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Département de Mathématiques
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ABSTRACT

We consider an exactly soluble W ∗-dynamical system driven by repeated harmonic
interactions. Although dynamics is Hamiltonian and quasi-free, it leads in the large-time
limit to relaxation of initial states to a steady state. We found explicitly the rate of the
entropy production which accompanies this relaxation. Besides, we study evolution of
subsystems to elucidate their eventual correlations and convergence to equilibrium states.
Finally we prove a universality of dynamics driven by repeated harmonic perturbations
in a short-time interaction limit.
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1 Preliminaries and the Model

1.1 Setup

We consider a quantum system recently proposed in [TZ]. It is a harmonic system (one-
mode quantum oscillator S) successively perturbed by time-dependent stationary repeated
harmonic interactions. This sequence of perturbation is switched on at the moment t = 0
and it acts successively on the interval 0 ≤ t < ∞. It is a common fashion to present
this sequence as repeated interactions of the system S with an infinite time-equidistant
chain: C = S1 + S2 + . . ., of subsystems {Sk}k≥1.

Note that there is a physical interpretation [NVZ], [BJM], behind of this mathematical
setting. For the model [TZ], the system CN is identified with a chain of N quantum
particles (”atoms”) with infinitely many harmonic internal degrees of freedom. They
interact one-by-one with a one-mode quantum resonator (cavity) S. This is a caricature
of the one-atom maser system. In contract to [NVZ], but similar to the two-level Jaynes-
Cummings atoms [BJM], the interaction with harmonic atoms is inelastic. This yields
a very different evolution of the model [TZ] comparing to the model [NVZ], in which
interaction is completely elastic, see Sections 4 and 5.

Below we suppose that the states of S and of every Sk are normal, i.e. defined by the
density matrices ρ0 and {ρk}∞k=1 on the Hilbert spaces HS and {HSk

}∞k=1, respectively.
The Hilbert space of the total system is then the tensor product HS ⊗ HC. Here the
infinite product HC = ⊗k≥1HSk

stays for the Hilbert space chain.
Since for any fixed moment t ≥ 0, only a finite number N(t) of repeated interactions

are involved into the dynamics, the subsystems {Sk}k>N(t) are still independent for dif-

ferent k, as well as they are independent of components S and {Sk}N(t)
k=1 . On the other

hand, the problem of correlations between components S, Sk for k ≤ N(t) and between
Sk, Sk′ for 1 ≤ k < k′ ≤ N(t) is considered in Section 5. This peculiarity of the re-
peated interactions allows to reduce the analysis of dynamics to the finite tensor product:
HCN = ⊗N

k=1HSk
. Then one recovers the above infinite chain S+C as the limit N → ∞, a
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posteriori . Details of dynamics are presented in the next Section 2. We finish this section
by formulation of some of our hypothesises.

Hypothesis (H1): (Initial states) For t ≤ 0, all components of S and {Sk}Nk=1 are
independent, i.e. the state of S + CN is described as a finite tensor product: ωS+CN :=
ωS ⊗⊗N

k=1 ωSk
. We suppose that each of the state in the product is normal.

Hypothesis (H2): (Tuned interaction) We consider repeated perturbations in the tuned
regime: for any moment t ≥ 0 exactly one subsystem (”atom”) Sn is interacting with the
system S (quantum resonator) during a fixed time τ > 0. Here n = [t/τ ] + 1, where [x]
denotes the integer part of x ≥ 0.

Let H0 be the Hilbert space for the system S and Hk be the Hilbert space for the
the system Sk for k = 1, · · · , N . Then for k = 0, 1, · · · , N , the space Hk is a copy of the
one-mode boson Fock space F with the vacuum vector Ω ∈ F and with densely defined
boson annihilation and (adjoint) creation operators: a and a∗, defined by aΩ = 0. The
total system S + CN lives in the Hilbert space

H
(N) := H0 ⊗

N⊗

k=1

Hk = F
⊗(N+1) . (1.1)

Here 1 is the unit operator on F . In the space (1.1) we define operators

bk := 1 ⊗ . . .⊗ 1⊗ a⊗ 1⊗ . . .⊗ 1 , b∗k := 1⊗ . . .⊗ 1 ⊗ a∗ ⊗ 1⊗ . . .⊗ 1 , (1.2)

where operator a, or a∗, is the (k + 1)th factor in (1.2). Operators (1.2) formally satisfy
the Canonical Commutation Relations (CCR)

[bk, b
∗
k′] = δk,k′1, [bk, bk′] = [b∗k, b

∗
k′] = 0 , k, k′ = 0, 1, 2, · · · , N. (1.3)

Hypothesis (H3): (Harmonic interaction) The time-dependent repeated interaction
described by (H2) is a piecewise constant operator in (1.1). It is the sum over n ≥ 1 of
the bilinear forms in operators (1.2) in the space H0 ⊗ Hn :

Kn(t) := χ[(n−1)τ,nτ)(t) η (b∗0bn + b∗nb0) , η > 0. (1.4)

Here χI(x) is the characteristic function of the set I.

1.2 The Model

For any N ≥ 1 and t < Nτ , the self-adjoint Hamiltonian HN(t) of the non-autonomous
system S+CN is defined in the space (1.1) as the sum of Hamiltonians corresponding the
systems S, Sk and interaction (1.4) [TZ]:

HN (t) := HS +

N∑

k=1

(HSk
+Kk(t)) (1.5)

= Eb∗0b0 + ǫ
N∑

k=1

b∗kbk + η
N∑

k=1

χ[(k−1)τ,kτ)(t) (b
∗
0bk + b∗kb0) ,

3



Hypothesis (H4):(Semi-boundedness) To keep the self-adjoint Hamiltonian (1.5) semi-
bounded from below we suppose that E, ǫ > 0 and we impose the condition

η2 ≤ E ǫ . (1.6)

By virtue of (1.4), (1.5) only Sn interacts with S for t ∈ [(n− 1)τ, nτ), n ≥ 1, i.e. the
system S + CN is autonomous on this time-interval with self-adjoint Hamiltonian

Hn := E b∗0b0 + ǫ
N∑

k=1

b∗kbk + η (b∗0bn + b∗nb0) , n ≤ N . (1.7)

Note that there exists a CCR-preserving linear transformation, which diagonalise (1.7):

H̃n := ε0 c
∗
0c0 + ε1 c

∗
1c1 +

N∑

k=2

εkc
∗
kck . (1.8)

Here ε2 = . . . = εN = ǫ, and ε0,1 :=
1
2
[(E + ǫ)±

√
(E − ǫ)2 + 4η2] > 0 by (H4).

The next key lemma follows from the harmonic structure of the Hamiltonian (1.7).

Lemma 1.1 For j = 0, 1, 2, . . . , N and n = 1, 2, . . . , N , one gets

eitHnbje
−itHn =

N∑

k=0

(U∗
n(t))jkbk, eitHnb∗je

−itHn =

N∑

k=0

(U∗
n(t))jkb

∗
k, (1.9)

e−itHnbje
itHn =

N∑

k=0

(Un(t))jkbk, e−itHnb∗je
itHn =

N∑

k=0

(Un(t))jkb
∗
k , (1.10)

for t ≥ 0. Here Un(t) and Vn(t) are (N+1)×(N+1) matrices related by Un(t) := eitǫVn(t),
where

(Vn(t))jk :=





g(t)z(t) δk0 + g(t)w(t) δkn (j = 0)

g(t)w(t) δk0 + g(t)z(−t) δkn (j = n)

δjk (otherwise) ,

(1.11)

and

g(t) := eit(E−ǫ)/2 , w(t) :=
2iη√

(E − ǫ)2 + 4η2
sin t

√
(E − ǫ)2

4
+ η2 , (1.12)

z(t) := cos t

√
(E − ǫ)2

4
+ η2 +

i(E − ǫ)√
(E − ǫ)2 + 4η2

sin t

√
(E − ǫ)2

4
+ η2 . (1.13)

Remark 1.2 Note that by definitions (1.12) and (1.13), we get |z(t)|2 + |w(t)|2 = 1,
z(−t) = z(t) and w(t) = −w(t). Therefore, the matrix

M(t) :=



z(t) w(t)

w(t) z(−t)




is unitary. For N = 1, one gets M(t) = g(t)V1(t), see (1.11). Moreover, (1.9) and (1.10)
imply that {Vn(t)}t∈R and {Un(t)}t∈R are in fact one-parameter groups of (N+1)×(N+1)
unitary matrices.
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Proof (of Lemma 1.1 ): Let {Jn}Nn=1 and {Xn}Nn=1 be (N+1)×(N+1) Hermitian matrices
given by

