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ABSTRACT 
In helicopter field, electromechanical devices 
controllers are usually designed and tuned from global 
analysis with transfer functions calculations. This leads 
to control architectures with a reduced number of 
controllers. Their regulating loops are usually global 
PID controllers where parameters are directly set up on 
dedicated test benches. Energetic representation tools 
such as Energetic Macroscopic Representation (EMR) 
aim at simplifying systems analysis and control 
providing model and control structuring method. In this 
paper, a simplified helicopter flight axis control is 
modelled with the intention of controlling the helicopter 
stick force feedback. Performances of both global PID 
and energetic model based inversion controllers are 
discussed through simulation results. 
 
Keywords: causal inversion, model-based control, EMR 

 
1. INTRODUCTION 
From the first flight in 1903 of Wright Flyer in Kitty 
Hawk (US) to the last new technology ones, aircrafts 
have been equipped with mechanical and hydro-
mechanical actuators for flight control. Over time, 
designers have increased the number of elements of 
each flight axis control to improve pilots comfort. For 
example, electrohydraulic actuators controlled by a 
breakthrough analogical Automatic Pilot Module have 
been introduced in 1980 on the Dauphin Eurocopter to 
stand in for overload pilot tasks. From 1983 to 1993, 
embedded equipments have increased of 50%, from 77 
(A310) to 115 (A34) units, in the Airbus industries. 
Friction effort controls, stability and security 
improvement systems are at the heart of aeronautical 
industry and leads to more complex and heavier flight 
controls. However, mechanical and hydro-mechanical 
systems are relatively heavy, difficult to adjust and 
without possibilities of evolution. They also have 
limited dynamic capabilities compared to 
electromechanical systems but are able to provide 
higher forces. Researches are focused on development 
of new architectures to minimise the number of passive 
elements. Airbus A320 was the first airliner in 1983 
with digital fly-by-wire controls and more recently the 

Dassault Falcom 7X became the first business jet with 
fly-by-wire controls. Evolution towards electronic 
control architectures sometimes leads up to the 
mechanical decoupling between pilot control interfaces 
and final controls on aircraft’s steering (Defaÿ, 2010). 
Pilots generally have mini-sticks and are thus totally 
disconnected from the force applied on flight controls. 
 Fly-by-wire brings a lot of advantages in term of 
weight, cost and ease to connect in axis flight controls. 
Possibilities to improve or create new flight control 
functions are enlarged thanks to the flexibility and the 
high dynamic of the electronic controls which have 
ability to adapt flight parameter controls in real time. In 
the helicopter context, interest of fly-by-wires is 
reduced compared to its high advantages for planes: 
distance from pilot sticks to hydraulic power control is 
quite small and mass gain profits against costs are 
consequently reduced. Mechanical links between pilot 
sticks and hydraulic power control is maintained except 
on the fly-by-wire NH90 Eurocopter helicopter 
(Perrimond 2006). Nevertheless, active force feedback 
is a mean to dynamically limit the flight envelope. High 
or sharp inclination of paddles may lead to collisions 
between paddles and anti-torque rotor (case of nose-up) 
or may block off turbines air intake (case of nose-
down). 

Designers are attempted to develop new active 
flight architectures with more functions, more 
flexibilities, more securities and more comfort with less 
elements. Associated control structures are thus 
becoming more and more complex with difficulties in 
setting control parameters avoiding over shoots, 
oscillations and respecting correct response times. 

The control of an electromechanical device is 
usually made separately, locally i.e. independently from 
other surrounding devices. They are elaborated from 
global transfer function calculations, using 
Proportional-Integral-Derivative controllers (PID). 
Transfer function parameters are estimated from flight 
structure identifications. PID parameters are 
consequently directly set up on test benches with typical 
regulating difficulties. This classical “element by 
element approach” may be useful for a size limited 
structure, with specifications on time response, over 
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stick inertia is then considered in the model. The second 
mode, called “hands on”, is the case where the pilot 
handles the stick. The stick movement is therefore 
imposed by the pilot. Both cases are represented on the 
lumped parameters model of figure 2. 

 
Figure 2: Lumped parameters model in hands on and 
hands off configurations. 

