
HAL Id: hal-01175884
https://hal.science/hal-01175884v1

Preprint submitted on 16 Jul 2015 (v1), last revised 24 Dec 2015 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pathfinding and resource allocation with GHOST
Fradin Julien, Florian Richoux

To cite this version:
Fradin Julien, Florian Richoux. Pathfinding and resource allocation with GHOST. 2015. �hal-
01175884v1�

https://hal.science/hal-01175884v1
https://hal.archives-ouvertes.fr


Pathfinding and resource allocation with GHOST

Julien Fradin and Florian Richoux
LINA - UMR 6241, TASC - INRIA

Université de Nantes, France
julien.fradin@etu.univ-nantes.fr and florian.richoux@univ-nantes.fr

Abstract
ghost is a framework to help game developers
to model and implement their own optimization
problems, or to simply instantiate a problem al-
ready encoded in ghost. Previous works show
that ghost leads to high-quality solutions in some
tens of milliseconds for three RTS-related prob-
lems: build order, wall-in placement and target
selection. In this paper, we present two new prob-
lems in ghost: pathfinding and resource alloca-
tion. The goal of this paper is to show the robust-
ness of the framework, having very good results
for a problem it is not designed for (pathfind-
ing), and to show its flexibility, where it is easy
to propose different models of the same problem
(resource allocation problem).

Introduction
This paper introduces new optimization problems mod-
eled and implemented via ghost, a framework includ-
ing a skeleton to implement our own constraints satis-
faction problems and constraints optimization problems
(csp/cop), a constraint solver and a set of ready-to-use
problems (Richoux, Baffier, and Uriarte 2015). This
framework is available as a C++11 library under GNU
GPL v3 licence1.

The aim was to prove both the robustness and the
flexibility of the framework. ghost deal with csp/cop
which are well-known to be NP-complete problems. To
solve them, it includes a meta-heuristics algorithm to
quickly approach an optimal solution. ghost’s purpose
is to help the game developer coding an AI to get a
high-quality solution of its problem within some tens
of milliseconds, since it is not realistic to allocate much
computation power dedicated to AI in a game.

To demonstrate our claim, we have included two new
ready-to-use problems: the pathfinding problem and
the resource allocation problem. The first one is a
polynomial-time problem. ghost’s solver has no way
to capture and exploit its intrinsic easiness, although it
finds very good paths within 1 millisecond only, even if
we make more complex the original problem by adding

1URL masked for double-blind review, even everybody
knows is it easy to bypass.

passable dangerous zones to avoid if possible. These
good results show the robustness of the framework.
ghost is also flexible since we can implement very dif-
ferent models for the same problems by changing less
than 10 C++ lines only, while keeping excellent re-
sults. This is illustrated with resource allocation prob-
lems now included into the framework, with StarCraft:
Brood War as a testbed.

GHOST: A General meta-Heuristic
Optimization Solving Tool

A brief introduction to CSP / COP
Constraint Satisfaction Problems (csp) and Constraint
Optimization Problems (cop) are two close formalisms
intensively used in Artificial Intelligence to solve com-
binatorial and optimization problems. Constraint Pro-
gramming allows an intuitive and uniform way to model
problems, as well as different general algorithms able to
solve any problems modeled by a csp or a cop.

The difference between a csp and a cop is simple:
• A csp models a satisfaction problem, i.e., a problem

where all solutions are equivalent; the goal is then to
just find one of them, if any. For instance: finding
a solution of a Sudoku grid. Several solutions may
exist, but finding one is sufficient, and no solutions
seem better than another one.

• A cop models an optimization problem, where some
solutions are better than others. For instance: Sev-
eral paths may exist from home to workplace, but
some of them are shorter.

Formally, a csp is defined by a tuple (V , D, C) such
that:
• V is a set of variables,
• D is a domain, i.e., a set of values for variables in V ,
• C is a set of constraints.

A constraint c ∈ C can be seen as a k-ary predicate
c : V k → {>,⊥} where > can be semantically inter-
preted by true and ⊥ by false. Thus, regarding the
value of the vector V k, we say that c is either satisfied
(equals to >) or unsatisfied (equals to ⊥).