(Jn)jk :=

{
1 (j = k = 0 or j = k = n)

0 otherwise
, (1.14)

(Xn)jk :=





(E − ǫ)/2 (j, k) = (0, 0)

−(E − ǫ)/2 (j, k) = (n, n)

η (j, k) = (0, n)

η (j, k) = (n, 0)

0 otherwise

. (1.15)

We define the matrices

Yn := ǫI +
E − ǫ

2
Jn +Xn (n = 1, . . . , N) , (1.16)

where I is the (N +1)× (N +1) identity matrix. Then Hamiltonian (1.7) takes the form

Hn =
N∑

j,k=0

(Yn)jkb
∗
jbk . (1.17)

Since Yn is Hermitian, there exists a diagonal matrix Λ and unitary mapping Un : RN+1 →
RN+1, such that Yn = U∗

n ΛUn holds. Recall that after canonical transformation the matrix
Λ := {Λij}Ni,j=0 = {δij εj}Ni,j=0 (1.8) is universal and independent of n. The new operators:

cj =
N∑

k=0

(Un)jk bk, c∗j =
N∑

k=0

(Un)jk b∗k (j = 0, 1, . . . , N) , (1.18)

satisfy CCR in the space H (N) (1.1) and diagonalise (1.17): H̃n =
∑N

j=0Λjjc
∗
jcj , where

Λjj = εj (1.8). Therefore, the set of all eigenvectors of H̃n is

{ N∏

j=0

(c∗j )
nj

√
nj!

Ω⊗ . . .⊗ Ω
∣∣∣nj ∈ Z+ (j = 0, 1, . . . , N)

}
. (1.19)

Note that it forms a complete orthonormal basis in H (N). The linear envelope H
(N)
0 of

the set (1.19) is invariant subspace for transformations eitH̃n and its norm-closure coincides
with H (N). Then by (1.18) one gets on vectors (1.19):

eitH̃ncje
−itH̃n = e−itΛjjcj , eitH̃nc∗je

−itH̃n = eitΛjjc∗j .

Now taking into account canonical transformation (1.18), we obtain

eitHnbje
−itHn =

N∑

k=0

(U∗
n)jk e

itH̃ncke
−itH̃n
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=

N∑

k,l=0

(U∗
n)jke

−itΛkk(Un)klbl =

N∑

l=0

(
e−itU∗

nΛUn
)
jl
bl =

N∑

l=0

(
e−itYn

)
jl
bl . (1.20)

Similarly we obtain eitHnb∗je
−itHn =

∑N
l=0

(
e−itYn

)
jl
b∗l .

Note that by virtue of (1.14), (1.15), one has identities

X2
n =

((E − ǫ)2

4
+ η2

)
Jn and JnXn = Xn .

Together with definition (1.16) and (1.11), they yield

eitYn = eitǫ
(
I − Jn + eit(E−ǫ)/2

{
Jn cos t

√
(E − ǫ)2

4
+ η2 (1.21)

+iXn

[
(E − ǫ)2

4
+ η2

]−1/2

sin t

√
(E − ǫ)2

4
+ η2

})
= eitǫVn(t) = Un(t).

Inserting now (1.21) into (1.20), we prove (1.9). Since Un(t)
∗ = Un(−t), one can similarly

establish (1.10). �

Remark 1.3 Hereafter, we are going to use the short-hand notations:

g := g(τ), w := w(τ), z := z(τ) and Vn := Vn(τ), Un := Un(τ) . (1.22)

In Section 2, we give explicit description of the Hamiltonian dynamics for the non-
autonomous system S + C driven by harmonic repeated interactions (H3). We show
that our model of bosons (1.5) is a quasi-free W ∗-dynamical system. In Section 3 we
recall formulae for the entropy of the CCR quasi-free states. We use them in Section 4
for calculations of the entropy production. Section 5 is dedicated to analysis of reduced
dynamics of subsystems, of their correlations and of convergence to equilibrium. We prove
a universality of the short-time interaction limit of this dynamics for the subsystem S.

2 Hamiltonian Dynamics

A well-known way to avoid the problem of evolution of unbounded creation-annihilation
operators is to construct dynamics of the subsystem S on the unital Weyl CCR C∗-algebra
A (F ), see e.g. [AJP1] (Lectures 4 and 5), [BR2]. Here A (F ) is generated on the Fock
space F as the operator-norm closure of the linear span Aw of the Weyl operator system:

{ŵ(α) = eiΦ(α)/
√
2}α∈C . (2.1)

Here Φ(α) := ᾱa + αa∗ is a self-adjoint operator with domain in F and the CCR take
then the Weyl form:

ŵ(α1)ŵ(α2) = e−i Im(ᾱ1α2)/2 ŵ(α1 + α2) , α1, α2 ∈ C . (2.2)
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Note that A (F ) is a minimal C∗-algebra, which contains the linear span Aw of the
Weyl operator system (2.1). Algebra A (F ) is contained in the unital C∗-algebra L(F )
of all bounded operators on F .

Similarly we define the Weyl C∗-algebra A (H )⊂L(H ) over H := H (N) (1.1). It
is appropriate for description the system S + C. This algebra is generated by operators

W (ζ) =

N⊗

k=0

ŵ(ζk), ζ = {ζk}Nk=0 ∈ C
N+1 , N ≥ 1. (2.3)

Using definitions of the boson operators {bk, b∗k}Nk=1 and of the sesquilinear forms

〈ζ, b〉 :=
N∑

j=0

ζ̄jbj , 〈b, ζ〉 :=
N∑

j=0

ζjb
∗
j , (2.4)

the Weyl operators (2.3) can be rewritten as

W (ζ) = exp[i
(
〈ζ, b〉+ 〈b, ζ〉

)
/
√
2] . (2.5)

We denote by C1(F ) ⊂ L(F ), the set of all trace-class operators on F . A self-adjoint,
non-negative operator ρ ∈ C1(F ) with unit trace is called density matrix. The state ωρ(·)
generated on the C∗-algebra of bounded operators L(F ) by ρ :

ωρ(A) := TrF (ρA) , A ∈ L(F ) , (2.6)

is a normal state. Let {ρk}Nk=0 be density matrices on F . Then the normal product-state
on the C∗-algebra A (H ) (isometrically isomorphic to the tensor product ⊗N

k=0A (F )) is

ωρ⊗(·) := TrH (ρ⊗ · ) , ρ⊗ := ⊗N
k=0ρk . (2.7)

If we put Ck(α) := TrF [ρk ŵ(α)], α ∈ C, then by (2.3) one obtains for ρ⊗ (2.7) the
representation:

ωρ⊗(W (ζ)) := TrH [ρ⊗ W (ζ)] =

N∏

k=0

Ck(ζk) . (2.8)

Let ̺ ∈ C1(H ) be a density matrix on H . Then for the system S+C, the Hamiltonian
evolution Tt : ̺ 7→ ̺(t) of initial density matrix ̺(0) := ̺ is defined as a solution of the
Cauchy problem for the non-autonomous Liouville equation

∂t̺(t) = L(t)(̺(t)) , ̺(t)
∣∣
t=0

= ̺ . (2.9)

By virtue of (1.7) the equation (2.9) is autonomous for each of the interval [(n− 1)τ, nτ):

L(t)(·) = Ln(·) = −i[Hn , · ] , t ∈ [(n− 1)τ, nτ) , n > 1 . (2.10)

Since any t > 0 has the representation:

t := n(t)τ + ν(t) , n(t) := [t/τ ] and ν(t) ∈ [0, τ) , (2.11)
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by the Markovian independence of generators (2.10), the trace-norm (‖ · ‖1)-continuous
solution of the Cauchy problem (2.9) [Za] takes the iterative form:

̺(t) = Tt(̺) := Tν(t),n(Tτ,n−1(. . . Tτ,1(̺) . . .)) = (2.12)

e−iν(t)Hne−iτHn−1 . . . e−iτH1̺ eiτH1 . . . eiτHn−1eiν(t)Hn .

