
HAL Id: hal-01176033
https://hal.science/hal-01176033

Preprint submitted on 14 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Call-By-Push-Value FPC and its interpretation in
Linear Logic
Thomas Ehrhard

To cite this version:
Thomas Ehrhard. A Call-By-Push-Value FPC and its interpretation in Linear Logic. 2015. �hal-
01176033�

https://hal.science/hal-01176033
https://hal.archives-ouvertes.fr

A Call-By-Push-Value FPC and its
interpretation in Linear Logic

Thomas Ehrhard

CNRS, PPS, UMR 7126, Univ Paris Diderot, Sorbonne Paris Cité
F-75205 Paris, France

thomas.ehrhard@pps.univ-paris-diderot.fr

Abstract

We present and study a functional calculus similar to Levy’s Call-
By-Push-Value lambda-calculus, extended with fix-points and re-
cursive types. We explain its connection with Linear Logic by pre-
senting a denotational interpretation of the language in any model
of Linear Logic equipped with a notion of embedding retraction
pairs. We consider the particular case of the Scott model of Linear
Logic from which we derive an intersection type system for our
CBPV FPC and prove an adequacy theorem. Last, we introduce a
fully polarized version of CBPV which is closer to Levy’s original
calculus, turns out to be a term language for a large fragment of
Laurent’s LLP and refines Parigot’s lambda-mu.

Keywords lambda-calculus, call by push value, linear logic, de-
notational semantics, Scott semantics

Introduction

Linear Logic (LL) has been introduced as a refinement of Intu-
itionistic Logic: in [12], Girard proposed a very simple and natural
translation of intuitionistic logic and of the λ-calculus in LL. From
a categorical point of view, as explained in [24], this translation
corresponds to the construction of the Kleisli category of the expo-
nential comonad “!” of LL. An adequate categorical axiomatization
of the denotational models of LL has been then provided in [2], see
also [22] for a very complete and detailed picture.

In [12], another possible translation of intuitionistic formulas
strangely called “boring” is mentioned. It appeared later that, just
as the original Girard’s translation corresponds to the call-by-name
(CBN) evaluation strategy of the λ-calculus, the “boring” trans-
lation corresponds to the call-by-value (CBV) reduction strategy,
see in particular [21]. Indeed, a first observation is that this latter
translation does not preserve all β-reductions, but only those re-
specting a CBV discipline. More deeply, domain-theoretic denota-
tional models of the λ-calculus arising through the original Girard
translation, that is, arising as Kleisli categories of the exponential
comonad, enjoy an adequacy property expressing that a term re-
duces to a “value” (a head-normal term, say) iff its interpretation

[Copyright notice will appear here once ’preprint’ option is removed.]

is different from ⊥. A similar property holds for the CBV transla-
tion (now, a closed value is an abstraction) with respect to the CBV
reduction strategy.

Both translations give a particularly proeminent role to the
Kleisli category of the “!” comonad. This is obvious for the orig-
inal CBN translation but it is also true for the CBV translation
if we consider that the “!” functor defines a strong monad on the
cartesian closed Kleisli category: then the CBV translation coin-
cides with Moggi’s interpretation of the CBV λ-calculus in a CCC
equipped with a computational monad [23].

So LL (more precisely, MELL, that is Multiplicative Exponen-
tial Linear Logic) provides a common setting where both CBN and
CBV can be faithfully interpreted. In spite of its appealing sym-
metries and its high degree of asynchrony, the syntax of MELL
proof nets is complex and does not seem to be a convenient start-
ing point for the design of programming languages; it is rather a
powerful tool for analyzing the operational and denotational prop-
erties of programming languages. It seems therefore natural to look
for λ-calculi admitting a translation in MELL and where both CBN
and CBV can be embedded, factorizing the two translations men-
tioned above. It turns out that Levy introduced a few years ago a λ-
calculus subsuming both CBN and CBV: the Call-By-Push-Value
λ-calculus (CBPV) of [18, 20], that we will show to provide a suit-
able such factorization.

We will recast a version of the CBPV λ-calculus within LL,
or more precisely, within a polarized extension of LL. The LL
exponential “!” allows to turn a term of type A into a term of type
!A which is duplicable and discardable, by means of an operation
called promotion. This discardability and duplicability is made
possible by the structural rules !A is equipped with. It was already
observed by Girard in [13] (and probably much earlier) that the
property of “being equipped with structural rules” is preserved by
the ⊗ and ⊕ connectives of LL. These observations can be made
more accurate as follows: a “type equipped with structural rules”

is a coalgebra for the “!” connective1 , that is, an object of the
Eilenberg-Moore category of “!”, and this category admits ⊕ as
coproduct and ⊗ as cartesian product. This category is not a CCC
in general but contains the CCC Kleisli category of “!” as a full sub-
category (remember that the Kleisli category is the category of free
!-coalgebras). This category was used crucially by Girard to give a
semantics to a classical sequent calculus and by other authors (see
for instance [17]) to interpret classical extensions of the λ-calculus
such as Parigot’s λµ-calculus.

1 Girard considered actually ⊗-commutative comonoids, a notion which has
the good taste of being independent of any choice of “!” modality. This
is however not sufficient for translating classical logic in LL, unless one
restricts ones attention to the free exponential modality as he did, in the
framework of coherence spaces.

A Call-By-Push-Value FPC 1 2015/7/13

Replacing the Kleisli category with the larger Eilenberg-Moore
category of “!” when interpreting the λ-calculus has other major
benefits. Consider for instance the interpretation of ordinary PCF
in an LL-induced categorical model, that is, in a Kleisli category
of the “!” comonad of a categorical model L of LL. The simplest
and most natural interpretation for the type of natural numbers is
N = 1 ⊕ 1 ⊕ · · · (ω copies of the unit 1 of the tensor product).
But 1 has a canonical structure of !-coalgebra (because 1 = !⊤
where ⊤ is the terminal object of L) and this is therefore also true
of N, as a coproduct of coalgebras. This means that we have a
well behaved morphism hN ∈ L(N, !N) which allows to turn any
morphism f ∈ L!(N, X) of the Kleisli CCC L! where we interpret
PCF into a linear morphism f hN ∈ L(N, X). Operationally, this
means that, in spite of the fact that PCF is a CBN language and that
its interpretation in L! is a CBN interpretation, we can deal with
the terms of ground type in a CBV fashion. For instance we can
replace the ordinary PCF “if zero” conditional with the following
more sensible one:

P ⊢M : ι P ⊢ N : σ P , x : ι ⊢ N ′ : σ

P ⊢ if(M,N, (x)N ′) : σ

with the reduction rules

if(0, N, (x)N ′) → N if(n+ 1, N, (x)N ′) → N ′ [n/x]

M →M ′ ⇒ if(M,N, (x)N ′) → if(M ′, N, (x)N ′)

The denotational interpretation of if(M,N, (x)N ′) uses crucially
the coalgebra structure hN of N. This idea is also reminiscent of
storage operators of [16] which have exactly the same purpose
of allowing a CBV discipline for data types in a globally CBN
calculus.

We see CBPV as a very nice generalization of this idea. We
consider two classes of types: the positive types ϕ,ψ . . . and the
larger class of general types σ, τ, Just as in [13], positive types

correspond to objects of L! whereas general types are just objects
of L. Of course there is an obvious way of considering a positive
type as a general one by simply forgetting its coalgebra structure.
There is also a way of turning a general type into a positive one,
using the “!” comonad, and positive types are stable under sums
⊕ and product ⊗. In Girard’s CBN translation, σ ⇒ τ becomes
!σ ⊸ τ : the main idea of CBPV is to generalize this idea by
allowing to replace the subtype !σ with an arbitrary positive typeϕ.
Therefore, the implication of the CBPV λ-calculus is linear: all the
required non-linearity is provided by the positivity of the premise.
Accordingly all variables have positive types.

There is however a subtlety which does not occur in the CBN
situation: consider a term M of type σ with one free variable x
of positive type ϕ. Consider also a closed term N of type ϕ. The
interpretation of M is a morphism f ∈ L(ϕ, σ) (identifying types
with their interpretation) and the interpretation of N is a morphism
g ∈ L(1, ϕ). There is no reason however for g to belong to

L!(1, ϕ) and so we cannot be sure that f g will coincide with the
interpretation of M [N/x]. Indeed, for that substitutivity property
to hold, we would need g to be duplicable and discardable which is

the case if we can make sure that g ∈ L!(1, ϕ), but does not hold
in general. It is here that the syntactic notion of value comes in: if

ϕ = !σ then N is a value if N = R! (a promotion of a term R of
type σ), if ϕ = ϕ1 ⊗ ϕ2 then N is a value if N = 〈V1, V2〉 where
Vi is a value of type ϕi and similarly for sums. The main property
of values is that their interpretations are coalgebra morphisms: if

N is a value then g ∈ L!(1, ϕ). This is why, in the CBPV λ-
calculus, β reduction is restricted to the case where the argument
is a value: we have 〈λxϕM〉V → M [V/x] only when V is a
value because we are sure in that case that the interpretation of V
is a coalgebra morphism. This also means that in 〈λxϕM〉N we
need to reduce N to a value before reducing the β-redex. If, for

instance, the reduction ofN diverges without reaching a value then
the reduction of 〈λxϕM〉N diverges even if M does not use x,
just as in CBV.

Positive types are also stable under fix-points if we assume that
the objects of L can be equipped with a notion of embedding-
retraction pairs, which is usually the case in categories of domains.
Under the assumption that this new category has all countable di-
rected colimits and that the functors interpreting types are contin-
uous, it is easy to prove that all “positive types with parameters”
have fix-points which are themselves positive types. The presence
of “!” as an explicit type constructor in CBPV allows to define lazy
recursive types such as ρ = ϕ⊗ !ρ where ϕ is a given type: ρ is the
type of streams of elements of typeϕ. At the level of terms, the con-
struction which introduces an “!” is the aforementioned construc-
tion R! which corresponds to the well known (generalized) pro-
motion of LL aka exponential box; this construction corresponds
here to scheme’s thunks or suspensions. In this stream type ρ the
box construction is crucially used to postpone the evaluation of the
tail of the stream. The box can be opened by means of an explicit
dereliction syntactic construct der(M) which can be applied to any
termM of type !σ for some σ and which corresponds exactly to the
usual dereliction rule of LL.

Contents. We define a simply typed CBPV calculus featuring
positive and ordinary types, recursive positive types and with a fix-
point operator for terms. Since many data types can be defined eas-
ily in this language (ordinary integers, lazy integers, lists, streams,
various kinds of finite and infinite trees. . .), it widely encompasses
PCF and is closer to a language such as FPC of [11], with the ad-
ditional feature that it allows to freely combine CBV and CBN.
We define the syntax of the language, provide a typing system and
a simple operational semantics which is “weak” in the sense that
reduction is forbidden under λs and within boxes (more general
reductions can of course be defined but, just as in CBV, a let con-
struction or new reduction rules as in [3] should be added).

Then we recall the general definition of a categorical model
of LL (with fix-point operators), of its Eilenberg Moore category
and we describe the additional categorical structure which will
allow to interpret recursive positive types. In order to illustrate
the connection of CBPV with LL without introducing proof-nets
(this would be very interesting but would require more space), we
describe the interpretation of our CBPV FPC in such a categorical
model of LL and state a Soundness Theorem. The exact connection
of this semantics with the adjunction semantics of [19] has still
to be explored. Even if, eventually, the outcome of this study will
be that our LL interpretation arises as a special case of Levy’s we
believe that it is worth being further studied because LL admits
many interesting extensions (Ludics, Differential LL, Light LL etc)
on which we think that CBPV will shed a new light.

We consider then the particular case where L is a category
of prime-algebraic complete lattices and linear functions, a well
known model of LL whose Kleisli category is a CCC of Scott
continuous functions. We provide a very simple description of the
Eilenberg-Moore category as a category of algebraic predomains
and Scott continuous functions and prove an Adequacy Theorem.
We also provide a description of this interpretation as a very simple
“intersection” typing system. This adequacy result shows that the
weak reduction is complete in the sense that if a closed term is
denotationally equal to a value, then it reduces to a value for the
weak reduction. We conclude by introducing a polarized version
of CBPV, a calculus which is closer to original Levy’s CBPV
(because in this calculus all terms of positive types are “data” and
are therefore freely discardable and duplicable) but generalizes it
by allowing “classical” constructions borrowed from Parigot’s λµ-

A Call-By-Push-Value FPC 2 2015/7/13

calculus. Last we define an encoding of CbPV into µCbPV and
outline its basic features.

Our initial motivation for introducing µCbPV was to combine
our representation of data as !-coalgebra morphisms in CbPV with
the representation of stacks (continuations) as !-coalgebra mor-
phisms in the semantics of classical calculi such as the CBN λµ-
calculus. The µCbPV calculus we arrived to is presented in a
λµµ̃ style introduced in [4] and further developed in [5]. We think
that it provides a satisfactory answer to our quest and deserves
further studies. Independently, Pierre-Louis Curien introduced re-
cently in the unpublished note [6] a similar formalism for repre-
senting Levy’s original CBPV (Curien’s calculus however is intu-
itionistic whereas ours is classical).

1. Syntax

Our choices of notations are different from Levy’s because we
want to insist from the beginning on the similarity with basic LL
constructs.