A cop a defined by a tuple (V , D, C, f) where V ,
D and C represent the same sets as a csp, and f is an
objective function to minimize or maximize.

For ghost, we have chosen a meta-heuristic algo-
rithm to be the heart of the solver, Adaptive Search
from (Codognet and Diaz 2001). The reason we have
chosen a meta-heuristics is simple: to solve combina-
torial and optimization problems while playing a RTS
game, the solver needs to be very fast to find a solution,
within some tens of milliseconds, which is virtually im-
possible with tree-based search algorithms. The reason
we have chosen Adaptive Search is, although it is not
a well-known algorithm, it is one of the fastest meta-
heuristics at the moment, up to our knowledge (Caniou
et al. 2014).

It is essential to keep in mind that meta-heuristics are
stochastic methods, then two runs on the same prob-
lem instance lead to two different solutions within the
same runtime. This is why results in this paper are the
average of 100 repeated experiments.

GHOST architecture
ghost is implemented around five main C++ classes:
Variable, Domain, Constraint, Objective and
Solver. Implementing a csp model means inheriting
its own classes from the three first classes above. Im-
plementing a cop model means making an additional
class inheriting from Objective.

The solving process implemented in class Solver is
composed of two main loops: the outer loop for op-
timization, containing the inner loop for satisfaction.
The satisfaction part only tries to find a possible so-
lution among all configurations, i.e., tries to find an
assignment of each variable such that all constraints of
the csp are satisfied. The optimization part is triggered
when an objective function has been implemented in a
descendant class of Objective. It will influence the sat-
isfaction part (finding a valid solution) if the objective
implements optional heuristics to select the variable to
change and the value to assign, if the current config-
uration is not a solution. The optimization part also
applies two optional post-process optimizations, one on
the output of the satisfaction loop to “clean up” the
raw solution found, one on the final output to apply to
ad-hoc, last-minute optimizations if possible, leading to
the solution returned by the solver.

The fundamental thing in the optimization part is
the optimization loop itself. To explain how this loop
works, we have to introduce the two temporal param-
eters in ghost. The function solve takes two pa-
rameters: the first one is the satisfaction timeout x in
milliseconds. It means that, after x ms top, we leave
the satisfaction loop, certainly without a valid solution
since the loop stops as soon as it finds a solution. The
second parameter is the optimization timeout y, always
in milliseconds. It corresponds also to the total runtime
of ghost, modulo the post-process after the optimiza-
tion loop (which is negligible in practice and should be
about 100 times shorter than y).

Thus, the optimization loop repeats n times the sat-
isfaction loop, and receives in total m ≤ n valid solu-
tions. After receiving a new solution from the satisfac-
tion loop, and applying an eventual satisfaction post-
process, it calls the objective function to compute the
optimization cost, compares it with its saved solution (if
any) and keeps the solution with the lower cost. Then
it repeats the satisfaction loop to obtain a new solution,
and so on, until y ms are reached. In some way, ghost
is applying a sort of Monte Carlo sampling, since satis-
faction iterations are stochastic.

Concerning objective functions, ghost has been de-
signed to minimize their value. If a developer user
needs to maximize an objective function f , this can
be simply adapted to ghost by defining the objec-
tive function 1/f . Our solver is designed to deal with
mono-objective optimization problem only, thus, one
can only choose at most one objective function at the
time before running the solver, however the objective
function can be dynamically changed between two calls
of the solver. The choice of designing a mono-objective
solver is pragmatic: multi-objective solvers are in gen-
eral significantly slower, since dealing with more com-
plex problems. Multi-objective are also making models
more complex, which goes against one goal of ghost:
to propose a solver both easy to use and easy to extend
by implementing new problems.

The pathfinding problem
The pathfinding problem is the very classical problem
of finding a path (usually the shortest one) from a start-
ing point s to a target point t. We would not debate
if pathfinding is an AI problem or not; our approach is
practical: numerous games including RTS games need
pathfinding, and ghost aims to be a well-spread library
for helping game developers to solve AI and/or opti-
mization problems. Including a ready-to-use pathfind-
ing solution into ghost can only be beneficial for users.