Here t ∈ [(n− 1)τ, nτ), n = n(t) < N . By the ‖ · ‖1-continuity we obtain from (2.12) that

̺(Nτ − 0) = ̺(Nτ) = TNτ (̺) = e−iτHN . . . e−iτH1̺ eiτH1 . . . eiτHN . (2.13)

Note that equivalent and often more convenient description of density matrices evolu-
tion (2.12) is the dual dynamics T ∗

t : L(H ) → L(H ):

ωTt(̺)(A) = TrH (Tt(̺)A) =: TrH (̺ T ∗
t (A)), for (̺, A) ∈ C1(F )×L(H ). (2.14)

Since t 7→ Tt(̺) is ‖ · ‖1-continuous and since L(H ) is topologically dual of C1(H ), one
gets that t 7→ T ∗

t (A) in (2.14) is a one-parameter ∗-automorphism of the unital C∗-algebra
of bounded operators L(H ). The automorphism of the C∗-dynamical system (L(H ), T ∗

t )
is not time-continuous for bosons. To ensure the continuity of T ∗

t one considers instead of
the C∗-algebra A (H ) ⊂ L(H ), the von Neumann algebraM(H ), which is closure of the
Weyl linear span Aw generated by (2.1), (2.3) in the weak*-topology. Since it is weaker
than C∗-algebra topology, M(H ) is ∗-isomorphic to L(H ). Then ‖ · ‖1-continuity of
Tt(̺) implies continuity of the dual mapping t 7→ T ∗

t (A) in the weak*-topology on M(H )
and defines a W ∗-dynamical system (M(H ), T ∗

t ), see e.g. [AJP1] (Lectures 2 and 4).

Remark 2.1 Below we show that T ∗
t maps A (H ) into itself, and that the action of T ∗

t

on Weyl operators can be calculated in the explicit form. Since A (H ) is ∗-weakly dense
in L(H ), these allow to deduce properties of evolution ρ(t).

Using (2.13) and dual representation (2.14), we prove the main result of this section.

Lemma 2.2 For t = Nτ , the expectation (2.8) of the Weyl operator (2.5) with respect to
the evolved state has the form

ωρ(Nτ)(W (ζ)) = ωρ(W (U1 . . . UN ζ)) =

N∏

k=0

Ck((U1 . . . UN ζ)k) . (2.15)

Here

(U1 . . . UN ζ)0 = eiNτǫ
(
(gz)Nζ0 +

N∑

j=1

gw(gz)j−1 ζj
)
, (2.16)

whereas

(U1 . . . UN ζ)k = eiNτǫ
(
gw(gz)N−kζ0 + gz̄ζk +

N∑

j=k+1

g2w2(gz)j−k−1ζj
)
, (2.17)

for 0 < k < N , and
(U1 . . . UN ζ)N = eiNτǫ

(
gwζ0 + gz̄ζN

)
, (2.18)

see definitions (1.12) and (1.13).
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Proof : Note that (2.8), (2.13) and duality (2.14) yield

ωρ(Nτ)(W (ζ)) = TrH [ρ T ∗
Nτ (W (ζ))] = TrH [ρ eiτH1 . . . eiτHNW (ζ)e−iτHN . . . e−iτH1 ]

= TrH [ρ W (U1 . . . UN ζ)] =

N∏

k=0

Ck((U1 . . . UN ζ)k). (2.19)

To generate the mapping ζ 7→ U1 . . . UN ζ in (2.19), we use Lemma 1.1 and sesquilinear
forms (2.4) to obtain

eiτH1 . . . eiτHN 〈ζ, b〉e−iτHN . . . e−iτH1 = 〈ζ, U∗
N . . . U∗

1 b〉 (2.20)

= 〈U1 . . . UN ζ, b〉

and the similar expression for its conjugate, which we then insert into (2.5).
Moreover, by the same Lemma 1.1, we get that U1 . . . UN ζ = eiNτǫV1 . . . VN ζ , where

(V1 . . . VN)0j =

{
(V1)00 . . . (VN)00 = (gz)N (j = 0)

(V1)00 . . . (Vj−1)00(Vj)0j(Vj+1)jj . . . (VN)jj = (gz)j−1gw (0 < j 6 N),

and for 0 < k 6 N :

(V1 . . . VN )kj =





(V1 . . . Vk−1)kk(Vk)k0(Vk+1 . . . VN)00 = gw(gz)N−k (j = 0)

0 (0 < j < k)

(V1 . . . Vk−1)kk(Vk)kk(Vk+1 . . . VN)kk = gz̄ (j = k)

(V1 . . . Vk−1)kk(Vk)k0(Vk+1 . . . Vj−1)00(Vj)0j(Vj+1 . . . VN)jj

= gw(gz)j−k−1gw (k < j 6 N).

Collecting these formulae, one obtains explicit expressions for components (2.16) and
(2.17) of the vector U1 . . . UN ζ . �

Remark 2.3 Note that for a fixed N and for any t = mτ , 1 ≤ m ≤ N , the arguments of
Lemma 2.2 give a general formula

ωρ(mτ)(W (ζ)) = ωρ(T
∗
mτ (W (ζ))) = ωρ(W (U1 . . . Um ζ))

=
N∏

k=0

Ck((U1 . . . Um ζ)k) . (2.21)

Following the same line of reasoning as for (2.17) one obtains explicit formulae for the
components {(U1 . . . Um ζ)k}Nk=0:

(U1 . . . Um ζ)k =




eimτǫ
(
(gz)mζ0 +

∑m
j=1 gw(gz)

j−1 ζj
)

(k = 0)

eimτǫ
(
gw(gz)m−kζ0 + gz̄ζk +

∑m
j=k+1 g

2w2(gz)j−k−1ζj
)

(1 6 k < m)

eimτǫ
(
gwζ0 + gz̄ζm

)
(k = m)

eimτǫ ζk (m < k 6 N)

Note that for m = N , these formulae coincide with (2.16)-(2.18), except the last line,
which is void in this case.
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Remark 2.4 Recall that unity preserving ∗-dynamics t 7→ T ∗
t on the von Neumann

algebra M(H ) generated by {W (ζ)}ζ∈C (2.5) is quasi-free, if there exist a mapping
Ut : ζ 7→ Utζ and a complex-valued function Ωt : ζ 7→ Ωt(ζ), such that

T ∗
t (W (ζ)) = Ωt(ζ)W (Utζ) , Ω0 = 1 , U0 = I , (2.22)

see e.g., [AJP1], [BR2] or [Ve]. Then by Remark 2.3, the step-wise dynamics

T ∗
mτ (W (ζ)) = W (U1 . . . Um ζ) , m = 0, 1, . . . , N

is quasi-free, with Ωt(ζ) = 1 and the matrices {Uj}Nj=1 on CN+1 defined by Lemma 1.1.

3 Entropy of Quasi-Free States on CCR C∗-Algebras

In this section, we establish some useful formulae relating expectations of the Weyl op-
erators (Weyl characteristic function) and the entropy of boson quasi-free states. We
formulate them in a way that is restricted but sufficient for our purposes. For general
settings see, e.g. [Fa], [AJP1], [BR2], [Ve] and references therein.

Definition 3.1 A state ω on the CCR C∗-algebra A (F ) (2.1) is called quasi-free, if its
characteristic function has the form

ω(ŵ(α)) := e−
1
4
|α|2− 1

2
h(α) , (3.1)

where h : α 7→ ĥ(α, α) is a (closable) non-negative sesquilinear form on C×C. A quasi-free
state ω is gauge-invariant if ω(ŵ(α)) = ω(ŵ(eiϕα)) for ϕ ∈ [0, 2π).

Let ωβ denote the Gibbs state with parameter β (dimensionless inverse temperature)
given by the density matrix ρ(β) = e−βa∗a/Z(β), where Z(β) = (1− e−β)−1. Since

ωβ(ŵ(α)) = e−
1
4
|α|2− 1

2
hβ(α) , hβ(α) =

|α|2
eβ − 1

, α ∈ C , (3.2)

this state is quasi-free and gauge-invariant. Note that the entropy of ωβ is given by

s(β) := −TrF [ρ(β) ln ρ(β)] = βωβ(a
∗a)− ln(1− e−β) and ωβ(a

∗a) =
1

eβ − 1
. (3.3)

In terms of the variable x := (1 + e−β)/(1− e−β) the entropy (3.3) is

s(β) = σ(x) :=
x+ 1

2
ln

x+ 1

2
− x− 1

2
ln

x− 1

2
. (3.4)

Here σ : (1,∞) → (0,∞) and σ′(x) > 0.
To extend (3.4) to the space (1.1) we note that a general gauge-invariant quasi-free

states on the CCR C∗-algebra A (H ) are defined by density matrices of the form [Ve]:

ρL =
1

ZL

e−〈b,Lb〉 , ZL = det
[
I − e−L

]−1
. (3.5)
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Here sesquilinear operator-valued forms 〈b, Lb〉 = ∑N
n,m=0 ℓnmb

∗
nbm are parameterised by

(N + 1) × (N + 1) positive-definite Hermitian matrix L = {ℓnm}06n,m6N . Note that the
∗-automorphism Gϕ on A (H ) (the gauge transformation) :

