Thomas Ehrhard
email: thomas.ehrhard@pps.univ-paris-diderot.fr

A Call-By-Push-Value FPC and its interpretation in Linear Logic

Keywords: lambda-calculus, call by push value, linear logic, denotational semantics, Scott semantics

We present and study a functional calculus similar to Levy's Call-By-Push-Value lambda-calculus, extended with fix-points and recursive types. We explain its connection with Linear Logic by presenting a denotational interpretation of the language in any model of Linear Logic equipped with a notion of embedding retraction pairs. We consider the particular case of the Scott model of Linear Logic from which we derive an intersection type system for our CBPV FPC and prove an adequacy theorem. Last, we introduce a fully polarized version of CBPV which is closer to Levy's original calculus, turns out to be a term language for a large fragment of Laurent's LLP and refines Parigot's lambda-mu.

Introduction

Linear Logic (LL) has been introduced as a refinement of Intuitionistic Logic: in [START_REF] Girard | Linear logic[END_REF], Girard proposed a very simple and natural translation of intuitionistic logic and of the λ-calculus in LL. From a categorical point of view, as explained in [START_REF] Seely | Linear logic, star-autonomous categories and cofree coalgebras[END_REF], this translation corresponds to the construction of the Kleisli category of the exponential comonad "!" of LL. An adequate categorical axiomatization of the denotational models of LL has been then provided in [START_REF] Bierman | What is a categorical model of intuitionistic linear logic?[END_REF], see also [START_REF] Melliès | Categorical semantics of linear logic[END_REF] for a very complete and detailed picture.

In [START_REF] Girard | Linear logic[END_REF], another possible translation of intuitionistic formulas strangely called "boring" is mentioned. It appeared later that, just as the original Girard's translation corresponds to the call-by-name (CBN) evaluation strategy of the λ-calculus, the "boring" translation corresponds to the call-by-value (CBV) reduction strategy, see in particular [START_REF] Maraist | Call-by-name, call-by-value, call-by-need and the linear lambda calculus[END_REF]. Indeed, a first observation is that this latter translation does not preserve all β-reductions, but only those respecting a CBV discipline. More deeply, domain-theoretic denotational models of the λ-calculus arising through the original Girard translation, that is, arising as Kleisli categories of the exponential comonad, enjoy an adequacy property expressing that a term reduces to a "value" (a head-normal term, say) iff its interpretation [Copyright notice will appear here once 'preprint' option is removed.] is different from ⊥. A similar property holds for the CBV translation (now, a closed value is an abstraction) with respect to the CBV reduction strategy.

Both translations give a particularly proeminent role to the Kleisli category of the "!" comonad. This is obvious for the original CBN translation but it is also true for the CBV translation if we consider that the "!" functor defines a strong monad on the cartesian closed Kleisli category: then the CBV translation coincides with Moggi's interpretation of the CBV λ-calculus in a CCC equipped with a computational monad [START_REF] Moggi | Computational lambda-calculus and monads[END_REF].

So LL (more precisely, MELL, that is Multiplicative Exponential Linear Logic) provides a common setting where both CBN and CBV can be faithfully interpreted. In spite of its appealing symmetries and its high degree of asynchrony, the syntax of MELL proof nets is complex and does not seem to be a convenient starting point for the design of programming languages; it is rather a powerful tool for analyzing the operational and denotational properties of programming languages. It seems therefore natural to look for λ-calculi admitting a translation in MELL and where both CBN and CBV can be embedded, factorizing the two translations mentioned above. It turns out that Levy introduced a few years ago a λcalculus subsuming both CBN and CBV: the Call-By-Push-Value λ-calculus (CBPV) of [START_REF] Levy | Call-by-push-value: A subsuming paradigm[END_REF][START_REF] Levy | Call-by-push-value: Decomposing callby-value and call-by-name[END_REF], that we will show to provide a suitable such factorization.

We will recast a version of the CBPV λ-calculus within LL, or more precisely, within a polarized extension of LL. The LL exponential "!" allows to turn a term of type A into a term of type !A which is duplicable and discardable, by means of an operation called promotion. This discardability and duplicability is made possible by the structural rules !A is equipped with. It was already observed by Girard in [START_REF] Girard | A new constructive logic: classical logic[END_REF] (and probably much earlier) that the property of "being equipped with structural rules" is preserved by the ⊗ and ⊕ connectives of LL. These observations can be made more accurate as follows: a "type equipped with structural rules" is a coalgebra for the "!" connective 1 , that is, an object of the Eilenberg-Moore category of "!", and this category admits ⊕ as coproduct and ⊗ as cartesian product. This category is not a CCC in general but contains the CCC Kleisli category of "!" as a full subcategory (remember that the Kleisli category is the category of free !-coalgebras). This category was used crucially by Girard to give a semantics to a classical sequent calculus and by other authors (see for instance [START_REF] Laurent | About Translations of Classical Logic into Polarized Linear Logic[END_REF]) to interpret classical extensions of the λ-calculus such as Parigot's λµ-calculus.

Replacing the Kleisli category with the larger Eilenberg-Moore category of "!" when interpreting the λ-calculus has other major benefits. Consider for instance the interpretation of ordinary PCF in an LL-induced categorical model, that is, in a Kleisli category of the "!" comonad of a categorical model L of LL. The simplest and most natural interpretation for the type of natural numbers is N = 1 ⊕ 1 ⊕ • • • (ω copies of the unit 1 of the tensor product). But 1 has a canonical structure of !-coalgebra (because 1 = !⊤ where ⊤ is the terminal object of L) and this is therefore also true of N, as a coproduct of coalgebras. This means that we have a well behaved morphism h N ∈ L(N, !N) which allows to turn any morphism f ∈ L ! (N, X) of the Kleisli CCC L ! where we interpret PCF into a linear morphism f h N ∈ L(N, X). Operationally, this means that, in spite of the fact that PCF is a CBN language and that its interpretation in L ! is a CBN interpretation, we can deal with the terms of ground type in a CBV fashion. For instance we can replace the ordinary PCF "if zero" conditional with the following more sensible one: P ⊢ M : ι P ⊢ N : σ P, x : ι ⊢ N ′ : σ P ⊢ if(M, N, (x)N ′) : σ with the reduction rules

if(0, N, (x)N ′) → N if(n + 1, N, (x)N ′) → N ′ [n/x] M → M ′ ⇒ if(M, N, (x)N ′) → if(M ′ , N, (x)N ′)
The denotational interpretation of if(M, N, (x)N ′) uses crucially the coalgebra structure h N of N. This idea is also reminiscent of storage operators of [START_REF] Krivine | A general storage theorem for integers in call-by-name λ-calculus[END_REF] which have exactly the same purpose of allowing a CBV discipline for data types in a globally CBN calculus.

We see CBPV as a very nice generalization of this idea. We consider two classes of types: the positive types ϕ, ψ . . . and the larger class of general types σ, τ, Just as in [START_REF] Girard | A new constructive logic: classical logic[END_REF], positive types correspond to objects of L ! whereas general types are just objects of L. Of course there is an obvious way of considering a positive type as a general one by simply forgetting its coalgebra structure. There is also a way of turning a general type into a positive one, using the "!" comonad, and positive types are stable under sums ⊕ and product ⊗. In Girard's CBN translation, σ ⇒ τ becomes !σ ⊸ τ : the main idea of CBPV is to generalize this idea by allowing to replace the subtype !σ with an arbitrary positive type ϕ. Therefore, the implication of the CBPV λ-calculus is linear: all the required non-linearity is provided by the positivity of the premise. Accordingly all variables have positive types.

There is however a subtlety which does not occur in the CBN situation: consider a term M of type σ with one free variable x of positive type ϕ. Consider also a closed term N of type ϕ. The interpretation of M is a morphism f ∈ L(ϕ, σ) (identifying types with their interpretation) and the interpretation of N is a morphism g ∈ L(1, ϕ). There is no reason however for g to belong to L ! (1, ϕ) and so we cannot be sure that f g will coincide with the interpretation of M [N/x]. Indeed, for that substitutivity property to hold, we would need g to be duplicable and discardable which is the case if we can make sure that g ∈ L ! (1, ϕ), but does not hold in general. It is here that the syntactic notion of value comes in: if

ϕ = !σ then N is a value if N = R ! (a promotion of a term R of type σ), if ϕ = ϕ1 ⊗ ϕ2 then N is a value if N = V1, V2
where Vi is a value of type ϕi and similarly for sums. The main property of values is that their interpretations are coalgebra morphisms: if N is a value then g ∈ L ! (1, ϕ). This is why, in the CBPV λcalculus, β reduction is restricted to the case where the argument is a value: we have λx ϕ M V → M [V /x] only when V is a value because we are sure in that case that the interpretation of V is a coalgebra morphism. This also means that in λx ϕ M N we need to reduce N to a value before reducing the β-redex. If, for instance, the reduction of N diverges without reaching a value then the reduction of λx ϕ M N diverges even if M does not use x, just as in CBV.

Positive types are also stable under fix-points if we assume that the objects of L can be equipped with a notion of embeddingretraction pairs, which is usually the case in categories of domains. Under the assumption that this new category has all countable directed colimits and that the functors interpreting types are continuous, it is easy to prove that all "positive types with parameters" have fix-points which are themselves positive types. The presence of "!" as an explicit type constructor in CBPV allows to define lazy recursive types such as ρ = ϕ ⊗ !ρ where ϕ is a given type: ρ is the type of streams of elements of type ϕ. At the level of terms, the construction which introduces an "!" is the aforementioned construction R ! which corresponds to the well known (generalized) promotion of LL aka exponential box; this construction corresponds here to scheme's thunks or suspensions. In this stream type ρ the box construction is crucially used to postpone the evaluation of the tail of the stream. The box can be opened by means of an explicit dereliction syntactic construct der(M) which can be applied to any term M of type !σ for some σ and which corresponds exactly to the usual dereliction rule of LL.

Contents. We define a simply typed CBPV calculus featuring positive and ordinary types, recursive positive types and with a fixpoint operator for terms. Since many data types can be defined easily in this language (ordinary integers, lazy integers, lists, streams, various kinds of finite and infinite trees. . .), it widely encompasses PCF and is closer to a language such as FPC of [START_REF] Fiore | An Axiomatization of Computationally Adequate Domain Theoretic Models of FPC[END_REF], with the additional feature that it allows to freely combine CBV and CBN. We define the syntax of the language, provide a typing system and a simple operational semantics which is "weak" in the sense that reduction is forbidden under λs and within boxes (more general reductions can of course be defined but, just as in CBV, a let construction or new reduction rules as in [START_REF] Carraro | A Semantical and Operational Account of Call-by-Value Solvability[END_REF] should be added).

Then we recall the general definition of a categorical model of LL (with fix-point operators), of its Eilenberg Moore category and we describe the additional categorical structure which will allow to interpret recursive positive types. In order to illustrate the connection of CBPV with LL without introducing proof-nets (this would be very interesting but would require more space), we describe the interpretation of our CBPV FPC in such a categorical model of LL and state a Soundness Theorem. The exact connection of this semantics with the adjunction semantics of [START_REF] Levy | Adjunction Models For Call-By-Push-Value With Stacks[END_REF] has still to be explored. Even if, eventually, the outcome of this study will be that our LL interpretation arises as a special case of Levy's we believe that it is worth being further studied because LL admits many interesting extensions (Ludics, Differential LL, Light LL etc) on which we think that CBPV will shed a new light.