Problem statement and model
Before introducing our pathfinding model, we need two
notions: the notion of walkable tile and the notion of
marked tile.

In StarCraft like many other RTS games, a grid is
applied on the map where each cell of the grid, also
called tile, can be either walkable or not by ground
units. Since pathfinding is relevant for ground units
only (flying units does not encounter any obstacles so
they can move straight forward their target), a path
can only be composed of walkable tiles.

A marked tile is simply a tile where we associate a
number. We will see below we only mark some specific
tiles in order to find a path.

Therefore, we propose the following pathfinding
model:
CSP model for the pathfinding problem:
Variables: Each tile on the map.
Domain: Binary: either the variable contributes to the



Figure 1: Three crafted maps A, B and C used for our path-finding experiments. The blue rectangle shows the
walkable tile size. For B and C, the red crossed circle is the starting point and the green empty circle the target.

path (value 1) or it does not (value 0).
Constraints: A unique constraint: does a series of n
variables assigned to 1, going from the starting point
and reaching the target point such that each variable is
marked by a unique value in [1, . . . , n], exists?

If variables and domains in our model are clear, the
constraint deserves further explanations. We did not
write how we mark tiles yet, and it is the right moment
to do it. Let’s say that a variable assigned to the value
1 is a selected variable. Let’s call neighbors the eight
tiles around a given tile. We only mark tiles if they
are selected, following this simple algorithm: Mark all
selected neighbors of the starting tile with the number
1. Then, until all selected variables reachable from the
starting tile are marked, repeat: for a variable marked
with the number k, marked all its unmarked selected
neighbors with the number k + 1. To give a picture, we
obtain waves of marks equal to 1, then 2, then 3 and so
on, beginning from the starting point.

What our constraint does is, intuitively, looking if
a series of marks (1, 2, 3, . . ., n) exists between the
starting and the target points.

To give insights about how we model this problem,
we had at the beginning two constraints: the first one
to check if each tile except the starting and target tile
has exactly two selected neighbors, the second one to
check if we can reach the target point from the starting
point passing by selected variables only. The unique
constraint based on mark tiles in our current model
assures these properties as well, but in a more efficient
way.

For this problem, we have considered two objectives.
The first one is obvious: find a path as short as possible
from the starting point to the target one. The second
one also try to find a path as short as possible, but
taking also into account some dangerous zones (like tiles
too close from the enemy army) we try to avoid without
strictly discarding them.

GHOST implementation and results

Figure 2: A computed path (in blue) in map C where
dangerous zones are marked by red blocks. Parts where
the path crossed dangerous zones are circled in red.

For the pathfinding problem, we did not need to ap-
ply the classical scheme satisfaction loop + optimization
loop in ghost. Actually, only the satisfaction loop is
important to find a rough path between the starting
and the target point. Thus, smart post-processes can
be apply to modify our path in order to fit the objec-
tive. They are computed very quickly and are power-
ful enough to avoid to repeat the satisfaction process:
these post-processes leads to optimal or near-optimal
paths according to the applied objective.

Thus, we ran 100 experiments over 8 instances from
hand crafted maps illustrated by Figure 1. Maps B
and C have their starting and target points fixed and
look like small maze one can find in action games for
instance. Experiments have been conducted by running
ghost 100 times on map B and map C. Map A looks
like more to a RTS map like we have in StarCraft. For
this map, we used 6 different instances where the start-
ing and target points where manually such that they



are not in the same area, forcing a path to bypass walls
or unwalkable blocks.

Since it was not necessary to exploit the optimiza-
tion loop to solve this problem, we run our experiments
with a timeout of 1ms for the satisfaction part and also
1ms for the optimization part, thus bounding the global
runtime to 1ms top. Within 1ms, ghost always find
a path over 800 runs, and these paths were optimal or
near-optimal. Figure 2 shows an example of path found
by ghost while considering dangerous zones to avoid if
possible, that is, if it makes longer the path reasonably
only.

