L− + U+, independently of each other conditionally
on the past and consistently with the pathwise laws of each of the two processes.

The coupling construction is now obvious: we repeat this scheme starting from the
new crossing or bouncing point, until we succeed in sticking the two paths. Notice that
this iterative algorithm is more efficient than the general procedure of the Meyn-Tweedie
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X̃t
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U+
U−
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L+

Case 1: U+ < L+ and U− = L−

x

Xt

X̃t

Tcc

Case 2: U+ = L+ and U− > L−

x

Xt

X̃t

Tc

Case 3: U+ < L+ and U− > L−

x

Xt

X̃t

Tc

Case 4: U+ = L+ and U− = L−

Figure 3: Position of both paths after one step.

method [19] since, after a fail, the two processes have already the same position (and still
opposite velocities).

We point out that the coupling scheme implemented for the reflected process in [13]
in the constant jump rates case is a particular case of the above described scheme. Notice
however that here, in general, the upper path starting from (x,+1) does not necessarily
remain above the other path until the coupling time. We then cannot control the coupling
time by the hitting time of 0 for the process starting at (x,+1) as it was done in [13]. On
the other hand, contrary to the constant rates case where the coupling could only succeed
right after the lower process hit 0, the coupling can now succeed at an arbitrary step of
the scheme, though not with a probability bounded from below uniformly in x (this can
be easily seen from formula (20) e.g. in the case case when a is constant and b(x) = a+x).
Therefore, a new approach to estimate the coupling time is needed, which is developed in
next subsection.

3.3 Coupling time from a crossing point

In this section we will use the notation Px (resp. Ex) for the distribution (resp. the
expectation) of a random variable associated with the coupling scheme given that the two
copies started at position x > 0.
We first observe that for fixed R > 0, the probability of success in one step can be
bounded from below (considering the last term in (20) and taking expectation) uniformly
over x ∈ [0, R] by some number pR ∈ (0, 1) satisfying

pR ≥ e−A(R)

∫ ∞
0

b(u)e−
∫ u
0 b(R+s)dsdu. (21)

This suggests that the number of trials below a fixed height R > 0 required in order to get
a successful coupling can be stochastically dominated by some geometric random variable.
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Notice that we do not expect a successful coupling to occur only below level R. We will
rather use the above remark in order to construct the scheme in such a way that the
coalescent time will be always smaller than or equal to some real random variable that we
can control in terms of geometric number of positive time lapses.

First, we define a sequence of “rectangles” of potential trajectories of the two copies in
the coupling scheme, on which the two copies will live at all times, irrespective of whether
the coupling attempt has already been successful or not (of course once it has been so,
their positions and velocities coincide from that moment on). More precisely, we define a
discrete time Markov chain (Φn)n≥0 starting at x by

Φ0 =x,

Φn+1 = Φn + Tn+1
(Φn,+1) − T

n+1
(Φn,−1),

(22)

where conditionally on all the past up to (and including) time n, Tn+1
(Φn,+1) and Tn+1

(Φn,−1) are

independent and respectively equal in law to T(y,+1) and T(y,−1) on the event {Φn = y}.
Plainly, (Φn)n≥1 describes the height of the right-most corner of the n−th rectangle ob-
tained by iterating the construction of Figure 3. Consider also the sequence of positive
random variables (real time lengths) (σn)n≥0 defined by

σ0 =0,

σn+1 =Tn+1
(Φn,+1) + Tn+1

(Φn,−1),
(23)

which give the (real) time-position of the rectangles’ right-most corners, and finally set
Σn =

∑n
i=1 σi, with the convention Σ0 = 0. Following Lemmas 2.4 and 2.5 and in order to

determine at which attempt the coupling is successful, we introduce two sequences (ξn)n≥1

and (χn)n≥1 of Bernoulli random variables, conditionally independent of each other given

(σk,Φk)k≥0 and such that for n ≥ 0, on
{

Φn = y, Tn+1
(Φn,+1) = t, Tn+1

(Φn,−1) = s
}

,

P(ξn+1 = 1|(σk,Φk)k≤n+1) =
b(y + t)− b(y − s+ t)

b(y + t)
, and

P(χn+1 = 1|(σk,Φk)k≤n+1) =
a(y − s)− a(y + t− s)

a(y − s)
1{s<y} + 1{s=y}.