Types are given by the following BNF syntax. We define by
mutual induction two kinds of types: positive types (denoted with
lettersϕ, ψ. . .) and general types (denoted with letters σ, τ . . .). We
assume to be given type variables ζ, ξ. . . .

ϕ,ψ, . . . := !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Fix ζ · ϕ (1)

σ, τ . . . := ϕ | ϕ⊸ σ | ⊤ (2)

We consider the types up to the equation Fix ζ ·ϕ = ϕ [Fix ζ · ϕ/ζ].
One could also consider more general recursive types allowing the
construction Fix ζ · σ for σ a general type. In this paper we restrict
to positive recursive types.

Terms are given by the following BNF syntax, assuming to be
given variables x, y,

M,N . . . := x | M ! | 〈M,N〉 | in1M | in2M

| λxϕM | 〈M〉N | case(M, (x1)N1, (x2)N2)

| pr1M | pr2M | der(M) | fix x!σM

The notion of substitution is defined as usual. We provide now
typing rules for these terms. A typing context is an expression
P = (x1 : ϕ1, . . . , xk : ϕk) where all types are positive and
the xis are pairwise distinct variables. The typing rules are given in
Figure 1.

Remark: It might seem strange to the reader acquainted with LL
that the rules introducing the ⊗ connective and eliminating the ⊸

connective have an “additive” handling of typing contexts (by this
we mean that the same typing context P occurs in both premises).
The reason for this will become clear in Section 2 where we shall
see that positive types are interpreted as !-coalgebras which are
equipped with morphisms allowing to interpret the structural rules
of weakening and contraction. Remember that typing contexts in-
volve positive types only.

We define now a weak reduction relation on terms, meaning that

we never reduce within a “box”M ! or under a λ. Dealing with more
general reductions will require to extend the syntax with explicit
substitutions or with a let constructions, or to add commutation
reduction rules in the spirit of σ-equivalence; this will be done in
further work.

Before giving the reduction rules, we have to define the notion
of value as follows:

• if x is a variable then x is a value

• for any term M , the term M ! is a value

• if M is a value then iniM is a value for i = 1, 2

• if M1 and M2 are values then 〈M1,M2〉 is a value.

Remark: A closed value is simply a tree whose leaves are “boxes”

or “thunks” M ! (where the M ’s are arbitrary well typed closed
terms) and whose internal nodes are either unary nodes bearing an
index 1 or 2, and ordered binary nodes.

We use letters V ,W . . . to denote values. The reduction relation
is defined Figure 2.

Proposition 1 If V is a value, there is no term M such that V →w

M .

Proof. Straightforward induction on V . 2

Proposition 2 The reduction relation →w enjoys subject reduction

and Church-Rosser.

The first statement is a straightforward verification using a Substi-
tution Lemma that we do not state. The second one is easy because
→w has actually the diamond property.

1.1 Examples

Given any type σ, we define Ωσ = fix x!σ der(x) which satisfies

⊢ Ωσ : σ. It is clear that Ωσ →w der((Ωσ)!) →w Ωσ so that we
can consider Ωσ as the ever-looping program of type σ.

Unit type and natural numbers. We define a unit type 1 by 1 =
!⊤, and we set ∗ = (Ω⊤)!. We define the type ι of unary natural
numbers by ι = 1 ⊕ ι (by this we mean that ι = Fix ζ · (1 ⊕ ζ)).
We define 0 = in1∗ and n+ 1 = in2n so that we have P ⊢ n : ι
for each n ∈ N.

Then, given a term M , we define the term suc(M) = in2M , so
that we have

P ⊢M : ι
P ⊢ suc(M) : ι

Last, given terms M , N1 and N2 and a variable x, we define an
“ifz” conditional by if(M,N1, (x)N2) = case(M, (z)N1, (x)N2)
where z is not free in N1, so that

P ⊢M : ι P ⊢ N1 : σ P , x : ι ⊢ N2 : σ

P ⊢ if(M,N1, (x)N2) : σ

Streams. Let ϕ be a positive type and Sϕ be the positive type
defined by Sϕ = ϕ ⊗ !Sϕ, that is Sϕ = Fix ζ · (ϕ ⊗ !ζ). We can
define a term M such that ⊢ M : Sϕ ⊸ ι ⊸ ϕ which computes
the nth element of a stream:

M = fix f !(Sϕ⊸ι⊸ϕ) λxSϕ λyι

if(y,pr1x, (z)〈der(f)〉der(pr2x) z)

Conversely, we can define a termN such that ⊢ N : !(ι ⊸ ϕ) ⊸
Sϕ which turns a function into a stream.

N = fixF !(!(ι⊸ϕ)⊸Sϕ) λf !(ι⊸ϕ)

〈〈der(f)〉0, (〈der(F)〉(λxι 〈der(f)〉suc(x))!)!〉

Observe that the recursive call of F is encapsulated into a box,
which makes the construction lazy.

Lists. There are various possibilities for defining a type of lists
of elements of a positive type ϕ. The simplest definition is λ0 =
1 ⊕ (ϕ⊗ λ0). This corresponds to the ordinary ML type of lists.
But we can also define λ1 = 1 ⊕ (ϕ⊗ !λ1) and then we have a
type of lazy lists where the tail of the list is computed only when
required (this type contains also streams).

We could also consider λ2 = 1 ⊕ (!σ ⊗ λ2) which allows to
manipulate lists of objects of type σ (which can be a general type)
without accessing their elements.

A Call-By-Push-Value FPC 3 2015/7/13

P ⊢ M : σ

P ⊢M ! : !σ

P ⊢ M1 : ϕ1 P ⊢M2 : ϕ2

P ⊢ 〈M1,M2〉 : ϕ1 ⊗ ϕ2

P ⊢M : ϕi

P ⊢ iniM : ϕ1 ⊕ ϕ2
P , x : ϕ ⊢ x : ϕ

P , x : ϕ ⊢M : σ

P ⊢ λxϕM : ϕ ⊸ σ

P ⊢ M : ϕ⊸ σ P ⊢ N : ϕ

P ⊢ 〈M〉N : σ

P ⊢M : !σ
P ⊢ der(M) : σ

P , x : !σ ⊢ M : σ

P ⊢ fix x!σM : σ

P ⊢M : ϕ1 ⊕ ϕ2 P , x1 : ϕ1 ⊢ M1 : σ P , x2 : ϕ2 ⊢ M2 : σ

P ⊢ case(M, (x1)M1, (x2)M2) : σ

P ⊢M : ϕ1 ⊗ ϕ2

P ⊢ priM : ϕi

Figure 1. Typing system for CbPV

der(M !) →w M 〈λxϕM〉V →w M [V/x] pri〈V1, V2〉 →w Vi case(iniV, (x1)M1, (x2)M2) →w Mi [V/xi]

fixx!σM →w M
[

(fixx!σM)!/x
]

M →w M
′

der(M) →w der(M ′)

M →w M
′

〈M〉N →w 〈M ′〉N

N →w N
′

〈M〉N →w 〈M〉N ′

M →w M
′

priM →w priM
′

M1 →w M
′
1

〈M1,M2〉 →w 〈M ′
1,M2〉

M2 →w M
′
2

〈M1,M2〉 →w 〈M1,M
′
2〉

M →w M
′

iniM →w iniM
′

M →w M
′

case(M, (x1)M1, (x2)M2) →w case(M ′, (x1)M1, (x2)M2)

Figure 2. Weak reduction axioms and rules for CbPV

2. Denotational Semantics

The kind of denotational models we are interested in in this paper
are those induced by a model of LL, in the spirit of Girard’s sem-
inal work [13] on the semantics of the classical system LC where
positive formulas are interpreted as ⊗-comonoids; this interpreta-
tion is further developed eg. in [17]. We use here exactly the same
idea for interpreting positive types.

We first recall the general categorical definition of a model of
LL implicit in [12], our main reference here is [22] to which we
also refer for the rich bibliography on this general topic.

2.1 Models of Linear Logic

A model of LL consists of the following data.

• A category L.

• A symmetric monoidal structure (⊗, 1, λ, ρ, α, σ) which is as-

sumed to be closed: ⊗ is a functor L2 → L, 1 an object of
L, λX ∈ L(1 ⊗ X,X), ρX ∈ L(X ⊗ 1, X), αX,Y,Z ∈
L((X ⊗ Y)⊗Z,X⊗(Y ⊗ Z)) and σX,Y ∈ L(X⊗Y, Y ⊗X)
are natural isomorphisms satisfying coherence diagrams that we
do not record here. We useX ⊸ Y for the object of linear mor-
phisms from X to Y , ev for the evaluation morphism which
belongs to L((X ⊸ Y) ⊗X, Y) and cur for the linear curry-
fication map L(Z ⊗X,Y) → L(Z,X ⊸ Y).

• An object ⊥ of L such that the natural morphism ηX =
cur(ev σX⊸⊥,X) ∈ L(X, (X ⊸ ⊥) ⊸ ⊥) is an iso for
each object X (one says that L is a ∗-autonomous category).

We use X⊥ for the object X ⊸ ⊥ of L.

• The category L is assumed to be cartesian. We use ⊤ for the
terminal object, & for the cartesian product and pri for the
projections. It follows by ∗-autonomy that L has also all finite
coproducts. We use 0 for the initial object, ⊕ for the coproduct

and ini for the injections. Given an object X of L, we use inX

for the unique element of L(0, X).

• We are also given a comonad ! : L → L with counit derX ∈
L(!X,X) (called dereliction) and comultiplication digX ∈
L(!X, !!X) (called digging).

• And a strong symmetric monoidal structure for the functor ! ,
from the symmetric monoidal category (L,&) to the symmet-
ric monoidal category (L,⊗). This means that we are given

an iso m0 ∈ L(1, !⊤) and a natural iso m2
X,Y ∈ L(!X ⊗

!Y , !(X & Y)) which satisfy a series of commutations that we
do not record here. We also require a coherence condition relat-
ing m2 and dig.

We use ? for the “De Morgan dual” of ! : ?X = (!(X⊥))⊥

and similarly for morphisms. It is a monad on L with unit der′X
and multiplication dig′X defined straightforwardly, using derY and
digY .

2.1.1 Lax monoidality. It follows that we can define a lax sym-
metric monoidal structure for the functor ! from the symmet-
ric monoidal category (L,⊗) to itself. This means that we can

define a morphism µ0 ∈ L(1, !1) and a natural transformation

µ2
X,Y ∈ L(!X ⊗ !Y , !(X ⊗ Y)) which satisfy some coherence di-

agrams whose main consequence is that we can canonically extend
this natural transformation to the case of n-ary tensors:

µ
(n)
X1,...,XN

∈ L(!X1 ⊗ · · · ⊗ !Xn, !(X1 ⊗ · · · ⊗Xn))

in a way which is compatible with the symmetric monoidal struc-
ture of L (and allows us to write things just as if ⊗ were strictly
associative).

2.1.2 The Eilenberg-Moore category. It is then standard to

define the category L! of !-coalgebras. An object of this category
is a pair P = (P,hP) where P ∈ Obj(L) and hP ∈ L(P , !P) is
such that derP hP = Id and digP hP = !hP hP .

Given two such coalgebras P and Q, an element of L!(P,Q)
is an f ∈ L(P ,Q) such that hQ f = !f hP . Identities and

composition are defined in the obvious way. The functor ! can

then be seen as a functor from L to L!: this functor maps X
to the coalgebra (!X,digX) and a morphism f ∈ L(X,Y) to

A Call-By-Push-Value FPC 4 2015/7/13

the coalgebra morphism !f ∈ L!((!X,digX), (!Y,digY)). This

functor is right adjoint to the forgetful functor U : L! → L which
maps a !-coalgebra P to P and a morphism f to itself. Given

f ∈ L(P ,X), we use f ! ∈ L!(P, !X) for the morphism associated

with f by this adjunction. It is given by f ! = !f hP . Observe that,

if g ∈ L!(Q,P), we have

f ! g = (f g)! (3)

The object 1 of L induces an object of L!, still denoted as 1,
namely (1, µ0).

Given two objects P and Q of L!, we can define an object

P ⊗ Q of L! setting P ⊗Q = P ⊗ Q and by defining hP⊗Q

as the following composition of morphisms

P ⊗Q !P ⊗ !Q !(P ⊗Q)
hP ⊗ hQ

µ2
P,Q

Any object P of L! can be equipped with a canonical structure
of commutative comonoid. This means that we can define a mor-
phism wP ∈ L!(P, 1) and a morphism cP ∈ L!(P, P ⊗ P) which
satisfy the commutations recorded in Figure 3.

One can check a stronger property, namely that 1 is the terminal

object of L! and that P ⊗Q (equipped with projections defined in
the obvious way using wQ and wP) is the cartesian product of P
and Q in L!; the proof consists of surprisingly long computations
for which we refer again to [22].

It is also important to notice that, if the family (Pi)i∈I of

objects of L! is such that the family (Pi)i∈I admits a coproduct

(
⊕

i∈I Pi, (ini)i∈I) in L, then it admits a coproduct in L!. This

coproduct P =
⊕

i∈I Pi is defined by P =
⊕

i∈I Pi, with a
structure map hP defined by the fact that, for each i ∈ I , hP ini is
the following composition of morphisms:

Pi !Pi !P
hPi !ini

2.1.3 Fix-point operators. For any object X , we assume to
be given a morphism fixX ∈ L(!(!X ⊸ X), X) such that the
following diagram commutes

!(!X ⊸ X) !(!X ⊸ X)⊗ !(!X ⊸ X)

(!X ⊸ X)⊗ !X

X

c!X

der!X⊸X ⊗ fix
!
X

ev

fixX

2.2 Embedding-retraction pairs

We introduce now the categorical assumptions that we use to inter-
pret fix-points of types.