We consider then the particular case where L is a category of prime-algebraic complete lattices and linear functions, a well known model of LL whose Kleisli category is a CCC of Scott continuous functions. We provide a very simple description of the Eilenberg-Moore category as a category of algebraic predomains and Scott continuous functions and prove an Adequacy Theorem. We also provide a description of this interpretation as a very simple "intersection" typing system. This adequacy result shows that the weak reduction is complete in the sense that if a closed term is denotationally equal to a value, then it reduces to a value for the weak reduction. We conclude by introducing a polarized version of CBPV, a calculus which is closer to original Levy's CBPV (because in this calculus all terms of positive types are "data" and are therefore freely discardable and duplicable) but generalizes it by allowing "classical" constructions borrowed from Parigot's λµ-calculus. Last we define an encoding of CbPV into µCbPV and outline its basic features.

Our initial motivation for introducing µCbPV was to combine our representation of data as !-coalgebra morphisms in CbPV with the representation of stacks (continuations) as !-coalgebra morphisms in the semantics of classical calculi such as the CBN λµcalculus. The µCbPV calculus we arrived to is presented in a λµμ style introduced in [START_REF] Curien | The duality of computation[END_REF] and further developed in [START_REF] Curien | The Duality of Computation under Focus[END_REF]. We think that it provides a satisfactory answer to our quest and deserves further studies. Independently, Pierre-Louis Curien introduced recently in the unpublished note [START_REF] Curien | Call-By-Push-Valus in system L style[END_REF] a similar formalism for representing Levy's original CBPV (Curien's calculus however is intuitionistic whereas ours is classical).

Syntax

Our choices of notations are different from Levy's because we want to insist from the beginning on the similarity with basic LL constructs.

Types are given by the following BNF syntax. We define by mutual induction two kinds of types: positive types (denoted with letters ϕ, ψ. . .) and general types (denoted with letters σ, τ . . .). We assume to be given type variables ζ, ξ. . . . ϕ, ψ, . . .

:= !σ | ϕ ⊗ ψ | ϕ ⊕ ψ | ζ | Fix ζ • ϕ (1) σ, τ . . . := ϕ | ϕ ⊸ σ | ⊤ (2)
We consider the types up to the equation

Fix ζ •ϕ = ϕ [Fix ζ • ϕ/ζ].
One could also consider more general recursive types allowing the construction Fix ζ • σ for σ a general type. In this paper we restrict to positive recursive types. Terms are given by the following BNF syntax, assuming to be given variables x, y,

M, N . . . := x | M ! | M, N | in1M | in2M | λx ϕ M | M N | case(M, (x1)N1, (x2)N2) | pr 1 M | pr 2 M | der(M) | fix x !σ M
The notion of substitution is defined as usual. We provide now typing rules for these terms. A typing context is an expression P = (x1 : ϕ1, . . . , x k : ϕ k) where all types are positive and the xis are pairwise distinct variables. The typing rules are given in Figure 1.

Remark: It might seem strange to the reader acquainted with LL that the rules introducing the ⊗ connective and eliminating the ⊸ connective have an "additive" handling of typing contexts (by this we mean that the same typing context P occurs in both premises). The reason for this will become clear in Section 2 where we shall see that positive types are interpreted as !-coalgebras which are equipped with morphisms allowing to interpret the structural rules of weakening and contraction. Remember that typing contexts involve positive types only.

We define now a weak reduction relation on terms, meaning that we never reduce within a "box" M ! or under a λ. Dealing with more general reductions will require to extend the syntax with explicit substitutions or with a let constructions, or to add commutation reduction rules in the spirit of σ-equivalence; this will be done in further work.

Before giving the reduction rules, we have to define the notion of value as follows:

• if x is a variable then x is a value

• for any term M , the term M ! is a value

• if M is a value then iniM is a value for i = 1, 2
• if M1 and M2 are values then M1, M2 is a value.

Remark: A closed value is simply a tree whose leaves are "boxes" or "thunks" M ! (where the M 's are arbitrary well typed closed terms) and whose internal nodes are either unary nodes bearing an index 1 or 2, and ordered binary nodes.

We use letters V , W . . . to denote values. The reduction relation is defined Figure 2.

Proposition 1 If V is a value, there is no term M such that V →w M . Proof. Straightforward induction on V . 2 Proposition 2
The reduction relation →w enjoys subject reduction and Church-Rosser.

The first statement is a straightforward verification using a Substitution Lemma that we do not state. The second one is easy because →w has actually the diamond property.

Examples

Given any type σ, we define Ω σ = fix x !σ der(x) which satisfies ⊢ Ω σ : σ. It is clear that Ω σ →w der((Ω σ) !) →w Ω σ so that we can consider Ω σ as the ever-looping program of type σ.

Unit type and natural numbers. We define a unit type 1 by 1 = !⊤, and we set * = (Ω ⊤) ! . We define the type ι of unary natural numbers by ι = 1 ⊕ ι (by this we mean that

ι = Fix ζ • (1 ⊕ ζ)).
We define 0 = in1 * and n + 1 = in2n so that we have P ⊢ n : ι for each n ∈ N.

Then, given a term M , we define the term suc(M) = in2M , so that we have P ⊢ M : ι P ⊢ suc(M) : ι Last, given terms M , N1 and N2 and a variable x, we define an "ifz" conditional by if(M, N1, (x)N2) = case(M, (z)N1, (x)N2) where z is not free in N1, so that P ⊢ M : ι P ⊢ N1 : σ P, x : ι ⊢ N2 : σ P ⊢ if(M, N1, (x)N2) : σ Streams. Let ϕ be a positive type and Sϕ be the positive type defined by

Sϕ = ϕ ⊗ !Sϕ, that is Sϕ = Fix ζ • (ϕ ⊗ !ζ).
We can define a term M such that ⊢ M : Sϕ ⊸ ι ⊸ ϕ which computes the nth element of a stream:

M = fix f !(Sϕ⊸ι⊸ϕ) λx Sϕ λy ι if(y, pr 1 x, (z) der(f) der(pr 2 x) z)
Conversely, we can define a term N such that ⊢ N : !(ι ⊸ ϕ) ⊸ Sϕ which turns a function into a stream.

N = fix F !(!(ι⊸ϕ)⊸Sϕ) λf !(ι⊸ϕ) der(f) 0, (der(F) (λx ι der(f) suc(x)) !) !
Observe that the recursive call of F is encapsulated into a box, which makes the construction lazy.

Lists. There are various possibilities for defining a type of lists of elements of a positive type ϕ. The simplest definition is λ0 = 1 ⊕ (ϕ ⊗ λ0). This corresponds to the ordinary ML type of lists. But we can also define λ1 = 1 ⊕ (ϕ ⊗ !λ1) and then we have a type of lazy lists where the tail of the list is computed only when required (this type contains also streams).

We could also consider λ2 = 1 ⊕ (!σ ⊗ λ2) which allows to manipulate lists of objects of type σ (which can be a general type) without accessing their elements.

A Call-By-Push-Value FPC 3 2015/7/13

P ⊢ M : σ P ⊢ M ! : !σ P ⊢ M1 : ϕ1 P ⊢ M2 : ϕ2 P ⊢ M1, M2 : ϕ1 ⊗ ϕ2 P ⊢ M : ϕi P ⊢ iniM : ϕ1 ⊕ ϕ2 P, x : ϕ ⊢ x : ϕ P, x : ϕ ⊢ M : σ P ⊢ λx ϕ M : ϕ ⊸ σ P ⊢ M : ϕ ⊸ σ P ⊢ N : ϕ P ⊢ M N : σ P ⊢ M : !σ P ⊢ der(M) : σ P, x : !σ ⊢ M : σ P ⊢ fix x !σ M : σ P ⊢ M : ϕ1 ⊕ ϕ2 P, x1 : ϕ1 ⊢ M1 : σ P, x2 : ϕ2 ⊢ M2 : σ P ⊢ case(M, (x1)M1, (x2)M2) : σ P ⊢ M : ϕ1 ⊗ ϕ2 P ⊢ pr i M : ϕi Figure 1. Typing system for CbPV der(M !) →w M λx ϕ M V →w M [V /x] pr i V1, V2 →w Vi case(iniV, (x1)M1, (x2)M2) →w Mi [V /xi] fix x !σ M →w M (fix x !σ M) ! /x M →w M ′ der(M) →w der(M ′) M →w M ′ M N →w M ′ N N →w N ′ M N →w M N ′ M →w M ′ pr i M →w pr i M ′ M1 →w M ′ 1 M1, M2 →w M ′ 1 , M2 M2 →w M ′ 2 M1, M2 →w M1, M ′ 2 M →w M ′ iniM →w iniM ′ M →w M ′ case(M, (x1)M1, (x2)M2) →w case(M ′ , (x1)M1, (x2)M2)

Denotational Semantics

The kind of denotational models we are interested in in this paper are those induced by a model of LL, in the spirit of Girard's seminal work [START_REF] Girard | A new constructive logic: classical logic[END_REF] on the semantics of the classical system LC where positive formulas are interpreted as ⊗-comonoids; this interpretation is further developed eg. in [START_REF] Laurent | About Translations of Classical Logic into Polarized Linear Logic[END_REF]. We use here exactly the same idea for interpreting positive types.

We first recall the general categorical definition of a model of LL implicit in [START_REF] Girard | Linear logic[END_REF], our main reference here is [START_REF] Melliès | Categorical semantics of linear logic[END_REF] to which we also refer for the rich bibliography on this general topic.

Models of Linear Logic

A model of LL consists of the following data.

• A category L.

• A symmetric monoidal structure (⊗, 1, λ, ρ, α, σ) which is as- sumed to be closed: ⊗ is a functor L 2 → L, 1 an object of L, λX ∈ L(1 ⊗ X, X), ρX ∈ L(X ⊗ 1, X), αX,Y,Z ∈ L((X ⊗ Y)⊗Z, X ⊗(Y ⊗ Z)) and σX,Y ∈ L(X ⊗Y, Y ⊗X)
are natural isomorphisms satisfying coherence diagrams that we do not record here. We use X ⊸ Y for the object of linear morphisms from X to Y , ev for the evaluation morphism which belongs to L((X ⊸ Y) ⊗ X, Y) and cur for the linear curry-

fication map L(Z ⊗ X, Y) → L(Z, X ⊸ Y).
• An object ⊥ of L such that the natural morphism ηX = cur(ev σ X⊸⊥,X) ∈ L(X, (X ⊸ ⊥) ⊸ ⊥) is an iso for each object X (one says that L is a * -autonomous category). We use X ⊥ for the object X ⊸ ⊥ of L.

• The category L is assumed to be cartesian. We use ⊤ for the terminal object, & for the cartesian product and pr i for the projections. It follows by * -autonomy that L has also all finite coproducts. We use 0 for the initial object, ⊕ for the coproduct and ini for the injections. Given an object X of L, we use in X for the unique element of L(0, X).

• We are also given a comonad ! :

L → L with counit derX ∈ L(!X, X) (called dereliction) and comultiplication dig X ∈ L(!X, !!X) (called digging).
• And a strong symmetric monoidal structure for the functor ! , from the symmetric monoidal category (L, &) to the symmetric monoidal category (L, ⊗). This means that we are given an iso m 0 ∈ L(1, !⊤) and a natural iso

m 2 X,Y ∈ L(!X ⊗ !Y , !(X & Y))
which satisfy a series of commutations that we do not record here. We also require a coherence condition relating m 2 and dig.