Both source code and experiments results for the
pathfinding problem can be found at the following ad-
dress: [URL masked for double-blind review].

Discussion
Both versions of pathfinding presented above, with or
without dangerous zones, are in P. This is easy to see:
finding the shortest path from s to t can be done by
marking all tiles the way we do (without taking into
account the notion of selected tile), and then stop as
soon as the target in reached. You get your path by
following down a series of tiles marked from n to 1.
This is done in linear time regarding the number of tiles
in your grid. If you consider dangerous zones, you can
add some extra tiles to artificially increase the distance
between two dangerous tiles, according to the danger
level. Then you run the same algorithm looking for the
shortest path.

ghost is designed to output in a couple of mil-
liseconds a high quality solution to NP-complete prob-
lems, by doing effective descents into the search space
landscape. It has no way to capture and exploit
the pathfinding computational easiness, unlike ad-hoc
polynomial-time algorithms such as A*-like algorithms.
However, ghost reveals itself to be very effective, find-
ing optimal or near optimal paths within 1ms, even
for more complicated pathfinding problems dealing with
passable dangerous zones.

At the beginning of this project, we aimed to model a
pathfinding not for a single unit but for a group, keep-
ing a group coherence while moving, to avoid situations
like faster units leaving slower ones way behind them.
Usually, this is handle by flocking algorithms, potential
fields or a mix of both (Hagelbäck 2015). Due to lack of
time, we failed to find a satisfying csp/cop model for
this problem but this would be an interesting extension
with direct applications for game developers.

The resource allocation problem
Resource allocation and management in RTS games
such as StarCraft has been extensively studied, since
it is at the heart of game mechanisms for this kind of
games. Among others, the reader can find works about
an agent applying resource-based strategies (Lemâıtre,
Lourdeaux, and Chopinaud 2015), a resource produc-
tion planner (Chan et al. 2007) and a decision-making

process involved in resource management (Thiago, Ra-
malho, and Queiroz 2014).

In StarCraft, resources can be used to obtain units,
building, upgrades and technologies. Two resources
are needed for buying these: minerals and gas, both
gathered by workers but differently (gas needs a spe-
cial building to be extracted, unlike minerals). For
training units, a third resource is required: the sup-
ply resource (also named “food”), limiting the number
of units you can currently possess. Notice we could
eventually consider a fourth kind of resource for train-
ing Zerg units: larvae. However we would not consider
this in our model, since this resource (not universally
acknowledged as a real resource) is race-specific.

Problem statement and model
In this section, we focus on the following problem: given
a amount of minerals, gas and supply, what units should
we train to maximize, say, the global damage per sec-
ond (DPS). This is actually an instance of the multi-
dimensional knapsack problem with three dimensions
(one per resource type). The regular knapsack prob-
lem is well-known to be NP-complete, and its multi-
dimensional version is even harder: unlike the origi-
nal knapsack problem, there is no efficient polynomial-
time approximation scheme starting from two dimen-
sions (unless P=NP) (Kulik and Shachnai 2010).

We have tried two different models for this prob-
lem: a 0-1 multi-dimensional knapsack model (i.e., an
operational research-oriented model) and a constraint
programming-oriented model. Let’s call them Model 1
and Model 2, respectively.

In Model 1, variables represent individual units we
can train. Thus, the number of variables must be large
enough to cover all possible combinations our current
resources allow. For domains, we just need binary val-
ues {0, 1} to express the fact we plan to train the con-
sidered unit or not.
CSP model for resource allocation - Model 1:
Variables: Each unit we can train.
Domain: Binary: 1 means we plan to train the unit, 0
means we do not.
Constraints: A unique constraint to check if the sum
of the desired units’ costs does not exceed one or more
resource stocks.

For Model 2, variables do not represent individual
units but unit types we can train, such that each possi-
ble unit type is represented by a unique variable. Here,
the value of a variable represents the number of units
of the concerned type we plan to train. Thus, domains
must to be large enough to cover all possible combina-
tions.
CSP model for resource allocation - Model 2:
Variables: Each unit type we can train.
Domain: N (or a sufficiently large subset) representing
the number of units of the considered type we will train.
Constraints: Same as Model 1.