We assume that 0 and ⊤ are isomorphic; these isos being

unique, we assume that 0 and ⊤ are the same objects2.
We assume to be given a category L⊆ such that Obj(L⊆) =

Obj(L) together with a functor F : L⊆ → Lop × L such that

F(X) = (X,X) and for which we use the notation (ϕ−, ϕ+) =
F(ϕ). We assume that ϕ− ϕ+ = IdX . We define E (for embedding)
as the functor pr2 F : L⊆ → L. We assume moreover that the
following properties hold.

2 This is true in many concrete models. It implies that any hom-set L(X, Y)
has a distinguished element which coincides with the least element ⊥ in
denotational models based on domains or games. So this identification
is typical of models featuring partial morphisms, which is required here
because of the availability of fix-point operators for types and for programs.

• Given any countable filtered category J , any functor D : J →
L⊆ has a colimit X in L⊆. Let (ϕi ∈ L⊆(D(i), X))i∈J be
the corresponding colimit cocone in L⊆. We assume more-

over that (ϕ+
i ∈ L(D(i), X))i∈J is the colimit cocone of

the functor ED in the category L. Concretely, this means
that, given any cocone, that is, given any family of morphisms
(fi ∈ L(D(i), Y))i∈J such that, for any l ∈ J(i, i′) one has

fi′ D(l)+ = fi, there is exactly one morphism f ∈ L(X,Y)
such that f ϕ+

i = fi for each i ∈ J .

• 0 is initial in L⊆ with EθX = inX if θX is the unique element
of L⊆(0, X).

• There is a continuous functor3 ⊗⊆ : L2
⊆ → L⊆ which behaves

as ⊗ on objects and satisfies (ϕ ⊗⊆ ψ)+ = ϕ+ ⊗ ψ+ and

(ϕ⊗⊆ ψ)− = ϕ− ⊗ ψ−. We use the same notation ⊗ for the
functor ⊗⊆. We make similar assumptions for ⊕ and ! .

• There is a continuous functor N : L⊆ → L⊆ such that

N (X) = X⊥ , N (ϕ)+ = (ϕ−)⊥ and N (ϕ)− = (ϕ+)⊥ .

We simply denote N (ϕ) as ϕ⊥ ; remember that this operation
is covariant.

So we can define a continuous covariant functor ⊸ : L2
⊆ → L⊆

by X ⊸ Y = (X ⊗ Y ⊥)⊥ and ϕ ⊸ ψ = (ϕ ⊗ ψ⊥)⊥ , so that

(ϕ⊸ ψ)+ = ϕ−
⊸ ψ+ and (ϕ⊸ ψ)− = ϕ+

⊸ ψ− in L.
We need to extend this notion of embedding-retraction pair to

!-coalgebras because we want to define fix-points of positive types.

Let L!
⊆ be the category whose objects are those of L! and where

L!
⊆(P,Q) = {ϕ ∈ L⊆(P ,Q) | ϕ+ ∈ L!(P,Q)} .

In this definition, it is important not to require ϕ− to be a coalgebra

morphism. We still use U for the obvious forgetful functor L!
⊆ →

L⊆. Observe that ⊗ and ⊕ define functors (L!
⊆)

2 → L!
⊆ and that

! defines a functor L⊆ → L!
⊆.

Let J be a countable filtered category and let E : J → L!
⊆ be

a functor. Let X be the colimit of the functor U E in L⊆ and let
(ϕi ∈ L⊆(UE(i),X))i∈J be the corresponding colimit cocone.

We know that (ϕ+
i ∈ L(UE(i),X))i∈J is a colimit cocone in L.

In particular, to prove that two morphisms g, g′ ∈ L(X,Y) are

equal, it suffices to prove that g ϕ+
i = g′ ϕ+

i for each i ∈ J .
We want to equip X with a coalgebra structure h ∈ L(X, !X).

For this, due to this universal property, it suffices to define a cocone

(fi ∈ L(UE(i), !X))i∈J . We set fi = !ϕ+
i hE(i) and h is com-

pletely characterized by the fact that hϕ+
i = fi for each i ∈ J .

Let us prove that derX h = IdX . We have derX hϕ+
i =

derX !ϕ+
i hE(i) = ϕ+

i derE(i) hE(i) = ϕ+
i and the result fol-

lows from the universal property. The equation digX h = !hh
is proven similarly: we have digX hϕ+

i = digX !ϕ+
i hE(i) =

!!ϕ+
i digE(i) hE(i) = !!ϕ+

i !hE(i) hE(i) = !fi hE(i) and !h hϕ+
i =

!h !ϕ+
i hE(i) = !fi hE(i).

So we have proven that E has a colimit in the category L! of
coalgebras. A functor Φ : M1 × · · · ×Mn → M (where M and

the Mis belong to {L⊆,L
!
⊆}) is continuous if it commutes with

countable filtered colimits.

Proposition 3 The functors ⊗ and ⊕ from (L!
⊆)

2 to L!
⊆ are con-

tinuous. The functor ! : L⊆ → L!
⊆ is continuous. The functor

⊸ : (L⊆)
2 → L⊆ is continuous.

This is an immediate consequence of our hypotheses and of the
above considerations.

3 That is, a directed colimits preserving functor.

A Call-By-Push-Value FPC 5 2015/7/13

P P ⊗ P

1⊗ P

P P ⊗ P (P ⊗ P)⊗ P

P ⊗ P P ⊗ (P ⊗ P)

P P ⊗ P

P ⊗ P

cP

wP ⊗ P
λP

−1

cP cP ⊗ P

cP αP,P ,P

P ⊗ cP

cP

σP,P
cP

Figure 3. Commutative ⊗-comonoid

Theorem 4 Let Φ : (L!
⊆)

n+1 → L!
⊆ be a continuous functor.

There is a continuous functor Fix(Φ) : (L!
⊆)

n → L!
⊆ which is

naturally isomorphic to the functor Ψ : (L!
⊆)

n → L!
⊆ defined

by Ψ(P1, . . . , Pn) = Φ(P1, . . . , Pn,Fix(Φ)(P1, . . . , Pn)) (and
similarly for morphisms).

Proof. Let ~P = (P1, . . . , Pn) be a tuple of objects of L!. Con-

sider the functor Φ~P : L!
⊆ → L!

⊆ defined by Φ~P (P) = Φ(~P , P)
and similarly for morphisms. Consider the set of natural num-
bers equipped with the usual order relation as a filtered category
(N(n,m) has one element ln,m if n ≤ m and is empty other-

wise). We define a functor E : N → L!
⊆ as follows. First, we set

E(i) = Φi
~P
(0). For each i, we define ϕ0 = θE(1) and then we

set ϕi+1 = Φ~P (ϕi). Then, given i, j ∈ N such that i ≤ j, we

set E(li,j) = ϕj−1 · · · ϕi. We define Fix(Φ)(~P) as the colimit of

this functor E in L!
⊆. By standard categorical methods using the

universal property of colimits, we extend this operation to a contin-

uous functor Fix(Φ) : (L!
⊆)

n → L!
⊆ which satisfies the required

condition by continuity of Φ. 2

2.3 Interpreting types and terms

With any positive typeϕ and any repetition-free list ~ζ = (ζ1, . . . , ζn)
of type variables containing all free variables of ϕ we associate a

continuous functor [ϕ]!~ζ : (L!
⊆)

n → L!
⊆ and with any general type

σ and any list ~ζ = (ζ1, . . . , ζn) of pairwise distinct type variables
containing all free variables of σ we associate a continuous func-

tor [σ]~ζ : (L!
⊆)

n → L⊆. We give the definition on objects, the

definition on morphisms being similar.

[ζi]
!
~ζ
(~P) = Pi [!σ]!~ζ(

~P) = !([σ]~ζ(
~P))

[ϕ⊗ ψ]!~ζ(
~P) = [ϕ]!~ζ(

~P)⊗ [ψ]!~ζ(
~P)

[ϕ⊕ ψ]!~ζ(
~P) = [ϕ]!~ζ(

~P)⊕ [ψ]!~ζ(
~P)

[Fix ζ · ϕ]!~ζ = Fix([ϕ]!~ζ,ζ)

[ϕ]~ζ = U [ϕ]!~ζ [ϕ ⊸ σ]~ζ(
~P) = ([ϕ]!~ζ(

~P)) ⊸ ([σ]~ζ(
~P))

When we write [σ] or [ϕ]! (without subscript), we assume im-
plicitely that the types σ and ϕ have no free type variables. Then

[σ] is an object of L and [ϕ]! is an object of L!.

Interpreting terms. Given a typing context P = (x1 : ϕ1, . . . , xn :
ϕn), we define [P]! as the object [ϕ1]

! ⊗ · · · ⊗ [ϕn]
! of L!. Notice

that [P]! = [ϕ1]⊗ · · · ⊗ [ϕn]. We denote this object of L as [P].

Given a term M , a typing context P = (x1 : ϕ1, . . . , xn : ϕn)
and a type σ such that P ⊢ M : σ, we define [M]P ∈ L([P], [σ])
by induction on the typing derivation of M (that is, on M).

Remark: A crucial observation is that L!([P]!, [ϕ]!) ⊆ L([P], [ϕ])
for any positive type ϕ. Hence, for a term M such that P ⊢
M : ϕ, it may happen, but it is not necessarily the case, that

[M]P ∈ L!([P]!, [ϕ]!). The terms M which have this property are
duplicable and discardable, and the main property of values is that

they belong to this semantically defined class of terms. Let us call
such terms L-central, following the terminology of [13].

We define [M]P by induction on the typing derivation, that is,
on M .

If M = xi for 1 ≤ i ≤ n, then [M]P = pri ∈ L!([P]!, [Pi]
!).

Remember indeed that [P]! is the cartesian product of [P1]
!,. . . ,[Pn]

!

in L!. Observe that M is L-central.
Assume that M = N ! and σ = !τ with P ⊢ N : τ . By

inductive hypothesis we have [N]P ∈ L([P]!, [τ]) and hence we

can set [M]P = [N]!P ∈ L!([P]!, ![τ]) so that M is L-central.
Assume that M = 〈M1,M2〉 and σ = ϕ1 ⊗ ϕ2 with P ⊢

Mi : ϕi for i = 1, 2. By inductive hypothesis we have defined

[Mi]P ∈ L([P], [ϕi]) for i = 1, 2. Since [P] = [P]! we have a

contraction morphism c[P]! ∈ L!([P]!, [P]! ⊗ [P]!) so that we can

set [M] = ([M1]P ⊗ [M2]P) c[P]! ∈ L([P], [σ]). Hence if M1

and M2 are L-central, then M is L-central.
Assume thatM = iniN (for i = 1 or i = 2)) and σ = ϕ1⊕ϕ2.

By inductive hypothesis we have [N]P ∈ L([P], [ϕi]) and since

we have ini ∈ L!([ϕi]
!, [ϕ1]

! ⊕ [ϕ2]
!) it makes sense to set

[M]P = ini [N]P ∈ L([P], [σ]). Observe that if N is L-central
then so is M .

Assume that M = λxϕN and σ = ϕ ⊸ τ with P , x : ϕ ⊢
N : τ . By inductive hypothesis we have [N]P,x:ϕ ∈ L([P] ⊗
[ϕ], [τ]) and we set [M]P = cur ([N]P,x:ϕ) ∈ L([P], [ϕ] ⊸ [τ]).
Of course, even if τ is positive and N is L-central, M is not L-
central, simply because its type is not positive.

Assume thatM = 〈N〉R with P ⊢ N : ϕ⊸ σ and P ⊢ R : ϕ
for some positive type ϕ. By inductive hypothesis we have [N]P ∈
L([P], [ϕ] ⊸ [σ]) and [R]P ∈ L([P], [ϕ]). Since [P] = [P]! we

have a contraction morphism c[P]! ∈ L!([P]!, [P]! ⊗ [P]!) so that

we can set [M]P = ev ([N]P ⊗ [R]P) c[P]! ∈ L([P], [σ]).
Assume that M = case(N, (x1)R1, (x2)R2) with P ⊢ N :

ϕ1 ⊕ ϕ2 and P , xi : ϕi ⊢ Ri : σ for i = 1, 2. By inductive
hypothesis we have [M]P ∈ L([P], [ϕ1] ⊕ [ϕ2]) and [Ri]P ∈
L([P] ⊗ [ϕi], [σ]) for i = 1, 2. By the universal property of the
coproduct ⊕ in L and by the fact that the functor [P] ⊗ is a
left adjoint, there is exactly one morphism f ∈ L([P] ⊗ ([ϕ1] ⊕
[ϕ2]), [σ]) such that f ([P] ⊗ ini) = [Ri]P for i = 1, 2. Then we
set [M]P = f ([P]⊗ [N]P) c[P]! .