We use ? for the "De Morgan dual" of ! : ?X = (!(X ⊥)) ⊥ and similarly for morphisms. It is a monad on L with unit der ′ X and multiplication dig ′ X defined straightforwardly, using derY and dig Y .

Lax monoidality.

It follows that we can define a lax symmetric monoidal structure for the functor ! from the symmetric monoidal category (L, ⊗) to itself. This means that we can define a morphism µ 0 ∈ L(1, !1) and a natural transformation

µ 2 X,Y ∈ L(!X ⊗ !Y , !(X ⊗ Y))
which satisfy some coherence diagrams whose main consequence is that we can canonically extend this natural transformation to the case of n-ary tensors:

µ (n) X 1 ,...,X N ∈ L(!X1 ⊗ • • • ⊗ !Xn, !(X1 ⊗ • • • ⊗ Xn))
in a way which is compatible with the symmetric monoidal structure of L (and allows us to write things just as if ⊗ were strictly associative).

2.1.2

The Eilenberg-Moore category. It is then standard to define the category L ! of !-coalgebras. An object of this category is a pair P = (P , hP) where P ∈ Obj(L) and hP ∈ L(P , !P) is such that derP hP = Id and dig P hP = !hP hP .

Given two such coalgebras P and Q, an element of L ! (P, Q) is an f ∈ L(P , Q) such that hQ f = !f hP . Identities and composition are defined in the obvious way. The functor ! can then be seen as a functor from L to L ! : this functor maps X to the coalgebra (!X, dig X) and a morphism f ∈ L(X, Y) to the coalgebra morphism !f ∈ L ! ((!X, dig X), (!Y, dig Y)). This functor is right adjoint to the forgetful functor U : L ! → L which maps a !-coalgebra P to P and a morphism f to itself. Given f ∈ L(P , X), we use f ! ∈ L ! (P, !X) for the morphism associated with f by this adjunction. It is given by f ! = !f hP . Observe that, if g ∈ L ! (Q, P), we have

f ! g = (f g) ! (3)
The object 1 of L induces an object of L ! , still denoted as 1, namely (1, µ 0).

Given two objects P and Q of L ! , we can define an object P ⊗ Q of L ! setting P ⊗ Q = P ⊗ Q and by defining hP ⊗Q as the following composition of morphisms

P ⊗ Q !P ⊗ !Q !(P ⊗ Q) hP ⊗ hQ µ 2 P ,Q
Any object P of L ! can be equipped with a canonical structure of commutative comonoid. This means that we can define a morphism wP ∈ L ! (P, 1) and a morphism cP ∈ L ! (P, P ⊗ P) which satisfy the commutations recorded in Figure 3.

One can check a stronger property, namely that 1 is the terminal object of L ! and that P ⊗ Q (equipped with projections defined in the obvious way using wQ and wP) is the cartesian product of P and Q in L ! ; the proof consists of surprisingly long computations for which we refer again to [START_REF] Melliès | Categorical semantics of linear logic[END_REF].

It is also important to notice that, if the family (Pi)i∈I of objects of L ! is such that the family (Pi)i∈I admits a coproduct (i∈I Pi, (ini)i∈I) in L, then it admits a coproduct in L ! . This coproduct P = i∈I Pi is defined by P = i∈I Pi, with a structure map hP defined by the fact that, for each i ∈ I, hP ini is the following composition of morphisms:

Pi !Pi !P hP i !ini
2.1.3 Fix-point operators. For any object X, we assume to be given a morphism fixX ∈ L(!(!X ⊸ X), X) such that the following diagram commutes

!(!X ⊸ X) !(!X ⊸ X) ⊗ !(!X ⊸ X) (!X ⊸ X) ⊗ !X X c !X der !X⊸X ⊗ fix ! X ev fixX

Embedding-retraction pairs

We introduce now the categorical assumptions that we use to interpret fix-points of types. We assume that 0 and ⊤ are isomorphic; these isos being unique, we assume that 0 and ⊤ are the same objects 2 .

We assume to be given a category L ⊆ such that Obj(L ⊆) = Obj(L) together with a functor F : L ⊆ → L op × L such that F(X) = (X, X) and for which we use the notation (ϕ -, ϕ +) = F(ϕ). We assume that ϕ -ϕ + = IdX . We define E (for embedding) as the functor pr 2 F : L ⊆ → L. We assume moreover that the following properties hold.

• Given any countable filtered category J, any functor D : J → L ⊆ has a colimit X in L ⊆ . Let (ϕi ∈ L ⊆ (D(i), X))i∈J be the corresponding colimit cocone in L ⊆ . We assume moreover that (ϕ + i ∈ L(D(i), X))i∈J is the colimit cocone of the functor E D in the category L. Concretely, this means that, given any cocone, that is, given any family of morphisms (fi ∈ L(D(i), Y))i∈J such that, for any l ∈ J(i, i ′) one has

f i ′ D(l) + = fi, there is exactly one morphism f ∈ L(X, Y) such that f ϕ + i = fi for each i ∈ J. • 0 is initial in L ⊆ with Eθ X = in X if θ X is the unique element of L ⊆ (0, X).
• There is a continuous functor 3 ⊗ ⊆ : L 2 ⊆ → L ⊆ which behaves as ⊗ on objects and satisfies (ϕ

⊗ ⊆ ψ) + = ϕ + ⊗ ψ + and (ϕ ⊗ ⊆ ψ) -= ϕ -⊗ ψ -.
We use the same notation ⊗ for the functor ⊗ ⊆ . We make similar assumptions for ⊕ and ! .

• There is a continuous functor N :

L ⊆ → L ⊆ such that N (X) = X ⊥ , N (ϕ) + = (ϕ -) ⊥ and N (ϕ) -= (ϕ +) ⊥ .
We simply denote N (ϕ) as ϕ ⊥ ; remember that this operation is covariant.

So we can define a continuous covariant functor ⊸ :

L 2 ⊆ → L ⊆ by X ⊸ Y = (X ⊗ Y ⊥) ⊥ and ϕ ⊸ ψ = (ϕ ⊗ ψ ⊥) ⊥ , so that (ϕ ⊸ ψ) + = ϕ - ⊸ ψ + and (ϕ ⊸ ψ) -= ϕ + ⊸ ψ -in L.
We need to extend this notion of embedding-retraction pair to !-coalgebras because we want to define fix-points of positive types. Let L ! ⊆ be the category whose objects are those of L ! and where

L ! ⊆ (P, Q) = {ϕ ∈ L ⊆ (P , Q) | ϕ + ∈ L ! (P, Q)} .
In this definition, it is important not to require ϕ -to be a coalgebra morphism. We still use U for the obvious forgetful functor

L ! ⊆ → L ⊆ . Observe that ⊗ and ⊕ define functors (L ! ⊆) 2 → L ! ⊆ and that ! defines a functor L ⊆ → L ! ⊆ .
Let J be a countable filtered category and let E : J → L ! ⊆ be a functor. Let X be the colimit of the functor U E in L ⊆ and let (ϕi ∈ L ⊆ (UE (i), X))i∈J be the corresponding colimit cocone. We know that (ϕ + i ∈ L(UE (i), X))i∈J is a colimit cocone in L. In particular, to prove that two morphisms g, g ′ ∈ L(X, Y) are equal, it suffices to prove that g ϕ + i = g ′ ϕ + i for each i ∈ J. We want to equip X with a coalgebra structure h ∈ L(X, !X). For this, due to this universal property, it suffices to define a cocone (fi ∈ L(UE (i), !X))i∈J . We set fi = !ϕ + i h E(i) and h is completely characterized by the fact that h ϕ + i = fi for each i ∈ J. Let us prove that derX h = IdX . We have derX h ϕ

+ i = derX !ϕ + i h E(i) = ϕ + i der E(i) h E(i) = ϕ + i and the result fol- lows from the universal property. The equation dig X h = !h h is proven similarly: we have dig X h ϕ + i = dig X !ϕ + i h E(i) = !!ϕ + i dig E(i) h E(i) = !!ϕ + i !h E(i) h E(i) = !fi h E(i) and !h h ϕ + i = !h !ϕ + i h E(i) = !fi h E(i) . So we have proven that E has a colimit in the category L ! of coalgebras. A functor Φ : M1 × • • • × Mn → M (where M and the Mis belong to {L ⊆ , L ! ⊆ }) is continuous if it commutes with countable filtered colimits. Proposition 3 The functors ⊗ and ⊕ from (L ! ⊆) 2 to L ! ⊆ are con- tinuous. The functor ! : L ⊆ → L ! ⊆ is continuous. The functor ⊸ : (L ⊆) 2 → L ⊆ is continuous.
This is an immediate consequence of our hypotheses and of the above considerations. 3 That is, a directed colimits preserving functor. Proof. Let P = (P1, . . . , Pn) be a tuple of objects of L ! . Consider the functor Φ P : L ! ⊆ → L ! ⊆ defined by Φ P (P) = Φ(P , P) and similarly for morphisms. Consider the set of natural numbers equipped with the usual order relation as a filtered category (N(n, m) has one element ln,m if n ≤ m and is empty otherwise). We define a functor E : N → L ! ⊆ as follows. First, we set E (i) = Φ i P (0). For each i, we define ϕ0 = θ E(1) and then we set ϕi+1 = Φ P (ϕi). Then, given i, j ∈ N such that i ≤ j, we set E (li,j) = ϕj-1 • • • ϕi. We define Fix(Φ)(P) as the colimit of this functor E in L ! ⊆ . By standard categorical methods using the universal property of colimits, we extend this operation to a continuous functor Fix(Φ) : (L ! ⊆) n → L ! ⊆ which satisfies the required condition by continuity of Φ. 2

Interpreting types and terms

With any positive type ϕ and any repetition-free list ζ = (ζ1, . . . , ζn) of type variables containing all free variables of ϕ we associate a continuous functor

[ϕ] ! ζ : (L ! ⊆) n → L !
⊆ and with any general type σ and any list ζ = (ζ1, . . . , ζn) of pairwise distinct type variables containing all free variables of σ we associate a continuous functor

[σ] ζ : (L ! ⊆) n → L ⊆ .
We give the definition on objects, the definition on morphisms being similar.

[ζi] ! ζ (P) = Pi [!σ] ! ζ (P) = !([σ] ζ (P)) [ϕ ⊗ ψ] ! ζ (P) = [ϕ] ! ζ (P) ⊗ [ψ] ! ζ (P) [ϕ ⊕ ψ] ! ζ (P) = [ϕ] ! ζ (P) ⊕ [ψ] ! ζ (P) [Fix ζ • ϕ] ! ζ = Fix([ϕ] ! ζ,ζ) [ϕ] ζ = U [ϕ] ! ζ [ϕ ⊸ σ] ζ (P) = ([ϕ] ! ζ (P)) ⊸ ([σ] ζ (P))
When we write [σ] or [ϕ] ! (without subscript), we assume implicitely that the types σ and ϕ have no free type variables. Then

[σ] is an object of L and [ϕ] ! is an object of L ! .
Interpreting terms. Given a typing context P = (x1 : ϕ1, . . . , xn : ϕn), we define

[P] ! as the object [ϕ1] ! ⊗ • • • ⊗ [ϕn] ! of L ! . Notice that [P] ! = [ϕ1] ⊗ • • • ⊗ [ϕn]. We denote this object of L as [P].
Given a term M , a typing context P = (x1 : ϕ1, . . . , xn : ϕn) and a type σ such that P ⊢ M : σ, we define [M]P ∈ L([P], [σ]) by induction on the typing derivation of M (that is, on M).