Gϕ : b∗n 7→ b∗ne
iϕ, bm 7→ bme

−iϕ (ϕ ∈ R , n,m = 0, 1, . . .N) , (3.6)

leaves the state (3.5) invariant. Then characteristic function of the Weyl operators W (ζ)
takes the form

ωρL(W (ζ)) = TrH [ρLW (ζ)] = exp
[
− 1

4
〈ζ, ζ〉 − 1

2
〈ζ, I

eL − I
ζ〉
]
. (3.7)

Here the (transposed) vector in the argument is ζ tr = (ζ0, ζ1, . . . ζN) ∈ CN+1. Note that
the entropy of the state ωρL is given by

S(ρL) = −TrH [ρL ln ρL] = trCN+1 [L(eL − I)−1 − ln(I − e−L)] . (3.8)

If we define the matrix X := (I + e−L)(I − e−L)−1 , then the characteristic function
(3.7) takes the form:

ωρL(W (ζ)) = exp
[
− 1

4
〈ζ,Xζ〉

]
, (3.9)

and for the entropy (3.8) we obtain

S(ρL) = tr
[X + I

2
ln

X + I

2
− X − I

2
ln

X − I

2

]
. (3.10)

Below we need a bit more specified set up than (3.9), (3.10). Let ρ(β, δ; ξ) be density
matrix of a quasi-free state (3.5) corresponding to the operator-valued sesquilinear form

〈b, L(β, δ; ξ)b〉 := β
N∑

n=0

b∗nbn + δ〈b, ξ〉〈ξ, b〉. (3.11)

on CN+1 × CN+1. Here β > 0, δ > −β, and the vector ξtr = (ξ0, ξ1, . . . , ξN) ∈ CN+1 .

Lemma 3.2 The partition function of the state

ρ(β, δ; ξ) =
1

Z(β, δ; ξ)
exp

[
− 〈b, L(β, δ; ξ)b〉

]
,

is given by

Z(β, δ; ξ) = TrH [e−〈b,L(β,δ;ξ)b〉] = (1− e−β)−N(1− e−(β+δ〈ξ,ξ〉))−1 . (3.12)

The characteristic function and the entropy of this state are respectively:

TrH [ρ(β, δ; ξ)W (ζ)] = exp
[
− 1

4

1 + e−β

1− e−β
〈ζ, ζ〉

]

× exp
[
− 1

4

(1 + e−β−δ〈ξ,ξ〉

1− e−β−δ〈ξ,ξ〉 −
1 + e−β

1− e−β

)
|〈ξ, ζ〉|2/〈ξ, ξ〉

]
, (3.13)

and

S(ρ(β, δ; ξ)) = −TrH [ρ(β, δ; ξ) lnρ(β, δ; ξ)] = Ns(β) + s(β + δ〈ξ, ξ〉) . (3.14)
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Proof : Proof of (3.12) follows from (3.5) and (3.11). Indeed, since by (3.5) any orthogonal
transformation O on CN+1 leaves the partition function invariant: ZOTLO = ZL, one can
calculate it with Oξ (instead of ξ), where Oξ has only one non-zero component equals
to the vector norm 〈ξ, ξ〉1/2. Then the right-hand side of (3.12) follows straightforwardly
from the calculation of the left-hand side for this choice of Oξ.

Since this transformation O also diagonalise the matrix L := L(β, δ; ξ), one uses it to
simplify (3.9) and then to return back to ξ at the last step. To this aim we note that

ωρL(W (ζ)) = exp
[
− 1

4
〈Oζ,OXO∗Oζ〉

]
= (3.15)

exp
[
− 1

4

1 + e−β

1− e−β
〈Oζ,Oζ〉′

]
exp

[
− 1

4

1 + e−β−δ〈ξ,ξ〉

1− e−β−δ〈ξ,ξ〉 |(Oζ)0|2
]
.

Here 〈Oζ,Oζ〉′ := ∑N
k=1 |(Oζ)k|2 and we choose transformation O in such a way that

(Oξ)j = δ0,j‖ξ‖. Since

|(Oζ)0|2 =
1

〈ξ, ξ〉〈Oζ,Oξ〉〈Oξ,Oζ〉 , (3.16)

the identities (3.15) prove (3.13). The same method is valid for entropy (3.8). Calculation
of the trace in diagonal representation for L = L(β, δ; ξ) gives formula (3.14). �

Recall that the state ω on the CCR C∗-algebra A (H ) is regular, if the map s 7→
ω(W (s ζ)) is a continuous function of s ∈ R for any ζ ∈ CN+1. This property follows from
the explicit expression (3.13). Since by the Araki-Segal theorem, see e.g. [AJP1](Lecture
5), a regular state is completely defined by its characteristic function, (3.13) and (3.14)
yield the following statement.

Lemma 3.3 The entropy S(ρ) of the quasi-free state ωρ on the CCR C∗-algebra A (H )
with characteristic function

ωρ(W (ζ)) = exp
[
− 1

4

(
x〈ζ, ζ〉+ x0|〈ξ, ζ〉|2

)]
(3.17)

is uniquely determined by the parameters (ξ, x, x0), where ξ ∈ CN+1,
x > 1, x0 > 1− x and it has the form

S(ρ) = Nσ(x) + σ(x+ x0〈ξ, ξ〉) , (3.18)

where σ(·) is defined by (3.4).

Proof : The proof follows directly from definition (3.4), if one puts

x0 〈ξ, ξ〉 =
1 + e−β−δ〈ξ,ξ〉

1− e−β−δ〈ξ,ξ〉 −
1 + e−β

1− e−β
,

in (3.13) and uses (3.4) in (3.14). �
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4 Repeated Perturbations and Entropy Production

We consider evolution (2.12) of the system S + C, when initial density matrix (2.7) corre-
sponds to the product of gauge-invariant Gibbs quasi-free states with parameter β0 ≥ 0
for S and with parameter β ≥ 0 for C:

ρ = ρ0 ⊗
N⊗

k=1

ρk , ρ0 = e−β0a∗a/Z(β0) , ρk = e−βa∗a/Z(β) , k = 1, 2, . . . , N . (4.1)

This case corresponds to ρL in (3.5) with diagonal matrix L = diag(β0, β, . . . , β) and to
ρ(β, δ; ξ) in representation (3.11) with (β, δ; ξ) = (β, β0 − β; e), i.e.,

ρ = ρ(β, β0 − β; e) = exp
[
− β0b

∗
0b0 − β

N∑

j=1

b∗jbj
]
/Z(β, β0 − β) . (4.2)

Here etr = (1, 0, . . . , 0) ∈ CN+1 and

Z(β, β0 − β) = Z(β0)Z(β)
N =

1

(1− e−β0)(1− e−β)N
.

A straightforward application of formulae (3.13), (3.14) and Lemma 3.2 for ξ = e (i.e. for
〈ξ, ξ〉 = 1, 〈ξ, ζ〉 = ζ0) to the state (4.1) (or (4.2)), yields the following statement:

Lemma 4.1 The characteristic function of (4.1) (or (4.2)) is

ωρ(W (ζ)) = TrH [ρ W (ζ)] = (4.3)

exp
[
− |ζ0|2

4

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]
,

and the entropy is equal to
S(ρ) = Ns(β) + s(β0) . (4.4)

Since by (2.12) the density matrix ρ(t) of the total system S + C for t = Nτ is

ρ(Nτ) = e−iτHN . . . e−iτH1ρ eiτH1 . . . eiτHN , (4.5)

we obtain for evolution of the characteristic function and the entropy the statement:

Lemma 4.2 Characteristic function of the state with density matrix (4.5) is equal to

ωρ(Nτ)(W (ζ)) = (4.6)

exp
[
− |(U1 . . . UNζ)0|2

4

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]
,

whereas the total entropy rests invariant:

S(ρ(Nτ)) = S(ρ) = Ns(β) + s(β0) .

Here the mapping U1 . . . UN : CN+1 → CN+1 is given by (2.16) and (2.17).
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Proof : From (2.15), one gets ωρ(Nτ)(W (ζ)) = ωρ(W (U1 . . . UN ζ)). Since the mappings
Uj : CN+1 → CN+1, j = 1, . . . , N are unitary (Lemma 2.2), (4.3) yields (4.6). Finally, we
obtain that the mapping (4.5) leaves the total entropy (4.4) invariant, see (3.3). �

Let ω and ω0 be two normal states on the Weyl CCR algebra A (H ) with density
matrices ̺ and ̺0. Following Araki [Ar1], we introduce the relative entropy of the state
ω with respect to ω0:

Ent(̺|̺0) := TrH [̺(ln ̺− ln ̺0)] ≥ 0 , (4.7)

see also [AJP3].