We also set ξ0 = χ0 = 1 for notational simplicity. Observe that (σn,Φn, ξn, χn)n≥0 is
Markov process. We denote by (Fn)n≥0 the filtration it generates. We then define a
sequence of random variables (κn) by

κn = 1{ξn=1,χn=0} + 1{ξn=0,χn=1}.

According to the discussion at the end of the previous subsection, the discrete time instant
(or rectangle number) at which the coupling succeeds is

ρ := inf {n ≥ 1 : κn = 1}

and the real time spent in order that this happens is

T∗ := Σρ =

ρ∑
i=1

σi.
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The trajectories of the two copies can be easily constructed from the previous objects, but
we actually do not need to work with them.
Let us now introduce the discrete random variable

ρR := inf {n ≥ 1 : κn = 1 and Φn−1 < R}.

Both ρ and ρR are stopping times with respect to (Fn)n≥0. Since ρ ≤ ρR a.s., we clearly
have

T∗ ≤ TR∗ :=

ρR∑
i=1

σi. (24)

Our goal now is to exhibit an upper bound for the Laplace transform of the random
time TR∗ under Px. We need to introduce the stopping time (with respect to (Fn)n≥0)

τR(x) := inf{n ≥ 0 : Φn ∈ [0, R]}, (25)

and the real time

ΣτR(x) :=

τR(x)∑
i=0

σi (26)

accumulated when the sequence (Φn)n≥0 reaches [0, R] for the first time. Let ϕ(x,v) denote
the Laplace transform of T(x,v) for (x, v) ∈ R+ × {−1,+1}. We have

Lemma 3.1. Assume there exist positive real numbers R, λ, β such that λ < β, λ+ β < b̄
and ϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β) < 1. Then, τR <∞ a.s. and

Ex
[
eβΦτR+λ

∑τR
i=0 σiητR

]
≤ eβx1x>R

where η := (ϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β))−1 > 1.

Proof. For each x > R and β > λ, from the stochastic monotonicity of the jump times
(see Lemma 2.3) we get

Ex
[
eβΦ1+λσ1

]
=eβxE

[
e(β+λ)Tx,+1

]
E
[
e(λ−β)Tx,−1

]
≤eβxϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β).

(27)

If ϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β) < 1, we deduce from (27) that eβΦτR∧n+λ
∑n
i=1 σiητR∧n is a

positive supermartingale with respect to (Fn)n≥0, hence

eβx1x>R ≥ Ex
[
eβΦτR∧n+λ

∑τR∧n
i=0 σiητR∧n

]
≥ Ex

[
ητR∧n

]
.

Letting n → ∞ in the last expectation we get by monotone convergence Ex [ητR ] < ∞,
hence τR <∞ a.s.. Letting then n→∞ in the first expectation and using Fatou’s Lemma
the statement follows.

For each γ > 0 and R > 0, we now set

ER(γ) := sup
y∈[0,R]

Ey
[
eγT(y,+1)1κ1=0

]
.
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Proposition 3.2 (Laplace transform of the coupling time starting at a crossing point).
Assume that (R, λ, β) satisfy the conditions of Lemma 3.1 and moreover that ER(λ+β) < 1.
Then, the Laplace transform of T∗ satisfies

Ex
[
eλT∗

]
≤
eβx1x>Rϕ(0,+1)(λ)ϕ(R,−1)(λ)

1− ER(λ+ β)
. (28)

Proof. Fix x ∈ R and R, λ, β satisfying conditions of Lemma 3.1. From (24), we just
need to estimate TR∗ . To this aim, we consider the process (Φ̂n, σ̂n)n≥0 defined in terms of
(Φn, σn)n≥0 in the following way: first set τ̂0 = 0 and τ̂1 = τR(x) + 1 and for all n ≥ 1,

τ̂n+1 = τ̂n + τnR + 1, with τnR := inf{n ≥ τ̂n : Φn ∈ [0, R]} − τ̂n.