Remark: A crucial observation is that L ! ([P] ! , [ϕ] !) ⊆ L([P], [ϕ])
for any positive type ϕ. Hence, for a term M such that P ⊢ M : ϕ, it may happen, but it is not necessarily the case, that [M]P ∈ L ! ([P] ! , [ϕ] !). The terms M which have this property are duplicable and discardable, and the main property of values is that they belong to this semantically defined class of terms. Let us call such terms L-central, following the terminology of [START_REF] Girard | A new constructive logic: classical logic[END_REF].

We define [M]P by induction on the typing derivation, that is, on M .

If

M = xi for 1 ≤ i ≤ n, then [M]P = pr i ∈ L ! ([P] ! , [Pi] !). Remember indeed that [P] ! is the cartesian product of [P1] ! ,. . . ,[Pn] ! in L ! . Observe that M is L-central.
Assume that M = N ! and σ = !τ with P ⊢ N : τ . By inductive hypothesis we have

[N]P ∈ L([P] ! , [τ]) and hence we can set [M]P = [N] ! P ∈ L ! ([P] ! , ![τ]
) so that M is L-central. Assume that M = M1, M2 and σ = ϕ1 ⊗ ϕ2 with P ⊢ Mi : ϕi for i = 1, 2. By inductive hypothesis we have defined

[Mi]P ∈ L([P], [ϕi]) for i = 1, 2. Since [P] = [P] ! we have a contraction morphism c [P] ! ∈ L ! ([P] ! , [P] ! ⊗ [P] !) so that we can set [M] = ([M1]P ⊗ [M2]P) c [P] ! ∈ L([P], [σ]). Hence if M1 and M2 are L-central, then M is L-central.
Assume that M = iniN (for i = 1 or i = 2)) and σ = ϕ1 ⊕ϕ2.

By inductive hypothesis we have [N]P ∈ L([P], [ϕi]) and since we have

ini ∈ L ! ([ϕi] ! , [ϕ1] ! ⊕ [ϕ2] !) it makes sense to set [M]P = ini [N]P ∈ L([P], [σ]). Observe that if N is L-central then so is M .
Assume that M = λx ϕ N and σ = ϕ ⊸ τ with P, x : ϕ ⊢ N : τ . By inductive hypothesis we have

f ∈ L([P] ⊗ ([ϕ1] ⊕ [ϕ2]), [σ]) such that f ([P] ⊗ ini) = [Ri]P for i = 1, 2. Then we set [M]P = f ([P] ⊗ [N]P) c [P] ! .
Assume that M = pr i N and σ = ϕi for i = 1 or i = 2, with P ⊢ N : ϕ1 ⊗ ϕ2. By inductive hypothesis we have

[N]P ∈ L([P], [ϕ1] ⊗ [ϕ2]).
Then remember that we have the projection

pr i ∈ L ! ([ϕ1] ! ⊗[ϕ2] ! , [ϕi] !) so that we can set [M]P = pr i [N]P ∈ L([P], [ϕi]).
Assume that M = der(N) with P ⊢ N : !σ. Then we have der

[σ] ∈ L(![σ], [σ]) so that we can set [M]P = der [σ] [N]P ∈ L([P], [σ]).
Assume that M = fix x !σ N so that P, x : !σ ⊢ N : σ. By inductive hypothesis we have cur(

[N] P,x:!σ) ∈ L([P] ! , ![σ] ⊸ [σ]) and hence (cur([N] P,x:!σ)) ! ∈ L ! ([P], !(![σ] ⊸ [σ])) so that we can set [M]P = fix (cur([N] P,x:!σ)) ! ∈ L([P], [σ]). Proposition 5 If P ⊢ V : ϕ and V is a value, then V is L-central, that is [V]P ∈ L ! ([P] ! , [ϕ] !). A Call-By-Push-Value FPC 6 2015/7/13
The proof is a straightforward verification (in the definition of the interpretation of terms we have singled out the constructions which preserve L-centrality). The main operational feature of L-central terms is that they enjoy the following substitivity property. Let us also consider the case M = M1, M2 and σ = ϕ1 ⊗ ϕ2 with P, x : ϕ ⊢ Mi :

ϕi for i = 1, 2 so that [Mi]P,x:ϕ ∈ L([P] ⊗ [ϕ], [ϕi]) for i = 1, 2. We have [M [N/x]]P = [M1 [N/x] , M2 [N/x]]P = ([M1 [N/x]]P ⊗ [M2 [N/x]]P) c [P] ! ⊗[ϕ] ! = (([M1]P,x:ϕ ([P] ⊗ [N]P)) ⊗ ([M2]P,x:ϕ ([P] ⊗ [N]P))) c [P] ! ⊗[ϕ] ! = ([M1]P ⊗ [M2]P) c [P] ! ([P] ⊗ [N]P)
using the inductive hypothesis, naturality of contraction in L ! and the fact that Proof. By induction on the derivation that M →w M ′ , using the Substitution Lemma and the L-centrality of values. 2

([P] ⊗ [N]P) is a coalgebra morphism since N is L- central.

Scott semantics

Usually, in a model L of LL, an object X of L can be endowed with several different structures of !-coalgebras which makes the category L ! difficult to describe simply (in contrast with the Kleisli category used for interpreting PCF; its objects are those of L). In the Scott model of LL (see eg. [START_REF] Ehrhard | The Scott model of Linear Logic is the extensional collapse of its relational model[END_REF]) however, every object of the linear category has exactly one structure of !-coalgebra as we shall see now. This is certainly a distinctive feature of this model. Such a property does not hold for instance in coherence spaces. A nice outcome of these observations will be a very simple intersection typing system for CbPV.

The Scott semantics of LL

We introduce a "linear" category Polr of preorders and relations. A preorder is a pair S = (|S|, ≤S) where |S| is an at most countable set and ≤S (written ≤ when no confusion is possible) is a preorder relation on |S|. Given two preorders S and T , a morphism from

S to T is a f ⊆ |S| × |T | such that, if (a, b) ∈ f and (a ′ , b ′) ∈ |S| × |T | satisfy a ≤S a ′ and b ′ ≤S b, then (a ′ , b ′) ∈ f .
The relational composition of two morphisms is still a morphism and the identity morphism at S is IdS = {(a, a ′) | a ′ ≤S a}.

Given an object S in Polr, the set Ini(S) of downwards closed subsets of |S|, ordered by inclusion, is a complete lattice which is ω-prime-algebraic (and all such lattices are of that shape up to iso). Polr is equivalent to the category of ω-prime algebraic complete lattices and linear maps (functions preserving all lubs). Given a countable family of objects (Si)i∈I , the cartesian product S is defined by |S| = i∈I {i} × |Si| with (i, a) ≤ (j, b) if i = j and a ≤ b. Projections are defined by pr i = {((i, a), a ′) | a ′ ≤ a}. Tupling of morphisms is defined as in Rel. Coproducts are defined similarly.

Exponential. One sets !S = (P

fin (|S|), ≤) with u ≤ u ′ if ∀a ∈ u ∃a ′ ∈ u ′ a ≤S a ′ (where P fin (E) is the set of all finite subsets of E. Given f ∈ Polr(S, T), one defines !f as {(u, v) ∈ |!S| × |!T | | ∀b ∈ v ∃a ∈ u (a, b) ∈ f }. It is easy to prove that this defines a functor Polr → Polr. Then one sets derS = {(u, a) | ∃a ′ ∈ u a ≤ a ′ } ∈ Polr(!S, S) and dig S = {(u, {u1, . . . , un}) | u1 ∪ • • • ∪ un ≤ !S u} ∈ Polr(!S, !!S).
This defines a comonad Polr → Polr. The Seely isos are given by m

0 = {(* , ∅)} ∈ Polr(1, !⊤) and m 2 S,T = {((u, v), w) | w ≤ !(S&T) {1} × u ∪ {2} × v} ∈ Polr(!S ⊗ !T , !(S & T)).
Each object S has a fix-point operator fixS ∈ Polr(!(!S ⊸ S), S) which is defined as a least fix-point: fixS = {(w, a) | ∃(u ′ , a ′) ∈ w a ≤ a ′ and ∀a ′′ ∈ u ′ (w, a ′′) ∈ fixS}.

The category of !-coalgebras

The first main observation is that each object of Polr has exactly one structure of !-coalgebra.

Theorem 8 Let S be an object of Polr. Then (S, pS) is a !coalgebra, where pS = {(a, u)

∈ |S| × |!S| | ∀a ′ ∈ u a ′ ≤ a}. Moreover, if P is a !-coalgebra, then hP = pP .
The proof is easy and is provided as complementary material.

Morphisms of !-coalgebras

. Now that we know that the objects of Polr ! are those of Polr, we turn our attention to morphisms. When we consider a preorder S as an object of Polr ! , we always mean the object (S, pS) described above.

With any preorder S, we have associated an ω-prime algebraic complete lattice Ini(S). We associate now with such a preorder an ω-algebraic cpo Idl(S) which is the ideal completion of S: an element of Idl(S) is a subset ξ of |S| such that ξ is non-empty, downwards closed and directed (meaning that if a, a ′ ∈ ξ then there is a ′′ ∈ ξ such that a, a ′ ≤S a ′′). We equip Idl(S) with the inclusion partial order relation.

Lemma 9

For any preorder S, the partially ordered set Idl(S) is a cpo which has countably many isolated elements. Moreover, for any ξ ∈ Idl(S), the set of isolated elements ξ0 ∈ Idl(S) such that ξ0 ⊆ ξ is directed and ξ is the lub of that set. In general, Idl(S) has no minimum element.

The proof is straightforward, the isolated elements are the ↓a for a ∈ |S|. Such a cpo can be called an ω-algebraic predomain.

It is not necessarily bounded-complete and has not necessarily a minimum element.

Theorem 10 Given preorders S and T , there is a bijective and functorial correspondence between Polr ! (S, T) and the set of Scott continuous functions from Idl(S) to Idl(T). Moreover, this correspondence is an order isomorphism when Scott-continuous functions are equipped with the usual pointwise ordering relation and Polr ! (S, T) is equipped with the inclusion order on relations.

The proof is provided as complementary material.