Assume that M = priN and σ = ϕi for i = 1 or i =
2, with P ⊢ N : ϕ1 ⊗ ϕ2. By inductive hypothesis we have
[N]P ∈ L([P], [ϕ1] ⊗ [ϕ2]). Then remember that we have the

projection pri ∈ L!([ϕ1]
!⊗[ϕ2]

!, [ϕi]
!) so that we can set [M]P =

pri [N]P ∈ L([P], [ϕi]).
Assume that M = der(N) with P ⊢ N : !σ. Then we have

der[σ] ∈ L(![σ], [σ]) so that we can set [M]P = der[σ] [N]P ∈
L([P], [σ]).

Assume that M = fixx!σN so that P , x : !σ ⊢ N : σ. By

inductive hypothesis we have cur([N]P,x:!σ) ∈ L([P]!, ![σ] ⊸

[σ]) and hence (cur([N]P,x:!σ))
! ∈ L!([P], !(![σ] ⊸ [σ])) so that

we can set [M]P = fix (cur([N]P,x:!σ))
! ∈ L([P], [σ]).

Proposition 5 If P ⊢ V : ϕ and V is a value, then V is L-central,

that is [V]P ∈ L!([P]!, [ϕ]!).

A Call-By-Push-Value FPC 6 2015/7/13

The proof is a straightforward verification (in the definition of the
interpretation of terms we have singled out the constructions which
preserve L-centrality). The main operational feature of L-central
terms is that they enjoy the following substitivity property.

Proposition 6 (Substitution Lemma) Assume that P , x : ϕ ⊢
M : σ and P ⊢ N : ϕ, and assume that N is L-central. Then
we have

[M [N/x]]P = [M]P,x:ϕ ([P]⊗ [N]P) c[P]!

Proof. Induction on M using in an essential way the L-centrality
of N . Let us consider two cases to illustrate this point. Assume

first that M = R! and σ = !τ , with P , x : ϕ ⊢ R : τ so
that [R]P,x:ϕ ∈ L([P] ⊗ [ϕ], [σ]). Then we have [M [N/x]]P =
[R [N/x]!]P = ([R [N/x]]P)! = ([R]P,x:ϕ ([P] ⊗ [N]P) c[P])

!

by inductive hypothesis. We obtain the contended equation by
applying Equation (3) and the fact that [P] ⊗ [N]P is a coalgebra
morphism since N is L-central, and the fact that c[P] is also a
coalgebra morphism.

Let us also consider the caseM = 〈M1,M2〉 and σ = ϕ1⊗ϕ2

with P , x : ϕ ⊢ Mi : ϕi for i = 1, 2 so that [Mi]P,x:ϕ ∈
L([P]⊗ [ϕ], [ϕi]) for i = 1, 2. We have

[M [N/x]]P = [〈M1 [N/x] ,M2 [N/x]〉]P

= ([M1 [N/x]]P ⊗ [M2 [N/x]]P) c[P]!⊗[ϕ]!

= (([M1]P,x:ϕ ([P]⊗ [N]P))⊗ ([M2]P,x:ϕ ([P]⊗ [N]P)))

c[P]!⊗[ϕ]!

= ([M1]P ⊗ [M2]P) c[P]! ([P]⊗ [N]P)

using the inductive hypothesis, naturality of contraction in L! and
the fact that ([P] ⊗ [N]P) is a coalgebra morphism since N is L-
central. The other cases are handled similarly. 2

Theorem 7 (Soundness) If P ⊢ M : σ and M →w M ′ then
[M]P = [M ′]P .

Proof. By induction on the derivation that M →w M
′, using the

Substitution Lemma and the L-centrality of values. 2

3. Scott semantics

Usually, in a model L of LL, an object X of L can be endowed
with several different structures of !-coalgebras which makes the

category L! difficult to describe simply (in contrast with the Kleisli
category used for interpreting PCF; its objects are those of L). In
the Scott model of LL (see eg. [9]) however, every object of the
linear category has exactly one structure of !-coalgebra as we shall
see now. This is certainly a distinctive feature of this model. Such
a property does not hold for instance in coherence spaces. A nice
outcome of these observations will be a very simple intersection
typing system for CbPV.

3.1 The Scott semantics of LL

We introduce a “linear” category Polr of preorders and relations.
A preorder is a pair S = (|S|,≤S) where |S| is an at most
countable set and ≤S (written≤ when no confusion is possible) is a
preorder relation on |S|. Given two preorders S and T , a morphism
from S to T is a f ⊆ |S| × |T | such that, if (a, b) ∈ f and
(a′, b′) ∈ |S|× |T | satisfy a ≤S a

′ and b′ ≤S b, then (a′, b′) ∈ f .
The relational composition of two morphisms is still a morphism
and the identity morphism at S is IdS = {(a, a′) | a′ ≤S a}.

Given an object S in Polr, the set Ini(S) of downwards closed
subsets of |S|, ordered by inclusion, is a complete lattice which is

ω-prime-algebraic (and all such lattices are of that shape up to iso).
Polr is equivalent to the category of ω-prime algebraic complete
lattices and linear maps (functions preserving all lubs).

3.1.1 Monoidal structure and cartesian product. The object
1 is ({∗},=) and given preorders S and T we set S ⊗ T =
(|S|× |T |,≤S ×≤T). The tensor product of morphisms is defined
in the obvious way. The isos defining the monoidal structure are
easy to define. Then one defines S ⊸ T by |S ⊸ T | = |S| × |T |
and (a′, b′) ≤S⊸T (a, b)) if a ≤ a′ and b′ ≤ b. The linear
evaluation morphism ev ∈ Polr((S ⊸ T) ⊗ S, T) is given by
ev = {(((a′, b), a), b′) | b′ ≤ b and a′ ≤ a}. If f ∈ Polr(U ⊗
S, T) then cur(f) ∈ Polr(U, S ⊸ T) is defined by moving
parentheses. This shows that Polr is closed. It is *-autonomous,

with ⊥ = 1 as dualizing object. Observe that S⊥ is simply |S|
equipped with ≥S as preorder relation ≤S⊥ .

Given a countable family of objects (Si)i∈I , the cartesian prod-
uct S is defined by |S| =

⋃

i∈I{i} × |Si| with (i, a) ≤ (j, b) if

i = j and a ≤ b. Projections are defined by pri = {((i, a), a′) |
a′ ≤ a}. Tupling of morphisms is defined as in Rel. Coproducts
are defined similarly.

3.1.2 Exponential. One sets !S = (Pfin(|S|),≤) with u ≤ u′

if ∀a ∈ u ∃a′ ∈ u′ a ≤S a′ (where Pfin(E) is the set of all
finite subsets of E. Given f ∈ Polr(S, T), one defines !f as
{(u, v) ∈ |!S| × |!T | | ∀b ∈ v ∃a ∈ u (a, b) ∈ f}. It is easy
to prove that this defines a functor Polr → Polr. Then one sets
derS = {(u, a) | ∃a′ ∈ u a ≤ a′} ∈ Polr(!S, S) and digS =
{(u, {u1, . . . , un}) | u1 ∪ · · · ∪ un ≤!S u} ∈ Polr(!S, !!S).
This defines a comonad Polr → Polr. The Seely isos are given

by m0 = {(∗, ∅)} ∈ Polr(1, !⊤) and m2
S,T = {((u, v), w) |

w ≤!(S&T) {1} × u ∪ {2} × v} ∈ Polr(!S ⊗ !T , !(S & T)).
Each object S has a fix-point operator fixS ∈ Polr(!(!S ⊸ S), S)

which is defined as a least fix-point: fixS = {(w, a) | ∃(u′, a′) ∈
w a ≤ a′ and ∀a′′ ∈ u′ (w, a′′) ∈ fixS}.

3.2 The category of !-coalgebras

The first main observation is that each object of Polr has exactly
one structure of !-coalgebra.

Theorem 8 Let S be an object of Polr. Then (S,pS) is a !-
coalgebra, where pS = {(a, u) ∈ |S| × |!S| | ∀a′ ∈ u a′ ≤ a}.
Moreover, if P is a !-coalgebra, then hP = pP .

The proof is easy and is provided as complementary material.

3.2.1 Morphisms of !-coalgebras. Now that we know that the

objects of Polr
! are those of Polr, we turn our attention to mor-

phisms. When we consider a preorder S as an object of Polr
!, we

always mean the object (S,pS) described above.
With any preorder S, we have associated an ω-prime algebraic

complete lattice Ini(S). We associate now with such a preorder
an ω-algebraic cpo Idl(S) which is the ideal completion of S: an
element of Idl(S) is a subset ξ of |S| such that ξ is non-empty,
downwards closed and directed (meaning that if a, a′ ∈ ξ then
there is a′′ ∈ ξ such that a, a′ ≤S a′′). We equip Idl(S) with the
inclusion partial order relation.

Lemma 9 For any preorder S, the partially ordered set Idl(S) is
a cpo which has countably many isolated elements. Moreover, for
any ξ ∈ Idl(S), the set of isolated elements ξ0 ∈ Idl(S) such that
ξ0 ⊆ ξ is directed and ξ is the lub of that set. In general, Idl(S)
has no minimum element.

The proof is straightforward, the isolated elements are the ↓a for
a ∈ |S|. Such a cpo can be called an ω-algebraic predomain.

A Call-By-Push-Value FPC 7 2015/7/13

It is not necessarily bounded-complete and has not necessarily a
minimum element.

Theorem 10 Given preorders S and T , there is a bijective and

functorial correspondence between Polr
!(S, T) and the set of

Scott continuous functions from Idl(S) to Idl(T). Moreover, this
correspondence is an order isomorphism when Scott-continuous
functions are equipped with the usual pointwise ordering relation

and Polr
!(S, T) is equipped with the inclusion order on relations.

The proof is provided as complementary material.
Let Predom be the category whose objects are the preorders

and where a morphism from S to T is a Scott continuous function

from Idl(S) to Idl(T). We have seen that Polr
! and Predom

are equivalent categories (isomorphic indeed). It is easy to retrieve
directly the fact that Predom has products and sums: the product
of S and T is S ⊗ T (and indeed, it is easy to check that Idl(S ⊗
T) ≃ Idl(S)× Idl(T)) and their sum is S ⊕ T and indeed Idl(S ⊕
T) ≃ Idl(S) + Idl(T), the disjoint union of the predomains Idl(S)
and Idl(T). This predomain has no minimum element as soon as
|S| and |T | are non-empty. Observe also that Idl(!S) = Ini(S): one
retrieves the fact that the Kleisli category of the ! comonad is the
category of preorders and Scott continuous functions between the
associated lattices.

3.2.2 Inclusions and embedding-retraction pairs. We define
a category Polr⊆ as follows: the objects are those of Polr and
Polr⊆(S, T) is a singleton {ϕS,T } if |S| ⊆ |T | and ∀a, a′ ∈
|S| a ≤S a

′ ⇔ a ≤T a′ (and then we write S ⊆ T) and is empty
otherwise. So (Polr⊆,⊆) is a partially ordered class. The functor

F is then defined as follows: if S ⊆ T then ϕ+
S,T = {(a, b) ∈

|S| × |T | | b ≤T a} and ϕ−
S,T = {(b, a) ∈ |T | × |S| | a ≤T b};

this definition is functorial and ϕ−
S,T ϕ

+
S,T = IdS . The partially

ordered class Polr⊆ is complete in the sense that any directed

family of objects4 (Si)i∈J has a lub S given by |S| = ∪i∈J |Si|
and a ≤S a′ if a ≤Si a′ for some i; we denote this preorder
as ∪i∈JSi. The operations ⊗, ⊕ and ! are monotone and Scott-
continuous operations on this partially ordered class.

Lemma 11 Assume that S1 ⊆ S2 and let fi ∈ Polr(Si, T) for

i = 1, 2. Then f1 = f2 ϕ
+
S1,S2

iff f1 = f2 ∩ |S1 ⊸ T |.

The proof is provided as complementary material.
Given a directed family (Si)i∈J in Polr⊆ and setting S =

∪i∈JSi, one proves easily using Lemma 11 that the cone (ϕ+
Si,S

∈
Polr(Si, S))i∈J is a colimit cone in Polr. Consider indeed a
family of morphisms (fi ∈ Polr(Si, T))i∈J such that i ≤ j ⇒
fi = fj ϕ

+
Si,Sj

, that is fi = fj ∩ |Si ⊸ T |. Then f = ∪i∈Jfi

is the unique element of Polr(S,T) such that f ϕ+
Si,S

= fi for

each i ∈ J . So the category Polr⊆ satisfies all the axioms of
Section 2.2.

As explained in that section, this allows to define fixpoints of
positive types. As a first example consider the type of flat natural
numbers ι = Fix ζ · (1 ⊕ ζ) where 1 = !⊤, so that |1| = {∅}.
Up to renaming we have |[ι]| = N and n ≤[ι] n′ iff n =
n′. The coalgebraic structure of this positive type is given by
h[ι] = {(n, ∅) | n ∈ N} ∪ {(n, {n}) | n ∈ N}. Consider now
the type ρ = Fix ζ · (1 ⊕ (ι⊗ !ζ)) of lazy lists of flat natural
numbers. The interpretation S of this type is the least fix-point
of the continuous functor (that is, the Scott continuous functional)
[1⊕ (ι⊗ !ζ)]ζ : Polr⊆ → Polr⊆. So |S| = ∪∞

n=0Un where

4 Because we are dealing with a partially ordered class, we can replace
general filtered categories with directed posets.

