
Robustness and Flexibility of GHOST

Julien Fradin and Florian Richoux
LINA - UMR 6241, TASC - INRIA

Université de Nantes, France
julien.fradin@etu.univ-nantes.fr and florian.richoux@univ-nantes.fr

Abstract

GHOST is a framework to help game developers to
model and implement their own optimization problems,
or to simply instantiate a problem already encoded in
GHOST. Previous works show that GHOST leads to high-
quality solutions in some tens of milliseconds for three
RTS-related problems: build order, wall-in placement
and target selection. In this paper, we show the robust-
ness of the framework, having very good results for a
problem it is not designed for (pathfinding), as well as
its flexibility, where it is easy to propose different mod-
els of the same problem (resource allocation problem).
The goal of the paper is not to improve the state-of-the-
art on these problems, but to use them as benchmarks to
test GHOST properties.

Introduction
This paper shows the robustness and the flexibility of
GHOST, a framework including a skeleton to implement our
own constraint satisfaction problems and constraint opti-
mization problems (CSP/COP), a constraint solver and a set
of ready-to-use problems (?). This framework is available
as a C++11 library under GNU GPL v3 licence, available at
https://github.com/richoux/GHOST

GHOST deals with CSP/COP which are well-known to be
NP-complete problems. To solve them, it includes a meta-
heuristics algorithm to quickly approach an optimal solu-
tion. GHOST’s purpose is to help the game developer coding
an AI to get a high-quality solution of its problem within
some tens of milliseconds, since it is not realistic to allocate
much computation power dedicated to AI in a game.

To demonstrate our claim, we have included two new
ready-to-use problems: the pathfinding problem and the re-
source allocation problem. The first one is a polynomial-
time problem. GHOST’s solver has no way to capture and
exploit its intrinsic easiness, although it finds very good
paths within 1 millisecond only, even if we make the orig-
inal problem more complex by adding passable dangerous
zones to avoid if possible. These good results show the ro-
bustness of the framework. GHOST is also flexible since we
can implement very different models for the same problems
by changing less than 10 C++ lines only, while keeping ex-
cellent results. This is illustrated with resource allocation

problems now included into the framework, with StarCraft:
Brood War as a testbed.

GHOST: A General meta-Heuristic
Optimization Solving Tool

A brief introduction to CSP / COP
Constraint Satisfaction Problems (CSP) and Constraint Op-
timization Problems (COP) are two close formalisms inten-
sively used in Artificial Intelligence to solve combinatorial
and optimization problems. Constraint Programming allows
an intuitive and uniform way to model problems, as well
as different general algorithms able to solve any problems
modeled by a CSP or a COP.

The difference between a CSP and a COP is simple:

• A CSP models a satisfaction problem, i.e., a problem
where all solutions are equivalent; the goal is then to just
find one of them, if any. For instance: finding a solution
of a Sudoku grid. Several solutions may exist, but finding
one is sufficient, and no solution seems better than any
other one.

• A COP models an optimization problem, where some so-
lutions are better than others. For instance: Several paths
may exist from home to workplace, but some of them are
shorter.

Formally, a CSP is defined by a tuple (V , D, C) such that:
• V is a set of variables,
• D is a domain, i.e., a set of values for variables in V ,
• C is a set of constraints.

A constraint c ∈ C can be seen as a k-ary predicate
c : V k → {>,⊥} where > can be semantically interpreted
by true and ⊥ by false. Thus, regarding the value of the
vector V k, we say that c is either satisfied (equals to >) or
unsatisfied (equals to ⊥).

A COP a defined by a tuple (V , D, C, f ) where V , D and
C represent the same sets as a CSP, and f is an objective
function to minimize or maximize.

For GHOST, we have chosen a meta-heuristic algorithm
to be the heart of the solver, Adaptive Search from (?). The
reason we have chosen a meta-heuristics is simple: to solve
combinatorial and optimization problems while playing an
RTS game, the solver needs to be very fast to find a solution,



within some tens of milliseconds, which is virtually impos-
sible with tree-based search algorithms. The reason we have
chosen Adaptive Search is, although it is not a well-known
algorithm, it is one of the fastest meta-heuristics at the mo-
ment, up to our knowledge (?).