In other words, τ̂n+1 is the index of the first attempt to couple the paths that follows the
first (discrete) return time τ̂n + τnR of (Φk)k≥0 into [0, R] after τ̂n. Then, we set Φ̂0 = x,

σ̂0 = 0, Φ̂1 = Φτ̂1 , σ̂1 =
∑τ̂1

i=1 σi and

Φ̂n+1 = Φτ̂n+1 , σ̂n+1 =

τ̂n+1∑
i=τ̂n+1

σi.

Thus, σ̂n+1 is the sum of the real time

Σn
τnR

:=

τ̂n+1−1∑
i=τ̂n+1

σi

needed after σ̂n in order to observe again a “rectangle corner” in [0, R], plus the time στ̂n+1

spent in one coupling attempt right thereafter. Then, Φ̂n+1 ∈ R+ is the position of the
discrete chain (or rectangle corner) at the time instant σ̂n+1. Notice that for each i ≥ 0,
τ̂i is a stopping time with respect to the filtration (Fn)n≥0 and that, conditionally on

Fτ̂n ∩{Φ̂n = x}, (τnR,Σ
n
τnR

) has the same law as the pair (τR(x),ΣτR(x)) defined in (25) and

(26). We can now write

TR∗ =

ρ̂R∑
i=0

σ̂i,

where ρ̂R := inf {n ≥ 1 : κτ̂n = 1} is a stopping time with respect to the filtration (Fτ̂n)n≥0.
We notice that ρ̂R < ∞ a.s. since the probability of fail in one step starting from a

position x ∈ [0, R] is uniformly bounded on [0, R] by 1− pR. We then can write

Ex[eλT
R
∗ ] =

∞∑
n=1

Ex
[
eλ
∑n
i=0 σ̂i1ρ̂R=n

]
=
∞∑
n=1

Ex
[
eλ
∑n
i=0 σ̂i1κτ̂n=0,κτ̂n−1

=0,...,κτ̂0=1

]
. (29)

On one hand, we have

Ex[eλσ̂1 ] =E
[
eλΣτR (x)eλστR(x)+1

]
= E

[
E
[
eλστR(x)+1 |FτR(x)

]
eλΣτR (x)

]
≤E

[
EΦτR(x)

[
eλσ1

]
eλΣτR (x)

]
.

By Lemma 2.3, Ey
[
eλσ1

]
= ϕ(y,+1)(λ)ϕ(y,−1)(λ) ≤ ϕ(0,+1)(λ)ϕ(R,−1)(λ) for any point y ∈

[0, R]. Thus, using also Lemma 3.1 we get

Ex[eλσ̂1 ] ≤ ϕ(0,+1)(λ)ϕ(R,−1)(λ)eβx1x>R ,
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and

E
[
eλσ̂n1κτ̂n=1|Gn−1

]
= Eφ̂n−1

[
eλσ̂11κτ̂1=1

]
≤ ϕ(0,+1)(λ)ϕ(R,−1)(λ)e

βφ̂n−11φ̂n−1>R .

On the other hand, we have

Ex
[
eλσ̂1e

βφ̂11φ̂1>R1κτ̂1=0

]
= E

[
eλΣτR (x)EΦτR (x)

[
eλσ1+βφ11φ1>R1κ1=0

]]
and for all y ∈ [0, R]

Ey
[
eλσ1+βφ11φ1>R1κ1=0

]
≤ ER(λ+ β)eβy.

Then, again from Lemma 3.1 we get

Ex
[
eλσ̂1e

βφ̂11φ̂1>R1κτ̂1=0

]
≤ ER(λ+ β)eβx1x>R

and then, for all k = 1, . . . , n− 1,

E
[
eλσ̂ke

βΦ̂k1φ̂k>R1κτ̂k=0|Gk−1

]
= Eφ̂k−1

[
eλσ̂1e

βφ̂11φ̂1>R1κτ̂1=0

]
≤ ER(λ+ β)e

βφ̂k−11φ̂k−1>R .