(Un)n∈N is the monotone sequence of sets defined by U0 = ∅
and Un+1 = {∅} ∪ (N × Pfin(Un)) (this is a disjoint union).
The preorder relation on |S| is given by: ∅ ≤S a iff a = ∅ and
(n, u) ≤S a iff a = (n, u′) and ∀b ∈ u∃b′ ∈ u′ b ≤S b′. This
preorder relation defines the coalgebraic structure of this positive
type.

3.2.3 Well-foundedness of points. Due to the possibility of us-
ing fix-points in the definition of types, the structural notion of sub-
type does not induce a well founded structure and therefore does
not allow to perform proofs by induction. Nevertheless, the induc-
tive definition of these fix-points induces a well-founded structure
on the points of these types.

More precisely, we define a predecessor relation on pairs (σ, a)
where σ is a type and a ∈ [σ]. We say that (σ, a) ≺ (τ, b) if one of
the following conditions holds.

• τ = !σ, b = u and a ∈ u.

• τ = σ1 ⊗ σ2, b = (a1, a2) and σ = σi and a = ai for i = 1
or i = 2.

• τ = σ1 ⊕ σ2, b = (i, a) and σ = σi for i = 1 or i = 2.

• τ = ϕ ⊸ σ′, b = (c, a′) and σ = ϕ and a = c, or σ = σ′ and
a = a′.

It is easily checked that there are no infinite sequence (σi, ai)i∈N

such that (σi+1, ai+1) ≺ (σi, ai) for all i ∈ N.

3.3 Scott semantics as a typing system

It is interesting to present the Scott semantics of terms as a typing
system, in the spirit of Coppo-Dezani Intersection Types, see [15].
A semantic context is a sequence Φ = (x1 : a1 : ϕ1, . . . , xn :
an : ϕn) where ai ∈ [ϕi] for each i, its underlying typing context
is Φ = (x1 : ϕ1, . . . , xn : ϕn) and its underlying tuple is
〈Φ〉 = (a1, . . . , ak) ∈ [Φ]. The typing rules are given in Figure 4.

A simple induction on typing derivation trees shows that this
typing system in “monotone” as usually for intersection type sys-
tems. We write Φ ≤ Φ′ if Φ = (x1 : a1 : ϕ1, . . . , xn : an : ϕn),
Φ′ = (x1 : a′1 : ϕ1, . . . , xn : a′n : ϕn) and ai ≤[ϕi] a

′
i for

i = 1, . . . , n.

Proposition 12 If Φ ⊢ M : a : σ, a′ ≤[σ] a and Φ ≤ Φ′ then

Φ′ ⊢M : a′ : σ.

Using this property, one can prove that this deduction system
describes exactly the Scott denotational semantics of CbPV.

Proposition 13 Given a1 ∈ [ϕ1],. . . ,an ∈ [ϕn] and a ∈ [σ], one
has (a1, . . . , an, a) ∈ [M]x1:σn,...,x1:σn iff x1 : a1 : ϕ1, . . . , xn :
an : ϕn ⊢M : a : σ.

The proof also uses crucially the fact that all structural operations
(weakening, contraction, dereliction, promotion) admit a very sim-
ple description in terms of the preorder relation on objects thanks
to Theorem 8; for instance the contraction morphism of an object

S (seen as an object of Polr
!) is cS = {(a, (a1, a2)) | ai ≤

a for i = 1, 2}.

3.4 Adequacy

Our goal now is to prove that, if a closed termM of positive type ϕ
has a non-empty interpretation, that is, if there is a ∈ |[ϕ]| such that
⊢ M : a : ϕ, then the reduction →w starting from M terminates.
We use a semantic method adapted eg. from the presentation of the
reducibility method in [15].

Given a type σ and an a ∈ [σ], we define a set |a|σ of terms M
such that ⊢ M : σ (so these terms are all closed). The definition

A Call-By-Push-Value FPC 8 2015/7/13

a′ ≤[ϕ] a

Φ, x : a : ϕ ⊢ x : a′ : ϕ

u ∈ Pfin(|[σ]|) ∀a ∈ u Φ ⊢M : a : σ

Φ ⊢ M ! : u : !σ

Φ ⊢M1 : a1 : ϕ1 Φ ⊢ M2 : a2 : ϕ2

Φ ⊢ 〈M1,M2〉 : (a1, a2) : ϕ1 ⊗ ϕ2

Φ ⊢M : a : ϕi

Φ ⊢ iniM : (i, a) : ϕ1 ⊕ ϕ2

Φ ⊢M : (a, b) : ϕ⊸ σ Φ ⊢ N : a : ϕ

Φ ⊢ 〈M〉N : b : σ

Φ ⊢ M : (1, a) : ϕ1 ⊕ ϕ2 Φ, x1 : a : ϕ1 ⊢ N1 : b : σ Φ, x2 : ϕ2 ⊢ N2 : σ

Φ ⊢ case(M, (x1)N1, (x2)N2) : b : σ

Φ ⊢M : (a1, a2) : ϕ1 ⊗ ϕ2

Φ ⊢ priM : ai : ϕi

Φ ⊢M : {a} : !σ

Φ ⊢ der(M) : a : σ

Φ, x : u : !σ ⊢M : a : σ ∀b ∈ u Φ ⊢ fixx!σM : b : σ

Φ ⊢ fix x!σM : a : σ

Figure 4. Scott Semantics as a Typing System

|u|!σv = {N ! | N ∈
n
⋂

a∈u

|a|σ}

|(a1, a2)|
ϕ1⊗ϕ2
v = {〈V1, V2〉 | Vi ∈ |ai|

ϕi
v for i = 1, 2}

|(i, a)|ϕ1⊕ϕ2
v = {iniV | V ∈ |a|ϕi

v }

|a|ϕ = {M | ⊢ M : ϕ and ∃V ∈ |a|ϕv M →∗
w V }

|(a, b)|ϕ⊸σ = {M | ⊢ M : ϕ⊸ σ and ∀V ∈ |a|ϕv 〈M〉V ∈ |b|σ}

Figure 5. Interpretation of points as sets of terms in CbPV

is by induction on the point a (and not on the type σ, whose
definition involves fix-points and is therefore not well-founded
in general), or more precisely, on the pair (σ, a) using the well
founded predecessor relation ≺ of Section 3.2.3.

Given a positive type ϕ and a ∈ [ϕ], we define |a|ϕv as a set
of closed values V such that ⊢ V : ϕ and given a general type σ
and a ∈ [σ], we define |a|σ as a set of closed terms M such that
⊢ M : σ. The definitions are by mutual induction and are given
in Figure 5. Observe that for a value V such that ⊢ V : ϕ and for
a ∈ [ϕ], the statements V ∈ |a|ϕ and V ∈ |a|ϕv are equivalent
because V is normal for the →w reduction.

Lemma 14 If M →w M
′ ∈ |a|σ then M ∈ |a|σ .

Proof. By induction on the predecessor relation ≺. If σ = ϕ,
the property follows readily from the definition. Assume that σ =
ϕ ⊸ τ and a = (b, c). Assume that M →w M ′ ∈ |a|σ . Let
V ∈ |b|ϕv , we have 〈M〉V →w 〈M ′〉V and 〈M ′〉V ∈ |c|τ by

definition of |ϕ ⊸ τ |(b,c). The announced property follows by
inductive hypothesis. 2

Lemma 15 Let σ be a type and let a, a′ ∈ |[σ]| be such that
a ≤[σ] a

′. Then |a|σ ⊇ |a′|σ . If σ is positive, we have |a|ϕv ⊇ |a′|σv

Proof. We prove both statements by mutual induction on the ≺
relation.

Assume first that σ is a positive type that we prefer to denote
as ϕ. Assume that ϕ = !τ so that a, a′ ∈ Pfin(|[τ]|) and ∀b ∈
a∃b′ ∈ a′ b ≤[τ] b

′. Let V ∈ |a′|ϕv so that V = N ! where

N ∈
⋂

b′∈a′ |b
′|τ . Let b ∈ a. Let b′ ∈ a′ be such that b ≤[τ] b

′,

we have N ∈ |b′|τ ⊆ |b|τ by inductive hypothesis, and hence
N ∈

⋂

b∈a |b|
τ , so V ∈ |a|ϕv . Let now M ′ ∈ |a′|ϕ, we know

that there is V ′ ∈ |a′|ϕv such that M ′ →∗ V ′. We have just seen
that |a′|ϕv ⊆ |a|ϕv so V ′ ∈ |a|ϕv and therefore M ′ ∈ |a|ϕ. Assume
that ϕ = ϕ1 ⊗ ϕ2 (again, ϕ is positive) so that a = (a1, a2)

and a′ = (a′1, a
′
2) with ai ≤[ϕi] a

′
i for i = 1, 2. If V ′ ∈ |a′|ϕv

then V ′ = 〈V ′
1 , V

′
2〉 with V ′

i ∈ |a′i|
ϕi
v for i = 1, 2. By inductive

hypothesis V ′
i ∈ |ai|

ϕi
v and hence V ∈ |a|ϕv . Just as above one

proves that |a′|ϕ ⊆ |a|ϕ. The case where ϕ = ϕ1 ⊕ ϕ2 is similar.
Assume last that σ = ϕ ⊸ τ so that a = (b, c), a′ = (b′, c′)

with b′ ≤[ϕ] b and c ≤[τ] c
′. LetM ′ ∈ |a′|σ , we have to prove that

M ′ ∈ |a|σ . Let therefore V ∈ |b|ϕv . By inductive hypothesis we
have V ∈ |b′|ϕv and therefore 〈M ′〉V ∈ |c′|τ so that 〈M ′〉V ∈ |c|τ

by inductive hypothesis again. 2

Theorem 16 Let Φ = (x1 : a1 : ϕ1, . . . , xk : ak : ϕk) and
assume that Φ ⊢ M : a : σ. Then for any family of closed values

(Vi)
k
i=1 such that Vi ∈ |ai|

ϕi one has M [V1/x1, . . . , Vk/xk] ∈
|a|σ .

Proof. By induction onM . Let Vi be values such that Vi ∈ |ai|
ϕi

for i = 1, . . . , k. For any termR, we useR′ forR [V1/x1, . . . , Vk/xk].
We use the definition of →w, see Figure 2.

Assume first that M = xi for some i ∈ {1, . . . , k}; we know
that a ≤[σi] ai. Then M ′ = Vi and we have that M ′ ∈ |a|σ by
Lemma 15.

Assume that M = N ! with σ = !τ , a = u ∈ Pfin(|[τ]|),
Φ ⊢ N : b : τ for each b ∈ u. By inductive hypothesis, we have

N ′ ∈
⋂

b∈u |b|τ . Since M ′ = N ′!, and hence M ′ →∗
w N ′! in 0

steps, the announced property holds.
Assume that M = 〈N1, N2〉 with σ = ϕ1 ⊗ ϕ2, a = (a1, a2),

Φ ⊢ Ni : ai : ϕi for i = 1, 2. By inductive hypothesis we have
N ′

i ∈ |ai|
ϕi and hence there are Vi ∈ |ai|

ϕi
v with N ′

i →∗
w Vi for

i = 1, 2. It follows that M →∗
w 〈V1, V2〉 ∈ |(a1, a2)|

ϕ1⊗ϕ2
v .

Assume that M = iniN with σ = ϕ1 ⊕ ϕ2, a = (i, b)
and Φ ⊢ N : b : ϕi. By inductive hypothesis, there exists
V ∈ |b|ϕi

v such that N ′ →∗
w V . We have iniV ∈ |(i, b)|ϕ1⊕ϕ2

v

and M ′ = iniN
′ →∗

w iniV so that M ′ ∈ |(i, b)|ϕ1⊕ϕ2 .
Assume that M = priN with σ = ϕi, Φ ⊢ N : (a1, a2) :

ϕ1 ⊗ ϕ2 and a = ai. By inductive hypothesis we have N ′ ∈
|(a1, a2)|

ϕ1⊗ϕ2 and hence there are Vi ∈ |ai|
ϕi
v for i = 1, 2

such that N ′ →∗
w 〈V1, V2〉. It follows that M ′ = priN

′ →∗
w

pri〈V1, V2〉 →w Vi ∈ |ai|
ϕi
v and hence M ′ ∈ |ai|

ϕi as required.
Assume that M = case(N, (x1)N1, (x2)N2) with Φ ⊢ N :

(1, b) : ϕ1 ⊕ ϕ2 and Φ, x1 : b : ϕ1 ⊢ N1 : a : σ (and also
Φ, x2 : ϕ2 ⊢ N2 : σ). By inductive hypothesis we have N ′ ∈
|(1, b)|ϕ1⊕ϕ2 . This means that there is V ∈ |b|ϕ1

v such thatN ′ →∗
w

in1V . Therefore we have M ′ = case(N ′, (x1)N
′
1, (x2)N

′
2) →∗

w

case(in1V, (x1)N
′
1, (x2)N

′
2) →w N ′

1 [V/x1]. By inductive hy-
pothesis applied toN1, and because V ∈ |b|ϕ1

v , we haveN ′
1 [V/x1] ∈

|a|σ and hence M ′ ∈ |a|σ as expected.
Assume that M = 〈N〉R with Φ ⊢ N : (b, a) : ϕ ⊸ σ and

Φ ⊢ R : b : ϕ. By inductive hypothesis we have N ′ ∈ |(b, a)|ϕ⊸σ

and R′ ∈ |b|ϕ. Therefore there is V ∈ |b|ϕv such that R′ →∗
w V .