Table 1: Mean of 100 (1,4)-runs for the resources allocation problem with 500 mineral units, 200 gas units and 9
supply units

Model 1 Model 2
DPS minerals gas supply DPS minerals gas supply

Protoss ground 97.9 50.2 0.0 1.0 98.0 50.0 0.0 1.0
air 64.0 0.0 0.0 1.0 64.0 0.0 0.0 1.0

Terran ground 116.7 48.2 25.0 0.1 143.1 65.0 9.0 0.3
air 94.7 26.5 8.0 0.0 95.9 50.0 1.5 0.0

Zerg ground 212.7 11.0 118.5 0.1 270.0 50.0 200.0 0.0
air 94.7 56.0 52.0 3.0 96.0 50.0 50.0 3.0

Table 2: Mean of 100 (1,4)-runs for the resources allocation problem with 1000 mineral units, 700 gas units and 19
supply units

Model 1 Model 2
DPS minerals gas supply DPS minerals gas supply

Protoss ground 211.3 29.5 161.5 1.4 236.2 36.0 11.5 3.0
air 141.4 40.5 23.0 2.0 148.0 25.0 50.0 1.0

Terran ground 215.3 57.2 193.0 0.4 326.8 56.0 221.0 0.1
air 200.9 39.2 103.7 0.0 205.9 91.7 144.7 0.0

Zerg ground 335.8 20.0 303.7 1.7 567.9 53.5 700.0 0.0
air 169.9 47.2 231.7 4.8 208.0 25.0 375.0 6.0

Actually, we also have tried a third model which was
a variation of Model 2: variables were also unit types,
but with the noticeable difference that several variables
can concern the same unit type. Domains were of the
same nature than Model 2 but smaller. The idea was
the following: instead of having a variable for Terran
Marines for instance, with a domain [1, . . . , 30], this
model would accept, say, three variables for that unit
type with domains [1, . . . , 10]. This was to avoid situ-
ation where the solver became too greedy and plan to
train the same units numerous time. In fact, experi-
ences shown it is not the case with Model 2, and since
this third model never output better results than the
second model, we have simply discarded it.

GHOST implementation and results
For this problem, we consider two objectives: ground
DPS and air DPS, that is respectively, the damage per
second we can inflict on ground enemies and on flying
enemies. Indeed in StarCraft, many units cannot at-
tack both kind of units or use different weapons against
ground and flying targets.

Unfortunately, we did not find in the literature exper-
imental results we could compare with. Some articles
show results such as win rate percentages to evaluate
resource-oriented agents, but we think too many factors
are in game to estimate how good the resource planning
is by just looking if a bot win or loose.

We could also compare our results with other
constraint-based solvers on our resource allocation
problem instances, but we do not think it is a pertinent
approach. ghost should not be reduce to a solver: it is
an entire library aiming first and foremost to help game

developers modeling and implementing (and then solv-
ing automatically) their own combinatorial optimiza-
tion problems, or to let them simply reuse an available
model in the library. We have the feeling that compar-
ing ghost with csp/cop solvers like one usually does
in constraint programming papers is not scientifically
relevant. However, it would have been relevant to com-
pare ghost results on resource allocation planning for
RTS games with other Game AI methods, if such results
are available.

Tables 1 and 2 show the average over 100 runs of
the resource allocation problem with 500 minerals, 200
gas and 9 supply (medium problem instance), and 1000
minerals, 700 gas and 19 supply (large instance) respec-
tively. All experiments have been done given 1ms for
the satisfaction timeout and 4ms for the optimization
timeout. Therefore, the total time of each run is 4ms.

Although we did not compare ghost results with
other solvers on this problem, we solved instances from
Tables 1 and 2 with a complete solver, GNU Linear
Programming Kit (GLPK), to compute the optimal so-
lution for each instance. This is impossible to compute
with ghost because its solver is a meta-heuristics, i.e.,
an algorithm which does not scan the full search space
and then cannot certify the optimality of a solution.
However within 4ms and in average among 100 runs,
ghost finds solutions very close to the optimum. Ta-
ble 3 shows optimal DPS values found by GLPK, and
matches them with the average DPS computed by our
library.