Let Predom be the category whose objects are the preorders and where a morphism from S to T is a Scott continuous function from Idl(S) to Idl(T). We have seen that Polr ! and Predom are equivalent categories (isomorphic indeed). It is easy to retrieve directly the fact that Predom has products and sums: the product of S and T is S ⊗ T (and indeed, it is easy to check that Idl(S ⊗ T) ≃ Idl(S) × Idl(T)) and their sum is S ⊕ T and indeed Idl(S ⊕ T) ≃ Idl(S) + Idl(T), the disjoint union of the predomains Idl(S) and Idl(T). This predomain has no minimum element as soon as |S| and |T | are non-empty. Observe also that Idl(!S) = Ini(S): one retrieves the fact that the Kleisli category of the ! comonad is the category of preorders and Scott continuous functions between the associated lattices.

i = 1, 2. Then f1 = f2 ϕ + S 1 ,S 2 iff f1 = f2 ∩ |S1 ⊸ T |.
The proof is provided as complementary material. Given a directed family (Si)i∈J in Polr ⊆ and setting S = ∪i∈J Si, one proves easily using Lemma 11 that the cone (ϕ + S i ,S ∈ Polr(Si, S))i∈J is a colimit cone in Polr. Consider indeed a family of morphisms

(fi ∈ Polr(Si, T))i∈J such that i ≤ j ⇒ fi = fj ϕ + S i ,S j , that is fi = fj ∩ |Si ⊸ T |.
Then f = ∪i∈J fi is the unique element of Polr(S, T) such that f ϕ + S i ,S = fi for each i ∈ J. So the category Polr ⊆ satisfies all the axioms of Section 2.2.

As explained in that section, this allows to define fixpoints of positive types. As a first example consider the type of flat natural numbers

ι = Fix ζ • (1 ⊕ ζ) where 1 = !⊤, so that |1| = {∅}. Up to renaming we have |[ι]| = N and n ≤ [ι] n ′ iff n = n ′ .
The coalgebraic structure of this positive type is given by h

[ι] = {(n, ∅) | n ∈ N} ∪ {(n, {n}) | n ∈ N}. Consider now the type ρ = Fix ζ • (1 ⊕ (ι ⊗ !ζ))
of lazy lists of flat natural numbers. The interpretation S of this type is the least fix-point of the continuous functor (that is, the Scott continuous functional)

[1 ⊕ (ι ⊗ !ζ)] ζ : Polr ⊆ → Polr ⊆ . So |S| = ∪ ∞ n=0
Un where (Un) n∈N is the monotone sequence of sets defined by U0 = ∅ and Un+1 = {∅} ∪ (N × P fin (Un)) (this is a disjoint union). The preorder relation on |S| is given by: ∅ ≤S a iff a = ∅ and (n, u) ≤S a iff a = (n, u ′) and ∀b ∈ u∃b ′ ∈ u ′ b ≤S b ′ . This preorder relation defines the coalgebraic structure of this positive type.

3.2.3

Well-foundedness of points. Due to the possibility of using fix-points in the definition of types, the structural notion of subtype does not induce a well founded structure and therefore does not allow to perform proofs by induction. Nevertheless, the inductive definition of these fix-points induces a well-founded structure on the points of these types.

More precisely, we define a predecessor relation on pairs (σ, a) where σ is a type and a ∈ [σ]. We say that (σ, a) ≺ (τ, b) if one of the following conditions holds.

• τ = !σ, b = u and a ∈ u.

• τ = σ1 ⊗ σ2, b = (a1, a2) and σ = σi and a = ai for i = 1

or i = 2.

• τ = σ1 ⊕ σ2, b = (i, a) and σ = σi for i = 1 or i = 2.

• τ = ϕ ⊸ σ ′ , b = (c, a ′) and σ = ϕ and a = c, or σ = σ ′ and a = a ′ .
It is easily checked that there are no infinite sequence (σi, ai) i∈N such that (σi+1, ai+1) ≺ (σi, ai) for all i ∈ N.

Scott semantics as a typing system

It is interesting to present the Scott semantics of terms as a typing system, in the spirit of Coppo-Dezani Intersection Types, see [START_REF] Krivine | Lambda-Calculus, Types and Models[END_REF]. A semantic context is a sequence Φ = (x1 : a1 : ϕ1, . . . , xn : an : ϕn) where ai ∈ [ϕi] for each i, its underlying typing context is Φ = (x1 : ϕ1, . . . , xn : ϕn) and its underlying tuple is Φ = (a1, . . . , a k) ∈ [Φ]. The typing rules are given in Figure 4.

A simple induction on typing derivation trees shows that this typing system in "monotone" as usually for intersection type systems. We write Φ ≤ Φ ′ if Φ = (x1 : a1 : ϕ1, . . . , xn : an : ϕn), Φ ′ = (x1 : a ′ 1 : ϕ1, . . . , xn : a ′ n : ϕn) and ai ≤ [ϕ i] a ′ i for i = 1, . . . , n.

Proposition 12 If Φ ⊢ M : a : σ, a ′ ≤ [σ] a and Φ ≤ Φ ′ then Φ ′ ⊢ M : a ′ : σ.
Using this property, one can prove that this deduction system describes exactly the Scott denotational semantics of CbPV. The proof also uses crucially the fact that all structural operations (weakening, contraction, dereliction, promotion) admit a very simple description in terms of the preorder relation on objects thanks to Theorem 8; for instance the contraction morphism of an object S (seen as an object of Polr !) is cS = {(a, (a1, a2)) | ai ≤ a for i = 1, 2}.

Adequacy

Our goal now is to prove that, if a closed term M of positive type ϕ has a non-empty interpretation, that is, if there is a ∈ |[ϕ]| such that ⊢ M : a : ϕ, then the reduction →w starting from M terminates. We use a semantic method adapted eg. from the presentation of the reducibility method in [START_REF] Krivine | Lambda-Calculus, Types and Models[END_REF].

Given a type σ and an a ∈ [σ], we define a set |a| σ of terms M such that ⊢ M : σ (so these terms are all closed). The definition ,c) . The announced property follows by inductive hypothesis.

A Call-By-Push-Value FPC 8 2015/7/13 a ′ ≤ [ϕ] a Φ, x : a : ϕ ⊢ x : a ′ : ϕ u ∈ P fin (|[σ]|) ∀a ∈ u Φ ⊢ M : a : σ Φ ⊢ M ! : u : !σ Φ ⊢ M1 : a1 : ϕ1 Φ ⊢ M2 : a2 : ϕ2 Φ ⊢ M1, M2 : (a1, a2) : ϕ1 ⊗ ϕ2 Φ ⊢ M : a : ϕi Φ ⊢ iniM : (i, a) : ϕ1 ⊕ ϕ2 Φ ⊢ M : (a, b) : ϕ ⊸ σ Φ ⊢ N : a : ϕ Φ ⊢ M N : b : σ Φ ⊢ M : (1, a) : ϕ1 ⊕ ϕ2 Φ, x1 : a : ϕ1 ⊢ N1 : b : σ Φ, x2 : ϕ2 ⊢ N2 : σ Φ ⊢ case(M, (x1)N1, (x2)N2) : b : σ Φ ⊢ M : (a1, a2) : ϕ1 ⊗ ϕ2 Φ ⊢ pr i M : ai : ϕi Φ ⊢ M : {a} : !σ Φ ⊢ der(M) : a : σ Φ, x : u : !σ ⊢ M : a : σ ∀b ∈ u Φ ⊢ fix x !σ M : b : σ Φ ⊢ fix x !σ M : a : σ
|u| !σ v = {N ! | N ∈ n a∈u |a| σ } |(a1, a2)| ϕ 1 ⊗ϕ 2 v = { V1, V2 | Vi ∈ |ai| ϕ i v for i = 1, 2} |(i, a)| ϕ 1 ⊕ϕ 2 v = {iniV | V ∈ |a| ϕ i v } |a| ϕ = {M | ⊢ M : ϕ and ∃V ∈ |a| ϕ v M → * w V } |(a, b)| ϕ⊸σ = {M | ⊢ M : ϕ ⊸ σ and ∀V ∈ |a| ϕ v M V ∈ |b| σ }
. Assume that M →w M ′ ∈ |a| σ . Let V ∈ |b| ϕ v , we have M V →w M ′ V and M ′ V ∈ |c| τ by definition of |ϕ ⊸ τ | (b
2

Lemma 15 Let σ be a type and let a, a

′ ∈ |[σ]| be such that a ≤ [σ] a ′ . Then |a| σ ⊇ |a ′ | σ . If σ is positive, we have |a| ϕ v ⊇ |a ′ | σ v
Proof. We prove both statements by mutual induction on the ≺ relation.

Assume first that σ is a positive type that we prefer to denote as ϕ. Assume that ϕ = !τ so that a, a

′ ∈ P fin (|[τ]|) and ∀b ∈ a ∃b ′ ∈ a ′ b ≤ [τ] b ′ . Let V ∈ |a ′ | ϕ v so that V = N ! where N ∈ b ′ ∈a ′ |b ′ | τ . Let b ∈ a. Let b ′ ∈ a ′ be such that b ≤ [τ] b ′ , we have N ∈ |b ′ | τ ⊆ |b| τ by inductive hypothesis, and hence N ∈ b∈a |b| τ , so V ∈ |a| ϕ v . Let now M ′ ∈ |a ′ | ϕ , we know that there is V ′ ∈ |a ′ | ϕ v such that M ′ → * V ′ . We have just seen that |a ′ | ϕ v ⊆ |a| ϕ v so V ′ ∈ |a| ϕ v and therefore M ′ ∈ |a| ϕ . Assume that ϕ = ϕ1 ⊗ ϕ2 (again, ϕ is positive) so that a = (a1, a2) and a ′ = (a ′ 1 , a ′ 2) with ai ≤ [ϕ i] a ′ i for i = 1, 2. If V ′ ∈ |a ′ | ϕ v then V ′ = V ′ 1 , V ′ 2 with V ′ i ∈ |a ′ i | ϕ i v for i = 1, 2. By inductive hypothesis V ′ i ∈ |ai| ϕ i v and hence V ∈ |a| ϕ v . Just as above one proves that |a ′ | ϕ ⊆ |a| ϕ . The case where ϕ = ϕ1 ⊕ ϕ2 is similar. Assume last that σ = ϕ ⊸ τ so that a = (b, c), a ′ = (b ′ , c ′) with b ′ ≤ [ϕ] b and c ≤ [τ] c ′ . Let M ′ ∈ |a ′ | σ , we have to prove that M ′ ∈ |a| σ . Let therefore V ∈ |b| ϕ v . By inductive hypothesis we have V ∈ |b ′ | ϕ v and therefore M ′ V ∈ |c ′ | τ so that M ′ V ∈ |c| τ by inductive hypothesis again. 2
Theorem 16 Let Φ = (x1 : a1 : ϕ1, . . . , x k : a k : ϕ k) and assume that Φ ⊢ M : a : σ. Then for any family of closed values

(Vi) k i=1 such that Vi ∈ |ai| ϕ i one has M [V1/x1, . . . , V k /x k] ∈ |a| σ .
Proof. By induction on M . Let Vi be values such that Vi ∈ |ai| ϕ i for i = 1, . . . , k. For any term R, we use

R ′ for R [V1/x1, . . . , V k /x k].
We use the definition of →w, see Figure 2.

Assume first that M = xi for some i ∈ {1, . . . , k}; we know that a ≤ [σ i] ai. Then M ′ = Vi and we have that M ′ ∈ |a| σ by Lemma 15.

Assume that M = N ! with σ = !τ , a = u ∈ P fin (|[τ]|), Φ ⊢ N : b : τ for each b ∈ u. By inductive hypothesis, we have N ′ ∈ b∈u |b| τ . Since M ′ = N ′! , and hence M ′ → * w N ′! in 0 steps, the announced property holds.