It is essential to keep in mind that meta-heuristics are
stochastic methods: two runs on the same problem instance
may lead to two different solutions within the same runtime.
This is why results in this paper are the average of 100 re-
peated experiments.

GHOST architecture
GHOST is implemented around five main C++ classes:
Variable, Domain, Constraint, Objective and
Solver. Implementing a CSP model means inheriting its
own classes from the three first classes above. Implement-
ing a COP model means making an additional class inherit-
ing from Objective.

The solving process implemented in class Solver is
composed of two main loops: the outer loop for optimiza-
tion, containing the inner loop for satisfaction. The satisfac-
tion part only tries to find a possible solution among all con-
figurations, i.e., tries to find an assignment of each variable
such that all constraints of the CSP are satisfied. The op-
timization part is triggered when an objective function has
been implemented in a descendant class of Objective.
It will influence the satisfaction part (finding a valid solu-
tion) if the objective implements optional heuristics to select
the variable to change and the value to assign, if the current
configuration is not a solution. The optimization part also
applies two optional post-process optimizations, one on the
output of the satisfaction loop to “clean up” the raw solution
found, one on the final output to apply to ad-hoc, last-minute
optimizations if possible, leading to the solution returned by
the solver.

The fundamental thing in the optimization part is the op-
timization loop itself. To explain how this loop works, we
have to introduce the two temporal parameters in GHOST.
The function solve takes two parameters: the first one is
the satisfaction timeout x in milliseconds. It means that, af-
ter x ms top, we leave the satisfaction loop, certainly with-
out a valid solution since the loop stops as soon as it finds a
solution. The second parameter is the optimization timeout
y, always in milliseconds. It corresponds also to the total
runtime of GHOST, modulo the post-process after the opti-
mization loop (which is negligible in practice and should be
about 100 times shorter than y).

Thus, the optimization loop repeats n times the satisfac-
tion loop, and receives in total m ≤ n valid solutions. After
receiving a new solution from the satisfaction loop, and ap-
plying an eventual satisfaction post-process, it calls the ob-
jective function to compute the optimization cost, compares
it with its saved solution (if any) and keeps the solution with
the lower cost. Then it repeats the satisfaction loop to obtain
a new solution, and so on, until y ms are reached.

Concerning objective functions, GHOST has been de-
signed to minimize their value. If a developer user needs
to maximize an objective function f , this can be simply
adapted to GHOST by defining the objective function 1/f .

Our solver is designed to deal with mono-objective opti-
mization problem only, thus, one can only choose at most
one objective function at the time before running the solver,
however the objective function can be dynamically changed
between two calls of the solver. The choice of designing a
mono-objective solver is pragmatic: multi-objective solvers
are in general significantly slower, since they are dealing
with more complex problems. Multi-objective are also mak-
ing models more complex, which goes against one goal of
GHOST: to propose a solver both easy to use and easy to
extend by implementing new problems.

The pathfinding problem
The pathfinding problem is the very classical problem of
finding a path (usually the shortest one) from a starting point
s to a target point t. We would not debate if pathfinding is
an AI problem or not; our approach is practical: numerous
games including RTS games need pathfinding, and GHOST
aims to be a well-spread library for helping game develop-
ers to solve AI and/or optimization problems. Including a
ready-to-use pathfinding solution into GHOST can only be
beneficial for users.

Problem statement and model
Before introducing our pathfinding model, we need two no-
tions: the notion of walkable tile and the notion of marked
tile.

In StarCraft like many other RTS games, a grid is applied
on the map where each cell of the grid, also called tile, can be
either walkable or not by ground units. Since pathfinding is
relevant for ground units only (flying units do not encounter
any obstacles so they can move straight toward their target),
a path can only be composed of walkable tiles.

A marked tile is simply a tile where we associate a num-
ber. We will see below we only mark some specific tiles in
order to find a path.

Therefore, we propose the following pathfinding model:

CSP model for the pathfinding problem:
Variables: Each tile on the map.
Domain: Binary: either the variable contributes to the path
(value 1) or it does not (value 0).
Constraints: A unique constraint: does a series of n vari-
ables assigned to 1, going from the starting point and reach-
ing the target point such that each variable is marked by a
unique value in [1, . . . , n], exists?