By successively conditioning in (29), we finally have

Ex[eλT
R
∗ ] ≤ eβx1x>R

∞∑
n=1

ϕ(0,+1)(λ)ϕ(R,−1)(λ)(ER(λ+ β))n

=
eβx1x>Rϕ(0,+1)(λ)ϕ(R,−1)(λ)

1− ER(λ+ β)

for parameters as required.

Let us now verify the existence of (R, λ, β) such that all the assumptions of Proposi-
tion 3.2 hold. Notice first that for all β > λ > 0 and each R > 0 we have

ϕ(R,−1)(λ− β) ≤ ā+ (β − λ)e−(ā+β−λ)R

ā+ β − λ
, (30)

thanks to the fact that T(R,−1) ≥sto. E(a) ∧ R. Since also T(R,+1) ≤sto. E(b(R)), we
furthermore have

ϕ(R,+1)(λ+ β) ≤ b(R)

b(R)− (λ+ β)
(31)

for all λ+ β < b(R).

Given λ > 0, we take β > λ of the form β = αλ for α > b̄+ā
b̄−ā (or simply α > 1 if

b̄ =∞). Then, we have b̄ > α+1
α−1 ā, hence we find R large enough such that

b(R)
(
1− e−āR

)
>
α+ 1

α− 1
ā.
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Thanks to (30) and (31), the assumptions of Lemma 3.1 are satisfied for all λ ∈ (0, λc),
where

λc := inf

{
λ > 0 : (α+ 1)λ ≥ b(R)

(
1− e−(ā+(α−1)λ)R

)
− α+ 1

α− 1
ā

}
.

Indeed, from (30) and (31), condition ϕ(R,+1)(β + λ)ϕ(R,−1)(λ− β) < 1 holds as soon as

b(R)
(
ā+ (α− 1)λe−(ā+(α−1)λ)R

)
< (ā+ (α− 1)λ)(b(R)− (α+ 1)λ)

⇔ b(R)(α− 1)λe−(ā+(α−1)λ)R < (α− 1)λb(R)− (ā+ (α− 1)λ)(α+ 1)λ

⇔ (α+ 1)λ < b(R)
(

1− e−(ā+(α−1)λ)R
)
− α+ 1

α− 1
ā.

Since the previous inequality is satisfied for λ = 0, by continuity we have λc > 0; the
function of λ on the r.h.s. being strictly concave, we also have λc <∞.

Finally, notice that by Lemma 2.3 and Holder’s inequality, for any q > 1,

ER(γ) ≤ (1− pR)1−1/qϕ
1/q
(0,+1)(qγ),

with pR ∈ (0, 1) a quantity as in (21). Taking q = q(γ) = γ−1, this in turn yields, for
each fixed R > 0, lim sup

γ→0
ER(γ) ≤ (1− pR) < 1. Therefore, there exists λ′c ∈ (0, λc) small

enough such that ER((α+ 1)λ) < 1 for all λ ∈ (0, λ′c) .

3.4 The coupling time for the reflected process

Let us consider two initial data (x, v) and (x̃, ṽ), with x ≥ x̃. The coalescent time T∗(x, x̃)

of a path (X,V ) starting from (x, v) and a path
(
X̃, Ṽ

)
starting from (x̃, ṽ) is equal to

the first crossing time Tc(x, x̃) of both paths plus the time spent to stick them using the
coupling described in Section 3.2. Consequently, the coupling time is stochastically smaller
than the hitting time Z(x,v) of the origin of the upper path (X,V ), plus some remainder
term.