Lemma 4.3 The relative entropy of ωρ(Nτ) with respect to ωρ is

Ent(ρ(Nτ)|ρ) =
(β0 − β)(eβ0 − eβ)

(eβ0 − 1)(eβ − 1)
(1− |z|2N) , (4.8)

where z := z(τ) is defined by (1.13) and (1.22).

Proof : The trace cyclicity yields

Ent(ρ(Nτ)|ρ) = TrH [ρ(Nτ)(ln ρ(Nτ)− ln ρ)] (4.9)

= TrH [ρ(ln ρ− eiτH1 . . . eiτHN ln ρe−iτHN . . . e−iτH1)]

=
β − β0

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj

(
b∗0b0 − eiτH1 . . . eiτHN b∗0b0e

−iτHN . . . e−iτH1)] .

Note that one gets b∗0b0 = 〈b, e〉〈e, b〉 by (2.4). Hence, (2.20) implies

eiτH1 · · · eiτHN b∗0b0e
−iτHN · · · e−iτH1 =

N∑

k=0

(U1 . . . UN e)kb
∗
k

N∑

k′=0

(U1 . . . UN e)k′ bk′ (4.10)

Note also that the gauge invariance of the state ρ implies the selection rule:

1

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj b∗kbk′ ] = 0 for k 6= k′ . (4.11)

By this rule after injection of (4.10) into (4.9) only diagonal terms with k = k′ survive in
the expectation:

Ent(ρ(Nτ)|ρ) =
β − β0

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj

(
b∗0b0 −

N∑

k=0

|(U1 . . . UNe)k|2b∗kbk
)]

Finally, by Lemma 2.2, (2.16), (2.17), and by (3.3), we obtain

Ent(ρ(Nτ)|ρ) =
β − β0

Z(β, β0 − β)
TrH

[
e−β0b∗0b0−β

∑N
j=1 b

∗
j bj

(
(1− |z|2N )b∗0b0 −

N∑

k=1

|w|2|z|2N−2kb∗kbk)
)]

=
(β0 − β)(eβ0 − eβ)

(eβ0 − 1)(eβ − 1)
(1− |z|2N ) ,

that proves (4.8). �
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Remark 4.4 The relative entropy defined by (4.7) is non-negative. In contrast to invari-
ant total entropy (Lemma 4.2), the relative entropy (4.8) is increasing monotonously with
N → ∞ for |z| < 1 (see Lemma 1.1, Remark 1.2). It converges to the limit:

lim
N→∞

Ent(ρ(Nτ)|ρ) = (β − β0)

[
1

eβ0 − 1
− 1

eβ − 1

]
≥ 0 , (4.12)

which is positive for β0 6= β. The limit (4.12) gives asymptotic amount of the entropy
production, when one starts with the initial state corresponding to (4.1) and then consider
Nτ → ∞, see [BJM].

5 Evolution of Subsystems

5.1 Convergence to Equilibrium

Subsystem S. We start with the simplest subsystem S. Let the initial state of the
total system S + C in (1.1) be a tensor-product of the corresponding density matrices
ρ = ρS ⊗ ρC , see (H1). Then for t ≥ 0 the state ωt

S(·) of the subsystem S is given on the
Weyl C∗-algebra A (H0) by

ωt
S(·) := ωρ(t)(· ⊗ 1) . (5.1)

For ζ = (α, 0, . . . , 0) ∈ CN+1, let us consider the Weyl operator W (ζ) = ŵ(α)⊗1⊗ . . .⊗1

(2.3). By virtue of (2.8), (2.21) and (5.1), we obtain for t = mτ ( 1 ≤ m ≤ N ):

ωmτ
S (ŵ(α)) = ωρ(mτ)(W (ζ)) = ωρ(W (U1 . . . Um ζ)) . (5.2)

Then for components {(U1 . . . Um ζ)k}Nk=0 of the vector U1 . . . Um ζ in (5.2), one obtains
the expression:

(U1 . . . Um ζ)k =





eimτǫ(gz)mα (k = 0)

eimτǫgw(gz)m−kα (1 6 k < m)

eimτǫgwα (k = m)

0 (m < k 6 N) ,

(5.3)

which follows from Remark 2.3.
If the initial density matrices: ρ = ρS ⊗ ρC corresponds to the product of Gibbs

quasi-free states for different temperatures as in (4.1), then (5.2) and Lemma4.1 yield

ωmτ
S (ŵ(α)) = exp

[
− |α|2

4

1 + e−β

1− e−β
− |zmα|2

4

(
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)]
(5.4)

Note that for any moment t = mτ the state ωmτ
S (·) is a quasi-free Gibbs equilibrium state

with parameter β∗(mτ) which satisfies the equation

1 + e−β∗(mτ)

1− e−β∗(mτ)
= |z|2m 1 + e−β0

1− e−β0
+ (1− |z|2m)1 + e−β

1− e−β
. (5.5)
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This equation yields that either β ≤ β∗(mτ) ≤ β0, or β0 ≤ β∗(mτ) ≤ β.
For m → ∞ (N → ∞) the Weyl characteristic function (5.4) has the limit

lim
m→∞

ωmτ
S (ŵ(α)) = exp

[
− |α|2

4

1 + e−β

1− e−β

]
. (5.6)

Hence, in the limit t → ∞ the subsystem S evolves from the Gibbs equilibrium state with
parameter β0 to another equilibrium state with parameter β imposed by the chain C.
Subsystem S1. The initial state ω

0
S1
(·) = ωt

S1
(·)|t=0 of this subsystem corresponds to a one-

point reduced density matrix or to the partial trace on the CCR Weyl algebra A (H1):

ω0
S1
(ŵ(α)) = ωρ(1⊗ ŵ(α)⊗

N⊗

k=2

1) = exp
[
− |α|2

4

1 + e−β

1− e−β

]
. (5.7)

Now we choose vector (ζ1)tr := (0, α, 0, . . . , 0) ∈ CN+1. Then

ωmτ
S1

(ŵ(α)) = ωρ(mτ)(W (ζ (1))) = ωρS⊗ρC (W (U1 . . . Um ζ (1))) (5.8)

for 1 < m ≤ N . By Remark 2.3, the components {(U1 . . . Um ζ (1))k}Nk=0 are:

(U1 . . . Um ζ)k =





eimτǫgw α (k = 0)

eimτǫ δk,1 gz α (1 6 k < m)

0 (m 6 k 6 N).

(5.9)

Then, we have

ωmτ
S1

(ŵ(α)) = exp
[
− |α|2

4

1 + e−β

1− e−β
− |wα|2

4

(
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)]
(5.10)

for any 1 < m ≤ N . Therefore, the initial state (5.7) changes to (5.10) after the first act
of interaction on the interval [0, τ) and there is no further evolution of this state for t > τ .

Note that (5.10) is characteristic function of a quasi-free Gibbs equilibrium state with
parameter β∗, which satisfies the equation

1 + e−β∗

1− e−β∗ = |w|21 + e−β0

1− e−β0
+ (1− |w|2)1 + e−β

1− e−β
.

Again, this equation implies that either β ≤ β∗ ≤ β0, or β0 ≤ β∗ ≤ β.
Evolution of S1 has a transparent interpretation: after the one act of interaction

during the time t ∈ [0, τ), subsystem S1 relaxes to an intermediate equilibrium with the
subsystem S. This results in a shift of initial parameter β to β∗, which rests unchangeable
since there is no perturbations of subsystem S1 for t > τ .

Subsystem Sm. For 1 < m ≤ N the initial state ω0
Sm

(·) = ωt
Sm

(·)|t=0 of this subsystem is
defined on the CCR Weyl algebra A (Hm) by the partial trace :

ω0
Sm

(ŵ(α)) = ωρ(
m−1⊗

k=0

1⊗ ŵ(α)⊗
N⊗

k=m+1

1) = exp
[
− |α|2

4

1 + e−β

1− e−β

]
. (5.11)
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Now we choose vector (ζm)tr := (0, . . . , 0, α, 0, . . . , 0) ∈ CN+1, where α occupies the m+1
position. Consequently

ωmτ
Sm

(ŵ(α)) = ωρ(mτ)(W (ζ (m))) = ωρS⊗ρC (W (U1 . . . Um ζ (m))) . (5.12)

The components {(U1 . . . Um ζ (m))k}Nk=0 are:

(U1 . . . Um ζ (m))k =





eimτǫ gw(gz)m−1 α (k = 0)

eimτǫ g2w2 (gz)m−k−1 α (1 6 k < m)

eimτǫgz α , (k = m)

0 (m < k 6 N).