A Call-By-Push-Value FPC 9 2015/7/13

Hence M ′ = 〈N ′〉R′ →∗
w 〈N ′〉V ∈ |a|σ by definition of

|(b, a)|ϕ⊸σ and hence M ′ ∈ |a|σ by Lemma 14.
Assume that M = λxϕN with σ = ϕ ⊸ τ , a = (b, c)

and Φ, x : b : ϕ ⊢ N : c : τ . We must prove that λxϕN ′ ∈
|(b, c)|ϕ⊸τ . So let V ∈ |b|ϕv , we must check that 〈λxϕN ′〉V ∈
|c|τ which results from the fact that 〈λxϕN ′〉V →w N

′ [V/x] ∈
|c|τ by inductive hypothesis and from Lemma 14.

Assume last that M = fixx!σN with Φ, x : u : !σ ⊢
N : a : σ and ∀b ∈ u Φ ⊢ fixx!σN : b : σ. By inductive

hypothesis we have fix x!σN ′ ∈ |b|σ for each b ∈ u and therefore

V = (fixx!σN ′)! ∈ |u|!σv . By inductive hypothesis again we

have N ′ [V/x] ∈ |a|σ . Since fixx!σN ′ →w N ′ [V/x] we get

fixx!σN ′ ∈ |a|σ by Lemma 14 as required. 2

So if ⊢ M : ϕ and [M] 6= ∅ we have M →∗
w V for

a value V . Let us say that two closed terms M1, M2 such that
⊢ Mi : σ for i = 1, 2 are observationally equivalent if for all

closed term C of type !σ ⊸ 1, 〈C〉M !
1→

∗
w∗ iff 〈C〉M !

2→
∗
w∗.

As usual, Theorem 16 allows to prove that if [M1] = [M2] then
M1 and M2 are observationally equivalent. It is not hard to prove
the converse implication for an extension of CbPV with a non-
deterministic superposition operator interpreted as ∪ in the Scott
Model.

4. A fully polarized version of CBPV

In CbPV positive types are interpreted as !-coalgebras, and general
types are simply interpreted as objects of the underlying linear cate-
gory: in some sense, this system is half-polarized and is intuionistic
for that reason. In a fully polarized system we would expect non-
positive types to be negative, that is, linear duals of !-coalgebras.
Such a system would feature syntactic constructions related to clas-
sical logic such as call/cc, the price to pay being a slightly more
complicated encoding of data-types.

It is quite easy to turn our hierarchy of types (1) and (2) into a
polarized hierarchy:

ϕ,ψ, . . . := !σ | ϕ⊗ ψ | ϕ⊕ ψ | ζ | Fix ζ · ϕ (positive) (4)

σ, τ . . . := ?ϕ | ϕ ⊸ σ | ⊤ (negative) (5)

Accordingly we introduce a polarized syntax for expressions fea-
turing five mutually recursive syntactic categories.

P,Q . . . := x | N ! | 〈P1, P2〉 | iniP (positive terms)

M,N, . . . := derP | λxϕM | µασ c | fixx!σM (negative terms)

π, ρ . . . := α | η! | P · π (positive contexts)

η, θ . . . := derπ | pri η | [η1, η2] | µ̃xϕ c (negative contexts)

c, d . . . := P ∗ η | M ∗ π (commands, cuts)

Intuitively, positive terms correspond to data, negative terms to pro-
grams, negative contexts to patterns (apart for the negative con-
text µ̃xϕ cwhich generalizes the concept of “closure”) and positive
contexts to evaluation environments.

The typing rules correspond to a large fragment of LLP,

see [17]5, and are given in Figure 6.
Let us say that an expression e is well typed in typing contexts

P = (x1 : ϕ1, . . . , xn : ϕn), N = (α1 : σ1, . . . , αk : σk) if e
is a positive term P and P ⊢ P : ϕ | N for some type ϕ, if e is
a negative term M and P ⊢ M : σ | N for some type σ, if e is
a positive context π and P |π : σ ⊢ N for some type σ, if e is a
negative context η and P | η : ϕ ⊢ N for some type ϕ and if e is
a command c and P ⊢ c | N . In the four first cases, ϕ (resp. σ) is

5 In a Sequent Calculus presentation, with double-sided sequents contrarily
to most presentations of LLP in the literature. Our syntax is based on the
λµµ̃ presentation of sequent calculus-oriented classical λ-calculi due of [4].

the type of e. Observe that, when it exists, this type is completely
determined by e, P and N (the typing rules are syntax-directed).

4.1 Operational semantics

The weak reduction rules are given in Figure 7. All redexes are
commands and it is crucial to observe that there are no critical
pairs. Specifically, there is no command which is simultaneously
of shape M ∗ π and P ∗ µ̃xϕ c because in the former the term is
negative whereas it is positive in the latter. In particular the “Lafont

critcal pair” µαθ c ∗ µ̃xθ d cannot occur (θ should be positive and
negative!).

Remark: In this weak reduction paradigm, we only reduce com-
mands. A sequence of reduction alternates therefore sequences of
positive commands of shape P ∗ η where a piece of data P is ex-
plored by a pattern η with sequences of negative commands M ∗ π
where a program M is executed in an evaluation context π. The
transition from the execution phase to the pattern-matching phase
is realized by the reduction rule (6) and the converse by (10). We
retrieve the basic idea of focalization of [1] and of Ludics, [14],
that “positive” means passive and “negative”, active (many other
authors should be mentioned here of course).

We also consider a general reduction relation → on expressions
which is defined by allowing the application of the rules of Figure 7
anywhere in an expression as well as the two following µη reduc-
tion rules: µασ (M ∗ α) → M if α does not occur free in M and
µ̃xϕ (x ∗ η) → η if x does not occur free in η.

Proposition 17 If e is typable in contexts P , N and e→ e′ then e′

is typable in contexts P , N , belongs to the same syntactic category
as e and has the same type as e (when it applies).

The proof is a straightforward verification. As usual one has first to
state and prove a Substitution Lemma.

Theorem 18 The reduction relation → on µCbPV enjoys the
Church-Rosser property.

The proof uses the usual Tait Martin-Lf method of parallel reduc-
tions and will be provided in a longer version of this paper. The
denotational semantics that we outline now gives us another proof
that this calculus is sound.

4.2 Denotational semantics

Assume to be given a model of LL L as specified in Section 2.
With any positive type ϕ, negative type σ and sequence of pairwise

distinct type variables ~ζ = (ζ1, . . . , ζn) containing all free vari-
ables of ϕ and σ, we associate the continuous functors [ϕ]~ζ , JσK~ζ :

(L!
⊆)

n → L!
⊆ defined in Figure 8 on objects, the definition on

morphisms being similar6. With any positive terms and contexts
P and π with P ⊢ P : ϕ | N and P |π : σ ⊢ N we asso-

ciate coalgebra morphisms [P]P,N ∈ L!([P] ⊗ JN K, [ϕ]) and

[π]P,N ∈ L!([P] ⊗ JN K, JσK) and with any negative terms and
contexts M and η with P ⊢ M : σ | N and P | η : ϕ ⊢ N
we associate morphisms [M]P,N ∈ L([P] ⊗ JN K, JσK⊥) and

[η]P,N ∈ L([P]⊗JN K, [ϕ]⊥). Last, with any command c such that

P ⊢ c | N we associate a morphism [c]P,N ∈ L([P]⊗ JN K,⊥).
The interpretation of positive terms is defined as for CbPV

(see 2.3). Negative terms: the interpretation of derP uses the dere-
liction morphism in L([ϕ], ?[ϕ]), the interpretation of λxϕM and

6 Notice that the interpretation of a negative type is actually the semantics
of its linear negation; we adopt this convention in order to avoid the explicit
introduction of negative objects in the model.

A Call-By-Push-Value FPC 10 2015/7/13

P , x : ϕ ⊢ x : ϕ | N
P ⊢ N : σ | N

P ⊢ N ! : !σ | N

P ⊢ P1 : ϕ1 | N P ⊢ P1 : ϕ2 | N

P ⊢ 〈P1, P2〉 : ϕ1 ⊗ ϕ2 | N

P ⊢ Pi : ϕi | N

P ⊢ iniP : ϕ1 ⊕ ϕ2 | N

P ⊢ P : ϕ | N

P ⊢ derP : ?ϕ | N

P , x : ϕ ⊢M : σ | N

P ⊢ λxϕM : ϕ⊸ σ | N

P ⊢ c |α : σ,N

P ⊢ µασ c : σ | N

P , x : !σ ⊢M : σ | N

P ⊢ fixx!σM : σ | N

P |α : σ ⊢ α : σ,N
P | η : ϕ ⊢ N

P | η! : ?ϕ ⊢ N

P ⊢ P : ϕ | N P |π : σ ⊢ N

P |P · π : ϕ ⊸ σ ⊢ N

P |π : σ ⊢ N

P | der π : !σ ⊢ N

P | η : ϕi ⊢ N

P | priη : ϕ1 ⊗ ϕ2 ⊢ N

P | η1 : ϕ1 ⊢ N P | η2 : ϕ2 ⊢ N

P | [η1, η2] : ϕ1 ⊕ ϕ2 ⊢ N

P , x : ϕ ⊢ c | N

P | µ̃xϕ c : ϕ ⊢ N

P ⊢ P : ϕ | N P | η : ϕ ⊢ N

P ⊢ P ∗ η | N

P ⊢M : σ | N P |π : σ ⊢ N

P ⊢M ∗ π | N

Figure 6. Typing rules for µCbPV: positive terms, negative terms, positive contexts, negative contexts and commands

derP ∗ η! →w P ∗ η (6)

λxϕM ∗ P · π →w M [P/x] ∗ π (7)

µασ c ∗ π →w c [π/α] (8)

fixx!σM ∗ π →w M
[

(fixx!σM)
!
/x

]

∗ π (9)

M ! ∗ der π →w M ∗ π (10)

〈P1, P2〉 ∗ priη →w Pi ∗ η (11)

iniP ∗ [η1, η2] →w P ∗ ηi (12)

P ∗ µ̃xϕ c→w c [P/x] (13)

Figure 7. Reduction rules for µCbPV

[ζi]~ζ(
~P) = Pi [!σ]~ζ(

~P) = !(JσK~ζ(
~P)

⊥
)

[ϕ⊗ ψ]~ζ(
~P) = [ϕ]~ζ(

~P)⊗ [ψ]~ζ(
~P)

[ϕ⊕ ψ]~ζ(
~P) = [ϕ]~ζ(

~P)⊕ [ψ]~ζ(
~P)

[Fix ζ · ϕ]~ζ = Fix([ϕ]~ζ,ζ)

J?ϕK~ζ(
~P) = !([ϕ]~ζ(

~P)
⊥
) Jϕ⊸ σK~ζ(

~P) = [ϕ]~ζ(
~P)⊗ JσK~ζ(

~P)

Figure 8. Semantics of types in µCbPV

of fixx!σM is defined as in CbPV (replacing [σ] with JσK⊥)

and we provide the interpretation of µασ c: assume that P ⊢
c | N , α : σ so that [c]P,N ,α:σ ∈ L([P] ⊗ JN K ⊗ JσK,⊥) and

we set [µασ c]P,N = cur [c]P,N ,α:σ . Positive contexts: we deal
only with one case. Assume that P ⊢ P : ϕ | N and P |π :
σ ⊢ N . We have [P]P,N ∈ L!([P] ⊗ JN K, [ϕ]) and [π]P,N ∈
L!([P] ⊗ JN K, JσK) so that we can set [P · π]P,N = ([P]P,N ⊗
[π]P,N) c[P]⊗JN K whose codomain is [ϕ] ⊗ JσK = Jϕ ⊸ σK as
required. The interpretation of α uses a projection and the inter-

pretation of η! uses a promotion. Negative contexts: assume that

P |π : σ ⊢ N , then [π]P,N ∈ L!([P] ⊗ JN K, JσK) so we set
[der π]P,N = der′JσK [π]P,N ∈ L([P]⊗ JN K, ?JσK) which makes

sense since ?JσK = [!σ]⊥ (see Figure 8). The interpretation of pri η

uses pr⊥i ∈ L([ϕi]
⊥ , ([ϕ1]⊗ [ϕ2])

⊥). To define [[η1, η2]]P,N we

simply use the pairing operation associated with the cartesian prod-

uct & of L (warning: not of L!!) which is the linear “De Morgan”
dual of the coproduct ⊕ of L. The interpretation of µ̃xϕ c uses
a linear curryfication. Commands: assume that P ⊢ P : ϕ | N
and P | η : ϕ ⊢ N so that [P]P,N ∈ L!([P] ⊗ JN K, [ϕ]) ⊆
L([P]⊗ JN K, [ϕ]) and [η]P,N ∈ L([P]⊗ JN K, [ϕ]⊥) and we set

[P ∗ η]P,N = ev ([η]P,N ⊗ [P]P,N) c[P]⊗JN K. The interpretation
of M ∗ π is similar.