 
2.3. Energetic Macroscopic Representation 
formalism 
EMR is a graphic and energetic oriented tool defined in 
2000 at L2EP research laboratory in Lille (Fr) (Barre 
2006). EMR has been invented in order to facilitate 
analysing and control of the power transfer of a multi-
physic complex systems by representing the power 
fluxes from the energetic sources (electric, mechanical, 
hydraulic… represented on figure 3.a) to the ending 
elements. EMR is a general modelling method: it 
transcends physical fields and has been developed as 
modelling and analysing tool for complex system. EMR 
is not limited to either mechanical or hydraulic or 
electronic systems but every physic field elements may 
be represented with a unique formalism, on a unique 
model. It is thus quite close to Bond Graph (BG) 
(Geitner 2006) which is a more common energetic tool 
also used for the design, modelling and analysis of 
complex multi-physic systems.  The main particularity 
of EMR is that it describes physical processes imposing 
natural causality integration in order to deduce an 
inversion based control from the energetic model. BG 
can also be used for system control and analysis of 
controllability, observability, relative degree and 
stability of systems. For example Junco S. et al (Junco 
2001) propose a BG approach to the trajectory tracking 
of a series DC motor. However, the BG graphical form 
doesn’t appear like a dedicated control oriented tool and 
state space representation is often used to determine the 
control. 

Oriented power fluxes on EMR indicate the natural 
causality which means that each transfer between two 
elements is either a rigid (timeless relation with no 
specific direction, figure 3.b) or a causal (integral 
relation, oriented from cause to consequence relation 
(figure 3.c). Without natural causality restrictions, 
unphysical derivative relations may appear on systems 
which lead to uncontrollable energy storage elements. 
Application of this essential rule allows a systematic 
control which is discussed in section 3. Kestelyn 
(Kestelyn 2009) presents a graphical modelling based 
on lumped-parameters model of a symmetrical Gantry 
system. He then deduced from it an inversion based 
control. In this paper, an equivalent energetic approach 
is used in application to helicopter field.  

Figure 3: EMR formalism, (a) Energy source, (b) 
Energy converter (timeless relation) and (c) Energy 
storage element (Causal relation) 
  
 EMR brings a macroscopic vision of systems. Only 
energy storages elements and power fluxes are 
represented. If existed, dissipated terms are associated 
with energy elements they concern. This simplification 
is particularly helpful to model both multi-physical and 
complex systems and simplifies the comprehension of 
the global system. 

 
2.4. EMR of the model 
The system is composed of a stick, an active force 
feedback electro-mechanical converter, a damper and a 
stabilisation actuator (figures 1). Two configurations 
corresponding to “hands on” and “hands off” flight 
mode and described on the lumped parameters of figure 
2, are discussed. In “hands on” case, the pilot has hands 
on the stick and he controls the helicopter motion. Stick 
inertia Jstick is thus negligible compared to pilot arm 
inertia which is not considered. The pilot imposes a 
velocity on the stick, i.e. on the stiffness Kstick, and feels 
a force feedback F  as a reaction of the motion. The 
pilot is therefore assimilated to a power source 
imposing the velocity. On a stiffness element, the force 
is a consequence of the relative velocity between its 
extremities, as shown in equation 1: 

 F (t) = K ∫ V (T) − V (𝑇) 𝑑𝑇 (1) 
 
Where V  and V  respectively represent 

the stick and the attached rod velocities. 
In the case where pilot does not handle the stick, 

the helicopter motion is directly controlled by the Auto 
Pilot Module (APM) via the force feedback actuator. 
Stick inertia Jstick is not anymore negligible and has to 
be considered. The motion imposed by the APM 
controller creates a torque Γ  on stick via the stick 

Kstick

EQUIVALENT 
STIFFNESS

FORCE FEEDBACK 

DAMPER

N
GEAR BOX

JeqMotor

EQUIVALENT
INERTIA

STABILISATION 
ACTUATOR

Mload

EQUIVALENT 
LOAD MASS

FRICTIONS

STICK 
hands on

Kstick

EQUIVALENT 
STIFFNESS

STICK 
hands off

STICK 
STIFFNESS

Jstick

FRICTIONS

ES

Figure 3.a
current source

e

i

Figure 3.c
Inertia, stiffness

Figure 3.b
kinematic relation

Ω

2Ω

1F

V Ω



stiffness Kstick (equation 2). This torque (cause) implies 
the stick movement Ω  (effect).  