For any (R, λ, β) satisfying assumptions of Proposition 3.2, the Laplace transform of
the coupling time T∗(x, x̃) is bounded by

E
[
eλT∗(x,x̃)

]
≤
ϕ(0,+1)(λ)ϕ(R,−1)(λ)

1− ER(λ+ β)
E
[
eλTc(x,x̃)eβXc1Xc>R

]
.

where the first crossing time Tc(x, x̃) is smaller than Z(x,v) and the first crossing point Xc

is bounded from above by 1
2

(
Z(x,v) + x̃− x

)
. Consequently,

E
[
eλT∗(x,x̃)

]
≤
ϕ(0,+1)(λ)ϕ(R,−1)(λ)

1− ER(λ+ β)
eβ(x̃−x)/2E

[
e(λ+β/2)Z(x,v)

]
.

Using now Proposition 2.8 , for 0 < λ < β satisfying conditions of Proposition 3.2 with
λ+ β/2 < 1

2(
√
b(Mc)−

√
a(Mc))

2, we finally get

E
[
eλT∗(x,x̃)

]
≤ C

ϕ(0,+1)(λ)ϕ(R,−1)(λ)

1− ER(λ+ β)
e
β(x̃−x)

2 e
x(b(Mc)−a(Mc))

2 (32)

with C is given in Proposition 2.8 and

Mc = sup

{
M > 0 :

√
b(M)

a(M)
e
M
(√

b(M)−
√
a(M)

)2(
1− e−A(M)

)
< 1

}
.

This concludes the proof of Theorem 1.9.
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4 The unreflected process

Let us construct a coalescent coupling of two unreflected processes starting from (y, w)
and (ỹ, w̃) respectively. For a given time t0 > 0, the coupling algorithm is the following:

1. Define (x, v) = (|y|, w sgn(y)) and (x̃, ṽ) = (|ỹ|, w̃ sgn(ỹ)).

2. Couple two reflected processes starting at (x, v) and (x̃, ṽ) as in Section 3.

3. Let them evolve until their common hitting time of 0.

4. Construct until that time the two associated unreflected processes starting at (y, w)
and (ỹ, w̃) as explained in Remark 1.8. The algorithm stops if, when at the origin,
the two copies have the same velocities. Otherwise, go to Step 5.

5. Try to couple the unreflected processes starting from (0,+1) and (0,−1) before a
fixed time t0.

6. In case of failure, return to step 1 for two initial conditions in [−t0, t0]× {−1,+1}.

The only remaining task is to analyze Step 5 of this algorithm. To that end, one has
to study the law of (Yt,Wt) when Y0 = 0 and W0 = ±1. Let us denote by (Tn)n≥0 (with
T0 = 0) the successive jump times of the unreflected process. The variable Sn = Tn−Tn−1

stands for the nth inter-jump time. In order to lighten the computation, we restrict
ourselves to the law after 1 or 2 jumps.

Remark 4.1 (Jump times of the unreflected process). We can explicitly compute the law of
the jump-times of the unreflected process. For y ∈ R, set A(y) = A(|y|) and B(y) = B(|y|)
where A and B were defined on R+ in Lemma 2.1. For y > 0, the law of the first jump
time starting from (y,−1) has the density f(y,−1) given by

f(y,−1)(t) =

{
a(y − t)e−(A(y)−A(y−t)) if t < y,

e−A(y)b(t− y)e−B(t−y) if t ≥ y.

Moreover, the survival function F̄(y,+1)(t) := P(y,+1)(T1 > t) is given for y ≥ 0 by

F̄(y,+1)(t) = e−(B(y+t)−B(y)),

and for y < 0 by

F̄(y,+1)(t) =

{
e−(A(y)−A(y+t)) if y + t < 0,

e−A(y)e−B(t+y) if y + t ≥ 0.