If variables and domains in our model are clear, the con-
straint deserves further explanations. We did not write how
we mark tiles yet, and it is the right moment to do it. Let’s
say that a variable assigned to the value 1 is a selected vari-
able. Let’s call neighbors the eight tiles around a given tile.
We only mark tiles if they are selected, following this sim-
ple algorithm: Mark all selected neighbors of the starting tile
with the number 1. Then, until all selected variables reach-
able from the starting tile are marked, repeat: for a variable
marked with the number k, marked all its unmarked selected
neighbors with the number k + 1. To give a picture, we ob-
tain waves of marks equal to 1, then 2, then 3 and so on,



Figure 1: Three crafted maps A, B and C used for our path-finding experiments. The blue rectangle shows the walkable tile
size. For B and C, the red crossed circle is the starting point and the green empty circle the target.

beginning from the starting point. This is actually a breadth-
first search done only upon selected variables reachable from
the starting point. Notice that this is done by GHOST: it is
not a precomputed process.

What our constraint does is, intuitively, looking if a series
of marks (1, 2, 3, . . ., n) exists between the starting and the
target points.

To give insights about how we model this problem, we
had at the beginning two constraints: the first one to check
if each tile except the starting and target tile has exactly two
selected neighbors, the second one to check if we can reach
the target point from the starting point passing by selected
variables only. The unique constraint based on mark tiles in
our current model assures these properties as well, but in a
more efficient way.

For this problem, we have considered two objectives. The
first one is obvious: find a path as short as possible from the
starting point to the target one. The second one also try to
find a path as short as possible, but taking also into account
some dangerous zones (like tiles too close from the enemy
army) we try to avoid without strictly discarding them.

GHOST implementation and results
For the pathfinding problem, we did not need to apply the
classical scheme satisfaction loop + optimization loop in
GHOST. Actually, only the satisfaction loop is important to
find a rough path between the starting and the target point.
Thus, smart post-processes can be applied to modify our
path in order to fit the objective. They are computed very
quickly and are powerful enough to avoid to repeat the sat-
isfaction process: these post-processes leads to optimal or
near-optimal paths according to the applied objective.

Thus, we ran 100 experiments over 8 instances from hand
crafted maps illustrated by Figure ??. Maps B and C have
their starting and target points fixed and look like small maze
one can find in action games for instance. Experiments have
been conducted by running GHOST 100 times on map B and
map C. Map A looks like more to an RTS map like we have
in StarCraft. For this map, we used 6 different instances

Figure 2: A computed path (in blue) in map C where dan-
gerous zones are marked by red blocks. Parts where the path
crossed dangerous zones are circled in red.

where the starting and target points where manually such
that they are not in the same area, forcing a path to bypass
walls or unwalkable blocks.

Since it was not necessary to exploit the optimization loop
to solve this problem, we run our experiments with a time-
out of 1ms for the satisfaction part and also 1ms for the opti-
mization part, thus bounding the global runtime to 1ms top.
Within 1ms, GHOST always find a optimal or near-optimal
paths. Figure ?? shows an example of path found by GHOST
while considering dangerous zones to avoid if possible, that
is, if it makes longer the path reasonably only.

Both source code and experiments results for the pathfind-
ing problem can be found at the following address: http:
//www.runmycode.org/companion/view/1391.

Discussion
Both versions of pathfinding presented above, with or with-
out dangerous zones, are in P. This is easy to see: finding
the shortest path from s to t can be done by marking all tiles
the way we do (without taking into account the notion of



selected tile), and then stop as soon as the target in reached.
You get your path by following down a series of tiles marked
from n to 1. This is done in linear time regarding the number
of tiles in your grid. If you consider dangerous zones, you
can add some extra tiles to artificially increase the distance
between two dangerous tiles, according to the danger level.
Then you run the same algorithm looking for the shortest
path.

