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We develop a comprehensive statistical framework for analyzing shapes of 3D faces. In particular, we adapt a recent elastic shape analysis framework to the case of hemispherical surfaces, and explore its use in a number of processing applications. This framework provides a parameterization-invariant, elastic Riemannian metric, which allows the development of mathematically rigorous tools for statistical analysis. Specifically, this paper describes methods for registration, comparison and deformation, averaging, computation of covariance and summarization of variability using principal component analysis, random sampling from generative shape models, symmetry analysis, and expression and identity classification. An important aspect of this work is that all tasks are preformed under a unified metric, which has a natural interpretation in terms of bending and stretching of one 3D face to align it with another. We use a subset of the BU-3DFE face dataset, which contains varying magnitudes of expression.

that are relevant to our paper; most of these methods focus on 26 face recognition rather than the general statistical analysis task.

27

Many approaches are based on markers to model the 3D 28 face. Marker-based systems are widely used for face anima-29 tion [START_REF] Lin | Mirror MoCap: Automatic and efficient capture of 491 dense 3D facial motion parameters from video[END_REF][START_REF] Deng | Animating blendshape faces by 485 cross-mapping motion capture data[END_REF]. Explicit face markers significantly simplify track-30 ing, but also limit the amount of spatial detail that can be cap-31 tured. There have been several approaches in recent years that 32 rely on deforming facial surfaces into one another, under some 33 chosen criterion, and use quantifications of these deformations 34 as metrics for face recognition. Among these, the ones using to action units and allow one to model the 3D face for expres-43 sion understanding [START_REF] Sandbach | Local normal binary patterns for 498 3D facial action unit detection[END_REF]. A strong limitation of all marker-based 44 approaches is the need for manual segmentation and/or anno-45 tation of a 3D face. In other approaches, the 3D face is rep-46 resented by a markerless morphable model, which can be used 47 for identity recognition [START_REF] Lu | Deformation modeling for robust 3D face matching[END_REF] and face animation [START_REF] Bouaziz | Online modeling for realtime facial ani-503 mation[END_REF][START_REF] Weise | Realtime performance-based facial 505 animation[END_REF]. In [START_REF] Lu | Deformation modeling for robust 3D face matching[END_REF], 48 a hierarchical geodesic-based resampling approach is applied 49 to extract landmarks for modeling facial surface deformations.

50

The deformations learned from a small group of subjects (con-51 trol group) are then synthesized onto a 3D neutral model (not in 52 the control group), resulting in a deformed template. The pro-53 posed approach is able to handle expressions and pose changes 54 simultaneously by fitting a generative deformable model. In [START_REF] Weise | Realtime performance-based facial 505 animation[END_REF], 55 facial expressions are represented as a weighted sum of blend-56 shape meshes and the non-rigid iterative closest point (ICP) al-57 gorithm is applied together with face tracking to generate 3D 58 face animations. This class of approaches is automatic and can 59 be performed in real time. However, in all of these methods 60 there is no definition of a proper metric, which is needed for 61 statistical analysis. On the other hand, the proposed method 62 provides a proper metric in the shape space of 3D faces allow-63 ing the definition of statistics such as an average and covariance.

64

Majority of previous approaches to 3D face analysis are based on extracting local cues leading to discriminant features used for many applications such as identity, expression and gender classification [START_REF] Gupta | 3D face recognition 507 founded on the structural diversity of human faces[END_REF][START_REF] Wang | Robust 3D face recognition by local shape dif-510 ference boosting[END_REF]. The advantage of these approaches is high classification accuracy along with low computational cost for computer vision applications. However, these approaches are less significant in the computer graphics context. This is due to the fact that statistical analysis of facial surfaces in the feature space is generally not easily mapped back to the original surface space. Thus, the obtained results, while computationally inexpensive, are very difficult to interpret and use in practice.