(5.13)

which again follows from Remark 2.3. Then evolution of the state of subsystem Sm is:

ωmτ
Sm

(ŵ(α)) = (5.14)

exp
[
− |α|2

4

1 + e−β

1− e−β
− |wα|2

4
|z|2(m−1)

(
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)]
.

Note that interaction for t ∈ [(m − 1)τ,mτ) push out the subsystem Sm from the
Gibbs equilibrium state (5.11), but its effect attenuates for large m:

lim
m→∞

ωmτ
Sm

(ŵ(α)) = exp
[
− |α|2

4

1 + e−β

1− e−β

]
. (5.15)

Again, this is evolution of a quasi-free Gibbs equilibrium state with time-dependent inverse
temperature parameter β∗∗(mτ), which satisfies the equation

1 + e−β∗∗(mτ)

1− e−β∗∗(mτ)
= |w|2|z|2(m−1) 1 + e−β0

1− e−β0
+ (1− |w|2|z|2(m−1))

1 + e−β

1− e−β
. (5.16)

As above, the value of the parameter β∗∗(mτ) is always between β0 and β.
To interpret the evolution of Sm and the coincidence between (5.15) and (5.6) note

that the state of the subsystem S relaxes to that of initial state of the chain C, see
(5.6). Therefore, after interaction of the subsystem Sm, i.e. at the moment t = mτ , its
parameter β∗∗(mτ) has a value between β and β∗((m− 1)τ) since (5.5) and (5.16) yield

1 + e−β∗∗(mτ)

1− e−β∗∗(mτ)
= |w|21 + e−β∗((m−1)τ)

1− e−β∗((m−1)τ)
+ (1− |w|2)1 + e−β

1− e−β
.

As in the case m = 1, there is no further evolution: ωnτ
Sm

= ωmτ
Sm

for n > m.
Next, we consider the composed subsystems S + Sm and Sm−n + Sm. Our aim is to

study the eventual correlations imposed by repeated perturbations due to S.
Subsystem S + Sm. For 1 < m 6 N the initial state ω0

S+Sm
(·) = ωt

S+Sm
(·)|t=0 of this

composed subsystem is defined by the partial trace on the Weyl C∗-algebra A (H0⊗Hm) ≈
A (H0)⊗ A (Hm) by:

ω0
S+Sm

(ŵ(α0)⊗ ŵ(α1)) := ωρ(ŵ(α0)⊗
m−1⊗

k=1

1⊗ ŵ(α1)⊗
N⊗

k=m+1

1)

= exp
[
− |α0|2

4

1 + e−β0

1− e−β0

]
exp

[
− |α1|2

4

1 + e−β

1− e−β

]
. (5.17)
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This is the characteristic function of the product state corresponding to two isolated sys-
tems with different temperatures. If one defines vector (ζ (0,m))tr := (α0, 0, . . . , 0, α1, 0, . . . , 0) ∈
CN+1, where α1 occupies the m+ 1 position, then

ωmτ
S+Sm

(ŵ(α0)⊗ ŵ(α1)) = ωρ(mτ)(W (ζ (0,m))) = ωρS⊗ρC (W (U1 . . . Um ζ (0,m))) . (5.18)

The components {(U1 . . . Um ζ (0,m))k}Nk=0 are deduced from Remark 2.3:

(U1 . . . Um ζ (0,m))k =





eimτǫ (gz)m−1 [gz α0 + gw α1], (k = 0)

eimτǫ(gz)m−k−1g2[wz α0 + w2 α1], (1 6 k < m)

eimτǫ [gw α0 + gz α1], (k = m)

0 (m < k 6 N).

(5.19)

Together with (2.8), one gets for m → ∞:

ωmτ
S+Sm

(ŵ(α0)⊗ ŵ(α1)) (5.20)

= exp
[
− 1

4
|zα0 + wα1|2|z|2(m−1) 1 + e−β0

1− e−β0

]

× exp
[
− 1

4
|zα0 + wα1|2(1− |z|2(m−1))

1 + e−β

1− e−β

]
exp

[
− 1

4
|wα0 + zα1|2

1 + e−β

1− e−β

]

−→ exp
[
− 1

4
(|α0|2 + |α1|2)

1 + e−β

1− e−β

]
.

Hence, in this limit the composed subsystem S + Sm evolves from the product of two
quasi-free equilibrium states (5.17) with different parameters β0 and β to the product of
quasi-free equilibrium states for the same parameter β imposed by repeated interaction
with the chain C, when m → ∞. Interpretation is similar to the case Subsystem Sm.

Subsystem Sm−n + Sm. We suppose that 1 < (m − n) < m 6 N . Then the initial state
ωt
Sm−n+Sm

(·)|t=0 of this composed subsystem is the partial trace over the Weyl C∗-algebra
A (Hm−n ⊗ Hm) ≈ A (Hm−n)⊗ A (Hm):

ω0
Sm−n+Sm

(ŵ(α1)⊗ ŵ(α2)) := (5.21)

ωρ(

m−n−1⊗

k=0

1 ⊗ ŵ(α1)⊗
m−1⊗

k=m−n+1

1⊗ ŵ(α2)⊗
N⊗

k=m+1

1) =

= exp
[
− |α1|2

4

1 + e−β

1− e−β

]
exp

[
− |α2|2

4

1 + e−β

1− e−β

]
.

This is the characteristic function of the product state corresponding to two isolated
systems with the same temperatures.

We define vector (ζ (m−n,m))tr := (0, 0, . . . , 0, α1, 0, . . . , 0, α2, 0, . . . , 0) ∈ CN+1, where
α1 occupies the m− n + 1 position, and α2 occupies the m+ 1 position, then

ωmτ
Sm−n+Sm

(ŵ(α1)⊗ ŵ(α2)) = (5.22)

ωρ(mτ)(W (ζ (m−n,m))) = ωρS⊗ρC (W (U1 . . . Um ζ (m−n,m))) .
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With help of Remark 2.3 we can calculate the values of components {(U1 . . . Um ζ (m−n,m))k}Nk=0:

(U1 . . . Um ζ (m−n,m))k = (5.23)

=





eimτǫ (gz)m−n−1 gw[α1 + (gz)nα2] (k = 0)

eimτǫ [g2w2(gz)m−n−k−1 α1 + g2w2(gz)m−k−1 α2] (1 6 k < m− n)

eimτǫ [gz α1 + g2w2 (gz)m−k−1 α2] (k = m− n)

eimτǫ g2w2 (gz)m−k−1 α2 (m− n < k < m)

eimτǫ gz α2 (k = m)

0 (m < k 6 N)

.

When m → ∞, then for any fixed n we obtain for (5.22):

ωmτ
Sm−n+Sm

(ŵ(α1)⊗ ŵ(α2)) (5.24)

= exp
[
− 1

4
|w|2|α1 + (gz)n+1α2|2|z|2(m−n−1) 1 + e−β0

1− e−β0

]

× exp
[
− 1

4
{|w|2(1− |z|2(m−n−1)) + |z|2}|α1|2

1 + e−β

1− e−β

]

× exp
[
− 1

4
(1− |w|2|z|2(m−1))|α2|2

1 + e−β

1− e−β

]
.

−→ exp
[
− 1

4
(|α1|2 + |α2|2)

1 + e−β

1− e−β

]
.

Therefore, in this limit, the composed subsystem Sm−n + Sm evolves from the initial
product of two quasi-free equilibrium states (5.21) to the same final state, although for a
finite m the evolution (5.24) is nontrivial. This again easily understandable taking into
account our analysis of Subsystem Sm and Subsystem S + Sm.

Consider now the case of a fixed s := m− n > 1. Then the limit in (5.24) is

lim
m→∞

ωmτ
Ss+Sm

(ŵ(α1)⊗ ŵ(α2)) = (5.25)

= exp
[
− 1

4
|w|2|z|2(s−1)|α1|2

{
1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

}]
×

× exp
[
− 1

4
|α1|2

1 + e−β

1− e−β

]
exp

[
− 1

4
|α2|2

1 + e−β

1− e−β

]

= exp
[
− 1

4
|α1|2

1 + e−β∗∗(sτ)

1− e−β∗∗(sτ)

]
exp

[
− 1

4
|α2|2

1 + e−β

1− e−β

]
,

where β∗∗(sτ) verifies equation (5.16). Hence, in this case the limit state (5.25) is the
product of quasi-free Gibbs states with different parameters β∗∗(sτ) and β. This means
that subsystem Ss keeps a memory about perturbation at the moment t = sτ , when the
parameter β∗(sτ) (5.5) of subsystem S was still different from β.