GHOST is designed to output in a couple of milliseconds
a high quality solution to NP-complete problems, by doing
effective descents into the search space landscape. It has
no way to capture and exploit the pathfinding computational
easiness, unlike ad-hoc polynomial-time algorithms such as
A*-like algorithms. However, GHOST reveals itself to be
very effective, finding optimal or near optimal paths within
1ms, even for more complicated pathfinding problems deal-
ing with passable dangerous zones.

At the beginning of this project, we aimed to model
pathfinding not for a single unit but for a group, keeping
group coherence while moving, to avoid situations like faster
units leaving slower ones way behind them. Usually, this is
handled by flocking algorithms, potential fields or a mix of
both (?). Due to lack of time, we failed to find a satisfy-
ing CSP/COP model for this problem but this would be an
interesting extension with direct applications for game de-
velopers.

The resource allocation problem
Resource allocation and management in RTS games such
as StarCraft has been extensively studied, since it is at the
heart of game mechanisms for this kind of games. Among
others, the reader can find works about an agent applying
resource-based strategies (?), a resource production plan-
ner (?) and a decision-making process involved in resource
management (?).

In StarCraft, resources can be used to obtain units, build-
ings, upgrades and technologies. Two resources are needed
for buying these: minerals and gas, both gathered by work-
ers but differently (gas needs a special building to be ex-
tracted, unlike minerals). For training units, a third resource
is required: the supply resource (also named “food”), limit-
ing the number of units you can currently possess. Notice
we could eventually consider a fourth kind of resource for
training Zerg units: larvae. However we would not con-
sider this in our model, since this resource (not universally
acknowledged as a real resource) is race-specific.

Problem statement and model
In this section, we focus on the following problem: given an
amount of minerals, gas and supply, what units should we
train to maximize, say, the global damage per second (DPS).
This is actually an instance of the multi-dimensional knap-
sack problem with three dimensions (one per resource type).
The regular knapsack problem is well-known to be NP-
complete, and its multi-dimensional version is even harder:
unlike the original knapsack problem, there is no efficient
polynomial-time approximation scheme starting from two
dimensions (unless P=NP) (?).

We have tried two different models for this problem: a
0-1 multi-dimensional knapsack model (i.e., an operational
research-oriented model) and a constraint programming-
oriented model. Let’s call them Model 1 and Model 2, re-
spectively.

In Model 1, variables represent individual units we can
train. Thus, the number of variables must be large enough to
cover all possible combinations our current resources allow.
For domains, we just need binary values {0, 1} to express
the fact we plan to train the considered unit or not.

CSP model for resource allocation - Model 1:
Variables: Each unit we can train.
Domain: Binary: 1 means we plan to train the unit, 0 means
we do not.
Constraints: A unique constraint to check if the sum of the
desired units’ costs does not exceed one or more resource
stocks.

For Model 2, variables do not represent individual units
but unit types we can train, such that each possible unit type
is represented by a unique variable. Here, the value of a
variable represents the number of units of the concerned type
we plan to train. Thus, domains must to be large enough to
cover all possible combinations.

CSP model for resource allocation - Model 2:
Variables: Each unit type we can train.
Domain: N (or a sufficiently large subset) representing the
number of units of the considered type we will train.
Constraints: Same as Model 1.

Actually, we also have tried a third model which was a
variation of Model 2: variables were also unit types, but with
the noticeable difference that several variables can concern
the same unit type. Domains were of the same nature than
Model 2 but smaller. The idea was the following: instead
of having a variable for Terran Marines for instance, with a
domain [1, . . . , 30], this model would accept, say, three vari-
ables for that unit type with domains [1, . . . , 10]. This was
to force some diversity in the solution, avoiding the solver to
fall into a greedy behavior, training for instance 30 Marines
to the detriment of other units. In fact, experiences shown
it does not lead to a better diversity than Model 2, and since
this third model never output results of higher quality than
the second model, we have simply discarded it.

GHOST implementation and results
For this problem, we consider two objectives: ground DPS
and air DPS, that is respectively, the damage per second we
can inflict on ground enemies and on flying enemies. Indeed
in StarCraft, many units cannot attack both kind of units or
use different weapons against ground and flying targets.