In several approaches, the 3D face is embedded into a particular space of interest, and the faces are compared in that space. Tsalakanidou et al. [START_REF] Tsalakanidou | Use of depth and colour 513 eigenfaces for face recognition[END_REF] apply principal component analysis to build eigenfaces, where each face image in the database can be represented as a vector of weights; the weights of an image are obtained by its projection onto the subspace spanned by the eigenface directions. Then, identification of the test image is done by locating the image in the database whose weights have the smallest Euclidean distance from the weights of the test image. The main limitation of this method is that it is not invariant to pose changes. Furthermore, the model is imagebased where, in addition to the face of interest, one must account for the image background. Bronstein et al. [START_REF] Bronstein | Three-dimensional face recog-516 nition[END_REF] construct a computationally efficient, invariant representation of surfaces undergoing isometric deformations by embedding them into a low-dimensional space with a convenient geometry. These approaches allow deformation-robust metrics that are useful for several applications including biometrics. However, computation of statistics is not possible under this model. Drira et al. [START_REF] Drira | 3D face recog-518 nition under expressions, occlusions, and pose variations[END_REF] represent the 3D face as a collection of radial curves that are analyzed under a Riemannian framework for elastic shape analysis of curves [START_REF] Srivastava | Shape analysis of elastic 521 curves in Euclidean spaces[END_REF]. This framework provides tools for computation of deformations between facial surfaces, mean calculation of 3D faces via the curve representation, and 3D face recognition. Along similar lines, [START_REF] Amor | 4-D facial 524 expression recognition by learning geometric deformations[END_REF][START_REF] Samir | On analyzing symmetry 527 of objects using elastic deformations[END_REF] used facial curves to model facial surfaces for several other applications.

The main limitation of these works is that they utilize a curve representation of 3D faces. Thus, registrations between the surfaces are curve-based, and the correspondence between the radial curves must be known a priori (very difficult in practice).

As a result, the computed correspondences and any subsequent computations tend to be suboptimal. Furthermore, to the best of our knowledge, these approaches did not thoroughly investigate the use of the Riemannian framework for more complex statistical modeling such as random sampling of facial surfaces from a generative model.

There is also a number of methods in the graphics literature, which provide tools for various shape modeling tasks [START_REF] Sorkine | As-rigid-as-possible surface modeling[END_REF][START_REF] Kilian | Geometric modeling in shape space[END_REF][START_REF] Zhang | Fast as-isometric-as-534 possible shape interpolation[END_REF]. While these methods are very general and provide good results on complex shapes, they require the surface registration problem to be solved either manually or via some other unrelated method. Thus, these methods do not provide proper metrics for shape comparison and statistical modeling in the presence of different surface parameterizations. The main benefit of the proposed approach is that the registration and comparison/modeling problems are solved simultaneously under a unified Riemannian metric.

123

In this paper, we adapt a recent elastic shape analysis frame-124 work [START_REF] Jermyn | Elastic shape matching 536 of parameterized surfaces using square root normal fields[END_REF][START_REF] Samir | Elastic shape analysis of 539 cylindrical surfaces for 3D/2D registration in endometrial tissue charac-540 terization[END_REF] to the case of hemispherical surfaces, and ex-125 plore its use in a number of 3D face processing applications. (5) We study expression and identity classification under this 152 framework using the defined metric. We compare our perfor-153 mance to the state-of-the-art method in [START_REF] Drira | 3D face recog-518 nition under expressions, occlusions, and pose variations[END_REF]. The main idea 154 behind presenting this application is to showcase the benefits of 155 an elastic framework in the recognition task. We leave a more 156 thorough study of classification performance and comparisons 157 to other state-of-the-art methods as future work.

158

The rest of this paper is organized as follows. Section 2 de-159 fines the mathematical framework. Section 3 presents the appli-160 cability of the proposed method to various 3D face processing 161 tasks. We close the paper with a brief summary in Section 4. 