For any bounded measurable function g on R× {−1,+1}, one then has

E(0,−1)

[
g(Yt,Wt)1{T1<t,T2>t}

]
= E(0,−1)

[
g(t− 2S1,+1)1{S1<t,S1+S2>t}

]
=

∫ t

0
g(t− 2s,+1)f(0,−1)(−s)F̄(−s,+1)(t− s) ds

=

∫ t

−t
g(u,+1)h−1(u) du,

where

h−1(u) =
1

2
f(0,+1)

(
t− u

2

)
F̄( t−u2 ,+1)

(
t+ u

2

)
.
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Similarly,

E(0,+1)[g(Yt,Wt)1T2<t,T3>t] = E(0,+1)[g(t− 2S2,+1)1S1+S2<t,T3>t]

=

∫ t

0

∫ t−s2

0
g(t− 2s2,+1)f(0,+1)(s1)f(s1,−1)(s2)F̄(s1−s2,+1)(t− s1 − s2) ds1 ds2

=

∫ t

−t
g(u,+1)h1(u) du,

where

h1(u) =

∫ t+u
2

0

1

2
f(0,+1)(s1)f(s1,−1)

(
t− u

2

)
F̄(s1− t−u2 ,+1)

(
t+ u

2
− s1

)
ds1.

Since L((Yt,Wt)|Y0 = 0,W0 = w) = L((−Yt,Wt)|Y0 = 0,W0 = −w), two copies as in step
5 of the algorithm couple before time t ≥ 0 with probability larger than

εt = 2

∫ t

−t
h−1(u) ∧ h1(u) du > 0.

Remark 4.2 (Explicit lower bound). A lower bound of ε can be derived from the fact that
y 7→ a(y) and y 7→ b(y) respectively belong to [a(t), a(0)] and [b(0), b(t)] on the interval
[−t, t].

Let us now control the total duration of the algorithm. Notice that the estimates on
the reflected process in Section 3 do no longer depend on the initial conditions, after the
first crossing time of the reflected copies in the compact set [−R,R] × {−1,+1}. This
implies that, after the first iteration of Step 2 in the above algorithm, the duration of each
step can be controlled independently of the initial data, and of the previous steps.

Moreover, the algorithm succeeds after at most a random number of iterations with
geometric law of parameter εt0 . Since the duration of each step in the algorithm has a
finite exponential moment, this is thus true for the coupling time as well. The upper
bound of Theorem 1.2 can then be deduced. As a conclusion the bounds in Theorems 1.2
and 1.9 depends in the same way on initial data but the rate of convergence is smaller for
the unreflected process.

5 Diffusive scaling

We finally prove Theorem 1.5. Omitting for a moment the sub and superscripts for nota-
tional simplicity, and writing

jt := Wt + κ′(Yt)− 2
(
a(Yt)1{YtWt≤0} + b(Yt)1{YtWt>0}

)
κ(Yt)Wt,

Jt :=
∫ t

0 jsds and Ŷt := Yt + κ(Yt)Wt for a given positive function κ of class C1, we see by
Dynkin’s theorem that the processes

Mt := Ŷt − Jt = Yt + κ(Yt)Wt − Jt

and

Nt := Ŷ 2
t − 2

∫ t

0
κ(Ys)ds− 2

∫ t

0
Ysjsds− 2

∫ t

0
κ′(Ys)κ(Ys)Wsds
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are local martingales with respect to the filtration generated by (Yt,Wt).
In fact, using f(y, w) = y + κ(y)w and g(y, w) = (y + κ(y)w)2, since w2 = 1, we have

Lf(y, w) = w + κ′(y)− 2
(
a(y)1{yw≤0} + b(y)1{yw>0}

)
κ(y)w,

Lg(y, w) = 2w(1 + κ′(y)w)(y + κ(y)w)− 4
(
a(y)1{yw≤0} + b(y)1{yw>0}

)
yκ(y)w

= 2κ(y) + 2y
(
w + κ′(y)− 2

(
a(y)1{yw≤0} + b(y)1{yw>0}

)
k(y)w

)
+ 2κ′(y)κ(y)w.