Proposition 19 Assume that P ⊢ P : ϕ | N and that e is a
well-typed expression in typing contexts x : ϕ,P , N . Then we
have [e [P/x]]P,N = [e]x:ϕ,P,N ([P]P,N ⊗Id) c[P]⊗JN K. Assume

that P |π : σ ⊢ N and that e is a well-typed expression in
typing contexts P , N , α : σ. Then we have [e [π/α]]P,N =
[e]P,N ,α:σ (Id⊗ [π]P,N) c[P]⊗JN K.

The proof of this Substitution Lemma is a simple induction on e,
using crucially the fact that [P]P,N and [π]P,N are morphisms in

L! and are therefore duplicable and discardable.

Theorem 20 If e is a well-typed expression in typing contexts P ,
N and if e→ e′ then [e]P,N = [e′]P,N .

The proof is routine, using Proposition 19: one checks first the
property for each of the 10 redexes (the 8 redexes of Figure 7 and
the two µη-redexes of Section 4.1) and then one uses the fact that
the interpretation of expressions is defined by structural induction.

A consequence of this easy theorem is that µCbPV is sound
in the sense that the reflexive and transitive closure of → does
not equate eg. the two booleans in1(fixx

!⊤ x!) and in2(fixx
!⊤ x!)

(closed positive terms of type !⊤ ⊕ !⊤). Indeed it is easy to build
models where these constants have distinct interpretations (for in-
stance the Scott model Polr of Section 3).

4.3 Translating CbPV into µCbPV

With any positive type ϕ of CbPV we associate a positive type ϕ+

of µCbPV and with any general type σ we associate a negative
type of µCbPV. The translation does almost nothing apart adding
a few “?” to make sure that σ− is negative, see Figure 9. Given
a CbPV typing context P = (x1 : ϕ1, . . . , xn : ϕn), we set

P+ = (x1 : ϕ+
1 , . . . , xn : ϕ+

n). With any term M of CbPV such

that P ⊢ M : σ we explain now how to associate a term M− of
µCbPV such that P+ ⊢M− : σ− | .

If M is a variable x typed by P , x : σ ⊢ x : σ, we set

x− = der x .

A Call-By-Push-Value FPC 11 2015/7/13

ζ+ = ζ (!σ)+ = !(σ−)

(ϕ1 ⊗ ϕ2)
+ = ϕ+

1 ⊗ ϕ+
2 (ϕ1 ⊕ ϕ2)

+ = ϕ+
1 ⊕ ϕ+

2

(Fix ζ · ϕ)+ = Fix ζ · ϕ+

ϕ− = ?(ϕ+) (ϕ⊸ σ)− = ϕ+
⊸ σ−

Figure 9. Translation of types

If M = N ! with σ = !τ and P ⊢ N : τ then by inductive

hypothesis P+ ⊢ N− : τ− | . Therefore P+ ⊢ (N−)
!
: !(τ−) |

and we set

(N !)− = (N−)
!
.

If M = der(N) and P ⊢ N : !σ then by inductive hypothesis

P+ ⊢ N− : ?!σ− | . We have P+ |α : σ− ⊢ α : σ− and hence

P+ | (derα)! : ?!σ− ⊢ α : σ−, and we set

der(N)− = µασ−

(N− ∗ (derα)!) .

If M = λxϕN with σ = ϕ ⊸ τ and P , x : ϕ ⊢ N : σ
then inductive hypothesis P+, x : ϕ+ ⊢ N− : σ− | so that P+ ⊢

λxϕ+

N− : ϕ+
⊸ σ− | and we set (λxϕN)− = λxϕ+

N−.
If M = 〈N〉R with P ⊢ N : ϕ ⊸ σ and P ⊢ R : ϕ

then by inductive hypothesis, P+ ⊢ N− : ϕ+
⊸ σ− | and

P+ ⊢ R− : ?ϕ+ | . We have P+, x : ϕ+ |x · α : ϕ+
⊸

σ− ⊢ α : σ−, hence P+, x : ϕ+ ⊢ N− ∗ (x · α) |α : σ−.

Therefore we have P+ | µ̃xϕ+

N− ∗ (x ·α) : ϕ+ ⊢ α : σ− so that

P+ | (µ̃xϕ+

N− ∗ (x · α))
!
: ?ϕ+ ⊢ α : σ− and we set

〈N〉R− = µασ−

(R− ∗ (µ̃xϕ+

N− ∗ (x · α))
!

) .

If M = iniN with P ⊢ N : ϕi then by inductive hypothesis

P+ ⊢ N− : ?ϕ+
i | . One has P+ | µ̃xϕ

+
i (inix ∗ α) : ϕ+

i ⊢ α :

ϕ+
1 ⊕ϕ+

2 hence P+ ⊢ N− ∗ (µ̃xϕ
+
i (inix ∗ α))

!

|α : ϕ+
1 ⊕ϕ+

2 so

(iniN)− = der (µαϕ
+
1
⊕ϕ

+
2 N− ∗ (µ̃xϕ

+
i (inix ∗ α))

!

) .

IfM = case(N, (x1)M1, (x2)M2) with P ⊢ N : ϕ1⊕ϕ2 and

P , xi : ϕi ⊢Mi : σ then P+ ⊢ N− : ?(ϕ+
1 ⊕ ϕ+

2) | and P+, xi :

ϕ+
i ⊢ M−

i : σ− | . We have P+ | µ̃x
ϕ
+
i

i M−
i ∗ α : ϕ+

i ⊢ α : σ−

and hence P+ |

[

µ̃x
ϕ
+
1

1 M−
1 ∗ α, µ̃x

ϕ
+
2

2 M−
2 ∗ α

]

: ϕ+
1 ⊕ ϕ+

2 ⊢

α : σ− for i = 1, 2, so

case(N, (x1)M1, (x2)M2)
−

= µασ−

N− ∗

[

µ̃x
ϕ
+
1

1 M−
1 ∗ α, µ̃x

ϕ
+
2

2 M−
2 ∗ α

]!

.

If M = 〈M1,M2〉 there are two possible translations (similar
phenomena occur in CPS translation, see for instance [25]), a left
first translation and a right first translation. We give the first one,
the other one being obtained by swapping the roles of M1 and

M2. We assume that P ⊢ Mi : ϕi and hence P+ ⊢ M−
i :

?ϕ+
i | for i = 1, 2. We have P+, x2 : ϕ+

2 | µ̃x
ϕ
+
1

1 der 〈x1, x2〉 ∗
α : ϕ+

1 ⊢ α : ?(ϕ+
1 ⊗ ϕ+

2), hence P+, x2 : ϕ+
2 ⊢ M−

1 ∗

(µ̃x
ϕ
+
1

1 der 〈x1, x2〉 ∗ α)
!

|α : ?(ϕ+
1 ⊗ ϕ+

2) and hence we set

〈M1,M2〉
− = µα?(ϕ+

1
⊗ϕ

+
2
)

M−
2 ∗

(

µ̃x
ϕ
+
2

2 M−
1 ∗ (µ̃x

ϕ
+
1

1 der 〈x1, x2〉 ∗ α)
!
)!

.

If M = priN where P ⊢ N : ϕ1 ⊗ ϕ2 then P+ ⊢ N− :

?(ϕ+
1 ⊗ ϕ+

2) | . We have P+ | µ̃xϕ
+
i (der x ∗ α) : ϕ+

i ⊢ α : ?ϕ+
i

so that P+ | (pri µ̃x
ϕ
+
i (der x ∗ α))

!

: ?(ϕ+
1 ⊗ ϕ+

2) ⊢ α : ?ϕ+
i so

(priN)− = µα?ϕ+
i N− ∗ (pri µ̃x

ϕ
+
i (der x ∗ α))

!

.

IfM = fixx!σN with P , x : !σ ⊢ N : σ then P+, x : !(σ−) ⊢

N− : σ− | , so (fix x!σN)− = fixx!(σ−)N−.
Given a CbPV value V such that P ⊢ V : ϕ, one can

straightforwardly define a positive µCbPV term V + such that

P+ ⊢ V + : ϕ+ | as follows: x+ = x, (M !)+ = (M−)
!
,

〈V1, V2〉
+ = 〈V +

1 , V
+
2 〉 and (iniV)+ = ini(V

+) for i = 1, 2.

Lemma 21 If P ⊢ V : ϕ in CbPV and if V is a value then
V − →∗ der (V +).

Proof. Simple verification. For instance, if V = 〈V1, V2〉, then

V − →∗ µα der (V +
2) ∗ (µ̃x2 der V

+
1 ∗ (µ̃x1 der 〈x1, x2〉 ∗ α)

!)
!

→ µα V +
2 ∗ µ̃x2 (der V

+
1 ∗ (µ̃x1 der 〈x1, x2〉 ∗ α)

!)

→ µα der V +
1 ∗ (µ̃x1 der 〈x1, V

+
2 〉 ∗ α)

!
→∗ 〈V +

1 , V
+
2 〉 . 2

Lemma 22 If P , x : ϕ ⊢M : σ and P ⊢ V : ϕ in CbPV (with V
being a value) then M [V/x]− →∗ M−

[

V +/x
]

.

Proof. Induction on M , using Lemma 21 when M = x. 2

The translation above respects the operational semantics.

Theorem 23 If P ⊢ M : σ in CbPV then P+ ⊢ M− : σ− | .
Moreover, if M →w M

′ then there is a negative term R of µCbPV
such that M− →∗ R and M ′− →∗ R. .

Proof. The first statement is essentially proven in the definition
above of the translation. The proof of the second statement is a
simple inspection of the reduction rules of CbPV. Let us consider
two cases. Assume first thatM = 〈λx N〉V , thenM− = µα V −∗

(µ̃x (λx N−) ∗ x · α)
!
→∗ µα der V + ∗ (µ̃x (λx N−) ∗ x · α)

!

by Lemma 21. HenceM− →∗ N−
[

V +/x
]

. On the other hand we

have M →w N [V/x] in CbPV, and N [V/x]− →∗ N−
[

V +/x
]

by Lemma 22.
Assume nowM = pri〈V1, V2〉, we haveM− = µα 〈V1, V2〉

−∗
(pri µ̃x (der x ∗ α))! →∗ µα der 〈V +

1 , V
+
2 〉∗(pri µ̃x (derx ∗ α))!

→∗ der V +
i by Lemma 21. On the other hand M →w Vi and

V −
i →∗ der V +

i by Lemma 22. The other cases are similar. 2

As a consequence, using Theorem 18 one proves that, ifM →∗

M ′ in CbPV there is a negative term R of µCbPV such that
M− →∗ R and M ′− →∗ R (induction on the length of the re-
duction M →∗ M ′). This shows that CbPV embeds in µCbPV by
a translation M 7→ M− which is compatible with the operational
semantics. In the long version of this paper, we will also describe a
simple relation between the semantics of M and of M−.

Conclusion

The half-polarized and fully polarized presentations of CBPV pro-
posed in this work admit LL-based models featuring non-trivial ef-
fects such as non-deterministic computations, or probabilistic com-
putations, see [7] with full abstraction properties, see [10]. Accom-
modating other effects such as global and local states will require a
deeper semantical analysis which could be based on the very nice
combination of effect monads with linearity developed in the en-
riched effect calculus of [8].

A Call-By-Push-Value FPC 12 2015/7/13

A. Appendix: ommitted proofs

A.1 Proof of Theorem 8

Proof. We check first that (S,pS) is a !-coalgebra. The relation
pS is a morphism in Polr: if (a, u) ∈ pS and (a′, u′) satisfy
a ≤S a

′ and u′ ≤!S u, then for all b′ ∈ u′ there exists b ∈ u such
that b′ ≤S b. Then we know that b ≤S a because (a, u) ∈ pS and
finally a ≤S a′ by our assumption. Hence b′ ≤S a′ and therefore
(a′, u′) ∈ pS as contended.

Let (a, a′) ∈ |S| × |S|. If (a, a′) ∈ derS pS then there exists
u ∈ |!S| such that ∀b ∈ u b ≤S a, and there is b ∈ u such that
a′ ≤S b. Therefore a′ ≤S a and it follows that derS pS ⊆ IdS .
Assume conversely that a′ ≤S a, taking u = {a} (or u = {a′}),
we see that (a, a′) ∈ derS pS , hence we have derS pS = IdS .

Let now (a,U) ∈ |S| × |!!S| with U = {u1, . . . , un}. Assume
first that (a,U) ∈ digS pS . There is u ∈ |!S| such that ui ≤!S u
for each i = 1, . . . , n, and b ≤S a for each b ∈ u. It follows
that (a, ui) ∈ pS for each i and hence ({a},U) ∈ !pS . Since
(a, {a}) ∈ pS it follows that (a,U) ∈ !pS pS . Assume conversely
that (a,U) ∈ !pS pS . So there is u ∈ |!S| such that b ≤S a for all
b ∈ u and, for each i, there exists bi ∈ u such that a′ ≤ bi for each
a′ ∈ ui. So we have ui ≤!S u for each i and hence (u,U) ∈ digS
and hence (a,U) ∈ digS pS . This ends the proof that (S,pS) is a
!-coalgebra.

We come now to the second statement. Let P be a !-coalgebra
and let S = P . Let (a, u) ∈ hP , we prove that b ≤S a for all
b ∈ u. Let b ∈ u, we have (u, b) ∈ derS by definition of this
morphism and hence (a, b) ∈ derS hP = IdS and hence b ≤S a.
This shows that hP ⊆ pS .