 Γ (t) = 𝐿 ∗ F (𝑡)Ω (t) = ∫ Γ (𝑇)𝑑𝑇   (2) 

 
The active force feedback control consists in 

controlling motor torque depending on the position of 
the flight controls. In our simple representation, electric 
components are assimilated to an electric energy source 
which delivers a current i (figure 3a). As shown on the 
lumped parameters on figure 2, gear box is supposed to 
be perfect, without clearances. Motor and part of the 
equivalent axis flight control inertia are merged and 
designated by JeqMotor (figure 4). According to equation 
2, inertia imposes angular velocity; velocity which is 
carried towards the first coupling on figure 4. From that 
coupling, velocity is propagated and modulated by the 
axis kinematic to the next energy potential storage 
elements. 
 Damper effect is added in coupling 2. It is a passive 
element assimilated to a mechanic energy source (figure 
4). Its role is to limit the flight dynamic control by 
outputting a resistant torque opposed and proportional 
to the stick velocity, like a viscous force. 
 The last part of the modelled system is constituted 
of the stabilisation system. Depending on helicopter 
measurement and reference attitude, APM calculates 
and transmits electric orders towards stabilisation 
actuator. Motors are generally mechanically fixed on 
non-moving structures. In this paper, the motor is 
placed in series inside the flight control.  Electromotive 
force (emf) is then deduced from the velocities 
subtraction, one imposed by the upper part (Vload), the 
other one from the underneath system (Vcoupling2). 
Mathematic relation is explained in equation 3, where 
KΦ is the electromechanical coefficient of the 
stabilisation motor. 
 e (t) = K ∗ V (t) − V (𝑡)   (3) 
 
 The remaining part of the axis helicopter flight 
control is mainly composed of the hydraulic load 
assistance. Load is assimilated to an equivalent mass 

Mload and is represented by a mechanical effort source 
(figure 4). Displacement of that equivalent load is 
representative of paddles displacement. 
 The time constant of the motor electrical part is 
supposed to be negligible compared to the mechanical 
time constants. The electrical part of the active force 
feedback actuator is therefore not represented. 
 
3. CONTROL 
This section focuses on the determination of the control 
architecture in order to control the stick force feedback. 
The energetic model described in previous section 
allows a systematic model based inversion control. 
 
3.1. Model based inversion control 
Control architectures of multi-element systems are often 
separately elaborated and locally tuned. Their regulating 
loops are usually PID controllers where gain parameters 
are directly set up on dedicated bench tests. Difficulties 
in tuning correctors then appear when the system 
contains several energetic interactions, in case of 
complex multi-elements system for example. 
 Defining control architecture of a system is 
determining the exact inverse of the model (Barre 
2006). As the EMR model has been represented with 
rigid and causal relations, two different model based 
inversion control solutions are described in this section. 
 
3.1.1. Direct inversion 
The inversion of a bijective rigid conversion is obtained 
by directly inverse the relation which results in 
determining regulating value according to a desired 
value like exposed in equation (4): a torque 𝜞stick is 
applied to the stick of length Lstick which generates a 
force Fstick. The inversion of the model consists in 
calculating a regulating torque 𝜞stick_REG to obtain the desired stick force Fstick_DES. Rigid inversion using 
EMR formalism is exposed in figure 5. 

 F =  ⎯⎯⎯⎯⎯  Γ = 𝐿 ∗ F  (4) 
 
3.1.2. Indirect inversion 
The inversion of a causal relation consists in 
determining the input of a storage element depending on 



the desired output. The direct inversion would consist in 
knowing the desired output value and its future 
evolution to calculate the reference value. This would 
lead to an unphysical derivate relation. The inversion of 
the causal relation of the model illustrated by the 
equation 1 consists in controlling the accuracy of the 
stick force Fstick by comparing and raising the difference 
ε between the measured and the desired stick force 
values (F , F ). The rod velocity V  which has to be regulated is calculated by 
modulating the difference ε with a proportional 
corrector Kp (equation 5). The indirect causal inversion 
using the EMR formalism is exposed in figure 5. 
 𝜀 = F − FV = K ∗ 𝜀                                                 (5) 

  

Figure 5: Direct and indirect model based inversion 
control using EMR formalism. 
 
3.2. Inversion of the model 
The control of the simplified axis helicopter flight 
control modelled in figure 3 has been obtained using the 
direct and indirect inversion principles and the result is 
shown in figure 6. At each flight control position is 
associated a reference force feedback. Stick feel forces 
is thus regulated thanks to the motor current control. 
Simple analysis of energy storages on EMR (figure 4) 
between stick and motor defines number and location of 
causal storage elements which therefore determine 
number of correctors. Two energy storage elements are 
located in the control path: the first one is the kinetic 
storage element (inertia) which has to be controlled by a 
primary velocity loop, the other one is the potential 
energy storage due to the stick stiffness and has to be 