Assume that M = N1, N2 with σ = ϕ1 ⊗ ϕ2, a = (a1, a2), Φ ⊢ Ni : ai : ϕi for i = 1, 2. By inductive hypothesis we have

N ′ i ∈ |ai| ϕ i and hence there are Vi ∈ |ai| ϕ i v with N ′ i → * w Vi for i = 1, 2. It follows that M → * w V1, V2 ∈ |(a1, a2)| ϕ 1 ⊗ϕ 2 v . Assume that M = iniN with σ = ϕ1 ⊕ ϕ2, a = (i, b) and Φ ⊢ N : b : ϕi. By inductive hypothesis, there exists V ∈ |b| ϕ i v such that N ′ → * w V . We have iniV ∈ |(i, b)| ϕ 1 ⊕ϕ 2 v and M ′ = iniN ′ → * w iniV so that M ′ ∈ |(i, b)| ϕ 1 ⊕ϕ 2 . Assume that M = pr i N with σ = ϕi, Φ ⊢ N : (a1, a2) : ϕ1 ⊗ ϕ2 and a = ai. By inductive hypothesis we have N ′ ∈ |(a1, a2)| ϕ 1 ⊗ϕ 2 and hence there are Vi ∈ |ai| ϕ i v for i = 1, 2 such that N ′ → * w V1, V2 . It follows that M ′ = pr i N ′ → * w pr i V1, V2 →w Vi ∈ |ai| ϕ i v and hence M ′ ∈ |ai| ϕ i as required. Assume that M = case(N, (x1)N1, (x2)N2) with Φ ⊢ N : (1, b) : ϕ1 ⊕ ϕ2 and Φ, x1 : b : ϕ1 ⊢ N1 : a : σ (and also Φ, x2 : ϕ2 ⊢ N2 : σ). By inductive hypothesis we have N ′ ∈ |(1, b)| ϕ 1 ⊕ϕ 2 . This means that there is V ∈ |b| ϕ 1 v such that N ′ → * w in1V . Therefore we have M ′ = case(N ′ , (x1)N ′ 1 , (x2)N ′ 2) → * w case(in1V, (x1)N ′ 1 , (x2)N ′ 2) →w N ′ 1 [V /x1].
By inductive hypothesis applied to N1, and because Lemma 14. Assume that M = λx ϕ N with σ = ϕ ⊸ τ , a = (b, c) and Φ, x : b : ϕ ⊢ N : c : τ . We must prove that λx ϕ N ′ ∈ |(b, c)| ϕ⊸τ . So let V ∈ |b| ϕ v , we must check that λx ϕ N ′ V ∈ |c| τ which results from the fact that λx ϕ N ′ V →w N ′ [V /x] ∈ |c| τ by inductive hypothesis and from Lemma 14.

V ∈ |b| ϕ 1 v , we have N ′ 1 [V /x1] ∈ |a| σ and hence M ′ ∈ |a| σ as expected. Assume that M = N R with Φ ⊢ N : (b, a) : ϕ ⊸ σ and Φ ⊢ R : b : ϕ. By inductive hypothesis we have N ′ ∈ |(b, a)| ϕ⊸σ and R ′ ∈ |b| ϕ . Therefore there is V ∈ |b| ϕ v such that R ′ → * w V . A Call-By-Push-Value FPC 9 2015/7/13 Hence M ′ = N ′ R ′ → * w N ′ V ∈ |a| σ by definition of |(b, a)| ϕ⊸σ and hence M ′ ∈ |a| σ by
Assume last that M = fix x !σ N with Φ, x : u : !σ ⊢ N : a : σ and ∀b ∈ u Φ ⊢ fix x !σ N : b : σ. By inductive hypothesis we have fix x !σ N ′ ∈ |b| σ for each b ∈ u and therefore

V = (fix x !σ N ′) ! ∈ |u| !σ v . By inductive hypothesis again we have N ′ [V /x] ∈ |a| σ . Since fix x !σ N ′ →w N ′ [V /x] we get fix x !σ N ′ ∈ |a| σ by Lemma 14 as required. 2 So if ⊢ M : ϕ and [M] = ∅ we have M → * w V for a value V . Let us say that two closed terms M1, M2 such that ⊢ Mi : σ for i = 1, 2 are observationally equivalent if for all closed term C of type !σ ⊸ 1, C M ! 1 → * w * iff C M ! 2 → * w * .
As usual, Theorem 16 allows to prove that if [M1] = [M2] then M1 and M2 are observationally equivalent. It is not hard to prove the converse implication for an extension of CbPV with a nondeterministic superposition operator interpreted as ∪ in the Scott Model.

A fully polarized version of CBPV

In CbPV positive types are interpreted as !-coalgebras, and general types are simply interpreted as objects of the underlying linear category: in some sense, this system is half-polarized and is intuionistic for that reason. In a fully polarized system we would expect nonpositive types to be negative, that is, linear duals of !-coalgebras. Such a system would feature syntactic constructions related to classical logic such as call/cc, the price to pay being a slightly more complicated encoding of data-types.

It is quite easy to turn our hierarchy of types (1) and (2) into a polarized hierarchy: ϕ, ψ, . . .

:= !σ | ϕ ⊗ ψ | ϕ ⊕ ψ | ζ | Fix ζ • ϕ (positive) (4) σ, τ . . . := ?ϕ | ϕ ⊸ σ | ⊤ (negative) (5)
Accordingly we introduce a polarized syntax for expressions featuring five mutually recursive syntactic categories.

P, Q . . . := x | N ! | P1, P2 | iniP (positive terms) M, N, . . . := der P | λx ϕ M | µα σ c | fix x !σ M (negative terms) π, ρ . . . := α | η ! | P • π (positive contexts) η, θ . . . := der π | pr i η | [η1, η2] | μx ϕ c (negative contexts) c, d . . . := P * η | M * π (commands, cuts)
Intuitively, positive terms correspond to data, negative terms to programs, negative contexts to patterns (apart for the negative context μx ϕ c which generalizes the concept of "closure") and positive contexts to evaluation environments. The typing rules correspond to a large fragment of LLP, see [START_REF] Laurent | About Translations of Classical Logic into Polarized Linear Logic[END_REF] 5 , and are given in Figure 6.

Let us say that an expression e is well typed in typing contexts P = (x1 : ϕ1, . . . , xn : ϕn), N = (α1 : σ1, . . . , α k : σ k) if e is a positive term P and P ⊢ P : ϕ | N for some type ϕ, if e is a negative term M and P ⊢ M : σ | N for some type σ, if e is a positive context π and P | π : σ ⊢ N for some type σ, if e is a negative context η and P | η : ϕ ⊢ N for some type ϕ and if e is a command c and P ⊢ c | N . In the four first cases, ϕ (resp. σ) is the type of e. Observe that, when it exists, this type is completely determined by e, P and N (the typing rules are syntax-directed).

Operational semantics

The weak reduction rules are given in Figure 7. All redexes are commands and it is crucial to observe that there are no critical pairs. Specifically, there is no command which is simultaneously of shape M * π and P * μx ϕ c because in the former the term is negative whereas it is positive in the latter. In particular the "Lafont critcal pair" µα θ c * μx θ d cannot occur (θ should be positive and negative!). Remark: In this weak reduction paradigm, we only reduce commands. A sequence of reduction alternates therefore sequences of positive commands of shape P * η where a piece of data P is explored by a pattern η with sequences of negative commands M * π where a program M is executed in an evaluation context π. The transition from the execution phase to the pattern-matching phase is realized by the reduction rule [START_REF] Curien | Call-By-Push-Valus in system L style[END_REF] and the converse by [START_REF] Ehrhard | Probabilistic coherence spaces are fully abstract for probabilistic PCF[END_REF]. We retrieve the basic idea of focalization of [START_REF] Andreoli | Logic programming with focusing proofs in linear logic[END_REF] and of Ludics, [START_REF] Girard | Locus Solum[END_REF], that "positive" means passive and "negative", active (many other authors should be mentioned here of course).

We also consider a general reduction relation → on expressions which is defined by allowing the application of the rules of Figure 7 anywhere in an expression as well as the two following µη reduction rules: µα σ (M * α) → M if α does not occur free in M and μx ϕ (x * η) → η if x does not occur free in η.

Proposition 17 If e is typable in contexts P, N and e → e ′ then e ′ is typable in contexts P, N , belongs to the same syntactic category as e and has the same type as e (when it applies).

The proof is a straightforward verification. As usual one has first to state and prove a Substitution Lemma.

Theorem 18

The reduction relation → on µCbPV enjoys the Church-Rosser property.

The proof uses the usual Tait Martin-Lf method of parallel reductions and will be provided in a longer version of this paper. The denotational semantics that we outline now gives us another proof that this calculus is sound.

Denotational semantics

Assume to be given a model of LL L as specified in Section 2. With any positive type ϕ, negative type σ and sequence of pairwise distinct type variables ζ = (ζ1, . . . , ζn) containing all free variables of ϕ and σ, we associate the continuous functors 8 on objects, the definition on morphisms being similar 6 . With any positive terms and contexts P and π with P ⊢ P : ϕ | N and P | π : σ ⊢ N we associate coalgebra morphisms The interpretation of positive terms is defined as for CbPV (see 2.3). Negative terms: the interpretation of der P uses the dereliction morphism in L([ϕ], ?[ϕ]), the interpretation of λx ϕ M and Figure 6. Typing rules for µCbPV: positive terms, negative terms, positive contexts, negative contexts and commands

[ϕ] ζ , σ ζ : (L ! ⊆) n → L ! ⊆ defined in Figure
der P * η ! →w P * η (6) λx ϕ M * P • π →w M [P/x] * π (7) µα σ c * π →w c [π/α] (8)
fix x !σ M * π →w M (fix x !σ M) ! /x * π (9)
M ! * der π →w M * π (10) P1, P2 * pr i η →w Pi * η (11) iniP * [η1, η2] →w P * ηi (12) P * μx ϕ c →w c [P/x] (13)
Figure 7. Reduction rules for µCbPV The proof is routine, using Proposition 19: one checks first the property for each of the 10 redexes (the 8 redexes of Figure 7 and the two µη-redexes of Section 4.1) and then one uses the fact that the interpretation of expressions is defined by structural induction.

[ζi] ζ (P) = Pi [!σ] ζ (P) = !(σ ζ (P) ⊥) [ϕ ⊗ ψ] ζ (P) = [ϕ] ζ (P) ⊗ [ψ] ζ (P) [ϕ ⊕ ψ] ζ (P) = [ϕ] ζ (P) ⊕ [ψ] ζ (P) [Fix ζ • ϕ] ζ = Fix([ϕ] ζ,ζ) ?ϕ ζ (P) = !([ϕ] ζ (P) ⊥) ϕ ⊸ σ ζ (P) = [ϕ] ζ (P) ⊗ σ ζ (P)
A consequence of this easy theorem is that µCbPV is sound in the sense that the reflexive and transitive closure of → does not equate eg. the two booleans in1(fix x !⊤ x !) and in2(fix x !⊤ x !) (closed positive terms of type !⊤ ⊕ !⊤). Indeed it is easy to build models where these constants have distinct interpretations (for instance the Scott model Polr of Section 3).

Translating CbPV into µCbPV

With any positive type ϕ of CbPV we associate a positive type ϕ + of µCbPV and with any general type σ we associate a negative type of µCbPV. The translation does almost nothing apart adding a few "?" to make sure that σ -is negative, see Figure 9. Given a CbPV typing context P = (x1 : ϕ1, . . . , xn : ϕn), we set P + = (x1 : ϕ + 1 , . . . , xn : ϕ + n). With any term M of CbPV such that P ⊢ M : σ we explain now how to associate a term M -of µCbPV such that P + ⊢ M -: σ -| .