Before proving the converse inclusion, we make a useful obser-
vation. Let b ∈ |S|. We have (b, b) ∈ IdS = derS hP and hence
there exists u such that (b, u) ∈ hP and (u, b) ∈ derS , which im-
plies that there is b′ ∈ u such that b ≤S b

′, hence {b} ≤!S u. Since
(b, u) ∈ hP ∈ Polr(S, !S), we have (b, {b}) ∈ hP .

Assume now that (a, u) ∈ pS with u = {a1, . . . , an}. We
have seen that (a, {a}) ∈ hP and hence (a, {ai}) for i = 1, . . . , n
since ai ≤S a for each i. Therefore ({a},U) ∈ !hP where U =
{{a1}, . . . , {an}}. Hence (a,U) ∈ !hP hP = digS hP . Hence
there is u′ ∈ |!S| such that (a, u′) ∈ hP and (u′,U) ∈ digS . This
latter property means that u ≤!S u

′ and hence we have (a, u) ∈ hP

as contended. 2

A.2 Proof of Theorem 10

Proof. Let f ∈ Polr
!(S, T). This means that pT f = !f pS . Let

ξ ∈ Idl(S). We prove that the set f ξ = {b | ∃a ∈ ξ (a, b) ∈ f} ⊆
|T | is ≤T -directed. Let indeed b1, b2 ∈ f ξ. Let ai ∈ ξ be such that
(ai, bi) ∈ f for i = 1, 2. Since ξ is directed, there is a ∈ ξ such
that ai ≤S a for i = 1, 2. Then we have (a, {a1, a2}) ∈ pS , and of
course ({a1, a2}, {b1, b2}) ∈ !f . Since f is a !-morphism, we must
have (a, {b1, b2}) ∈ pT f . This means that there is b ∈ |T | such
that (a, b) ∈ f and bi ≤T b for i = 1, 2. Hence f ξ is directed
as contended. The map ξ 7→ f ξ is obviously Scott-continuous
from Idl(S) to Idl(T); we denote it as C(f). This operation on
morphisms is clearly functorial.

Conversely, let ϕ : Idl(S) → Idl(T) be Scott continuous.
We set A(ϕ) = {(a, b) ∈ |S| × |T | | b ∈ ϕ(↓a)} and we

prove that A(f) ∈ Polr
!(S, T). The first thing to check is that

A(ϕ) ∈ Polr(S, T) but this results immediately from the defini-
tion and from the fact that a Scott-continuous function is monotone.
It remains to prove that !A(ϕ) pS = pT A(ϕ). Let a ∈ |S| and
v = {b1, . . . , bn} ∈ |!T |. Assume first that (a, v) ∈ !A(ϕ) pS .
Let u ∈ |!S| be such that (a, u) ∈ pS and (u, v) ∈ !A(ϕ). Then
we have v ⊆

⋃

a′∈u ϕ(↓a
′) ⊆ ϕ(↓a) by applying the definitions

and using the fact that ϕ is monotone. But ϕ(↓a) is directed in T

and v is finite. Hence there is b ∈ |T | such that (a, b) ∈ A(ϕ) and
(b, v) ∈ hT as required. Assume next that (a, v) ∈ pT A(ϕ). This
means that there is b ∈ |T | such that b ∈ ϕ(↓a) and (b, v) ∈ pT .
So we have ∀b′ ∈ v (a, b′) ∈ A(ϕ) and hence ({a}, v) ∈ !A(ϕ).
Since (a, {a}) ∈ pS we have (a, v) ∈ !A(ϕ) pS as required.

We prove now that these two operations are inverse of each

other. Let first f ∈ Polr
!(S, T) and let ϕ = C(f). Let (a, b) ∈

A(ϕ). This means that b ∈ ϕ(↓a), that is b ∈ f ↓a and
hence (a, b) ∈ f . Conversely let (a, b) ∈ f . Then we have
b ∈ f ↓a and hence (a, b) ∈ A(ϕ). We have proven that
A(C(f)) = f . Let ϕ : Idl(S) → Idl(T) be Scott continu-

ous. Let f = A(ϕ) ∈ Polr
!(S, T). Let ξ ∈ Idl(S), we have

C(f)(ξ) = f ξ = ∪a∈ξϕ(↓a). The set {↓a | a ∈ ξ} is a directed
subset of Idl(S) whose lub is ξ. Since ϕ is Scott continuous we
have C(f)(ξ) = ϕ(ξ), and since this is true for all ξ ∈ Idl(S) we
have C(A(ϕ)) = ϕ.

Let f, f ′ ∈ Polr
!(S, T) be such that f ⊆ f ′. Let ξ ∈ Idl(S).

Let b ∈ C(f)(ξ). This means that b ∈ f ξ and hence b ∈ f ′ ξ, so
we have C(f) ≤ C(f ′) for the pointwise order of functions. Let
ϕ,ϕ′ : Idl(S) → Idl(T) be such that ϕ ≤ ϕ′ for that order on
functions. Let (a, b) ∈ A(ϕ), this means that b ∈ ϕ(↓a). By our
assumption we have b ∈ ϕ′(↓a) and hence (a, b) ∈ A(ϕ′). So
A(ϕ) ⊆ A(ϕ′). This ends the proof of the theorem. 2

A.3 Proof of Lemma 11

Proof. Assume first that f1 = f2 ϕ
+
S1,S2

. Let (a, b) ∈ f1, we

have (a, b) ∈ f2 ϕ
+
S1,S2

and so there is a′ ∈ |S2| such that

(a, a′) ∈ ϕ+
S1,S2

(that is a′ ≤S2 a) and (a′, b) ∈ f2. Since

f2 ∈ Polr(S2, T) we have (a, b) ∈ f2 so f1 ⊆ f2∩|S1 ⊸ T |. Let

now (a, b) ∈ f2 ∩ |S1 ⊸ T |, we have (a, a) ∈ ϕ+
S1,S2

and hence

(a, b) ∈ f1. We prove now the converse implication, so assume that
f1 = f2 ∩ |S1 ⊸ T |. Let (a, b) ∈ f1, we know that (a, b) ∈ f2
and that (a, a) ∈ ϕ+

S1,S2
and hence (a, b) ∈ f2 ϕ

+
S1,S2

. Conversely

let (a, b) ∈ f2 ϕ
+
S1,S2

. Let a′ ∈ |S2| be such that (a, a′) ∈ ϕ+
S1,S2

(and hence a′ ≤S2 a) and (a′, b) ∈ f2. Since f2 ∈ Polr(S2, T)
we have (a, b) ∈ f2 so (a, b) ∈ f2 ∩ |S1 ⊸ T | = f1. 2

Acknowledgments

I would like to thank Antonio Bucciarelli, Pierre-Louis Curien,
Giulio Guerrieri, Jean-Louis Krivine, Paul-André Melliès, Michele
Pagani and Christine Tasson for deep and enlightening discussions
on the ideas developed in this article.

References

[1] J. Andreoli. Logic programming with focusing proofs in linear logic.
Journal of Logic and Computation, 2(3):297–347, 1992. . URL
http://dx.doi.org/10.1093/logcom/2.3.297.

[2] G. Bierman. What is a categorical model of intuitionistic linear logic?
In M. Dezani-Ciancaglini and G. D. Plotkin, editors, Proceedings

of the second Typed Lambda-Calculi and Applications conference,
volume 902 of Lecture Notes in Computer Science, pages 73–93.
Springer-Verlag, 1995.

[3] A. Carraro and G. Guerrieri. A Semantical and Operational
Account of Call-by-Value Solvability. In A. Muscholl, editor,
Foundations of Software Science and Computation Structures -
17th International Conference, FOSSACS 2014, Held as Part of

the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceed-

ings, volume 8412 of Lecture Notes in Computer Science, pages
103–118. Springer, 2014. ISBN 978-3-642-54829-1. . URL
http://dx.doi.org/10.1007/978-3-642-54830-7.

[4] P. Curien and H. Herbelin. The duality of computation. In
M. Odersky and P. Wadler, editors, Proceedings of the Fifth

A Call-By-Push-Value FPC 13 2015/7/13

ACM SIGPLAN International Conference on Functional Program-

ming (ICFP ’00), Montreal, Canada, September 18-21, 2000.,
pages 233–243. ACM, 2000. ISBN 1-58113-202-6. . URL
http://doi.acm.org/10.1145/351240.351262.

[5] P. Curien and G. Munch-Maccagnoni. The Duality of Compu-
tation under Focus. In C. S. Calude and V. Sassone, editors,
Theoretical Computer Science - 6th IFIP TC 1/WG 2.2 Interna-
tional Conference, TCS 2010, Held as Part of WCC 2010, Bris-

bane, Australia, September 20-23, 2010. Proceedings, volume 323
of IFIP Advances in Information and Communication Technology,
pages 165–181. Springer, 2010. ISBN 978-3-642-15239-9. . URL
http://dx.doi.org/10.1007/978-3-642-15240-5 13.

[6] P.-L. Curien. Call-By-Push-Valus in system L style. Unpublished note,
2015.

[7] V. Danos and T. Ehrhard. Probabilistic coherence spaces as a model
of higher-order probabilistic computation. Information and Computa-
tion, 152(1):111–137, 2011.

[8] J. Egger, R. E. Møgelberg, and A. Simpson. The en-
riched effect calculus: syntax and semantics. Journal of
Logic and Computation, 24(3):615–654, 2014. . URL
http://dx.doi.org/10.1093/logcom/exs025.

[9] T. Ehrhard. The Scott model of Linear Logic is the extensional
collapse of its relational model. Theoretical Computer Science, 424:
20–45, 2012. .

[10] T. Ehrhard, C. Tasson, and M. Pagani. Probabilistic coherence spaces
are fully abstract for probabilistic PCF. In S. Jagannathan and
P. Sewell, editors, POPL, pages 309–320. ACM, 2014. ISBN 978-
1-4503-2544-8.

[11] M. P. Fiore and G. D. Plotkin. An Axiomatization of Computationally
Adequate Domain Theoretic Models of FPC. In Proceedings of the

Ninth Annual Symposium on Logic in Computer Science (LICS ’94),
Paris, France, July 4-7, 1994, pages 92–102. IEEE Computer Society,
1994. . URL http://dx.doi.org/10.1109/LICS.1994.316083.

[12] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[13] J.-Y. Girard. A new constructive logic: classical logic. Mathematical
Structures in Computer Science, 1(3):225–296, 1991.

[14] J.-Y. Girard. Locus Solum. Mathematical Structures in Computer

Science, 11(3):301–506, 2001.

[15] J.-L. Krivine. Lambda-Calculus, Types and Models. Ellis Horwood
Series in Computers and Their Applications. Ellis Horwood, 1993.
Translation by René Cori from French 1990 edition (Masson).

[16] J.-L. Krivine. A general storage theorem for integers in call-by-name
λ-calculus. Theoretical Computer Science, 129:79–94, 1994.

[17] O. Laurent and L. Regnier. About Translations of Classi-
cal Logic into Polarized Linear Logic. In 18th IEEE Sym-

posium on Logic in Computer Science (LICS 2003), 22-25

June 2003, Ottawa, Canada, Proceedings, pages 11–20. IEEE
Computer Society, 2003. ISBN 0-7695-1884-2. . URL
http://dx.doi.org/10.1109/LICS.2003.1210040.

[18] P. B. Levy. Call-by-push-value: A subsuming paradigm. In J.-
Y. Girard, editor, Typed Lambda Calculi and Applications, 4th In-

ternational Conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999,

Proceedings, volume 1581 of Lecture Notes in Computer Science,
pages 228–242. Springer, 1999. ISBN 3-540-65763-0. . URL
http://dx.doi.org/10.1007/3-540-48959-2 17.

[19] P. B. Levy. Adjunction Models For Call-By-Push-Value With Stacks.
Electronic Notes in Theoretical Computer Science, 69:248–271, 2002.
. URL http://dx.doi.org/10.1016/S1571-0661(04)80568-1.

[20] P. B. Levy. Call-by-push-value: Decomposing call-
by-value and call-by-name. Higher-Order and Sym-

bolic Computation, 19(4):377–414, 2006. . URL
http://dx.doi.org/10.1007/s10990-006-0480-6.

[21] J. Maraist, M. Odersky, D. N. Turner, and P. Wadler. Call-by-name,
call-by-value, call-by-need and the linear lambda calculus. Theoretical

Computer Science, 228(1-2):175–210, 1999.

[22] P.-A. Melliès. Categorical semantics of linear logic. Panoramas et

Synthèses, 27, 2009.

[23] E. Moggi. Computational lambda-calculus and monads. In Proceed-
ings of the 4th Annual IEEE Symposium on Logic in Computer Sci-

ence. IEEE Computer Society, 1989.

[24] R. Seely. Linear logic, star-autonomous categories and cofree coal-
gebras. Applications of categories in logic and computer science, 92,
1989.

[25] P. Selinger. Control categories and duality: on the categor-
ical semantics of the lambda-mu calculus. Mathematical
Structures in Computer Science, 11(2):207–260, 2001. URL
http://journals.cambridge.org/action/displayAbstract?aid=68983.

A Call-By-Push-Value FPC 14 2015/7/13