managed by a force loop control. 
The motor velocity is controlled by the PI 

controller. EMR is structured to deduce from the model 
a maximal control structure. It is not only resulting into 
the direct and indirect inversions control like exposed 
previously but a maximal control structure is obtained 
by measuring and compensates the reaction parameters 
in order to increase the efficiency of the regulating loop. 
In figure 5, motor torque is a measured factor required 
to increase the efficiency of the controller. This 
improvement is only possible when the measure is cost 
reasonable and conceivable. In the proposed system, 
there is no torque sensor on output motor shaft. Without 
compensation the motor torque reaction is seen as a 
disturbance source. The closest sensor is the force 
sensor used for the force feedback controller. A more 
practical control structure is then determined by 
anticipating the reaction torque control from the stick 
force reference value and using the kinematic of the 
model. 
 Energetic approach lets opportunity to rapidly 
guess how many signals should be measured, nature of 
these signals (velocity, effort, current) and how many 
controllers should be set up. In the ideal case, the 
proposed methodology determines a maximum control 
structure: each energetic storage element has its own 
sensor and its own controller.  
 
4. SIMULATION 
For simulation purpose, the simplified axis helicopter 
control is modelled in a Matlab/Simulink environment. 
The Simulink model is based on EMR constraints as 
represented in Figure 6. However, only elements from 
the stick to the active haptic device have been modelled. 
Damper and stabilisation actuator are considered as 
disturbances and are ignored in first approximation. The 
brushless motor is controlled to create a force feedback 
to the pilot. The simulation is focused on the force 
feedback quality and more particularly on the ripple 
sensibility. The motor technology inevitably generates 
torque ripples which are uncomfortable and should not 
be felt by the pilot. An estimate of motor torque ripples 
is therefore added to the model. 



The system is supposed to interact with the pilot 
(“hands on”). Studies of the relation between muscular 
activation patterns and movements show that human 
beings dynamic capabilities are limited and can be 
modelled with minimum-Jerk trajectories (Harris 2004). 
Such a smooth motion is generated thanks to a 
trapezoidal velocity signal filtered by a sliding mean 
filter. The trapezoidal shape simulates a forward stick 
displacement whereas the mean filter allows smoothing 
the velocity signal in order to limit the Jerk. The 
corresponding position motion is calculated by 
integrating the velocity and is represented in figure 8.a. 
The aim of the active actuator is to output a force 
feedback depending on the stick position. A theoretical 
effort against position curve is defined to compute the 
force reference depending on the stick position. This 
force map is shown on figure 7. The law is composed of 
two symmetric effort gradients. 

 

 
Figure 7: Force feedback map 

 
Two different types of control structures are elaborated: 

 
1. A unique PID control which represents the 

most common used control loop. 
2. An inversion model based control deduced 

from the energetic methodology presented in 
this paper. 

 
The model obtained by using the energetic 

approach points up two energetic storage elements. The 
common PID control architecture regulates the global 
system energies with a unique force controller whereas 
the model based inversion control represented on figure 
6 recommends the regulation of both storage elements, 
as if to regulate a velocity primary loop and a secondary 
force loop. Control loop characteristics are summarised 
in table 1. Both regulating loop has been set up 
regarding the following characteristics: 

 
• maximising phase margin, 
• minimising overshooting, 
• minimising force error 
• 45Hz force bandwidth 

 
 
 
 
 
 
 

Table 1: Controller characteristics 
Controller Phase margin  Bandwidth 
Force PID 66° 45Hz 
Speed PI 66° 113 Hz 
Force PI 35° 45Hz 

 
The human being has an asymmetric sensing 

control capability. The maximum frequency at which 
the human fingers can transmit or control a position to 
their environment is from 0 to 10Hz but human can 
perceive a force or position signal at up a frequency of 
20 to 30Hz (Burdea 1996). The 45Hz force bandwidth 
is therefore large enough for both control architectures. 
 Results of simulation are shown on figure 8. The 
measured force feedback map (figure 8.b) and the stick 
force feedback error (figure 8.c) for both control 
structures demonstrate that torque ripples are 
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significantly reduced thanks to the regulations. 
Nevertheless, better performances on force feedback 
error are observed for the model based control with a 
maximum force error of 100mN peak to peak. The 
maximum force error on PID control reaches 400mN 
peak to peak which is largely felt by the human 
sensibility. 
 
5. CONCLUSION 
Energetic tools such as EMR recently became visible to 
structure models and determine a systematic model 
based control. An axis helicopter flight control has been 
modelled and an active force feedback has been 
generated on stick. The EMR energetic method has 
been used to define the control architecture respecting 
natural causality and resulting performances are 
compared to a more common used PID control loop. A 
Matlab/Simulink simulation demonstrates that the 
model based control allows the smoothing of the motor 
torque ripples whereas the PID controller only reduces 
the amplitude of the torque ripple. The pilot comfort is 
therefore improved. 
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