Unfortunately, we did not find in the literature experi-
mental results we could compare with. Some articles show
results such as win rate percentages to evaluate resource-
oriented agents, but we think too many factors are in game
to estimate how good the resource planning is by just look-
ing if a bot win or loose.

We could also compare our results with other constraint-
based solvers on our resource allocation problem instances,



Table 1: Mean of 100 (1,4)-runs for the resources allocation problem with 500 mineral units, 200 gas units and 9 supply units
Model 1 Model 2

DPS minerals gas supply DPS minerals gas supply

Protoss ground 97.9 50.2 0.0 1.0 98.0 50.0 0.0 1.0
air 64.0 0.0 0.0 1.0 64.0 0.0 0.0 1.0

Terran ground 116.7 48.2 25.0 0.1 143.1 65.0 9.0 0.3
air 94.7 26.5 8.0 0.0 95.9 50.0 1.5 0.0

Zerg ground 212.7 11.0 118.5 0.1 270.0 50.0 200.0 0.0
air 94.7 56.0 52.0 3.0 96.0 50.0 50.0 3.0

Table 2: Mean of 100 (1,4)-runs for the resources allocation problem with 1000 mineral units, 700 gas units and 19 supply units
Model 1 Model 2

DPS minerals gas supply DPS minerals gas supply

Protoss ground 211.3 29.5 161.5 1.4 236.2 36.0 11.5 3.0
air 141.4 40.5 23.0 2.0 148.0 25.0 50.0 1.0

Terran ground 215.3 57.2 193.0 0.4 326.8 56.0 221.0 0.1
air 200.9 39.2 103.7 0.0 205.9 91.7 144.7 0.0

Zerg ground 335.8 20.0 303.7 1.7 567.9 53.5 700.0 0.0
air 169.9 47.2 231.7 4.8 208.0 25.0 375.0 6.0

but we do not think it is a pertinent approach. GHOST should
not be reduced to a solver: it is an entire library aiming first
and foremost to help game developers modeling and imple-
menting (and then solving automatically) their own combi-
natorial optimization problems, or to let them simply reuse
an available model in the library. We have the feeling that
comparing GHOST with CSP/COP solvers like one usually
does in constraint programming papers is not scientifically
relevant. However, it would have been relevant to com-
pare GHOST results on resource allocation planning for RTS
games with other Game AI methods, if such results are avail-
able.

Tables ?? and ?? show the average over 100 runs of the re-
source allocation problem with 500 minerals, 200 gas and 9
supply (medium problem instance), and 1000 minerals, 700
gas and 19 supply (large instance) respectively, considering
all anti-ground and anti-air units for each race. All experi-
ments have been done given 1ms for the satisfaction timeout
and 4ms for the optimization timeout. Therefore, the total
time of each run is 4ms.

Although we did not compare GHOST results with other
solvers on this problem, we solved instances from Tables ??
and ?? with a complete solver, GNU Linear Programming
Kit (GLPK), to compute the optimal solution for each in-
stance. This is impossible to compute with GHOST because
its solver is a meta-heuristics, i.e., an algorithm which does
not scan the full search space and then cannot certify the
optimality of a solution. However within 4ms and in aver-
age among 100 runs, GHOST finds solutions very close to
the optimum. Table ?? shows optimal DPS values found by
GLPK, and matches them with the average DPS computed
by our library.

Both source code and experiments results for the re-
source allocation problem can be found at the following ad-
dress: http://www.runmycode.org/companion/

view/1391.

Discussion
We can see Model 2 always outperforms Model 1. This is
not surprising, since Model 2 is a more compact way to ex-
press this problem, leading to greatly smaller search space.
To give an example: consider we can train 10 units from
3 unit types (so 30 units in total). Model 1 leads to 30 binary
variables, so a search space of size 230, which is a bit more
than one billion combinations. For Model 2, we have 3 vari-
ables only, each taking a value in the range [1, . . . , 10]. This
leads to 310 combinations, i.e., a bit less than 60,000. Some
methods like SAT solvers are optimized to find solutions in
Boolean domains, but this is not the case of GHOST’s solver,
which implements the Adaptive Search meta-heuristic de-
signed to handle any kind of finite domains.