Integrating by parts we then get that

M2
t = Ŷ 2

t − 2ŶtJt + J2
t

= Ŷ 2
t − 2

∫ t

0
(Ys + κ(Ys)Ws)jsds− 2

∫ t

0
JsdŶs + 2

∫ t

0
Jsjsds

= Nt + 2

∫ t

0
κ(Ys)ds− 2

∫ t

0
κ(Ys)Wsjsds+ 2

∫ t

0
κ′(Ys)κ(Ys)Wsds

− 2

∫ t

0
JsdŶs + 2

∫ t

0
Jsjsds

= Nt + 2

∫ t

0
κ(Ys)ds− 2

∫ t

0
κ(Ys)Ws[js − κ′(Ys)]ds− 2

∫ t

0
JsdMs.

Thus, noting that

js = κ′(Ys) + sgn(Ys)
(
[2a(Ys)κ(Ys)− 1] + 21{YsWs>0} [1− κ(Ys)(a(Ys) + b(Ys))]

)
we see for κ(Ys) = (a(Ys) + b(Ys))

−1 that

Mt = Yt −
[
−
∫ t

0

[
a′(Ys) + b′(Ys)

(a(Ys) + b(Ys))
2 + sgn(Ys)

(
b(Ys)− a(Ys)

a(Ys) + b(Ys)

)]
ds− Wt

a(Yt) + b(Yt)

]
,

M2
t − 2

∫ t

0

[
1

a(Ys) + b(Ys)
+Ws sgn(Ys)

b(Ys)− a(Ys)

(a(Ys) + b(Ys))2

]
ds

are local martingales.
The function τN of the statement is well defined by the Cauchy-Lipschitz Theorem,

thanks to the assumptions on the coefficients and the fact that Yt has Lipschitz trajecto-
ries. Moreover, τN is strictly increasing, the coefficients a and b being positive functions.
Recalling the dependence on N of the coefficients, and defining for each N ∈ N,

β
(N)
t := −1

2

∫ t

0

[
a′N (ξ

(N)
s ) + b′N (ξ

(N)
s )

aN (ξ
(N)
s ) + bN (ξ

(N)
s )

+ sgn(ξ(N)
s )

(
bN (ξ(N)

s )− aN (ξ(N)
s )

)]
ds

−
W

(N)
τN (t)

aN(ξ
(N)
t ) + bN (ξ

(N)
t )

and

α
(N)
t := t+

1

2

∫ t

0
W

(N)
τN (s) sgn(ξ(N)

s )
bN (ξ

(N)
s )− aN (ξ

(N)
s )

aN (ξ
(N)
s ) + bN (ξ

(N)
s )

ds,

we see from the previous and Doob’s optional stopping theorem that the processes(
ξ

(N)
· − β(N)

t

)
t≥0

and
(

(ξ
(N)
t − β(N)

t )2 − α(N)
t

)
t≥0
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are local martingales with respect to the filtration of the process (ξ
(N)
t ,W

(N)
τN (t))t≥0. Defining

for each R > 0 the stopping time σNR = inf{t ≥ 0 : |ξ(N)
t | ≥ R of |ξ(N)

t− | ≥ R}, we notice
that the hypotheses imply that

P

(
sup
t≤σNR

∣∣∣α(N)
t − t

∣∣∣ ≥ ε)+ P

(
sup
t≤σNR

∣∣∣∣β(N)
t +

∫ t

0
sgn(ξs)c1(ξs) + c2(ξs) ds

∣∣∣∣ ≥ ε
)
−−−−→
N→∞

0

for all ε > 0 and

E

(
sup
t≤σNR

∣∣∣ξ(N)
t − ξ(N)

t−

∣∣∣2)+ E

(
sup
t≤σNR

∣∣∣β(N)
t − β(N)

t−

∣∣∣2) −−−−→
N→∞

0.

The processes
(
ξ

(N)
t , α

(N)
t

)
t≥0

and
(
β

(N)
t

)
t≥0

thus satisfy the hypotheses of Theorem 4.1 in

[12, p. 354] (in the respective roles of the processes Xn(·), An(·) and Bn(·) therein), which

ensures that L((ξ
(N)
t , t ≥ 0)) converges weakly to the unique solution of the martingale

problem with generator given for f ∈ C∞c (R) by

Gf(x) :=
1

2
f ′′(x)− (sgn(x)c1(x) + c2(x))f ′(x)

and initial law L(ξ0).
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