Mathematical Framework 163

In this section, we describe the main ingredients in defining 164 a comprehensive, elastic shape analysis framework for facial 165 surfaces. We note that these methods have been previously de-166 scribed for the case of quadrilateral, spherical and cylindrical 167 surfaces in [START_REF] Jermyn | Elastic shape matching 536 of parameterized surfaces using square root normal fields[END_REF][START_REF] Samir | Elastic shape analysis of 539 cylindrical surfaces for 3D/2D registration in endometrial tissue charac-540 terization[END_REF]. We extend these methods to hemispheri-168 cal surfaces and apply them to statistical shape analysis of 3D warping of the coordinate system on f . As previously shown 175 in [START_REF] Jermyn | Elastic shape matching 536 of parameterized surfaces using square root normal fields[END_REF], it is inappropriate to use the L 2 metric for analyzing F by isometries. Thus, we utilize the square-root normal field (SRNF) representation of surfaces and the corresponding Riemannian metric proposed in [START_REF] Jermyn | Elastic shape matching 536 of parameterized surfaces using square root normal fields[END_REF]. We summarize these methods next and refer the reader to those papers for more details.

Let s = (u, v) 2 D define a polar coordinate system on the closed unit disk. The SRNF representation of facial surfaces is then defined using a mapping Q :

F!L 2 as Q( f )(s) = n(s) |n(s)| 1/2 .
Here, n(s) = ∂ f ∂u (s) ⇥ ∂ f ∂v (s) denotes a normal vector to the surface f at the point f (s). The space of all SRNFs is a subset of L 2 ( D, R 3 ), henceforth referred to simply as L 2 , and it is endowed with the natural

L 2 metric. The differential of Q is a smooth mapping between tangent spaces, Q ⇤, f : T f (F ) ! T Q( f ) (L 2
), and is used to define the corresponding Riemannian

metric on F as hhw 1 , w 2 ii f = hQ ⇤, f (w 1 ), Q ⇤, f (w 2 )i L 2 ,
where

w 1 , w 2 2 T f (F ), n w (s) = ∂ f ∂u (s) ⇥ ∂w ∂v (s) + ∂w ∂u (s) ⇥ ∂ f ∂v (s), |•|
denotes the 2-norm in R 3 , and ds is the Lebesgue measure on D [START_REF] Samir | Elastic shape analysis of 539 cylindrical surfaces for 3D/2D registration in endometrial tissue charac-540 terization[END_REF]. Using this expression, one can verify that the reparameterization group Γ acts on F by isometries, i.e.

hhw 1 • γ, w 2 • γii f •γ = hhw 1 , w 2 ii f .
Another advantage of this metric is that it has a natural interpretation in terms of the amount of stretching and bending needed to deform one surface into another. For this reason, it has been referred to as the partial elastic metric [START_REF] Jermyn | Elastic shape matching 536 of parameterized surfaces using square root normal fields[END_REF]. Furthermore, this metric is automatically invariant to translation. Scaling variability can be removed by rescaling all surfaces to have unit area. We let C denote the space of all unit area surfaces. This defines the pre-shape space in our analysis.

Rotation and re-parameterization variability is removed from the representation space using equivalence classes. Let q = Q( f ) denote the SRNF of a facial surface f . A rotation of f by O 2 SO(3), Of, results in a rotation of its SRNF representation, Oq. A re-parameterization of f by γ 2 Γ, f • γ, results in the following transformation of its SRNF: (q,γ) = (q • γ) p J γ , where J γ is the determinant of the Jacobian of γ. 

Now, one can define two types of equivalence classes, [

f ] = {O( f •γ)|O 2 SO(3),γ 2 Γ} in C endowed with the metric hh•, •ii or [q] = {O(q,γ)|O 2 SO(3),γ 2 
(O ⇤ ,γ ⇤ ) = arginf (O,γ)2SO(3)⇥Γ d C ( f 1 , O( f 2 • γ)). Unfortu-
nately, there is no closed form expression for the geodesic distance d C because of the complex structure of the Riemannian metric hh•, •ii. There is a numerical approach, termed pathstraightening, which can be used to compute this geodesic distance, but it is computationally expensive. Thus, we use an approximate solution to the registration problem in our analysis, which can be computed using the SRNF representation as

(O ⇤ ,γ ⇤ ) = arginf (O,γ)2SO(3)⇥Γ kq 1 -(Oq 2 ,γ)k.
This problem is much easier to solve and provides a very close approximation to the original problem, because the partial elastic metric on C is the pullback of the L 2 metric from the SRNF space.