Besides GHOST’s efficiency on the resource allocation
problem, the goal of this section was to show GHOST’s flex-
ibility. Indeed even if Models 1 and 2 differ greatly by their
variables and domains nature, but in the code they only differ
from 8 C++ lines in the implementation of Domain class.
Remaining code is unchanged.

An obvious extension can be modeling and implement-
ing other objectives. Focusing on DPS only is very limiting
since it does not take into account the diversity one should
expect in an RTS game army. This can be done by only mod-
ifying Objective class’s descendants, without modifying
the variable, domain and constraint parts of both the model
and the implementation.

Future work
To conclude, we have shown GHOST to be both robust, able
to deal with problems it is not designed for (i.e., problems
in P, whereas its solver is designed to tackle NP-complete
problems) and flexible, showing that changing 8 C++ lines



Table 3: Optimal DPS versus average GHOST DPS over 100 runs
P=Protoss, T=Terran, Z=Zerg, m=medium instance (500/200/9), l=large instance (1000/700/19), g=ground, a=air

Pmg Pma Plg Pla Tmg Tma Tlg Tla Zmg Zma Zlg Zla
Optimal 98.0 64.0 241.4 148.0 149.2 96.9 331.6 207.2 270.0 96.0 570.0 208.0
GHOST 98.0 64.0 236.2 148.0 143.1 95.9 326.8 205.9 270.0 96.0 567.9 208.0
wrt opt. 100% 100% 97.8% 100% 95.9% 99.0% 98.5% 99.4% 100% 100% 99.6% 100%

only is sufficient to express very different models to the same
problem.

We think the next step is to broadcast GHOST and make
it more available, reachable to game developers. A C#
version exists (see https://github.com/richoux/
GHOST_C_sharp), with a lighter, simpler structure than
the C++ version, making it more user-friendly in particular
for developers with no prior knowledge in constraint prob-
lems modeling. The first step would be to bring these sim-
plifications into the C++ version, and reciprocally to include
the pathfinding problem and the resource allocation problem
into the C# version. Then, we would like to propose the C#
GHOST as a Unity plugin, to reach the broadest game devel-
oper audience as possible, and to make it really easy to use
within the famous game engine.

Finally, a proprietary C# version of GHOST is currently
under a technology transfer process for the game com-
pany Insane Unity (http://www.insaneunity.com)
for their MMORTS Win That War! in alpha version. GHOST
would be used both for developing an adversary AI player,
but also for making a taking-the-reins AI when the player
is not connected, since this MMORTS would be a persistent
world.

References
Caniou, Y.; Codognet, P.; Richoux, F.; Diaz, D.; and Abreu,
S. 2014. Large-scale parallelism for constraint-based local
search: The costas array case study. Constraints 19(4):1–27.
Chan, H.; Fern, A.; Ray, S.; Wilson, N.; and Ventura, C.
2007. Online planning for resource production in real-time
strategy games. In Proceedings of the International Confer-
ence on Automated Planning and Scheduling (ICAPS). The
AAAI Press.
Codognet, P., and Diaz, D. 2001. Yet another local search
method for constraint solving. In proceedings of SAGA’01,
73–90. Springer Verlag.
Hagelbäck, J. 2015. Hybrid pathfinding in StarCraft.
IEEE Transactions on Computational Intelligence and AI in
games.
Kulik, A., and Shachnai, H. 2010. There is no eptas for
two-dimensional knapsack. Information Processing Letters
110(16):707–710.
Lemaı̂tre, J.; Lourdeaux, D.; and Chopinaud, C. 2015. To-
wards a resource-based model of strategy to help design-
ing opponent AI in RTS games. In Proceedings of the In-
ternational Conference on Agents and Artificial Intelligence
(ICAART). LNCS Springer.
Richoux, F.; Baffier, J.-F.; and Uriarte, A. 2015. Ghost:
A combinatorial optimization solver for rts-related prob-

lems. Working paper: https://hal.archives-ouvertes.fr/hal-
01152231.
Thiago, S.; Ramalho, G.; and Queiroz, S. 2014. Resource
management in complex environments: Applying to real
time strategy games. In Proceedings of the Brazilian sym-
posium on Computer Games and Digital Entertainment.