Note that (5.25) coincides with the product state (5.21) when s → ∞.

Subsystem S∼n. To define S∼n for 0 6 n 6 k 6 N , we divide the total system at the
moment t = kτ into two subsystems: Sn,k + Cn,k. Here

Sn,k := S + Sk + Sk−1 + · · ·+ Sk−n+1 , (S0,k := S) , (5.26)
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whereas (see definitions in Section 1.1)

Cn,k := SN + · · ·+ Sk+1 + Sk−n + · · ·+ S1 . (5.27)

We mean that S∼n is an entire “object” whose entity is Sn,k at the moment t = kτ
( k = n, n + 1, · · · , N ). As time is running, the elementary subsystems Sk in S∼n are
replacing. We study the behaviour of S∼n for large t = kτ , i.e., the k-dependence of the
“state” of Sn,k at t = kτ .

For any fixed t = kτ we can decompose the Hilbert space H into tensor product
H = Hs ⊗ Hc . Here Hs is the Hilbert space of subsystem (5.26) and Hc corresponds
to subsystem (5.27):

Hs := H0 ⊗
n⊗

j=1

Hk−j+1, Hc :=
k−n⊗

j=1

Hj ⊗
N⊗

j=k+1

Hj . (5.28)

For a density matrix ̺ on H , we introduce the reduced density matrix ̺s on Hs as
the partial trace over Hc:

̺s := TrHc
̺ . (5.29)

To avoid a possible confusion causing by the fact that all Hj, j = 0, 1, . . . are identical
to F and by the change of components with time, we treat the Weyl algebra on the
subsystem and the corresponding reduced density matrix of ρ ∈ C1(H ) in the following
way. For n 6 N on the Fock space F⊗(n+1) we consider the Weyl operator

Wn(ζ) = exp
[
i
〈ζ, b̃, 〉+ 〈b̃, ζ〉√

2

]
, (5.30)

where ζ ∈ Cn+1, b̃0, · · · , b̃n and b̃∗0, · · · , b̃∗n are the annihilation and the creation operators
in F⊗(n+1) satisfying the corresponding CCR, and

〈ζ, b̃〉 =
n∑

j=0

ζ̄j b̃j , 〈b̃, ζ〉 =
n∑

j=0

ζj b̃
∗
j .

By A (F⊗(n+1)), we denote the C∗ algebra generated by the Weyl operators (5.30). For
any subset J ⊂ {1, 2, · · · , N}, we define the operation of taking the partial trace

RJ : C1(F
⊗(N+1)) ∋ ρ 7−→ RJρ ∈ C1(F

⊗(N+1−|J |))

by
ωRJρ

(
WN−|J |(ζ)

)
= ωρ

(
WN(rJζ)

)
.

Here the mapping
rJ : C

N+1−|J | ∋ ζ 7−→ rJζ ∈ C
N+1

is defined by

(rJζ)j :=





ζ0 (j = 0)

0 (j ∈ J)

ζj−|{i∈J | i<j }| (otherwise)

,
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where |A| denotes the cardinality of the set A.
Since all H1,H2, · · · are identical to F , we do not care to distinguish the spaces

⊗

j∈{0,1,··· ,N}\J
Hj and

⊗

j∈{0,1,··· ,N}\J ′

Hj

when J 6= J ′, but |J | = |J ′|, and consider them as the same space F⊗(N+1−|J |). Instead,
we pay attention to distinguishing projections

N⊗

j=0

Hj −→
⊗

j∈{0,1,··· ,N}\J
Hj

for different subsets J ⊂ {1, 2, · · · , N} with same |J |.
Since we treat Sn,k at time t = kτ for k = n, n + 1, · · · as the result of the time

evolution of a single subsystem S∼n, we define its state at the moment t = kτ by the
reduced density matrix {ρs(kτ)}k>n of this subsystem as follows:

ρs(kτ) := R{1,··· ,k−n,k+1,··· ,N}(ρ(kτ)
)
= R{1,··· ,k−n,k+1,··· ,N}Tkτ(ρ), (5.31)

see (2.12). Taking into account Lemma 4.2 and identity 〈rJζ, rJζ〉CN+1 = 〈ζ, ζ〉CN+1−|J|,
one readily obtains the following result.

Lemma 5.1 For the initial density matrix (4.1),

ωρs(kτ)(Wn(ζ)) = ω
R

Jn,kρ(kτ)
(Wn(ζ))

= exp
[
−

|(U1 . . . Uk rJn,k
ζ)0|2

4

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

)
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]

holds, where Jn,k = {1, 2, · · · , k − n, k + 1, · · · , N}.

To study the limit k → ∞ and N → ∞ (k 6 N) for a fixed n, we note that
(U1 . . . Uk rJn,k

ζ)0 → 0 follows from (2.16) and |z| < 1. Lemma 5.1 implies that

lim
k→∞

ωρs(kτ)(Wn(ζ)) = exp
[
− 〈ζ, ζ〉

4

1 + e−β

1− e−β

]
= ω

ρ
(β)
n
(Wn(ζ)) , (5.32)

where by the Araki-Segal theorem and irreducibility of the CCR algebra A (F⊗(n+1)) one
has

ρ(β)n = exp
[
− β

n∑

j=0

b̃∗j b̃j
]
/Z(β)n+1 , Z(β) = (1− e−β)−1 . (5.33)

Therefore, we proved the following statement:

Theorem 5.2 Let the initial state of the total system S + C is defined by the density
matrix (4.2): ρ = ρ(β, β0 − β; e). Then for any fixed n, the state ωρs(kτ)(·) of subsystem
Sn,k converges to the equilibrium Gibbs state ω

ρ
(β)
n
(·) as k → ∞ in the weak*-topology for

the states on A (F⊗(n+1)).
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Theorem 5.3 Under the same conditions as in Theorem 5.2, we obtain

lim
k→∞

S(ρs(kτ)) = S(ρ(β)n ) .

Proof : Let the vector ξn,k ∈ Cn+1 be defined by (U1 . . . UkrJn,k
ζ)0 =: 〈ξn,k, ζ〉. Then

〈ξn,k, ξn,k〉 → 0 as k → ∞ for a fixed n and by Lemma 3.3, Lemma 5.1, we obtain that

S(ρs(kτ)) = nσ
(1 + e−β

1− e−β

)
+ σ

(1 + e−β

1− e−β
+ 〈ξn,k, ξn,k〉

(1 + e−β0

1− e−β0
− 1 + e−β

1− e−β

))

−→ (n+ 1)σ
(1 + e−β

1− e−β

)
= S(ρ(β)n ) .

�

Remark 5.4 The local entropy decreases or increases according to β > β0 or β < β0,
respectively.

5.2 A Short-Time Limit for Repeated Perturbations

The results in the Subsection 5.1 are essentially due explicit knowledge of the initial
density matrix (4.1) of the total system S + C. In this subsection, we show that the
lack of this information is not decisive for certain results concerning the convergence to
equilibrium if one considers the repeated interactions in a short-time limit.

We study this limit for the subsystem S. We keep to consider the initial state of the
system S + C to be a product state with the density matrix

ρ = ρ0 ⊗
N⊗

k=1

ρk ∈ C1(H ) , (5.34)

see (2.7), but we essentially relax the conditions on ρ0 and on {ρk}Nk=1:

(h1) ρ1 = ρ2 = · · · = ρN ∈ C1(F ) ;

(h2) TrF (ρ1a) = TrF (ρ1a
2) = TrF (ρ1a

∗) = TrF (ρ1a
∗2) = 0 ;

(h3) TrF [ρ1(a
∗a)2] < ∞ .

Remark 5.5 Note that hypothesis (h1)-(h3) are satisfied when the density matrices {ρk}Nk=0

correspond to the gauge-invariant quasi-free states with parameter β0 for k = 0 and β for
k = 1, 2, . . . , N , see (4.1). Then (h2) is due to the gauge invariance and one gets for (h3):

TrF [ρk(a
∗a)2] = (2n2

β + nβ) , (5.35)

where nβ = TrF (ρk a
∗a) = (eβ − 1)−1, k = 1, . . . , N .