The optimization problem over SO(3) ⇥ Γ is solved itera-tively using the general procedure presented in [START_REF] Jermyn | Elastic shape matching 536 of parameterized surfaces using square root normal fields[END_REF][START_REF] Samir | Elastic shape analysis of 539 cylindrical surfaces for 3D/2D registration in endometrial tissue charac-540 terization[END_REF]. First, 233 one fixes γ and searches for an optimal rotation over SO(3) 234 using Procrustes analysis; this is performed in one step using 

B S 1 = {sin(n 2 v), 1 -cos(n 2 v), v, 2π -v|n 2 = 1,...,N 2 , v 2 249 [0, 2π]}.
We take all products of these two bases while en-

250
suring that the boundary of the unit disk is preserved. Then,

251
to define an orthonormal basis of T γ id (Γ) we use the Gram-

252

Schmidt procedure. This results in a finite, orthonormal basis

253 B D = {b 1 ,...,b N } for T γ id (Γ).
In the following sections, we 3) is the optimal rota-255 tion and γ ⇤ 2 Γ is the optimal re-parameterization. Then, the 256 geodesic distance in the shape space S = C/(SO(3)⇥Γ) is com-

254 let f ⇤ 2 = O ⇤ ( f 2 • γ ⇤ ), where O ⇤ 2 SO(
257 puted using d([ f 1 ], [ f 2 ]) = inf (O,γ)2SO(3)⇥Γ d C ( f 1 , O( f 2 • γ)) ⇡ 258 d C ( f 1 , O ⇤ ( f 2 • γ ⇤ ))
. This allows us to compute the geodesic only In short, this approach first initializes a path be-266 tween the two given surfaces, and then "straightens" it accord-267 ing to an appropriate path energy gradient until it becomes a 268 geodesic. We refer the reader to [START_REF] Kurtek | Elastic geodesic paths in shape space of parameterized surfaces[END_REF][START_REF] Samir | Elastic shape analysis of 539 cylindrical surfaces for 3D/2D registration in endometrial tissue charac-540 terization[END_REF] for more details. In 269 the following sections, we use F ⇤,pre to denote the geodesic path 270 between two facial surfaces f 1 and f 2 in the pre-shape space (no 271 optimization over SO(3) ⇥ Γ) and F ⇤,sh to denote the geodesic 272 path in the shape space between f 1 and f ⇤ 2 . The length of the

273 geodesic path is given by L(F ⇤ ) = R 1 0 p ⌦ hF ⇤ t , F ⇤ t ↵ i F dt, where 274 
F ⇤ t = dF ⇤ dt .
All derivatives and integrals in our framework are 275 computed numerically. The computational cost of the proposed 276 method is similar to that reported in [START_REF] Kurtek | Elastic geodesic paths in shape space of parameterized surfaces[END_REF]. Thus, there were 25 3D facial expression models per subject in the entire database. We use a subset of this data with highest expression intensities (most challenging case) to assess the proposed method.

Each facial surface is represented by an indexed collection of radial curves that are defined and extracted as follows. The reference curve on a facial surface f is chosen to be the vertical curve after the face has been rotated to the upright position.

Then, each radial curve β α is obtained by slicing the facial surface by a plane P α that has the nose tip as its origin and makes an angle α with the plane containing the reference curve. We repeat this step to extract radial curves at equally-separated angles, resulting in a set of curves that are indexed by the angle α.

Thus, the facial surface is represented in a polar (radius-angle) coordinate system. We use 50 radial curves sampled with 50 points in our surface representation (50 ⇥ 50 grid).