If M is a variable x typed by P, x : σ ⊢ x : σ, we set

x -= der x .

A Call-By-Push-Value FPC 11 2015/7/13 If M = der(N) and P ⊢ N : !σ then by inductive hypothesis P + ⊢ N -: ?!σ -| . We have P + | α : σ -⊢ α : σ -and hence P + | (der α) ! : ?!σ -⊢ α : σ -, and we set der(N) -= µα σ - (N - * (der α) !) .

ζ + = ζ (!σ) + = !(σ -) (ϕ1 ⊗ ϕ2) + = ϕ + 1 ⊗ ϕ + 2 (ϕ1 ⊕ ϕ2) + = ϕ + 1 ⊕ ϕ + 2 (Fix ζ • ϕ) + = Fix ζ • ϕ + ϕ -= ?(ϕ +) (ϕ ⊸ σ) -= ϕ + ⊸ σ -
If M = λx ϕ N with σ = ϕ ⊸ τ and P, x : ϕ ⊢ N : σ then inductive hypothesis P + , x : ϕ + ⊢ N -: σ -| so that P + ⊢ λx ϕ + N -: ϕ + ⊸ σ -| and we set (λx ϕ N) -= λx ϕ + N -. If M = N R with P ⊢ N : ϕ ⊸ σ and P ⊢ R : ϕ then by inductive hypothesis, P + ⊢ N -: ϕ + ⊸ σ -| and P + ⊢ R -: ?ϕ + | . We have P + , x :

ϕ + | x • α : ϕ + ⊸ σ -⊢ α : σ -, hence P + , x : ϕ + ⊢ N - * (x • α) | α : σ -. Therefore we have P + | μx ϕ + N - * (x • α) : ϕ + ⊢ α : σ -so that P + | (μx ϕ + N - * (x • α)) ! : ?ϕ + ⊢ α : σ -and we set N R -= µα σ - (R - * (μx ϕ + N - * (x • α)) !
) .

If M = iniN with P ⊢ N : ϕi then by inductive hypothesis P + ⊢ N -: ?ϕ + i | . One has

P + | μx ϕ + i (inix * α) : ϕ + i ⊢ α : ϕ + 1 ⊕ ϕ + 2 hence P + ⊢ N - * (μx ϕ + i (inix * α))
| α : ?(ϕ + 1 ⊗ ϕ + 2) and hence we set

M1, M2 -= µα ?(ϕ + 1 ⊗ϕ + 2) M - 2 * μx ϕ + 2 2 M - 1 * (μx ϕ + 1 1 der x1, x2 * α) ! ! . If M = pr i N where P ⊢ N : ϕ1 ⊗ ϕ2 then P + ⊢ N -: ?(ϕ + 1 ⊗ ϕ + 2) | . We have P + | μx ϕ + i (der x * α) : ϕ + i ⊢ α : ?ϕ + i so that P + | (pr i μx ϕ + i (der x * α)) ! : ?(ϕ + 1 ⊗ ϕ + 2) ⊢ α : ?ϕ + i so (pr i N) -= µα ?ϕ + i N - * (pr i μx ϕ + i (der x * α)) ! . If M = fix x !σ N with P, x : !σ ⊢ N : σ then P + , x : !(σ -) ⊢ N -: σ -| , so (fix x !σ N) -= fix x !(σ -) N -.
Given a CbPV value V such that P ⊢ V : ϕ, one can straightforwardly define a positive µCbPV term V + such that P + ⊢ V + : ϕ + | as follows:

x + = x, (M !) + = (M -) ! , V1, V2 + = V + 1 , V + 2 and (iniV) + = ini(V +) for i = 1, 2. Lemma 21 If P ⊢ V : ϕ in CbPV and if V is a value then V -→ * der (V +).
Proof. Simple verification. For instance, if V = V1, V2 , then

V -→ * µα der (V + 2) * (μx 2 der V + 1 * (μx 1 der x1, x2 * α) !) ! → µα V + 2 * μx 2 (der V + 1 * (μx 1 der x1, x2 * α) !) → µα der V + 1 * (μx 1 der x1, V + 2 * α) ! → * V + 1 , V + 2 . 2 Lemma 22 If P, x : ϕ ⊢ M : σ and P ⊢ V : ϕ in CbPV (with V being a value) then M [V /x] -→ * M -V + /x .
Proof. Induction on M , using Lemma 21 when M = x. 2

The translation above respects the operational semantics.

As a consequence, using Theorem 18 one proves that, if M → * M ′ in CbPV there is a negative term R of µCbPV such that M -→ * R and M ′-→ * R (induction on the length of the reduction M → * M ′). This shows that CbPV embeds in µCbPV by a translation M → M -which is compatible with the operational semantics. In the long version of this paper, we will also describe a simple relation between the semantics of M and of M -.

Conclusion

The half-polarized and fully polarized presentations of CBPV proposed in this work admit LL-based models featuring non-trivial effects such as non-deterministic computations, or probabilistic computations, see [START_REF] Danos | Probabilistic coherence spaces as a model of higher-order probabilistic computation[END_REF] with full abstraction properties, see [START_REF] Ehrhard | Probabilistic coherence spaces are fully abstract for probabilistic PCF[END_REF]. Accommodating other effects such as global and local states will require a deeper semantical analysis which could be based on the very nice combination of effect monads with linearity developed in the enriched effect calculus of [START_REF] Egger | The enriched effect calculus: syntax and semantics[END_REF].

A. Appendix: ommitted proofs A.1 Proof of Theorem 8

Proof. We check first that (S, pS) is a !-coalgebra. The relation pS is a morphism in Polr: if (a, u) ∈ pS and (a ′ , u ′) satisfy a ≤S a ′ and u ′ ≤ !S u, then for all b ′ ∈ u ′ there exists b ∈ u such that b ′ ≤S b. Then we know that b ≤S a because (a, u) ∈ pS and finally a ≤S a ′ by our assumption. Hence b ′ ≤S a ′ and therefore (a ′ , u ′) ∈ pS as contended.

Let (a, a ′) ∈ |S| × |S|. If (a, a ′) ∈ derS pS then there exists u ∈ |!S| such that ∀b ∈ u b ≤S a, and there is b ∈ u such that a ′ ≤S b. Therefore a ′ ≤S a and it follows that derS pS ⊆ IdS. Assume conversely that a ′ ≤S a, taking u = {a} (or u = {a ′ }), we see that (a, a ′) ∈ derS pS, hence we have derS pS = IdS.

Let now (a, U) ∈ |S| × |!!S| with U = {u1, . . . , un}. Assume first that (a, U) ∈ dig S pS. There is u ∈ |!S| such that ui ≤ !S u for each i = 1, . . . , n, and b ≤S a for each b ∈ u. It follows that (a, ui) ∈ pS for each i and hence ({a}, U) ∈ !pS. Since (a, {a}) ∈ pS it follows that (a, U) ∈ !pS pS. Assume conversely that (a, U) ∈ !pS pS. So there is u ∈ |!S| such that b ≤S a for all b ∈ u and, for each i, there exists bi ∈ u such that a ′ ≤ bi for each a ′ ∈ ui. So we have ui ≤ !S u for each i and hence (u, U) ∈ dig S and hence (a, U) ∈ dig S pS. This ends the proof that (S, pS) is a !-coalgebra.

We come now to the second statement. Let P be a !-coalgebra and let S = P . Let Assume now that (a, u) ∈ pS with u = {a1, . . . , an}. We have seen that (a, {a}) ∈ hP and hence (a, {ai}) for i = 1, . . . , n since ai ≤S a for each i. Therefore ({a}, U) ∈ !hP where U = {{a1}, . . . , {an}}. Hence (a, U) ∈ !hP hP = dig S hP . Hence there is u ′ ∈ |!S| such that (a, u ′) ∈ hP and (u ′ , U) ∈ dig S . This latter property means that u ≤ !S u ′ and hence we have (a, u) ∈ hP as contended.

Figure 2 .

 2 Figure 2. Weak reduction axioms and rules for CbPV

Figure 3 .

 3 Figure 3. Commutative ⊗-comonoid

 [N]P,x:ϕ ∈ L([P] ⊗ [ϕ], [τ]) and we set [M]P = cur ([N]P,x:ϕ) ∈ L([P], [ϕ] ⊸ [τ]). Of course, even if τ is positive and N is L-central, M is not Lcentral, simply because its type is not positive. Assume that M = N R with P ⊢ N : ϕ ⊸ σ and P ⊢ R : ϕ for some positive type ϕ. By inductive hypothesis we have [N]P ∈ L([P], [ϕ] ⊸ [σ]) and [R]P ∈ L([P], [ϕ]). Since [P] = [P] ! we have a contraction morphism c [P] ! ∈ L ! ([P] ! , [P] ! ⊗ [P] !) so that we can set [M]P = ev ([N]P ⊗ [R]P) c [P] ! ∈ L([P], [σ]). Assume that M = case(N, (x1)R1, (x2)R2) with P ⊢ N : ϕ1 ⊕ ϕ2 and P, xi : ϕi ⊢ Ri : σ for i = 1, 2. By inductive hypothesis we have [M]P ∈ L([P], [ϕ1] ⊕ [ϕ2]) and [Ri]P ∈ L([P] ⊗ [ϕi], [σ]) for i = 1, 2. By the universal property of the coproduct ⊕ in L and by the fact that the functor [P] ⊗ is a left adjoint, there is exactly one morphism

Proposition 6 (

 6 Substitution Lemma) Assume that P, x : ϕ ⊢ M : σ and P ⊢ N : ϕ, and assume that N is L-central. Then we have [M [N/x]]P = [M]P,x:ϕ ([P] ⊗ [N]P) c [P] ! Proof. Induction on M using in an essential way the L-centrality of N . Let us consider two cases to illustrate this point. Assume first that M = R ! and σ = !τ , with P, x : ϕ ⊢ R : τ so that [R]P,x:ϕ ∈ L([P] ⊗ [ϕ], [σ]). Then we have [M [N/x]]P = [R [N/x] !]P = ([R [N/x]]P) ! = ([R]P,x:ϕ ([P] ⊗ [N]P) c [P]) ! by inductive hypothesis. We obtain the contended equation by applying Equation (3) and the fact that [P] ⊗ [N]P is a coalgebra morphism since N is L-central, and the fact that c [P] is also a coalgebra morphism.

The other cases are handled similarly. 2 Theorem 7 (

 27 Soundness) If P ⊢ M : σ and M →w M ′ then [M]P = [M ′]P .

3. 1 . 1

 11 Monoidal structure and cartesian product. The object 1 is ({ * }, =) and given preorders S and T we set S ⊗ T = (|S| × |T |, ≤S × ≤T). The tensor product of morphisms is defined in the obvious way. The isos defining the monoidal structure are easy to define. Then one defines S ⊸ T by |S ⊸ T | = |S| × |T | and (a ′ , b ′) ≤S⊸T (a, b)) if a ≤ a ′ and b ′ ≤ b. The linear evaluation morphism ev ∈ Polr((S ⊸ T) ⊗ S, T) is given by ev = {(((a ′ , b), a), b ′) | b ′ ≤ b and a ′ ≤ a}. If f ∈ Polr(U ⊗ S, T) then cur(f) ∈ Polr(U, S ⊸ T) is defined by moving parentheses. This shows that Polr is closed. It is *-autonomous, with ⊥ = 1 as dualizing object. Observe that S ⊥ is simply |S| equipped with ≥S as preorder relation ≤ S ⊥ .