Below we denote by |ya∗ + ȳa| the operator originated from the polar decomposition
of the operator ya∗ + ȳa = U |ya∗ + ȳa|, where U is the partial isometry on F .
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Lemma 5.6 Under hypothesis (h1)-(h3), the following bounds hold:

(i) TrF (ρka
∗a) < ∞,

(ii) TrF (ρk|ya∗ + ȳa|2) 6 C|y|2,
(iii) TrF (ρk|ya∗ + ȳa|3) 6 C ′|y|3,
(iv) TrF (ρk|ya∗ + ȳa|4) 6 C ′′|y|4,

for all k = 1, . . . , N . Here C,C ′, C ′′ are positive constants, which depend only on Tr[ρ1(a
∗a)2].

Proof : The first bound (i) is a consequence of the Cauchy-Schwarz inequality and (h3).
Applying the inequalities

|A+ A∗|2 6 |A+ A∗|2 + |A−A∗|2 = 2(AA∗ + A∗A),

|A+ A∗|4 6 |A+ A∗|4 + |A− A∗|4 + |A+ iA∗|4 + |A− iA∗|4

= 4(AA∗ + A∗A)2 + 4(A2A∗2 + A∗2A2),

to A = ȳa, we obtain (ii) and (iv). Finally, a combination of (ii), (iv) with the Cauchy-
Schwarz inequality yields (iii). �

Theorem 5.7 Let τ → 0, N → ∞ be short-time perturbation limit subject to demands:
τ 2N → ∞ and τ 3N → 0. Then for any initial condition (5.34) verifying (h1)-(h3), the
characteristic function ωNτ

S (ŵ(θ)) of the state for subsystem S at t = Nτ , converges to:

ωS(ŵ(θ)) := lim
τ→0,N→∞

ωNτ
S (ŵ(θ)) = (5.36)

lim
τ→0,N→∞

ωρ(Nτ)(W (ζθ)) = e−|θ|2TrF [ρ1 (a∗a+aa∗)]/4 .

Here θ ∈ C and the (N + 1)-component vector is (ζθ)
tr := (θ, 0, 0, . . . , 0) ∈ CN+1.

Remark 5.8 By (5.36) the state ωNτ
S converges to ωS in the weak*-topology. From the

right-hand side of (5.36) and Definition 3.1 we deduce that the limit state is gauge-
invariant and quasi-free with h(θ) := |θ|2TrF (ρ1 a

∗a).

Remark 5.9 Recall that the state ω over the Weyl algebra A (F ) = Aw(F ) is regular,
Cn-smooth or analytic, if the function (see (2.1))

s 7→ ω(ŵ(sθ)) = ω(ei sΦ(θ)/
√
2) (5.37)

is respectively continuous, Cn-smooth or analytic in the vicinity of s = 0. In the last case
the characteristic function ω(ŵ(sθ)) (and therefore the state) is completely determined by

ω(ŵ(sθ)) = exp

{ ∞∑

m=1

imsm

m!
2−m/2 ωT (Φm(θ))

}
. (5.38)

Here {ωT (Φm(θ))}∞m=0 are truncated correlation functions defined recursively by relations

ωT (Φ(θ)) := ω(Φ(θ)) ,

ωT (Φ2(θ)) := ω(Φ2(θ))− ω(Φ(θ))2 ,

ωT (Φ3(θ)) := ω(Φ3(θ))− 3ω(Φ2(θ))ω(Φ(θ)) + 2ω(Φ(θ))3 , etc

Lemma 5.6 implies that the states for density matrices ρ1 = ρ2 = . . . are C4-smooth.
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Proof (of Theorem 5.7): By (h2) and by Lemma 5.6 (i)-(iii) together with Remark 5.9,
we obtain for the states ω(·) = ωρk(·) the representation of (5.38) in the form:

Ck(θ) = ωρk(ŵ(θ)) = exp[−1

4
ωT
ρk
(Φ2(θ)) +R(θ)] , k = 1, 2, . . . , N, (5.39)

where R(θ) = O(|θ|3) in the vicinity of θ = 0. For the self-adjoint operator Φ(θ) = θ̄a+θa∗,
the hypothesis (h2) and Lemma 5.6 (i) imply

ωT
ρk
(Φ2(θ)) = |θ|2 TrF [ρk (a

∗a+ aa∗)] . (5.40)

Now, taking into account Lemma 2.2 for the vector ζθ, as well as (5.39) and (5.40),
we obtain the representation:

ωNτ
S (ŵ(θ)) = ωρ(Nτ)(W (ζθ)) = C0(e

iǫτN(gz)Nθ)
N∏

k=1

Ck(e
iǫτNgw (gz)N−kθ)

= C0(e
iǫτN(gz)Nθ) exp

(
−

N∑

k=1

|θk|2
4

TrF [(a∗a+ aa∗)ρk] + R̂
)
. (5.41)

Here by (2.17) and by (5.39) one has

θk := eiǫNτgw (gz)N−kθ ,
N∑

k=1

|θk|2 = |θ|2|w|21− |z|2N
1− |z|2 , R̂ =

N∑

k=1

O(|θk|3) .

By virtue of (1.12) and (1.13), we get |g(τ)| = 1, |w(τ)|2 + |z(τ)|2 = 1 and also

w(τ) = iητ +O(τ 3) , |z(τ)| = 1− |η|2τ 2
2

+O(τ 4) ,

for small τ . This yields for small τ > 0 and largeN , the estimates |(gz)N | ≤ O(e−|η|2τ2N/2),

|θk| ≤ O(τ), and R̂ = O(τ 3N) by virtue of (h1). Then taking into account the conditions
τ 2N → ∞ and τ 3N → 0, we get the limits:

lim
τ→0,N→∞

C0(e
iǫτN(gz)Nθ) = 1 , lim

τ→0,N→∞

N∑

k=1

|θk|2 = |θ|2 , lim
τ→0,N→∞

R̂ = 0 .

C0 is a continuous function since it is defined by a normal state with density matrix ρ0.
Inserting all these limits into (5.41), we obtain what is claimed as the limit (5.36). �

Corollary 5.10 Suppose that density matrices {ρk}Nk=1 correspond to the gauge-invariant
quasi-free Gibbs state with parameter β (4.1). These states satisfy (h1)-(h3). The state-
ment of Theorem 5.7 is valid with the limit

lim
τ→0,N→∞

ωNτ
S (ŵ(θ)) = exp

{
−|θ|2

4

1 + e−β

1− e−β

}
. (5.42)

It coincides with the result for equilibrium state (5.6) of the subsystem S.
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Hence, the short-time perturbation limit τ → 0, N → ∞ subjected to τ 2N → ∞ and
τ 3N → 0 gives a universal gauge-invariant quasi-free limiting state under hypothesis
(h1)-(h3). The hypotheses (h2),(h3) control only first two moments of the initial states
of the subsystem C. Then stationarity and independence of repeated perturbation due
to (h1), correspond to conditions for the non-commutative Central Limit Theorem [Ve].
Note also that the state ωρ0 of the subsystem S may be replaced by any regular state.

Acknowledgements
H.T. thanks JSPS for the financial support under the Grant-in-Aid for Scientific Research
(C) 24540168. V.A.Z. is thankful to the Institute of Science and Engineering of Kanazawa
University for support and hospitality.

References

[Ar1] H.Araki, Relative Entropy of States of von Neumann Algebras, Publ. RIMS,
Kyoto Univ., 11 (1976), 809-833.

[AJP1] Open Quantum Systems I, The Hamiltonian Approach, S. Attal, A. Joye, C.-
A. Pillet (Eds.), Lecture Notes in Mathematics 1880, Springer-Verlag, Berlin-
Heidelberg 2006.

[AJPII] Open Quantum Systems II, The Markovian Approach, S. Attal, A. Joye, C.-
A. Pillet (Eds.), Lecture Notes in Mathematics 1881, Springer-Verlag, Berlin-
Heidelberg 2006.

[AJP3] Open Quantum Systems III, Recent Developements, S. Attal, A. Joye, C.-
A. Pillet (Eds.), Lecture Notes in Mathematics 1882, Springer-Verlag, Berlin-
Heidelberg 2006.

[BJM] L.Bruneau, A.Joye, and M.Merkli, Repeated interactions in open quantum sys-
tems, J.Math.Phys. 55 (2014), 075204.

[BR2] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical
Mechanics,vol.2, Springer-Verlag (2nd Edt), Berlin 1997.

[Fa] M.Fannes, The entropy of quasi-free states for a continuous boson system,
Ann.de l’IHP, section A, 28(1978) 187-196.

[NVZ] B. Nachtergaele, A. Vershynina, and V. A. Zagrebnov, Non-Equilibrium States
of a Photon Cavity Pumped by an Atomic Beam, Annales Henri Poincaré, 15
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