Face Deformation: We generate facial shape deformations using geodesic paths. While linear interpolations could also be used here, the geodesic provides the optimal deformation under the defined Riemannian metric. Since we only have to com-pute the geodesic once per deformation, after the surfaces have resentation have been previously described in [START_REF] Kurtek | Statistical shape model for simulation of realistic endometrial tissue[END_REF]; we review some of the concepts relevant to current analysis in the following sections. Let { f 1 ,..., f n }2Cdenote a sample of facial surfaces. Then, the Karcher mean is defined as

[ f ] = argmin [ f ]2S P n i=1 L(F ⇤,sh i
) 2 , where F ⇤,sh i is a geodesic path between a surface F ⇤,sh i (0) = f and a surface in the given sample F ⇤,sh i

(1) = f ⇤ i that was optimally registered to f . A gradient-based approach for finding the Karcher mean is given in [START_REF] Kurtek | Statistical shape model for simulation of realistic endometrial tissue[END_REF].

352

The Karcher mean is actually an equivalence class of surfaces compare the facial template computed in S to a standard sample average computed in C and the curve-based Karcher mean [START_REF] Drira | 3D face recog-518 nition under expressions, occlusions, and pose variations[END_REF].

First, we note from panel (e) that there is a large decrease in energy in each example. The qualitative results also suggest that the 3D face templates computed in S are much better representatives of the given data than those computed in C or using the curve-based method. Again, the biggest differences are noticeable around the mouth and eyes. In fact, when looking at panels (b) and (d), it is fairly difficult to recognize the expression; this distinction is much clearer in panel (c).

Summary of Variability and Random Sampling: Once the sample Karcher mean has been computed, the evaluation of the Karcher covariance is performed as follows. First, we optimally register all surfaces in the sample to the Karcher mean f , resulting in { f ⇤ 1 ,..., f ⇤ n }, and find the shooting vectors {ν 1 ,...,ν n } from the mean to each of the registered surfaces. The covariance matrix K is computed using {ν i }, and principal directions of variation in the given data can be found using standard principal component analysis (singular value decomposition). Note that due to computational complexity, we do not use the Riemannian metric hh•, •ii to perform PCA; thus, we sacrifice some mathematical rigor in order to improve computational efficiency.

The principal singular vectors of K can then be mapped to a surface f using the exponential map, which we approximate using a linear path; this approximation is reasonable in a neighborhood of the Karcher mean. The results for all eight samples displayed in Figure 2 
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  nonlinear deformations facilitate local stretching, compression, 36 and bending of surfaces to match each other and are referred to 37 as elastic methods. For instance, Kakadiaris et al. [4] utilize 38 an annotated face model to study geometrical variability across 39 faces. The annotated face model is deformed elastically to fit 40 each face, thus matching different anatomical areas such as the 41 nose and eyes. In affective computing, the markers correspond 42

126( 1 )

 1 This framework was previously defined for quadrilateral, spher-127 ical and cylindrical surfaces. All of the considered tasks are 128 performed under an elastic Riemannian metric allowing princi-129 pled definition of various tools including registration via surface 130 re-parameterization, deformation and symmetry analysis using 131 geodesic paths, intrinsic shape averaging, principal component 132 analysis, and definition of generative shape models. Thus, the 133 main contributions of this work are: 134 We extend the framework of Jermyn et al. [20] for statistical 135 shape analysis of quadrilateral and spherical surfaces to the case 136 of hemispherical surfaces.

137( 2 )( 3 )

 23 We consider the task of 3D face morphing using a param-138 eterized surface representation and a proper, parameterization-139 invariant elastic Riemannian metric. This provides the formal-140 ism for defining optimal correspondences and deformations be-141 tween facial surfaces via geodesic paths. 142 We define a comprehensive statistical framework for model-143 ing of 3D faces. The definition of a proper Riemannian metric 144 allows us to compute intrinsic facial shape averages as well as 145 covariances to study facial shape variability in different expres-146 sion classes. Using these estimates one can form a generative 147 3D face model that can be used for random sampling.