3. 2 . 2

 22 Inclusions and embedding-retraction pairs. We define a category Polr ⊆ as follows: the objects are those of Polr andPolr ⊆ (S, T) is a singleton {ϕS,T } if |S| ⊆ |T | and ∀a, a ′ ∈ |S| a ≤S a ′ ⇔ a ≤T a ′(and then we write S ⊆ T) and is empty otherwise. So (Polr ⊆ , ⊆) is a partially ordered class. The functor F is then defined as follows: if S ⊆ T then ϕ + S,T = {(a, b) ∈ |S| × |T | | b ≤T a} and ϕ - S,T = {(b, a) ∈ |T | × |S| | a ≤T b}; this definition is functorial and ϕ - S,T ϕ + S,T = IdS. The partially ordered class Polr ⊆ is complete in the sense that any directed family of objects 4 (Si)i∈J has a lub S given by |S| = ∪i∈J |Si| and a ≤S a ′ if a ≤S i a ′ for some i; we denote this preorder as ∪i∈J Si. The operations ⊗, ⊕ and ! are monotone and Scottcontinuous operations on this partially ordered class. Lemma 11 Assume that S1 ⊆ S2 and let fi ∈ Polr(Si, T) for

Proposition 13

 13 Given a1 ∈ [ϕ1],. . . ,an ∈ [ϕn] and a ∈ [σ], one has (a1, . . . , an, a) ∈ [M]x 1 :σn,...,x 1 :σn iff x1 : a1 : ϕ1, . . . , xn : an : ϕn ⊢ M : a : σ.

Figure 4 .

 4 Figure 4. Scott Semantics as a Typing System

Figure 5 .

 5 Figure 5. Interpretation of points as sets of terms in CbPV

 [P]P,N ∈ L ! ([P] ⊗ N , [ϕ]) and [π]P,N ∈ L ! ([P] ⊗ N , σ) and with any negative terms and contexts M and η with P ⊢ M : σ | N and P | η : ϕ ⊢ N we associate morphisms [M]P,N ∈ L([P] ⊗ N , σ ⊥) and [η]P,N ∈ L([P]⊗ N , [ϕ] ⊥). Last, with any command c such that P ⊢ c | N we associate a morphism [c]P,N ∈ L([P] ⊗ N , ⊥).

Figure 8 .

 8 Figure 8. Semantics of types in µCbPV

Figure 9 .

 9 Figure 9. Translation of types

Theorem 23

 23 If P ⊢ M : σ in CbPV then P + ⊢ M -: σ -| . Moreover, if M →w M ′ then there is a negative term R of µCbPV such that M -→ * R and M ′-→ * R. . Proof. The first statement is essentially proven in the definition above of the translation. The proof of the second statement is a simple inspection of the reduction rules of CbPV. Let us consider two cases. Assume first that M = λx N V , then M -= µα V - * (μx (λx N -) * x • α) ! → * µα der V + * (μx (λx N -) * x • α) ! by Lemma 21. Hence M -→ * N -V + /x . On the other hand we have M →w N [V /x] in CbPV, and N [V /x] -→ * N -V + /x by Lemma 22.Assume now M = pr i V1, V2 , we have M -= µα V1, V2 - * (pr i μx (der x * α)) ! → * µα der V + 1 , V + 2 * (pr i μx (der x * α)) ! → * der V + i by Lemma 21. On the other hand M →w Vi and V - i → * der V + i by Lemma 22. The other cases are similar.

 (a, u) ∈ hP , we prove that b ≤S a for all b ∈ u. Let b ∈ u, we have (u, b) ∈ derS by definition of this morphism and hence (a, b) ∈ derS hP = IdS and hence b ≤S a. This shows that hP ⊆ pS. Before proving the converse inclusion, we make a useful observation. Let b ∈ |S|. We have (b, b) ∈ IdS = derS hP and hence there exists u such that (b, u) ∈ hP and (u, b) ∈ derS, which implies that there is b ′ ∈ u such that b ≤S b ′ , hence {b} ≤ !S u. Since (b, u) ∈ hP ∈ Polr(S, !S), we have (b, {b}) ∈ hP .

2 A. 2 2 A. 3 S 1 ,S 2 (

 222312 Proof of Theorem 10Proof. Let f ∈ Polr ! (S, T). This means that pT f = !f pS. Let ξ ∈ Idl(S). We prove that the set f ξ = {b | ∃a ∈ ξ (a, b) ∈ f } ⊆ |T | is ≤T -directed. Let indeed b1, b2 ∈ f ξ. Let ai ∈ ξ be such that (ai, bi) ∈ f for i = 1, 2. Since ξ is directed, there is a ∈ ξ such that ai ≤S a for i = 1, 2. Then we have (a, {a1, a2}) ∈ pS, and of course ({a1, a2}, {b1, b2}) ∈ !f . Since f is a !-morphism, we must have (a, {b1, b2}) ∈ pT f . This means that there is b ∈ |T | such that (a, b) ∈ f and bi ≤T b for i = 1, 2. Hence f ξ is directed as contended. The map ξ → f ξ is obviously Scott-continuous from Idl(S) to Idl(T); we denote it as C(f). This operation on morphisms is clearly functorial.Conversely, let ϕ : Idl(S) → Idl(T) be Scott continuous. We setA(ϕ) = {(a, b) ∈ |S| × |T | | b ∈ ϕ(↓a)}and we prove that A(f) ∈ Polr ! (S, T). The first thing to check is that A(ϕ) ∈ Polr(S, T) but this results immediately from the definition and from the fact that a Scott-continuous function is monotone.It remains to prove that!A(ϕ) pS = pT A(ϕ). Let a ∈ |S| and v = {b1, . . . , bn} ∈ |!T |. Assume first that (a, v) ∈ !A(ϕ) pS.Let u ∈ |!S| be such that (a, u) ∈ pS and (u, v) ∈ !A(ϕ). Then we have v ⊆ a ′ ∈u ϕ(↓a ′) ⊆ ϕ(↓a) by applying the definitions and using the fact that ϕ is monotone. But ϕ(↓a) is directed in T and v is finite. Hence there is b ∈ |T | such that (a, b) ∈ A(ϕ) and (b, v) ∈ hT as required. Assume next that (a, v) ∈ pT A(ϕ). This means that there is b ∈ |T | such that b ∈ ϕ(↓a) and (b, v) ∈ pT . So we have ∀b ′ ∈ v (a, b ′) ∈ A(ϕ) and hence ({a}, v) ∈ !A(ϕ). Since (a, {a}) ∈ pS we have (a, v) ∈ !A(ϕ) pS as required.We prove now that these two operations are inverse of each other. Let first f ∈ Polr ! (S, T) and let ϕ = C(f). Let (a, b) ∈ A(ϕ). This means that b ∈ ϕ(↓a), that is b ∈ f ↓a and hence (a, b) ∈ f . Conversely let (a, b) ∈ f . Then we have b ∈ f ↓a and hence (a, b) ∈ A(ϕ). We have proven that A(C(f)) = f . Let ϕ : Idl(S) → Idl(T) be Scott continuous. Let f = A(ϕ) ∈ Polr ! (S, T). Let ξ ∈ Idl(S), we haveC(f)(ξ) = f ξ = ∪ a∈ξ ϕ(↓a). The set {↓a | a ∈ ξ} is a directed subset of Idl(S) whose lub is ξ. Since ϕ is Scott continuous we have C(f)(ξ) = ϕ(ξ), and since this is true for all ξ ∈ Idl(S) we haveC(A(ϕ)) = ϕ. Let f, f ′ ∈ Polr ! (S, T) be such that f ⊆ f ′ . Let ξ ∈ Idl(S). Let b ∈ C(f)(ξ). This means that b ∈ f ξ and hence b ∈ f ′ ξ, so we have C(f) ≤ C(f ′)for the pointwise order of functions. Let ϕ, ϕ ′ : Idl(S) → Idl(T) be such that ϕ ≤ ϕ ′ for that order on functions. Let (a, b) ∈ A(ϕ), this means that b ∈ ϕ(↓a). By our assumption we have b ∈ ϕ ′ (↓a) and hence (a, b) ∈ A(ϕ ′). So A(ϕ) ⊆ A(ϕ ′). This ends the proof of the theorem. Proof ofLemma 11 Proof. Assume first that f1 = f2 ϕ + S 1 ,S 2 . Let (a, b) ∈ f1, we have (a, b) ∈ f2 ϕ + S 1 ,S 2 and so there isa ′ ∈ |S2| such that (a, a ′) ∈ ϕ + S 1 ,S 2 (that is a ′ ≤S 2 a) and (a ′ , b) ∈ f2. Since f2 ∈ Polr(S2, T) we have (a, b) ∈ f2 so f1 ⊆ f2∩|S1 ⊸ T |. Let now (a, b) ∈ f2 ∩ |S1 ⊸ T |, we have (a, a) ∈ ϕ + S 1 ,S 2 and hence (a, b) ∈ f1. We prove now the converse implication, so assume that f1 = f2 ∩ |S1 ⊸ T |. Let (a, b) ∈ f1, we know that (a, b) ∈ f2 and that (a, a) ∈ ϕ + S 1 ,S 2 and hence (a, b) ∈ f2 ϕ + S 1 ,S 2 . Conversely let (a, b) ∈ f2 ϕ + S 1 ,S 2 . Let a ′ ∈ |S2| be such that (a, a ′) ∈ ϕ + and hence a ′ ≤S 2 a) and (a ′ , b) ∈ f2. Since f2 ∈ Polr(S2, T) we have (a, b) ∈ f2 so (a, b) ∈ f2 ∩ |S1 ⊸ T | = f1. 2

Girard considered actually ⊗-commutative comonoids, a notion which has the good taste of being independent of any choice of "!" modality. This is however not sufficient for translating classical logic in LL, unless one restricts ones attention to the free exponential modality as he did, in the framework of coherence spaces.

A Call-By-Push-Value FPC 4 2015/7/13

This is true in many concrete models. It implies that any hom-set L(X, Y) has a distinguished element which coincides with the least element ⊥ in denotational models based on domains or games. So this identification is typical of models featuring partial morphisms, which is required here because of the availability of fix-point operators for types and for programs.

Because we are dealing with a partially ordered class, we can replace general filtered categories with directed posets.

In a Sequent Calculus presentation, with double-sided sequents contrarily to most presentations of LLP in the literature. Our syntax is based on the λµμ presentation of sequent calculus-oriented classical λ-calculi due of[START_REF] Curien | The duality of computation[END_REF].

Notice that the interpretation of a negative type is actually the semantics of its linear negation; we adopt this convention in order to avoid the explicit introduction of negative objects in the model.A Call-By-Push-Value FPC 10 2015/7/13

A Call-By-Push-Value FPC 12 2015/7/13

Acknowledgments

I would like to thank Antonio Bucciarelli, Pierre-Louis Curien, Giulio Guerrieri, Jean-Louis Krivine, Paul-André Melliès, Michele Pagani and Christine Tasson for deep and enlightening discussions on the ideas developed in this article.