148( 4 )

 4 We provide tools for symmetry analysis of 3D faces, which 149 allows quantification of asymmetry of a given face and identifi-150 cation of the nearest (approximately) symmetric face.

  151

  162

  169faces. Let F be the space of all smooth embeddings of a closed 170 unit disk in R 3 , where each such embedding defines a parame-171 terized surface f : D ! R 3 . Let Γ be the set of all boundary-172 preserving diffeomorphisms of D. For a facial surface f 2F, 173 f • γ represents its re-parameterization. In other words, γ is a 174

  Γ} in L 2 endowed with the L 2 metric; each equivalence class represents a shape uniquely in its respective representation space. This results in two strategies to account for the rotation and re-parameterization variabilities in 3D face data. Given two surfaces f 1 , f 2 2C , the exact solution comes from the following optimization problem:
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  singular value decomposition. Then, given the computed rota-236 tion, one searches for an optimal re-parameterization in Γ using 237 a gradient descent algorithm, which requires the specification 238 of an orthonormal basis for T γ id (Γ). The definition of this basis 239 depends on the domain of the surface. In the present case, we 240 seek a basis of smooth vector fields that map the closed unit 241 disk to itself. In order to define this basis, we make a small 242 simplification. Because all of the initial, facial surface parame-243 terizations were obtained by defining the point s = (0, 0) at the 244 tip of the nose, we treat this point as a landmark, i.e. it is fixed 245 throughout the registration process. Given this simplification, 246 we first construct a basis for [0, 1] as B [0,1] = {sin(2πn 1 u), 1 -247 cos(2πn 1 u), u, 1 -u|n 1 = 1,...,N 1 , u 2 [0, 1]} and a basis for 248 S 1 as

  259once, after the two facial surfaces have been optimally regisstep, we are interested in comparing facial surface 262 shapes using geodesic paths and distances. As mentioned ear-263 lier, there is no closed form expression for the geodesic in C, 264 and thus, we utilize a numerical technique termed path-265 straightening.

278Figure 1 :

 1 Figure 1: Top: Comparison of geodesic paths and distances in C and S for different persons and expressions (1 neutral to anger, 2 happiness to disgust, and 3 sadness to happiness) as well as optimal re-parameterizations (allow elastic deformations between 3D faces). Bottom: Geodesics (1)-(3) computed using[START_REF] Drira | 3D face recog-518 nition under expressions, occlusions, and pose variations[END_REF].

316Example 1 .Figure 2 :

 12 Figure 2: (a) Sample of surfaces used to compute the face template for each expression: (1) anger, (2) disgust, (3) fear, (4) happiness, (5) neutral, (6) surprise, (7) sadness, and (8) all samples pooled together. (b) Sample average computed in C. (c) Karcher mean computed in S. (d) Karcher mean computed using [13]. (e) Optimization energy in S (sum of squared distances of each shape from the current average) at each iteration.

353Figure 3 :

 3 Figure 3: The first two principal directions of variation (PD1 and PD2) computed in the pre-shape (C) and shape (S) spaces for expressions (1)-(8) in Figure 2.

Figure 4 :

 4 Figure 4: Random samples generated from the approximate Gaussian distribution in the pre-shape (C) and shape (S) spaces for expressions (1)-(8) in Figure 2.

Figure 5 :

 5 Figure 5: (a) Facial surface f in blue and its reflection f in red. (b) Geodesic path in S between f and f and the measure of symmetry ρ( f ).We also compute the measure of symmetry for the midpoint of the geodesic ρ(F ⇤,sh (0.5)), which is expected to be 0 for perfectly symmetric faces. (c) Midpoint of the geodesic.

The first task we consider is concerned with classifying ex-437 pressions. We selected 66 total surfaces divided into six expres-438 sion groups (11 persons per group): anger, disgust, fear, happi-439 ness, surprise and sadness. We computed the pairwise distance 440 matrices in C, S, and using [START_REF] Drira | 3D face recog-518 nition under expressions, occlusions, and pose variations[END_REF]. We calculated the classifi-