Both source code and experiments results for the re-
source allocation problem can be found at the following
address: [URL masked for double-blind review].



Table 3: Optimal DPS versus average ghost DPS over 100 runs
P=Protoss, T=Terran, Z=Zerg, m=medium instance (500/200/9), l=large instance (1000/700/19), g=ground, a=air

Pmg Pma Plg Pla Tmg Tma Tlg Tla Zmg Zma Zlg Zla
Optimal DPS 98.0 64.0 241.4 148.0 149.2 96.9 331.6 207.2 270.0 96.0 570.0 208.0
ghost DPS 98.0 64.0 236.2 148.0 143.1 95.9 326.8 205.9 270.0 96.0 567.9 208.0

ghost optimality 100% 100% 97.8% 100% 95.9% 99.0% 98.5% 99.4% 100% 100% 99.6% 100%

Discussion
We can see Model 2 always outperforms Model 1. This
is not surprising, since Model 2 is a more compact
way to express this problem, leading to greatly smaller
search space. To give an example: consider we can train
10 units from 3 unit types (so 30 units in total). Model 1
leads to 30 binary variables, so a search space of size
230, which is a bit more than one billion combinations.
For Model 2, we have 3 variables only, each taking a
value in the range [1, . . . , 10]. This leads to 310 combi-
nations, i.e., a bit less than 60,000. Some methods like
SAT solvers are optimized to find solutions in Boolean
domains, but this is not the case of ghost’s solver,
which implements the Adaptive Search meta-heuristic
designed to handle any kind of finite domains.

Besides ghost’s efficiency on the resource allocation
problem, the goal of this section was to show ghost’s
flexibility. Indeed even if Models 1 and 2 differ greatly
by their variables and domains nature, but in the code
they only differ from 8 C++ lines in the implementation
of Domain class. Remaining code is unchanged.

An obvious extension can be modeling and imple-
menting other objectives. Focusing on DPS only is very
limiting since it does not take into account the diversity
one should expect in a RTS game army. This can be
done by only modifying Objective class’s descendants,
without modifying the variable, domain and constraint
parts of both the model and the implementation.

Future work
To conclude, we shown ghost to be both robust, able
to deal with problems it is not designed for (i.e., prob-
lems in P, whereas its solver is designed to tackle NP-
complete problems) and flexible, showing that changing
8 C++ lines only is sufficient to express very different
models to the same problem.

We think the next step is to broadcast ghost and
make it more available, reachable to game developers.
A C# version exists2, with a lighter, simpler structure
than the C++ version, making it more user-friendly
in particular for developers with no prior knowledge in
constraints problems modeling. The first step would be
to bring these simplifications into the C++ version, and
reciprocally to include the pathfinding problem and the
resource allocation problem into the C# version. Then,
we would like to propose the C# ghost as a Unity
plugin, to reach the broadest game developer audience

2Yet another masked URL.

as possible, and to make it really easy to use within the
famous game engine.

Finally, a proprietary C# version of ghost is cur-
rently under a technology transfer process for the game
company Insane Unity3 for their MMORTS Win That
War! in alpha version. ghost would be use both for
developing an AI as an adversary player, but also for
making a taking-the-reins AI when the player is not
connected, since this MMORTS would be a persistent
world.

References
[Caniou et al. 2014] Caniou, Y.; Codognet, P.; Richoux,
F.; Diaz, D.; and Abreu, S. 2014. Large-scale par-
allelism for constraint-based local search: The costas
array case study. Constraints 19(4):1–27.

[Chan et al. 2007] Chan, H.; Fern, A.; Ray, S.; Wilson,
N.; and Ventura, C. 2007. Online planning for resource
production in real-time strategy games. In Proceedings
of the International Conference on Automated Planning
and Scheduling (ICAPS). The AAAI Press.

[Codognet and Diaz 2001] Codognet, P., and Diaz, D.
2001. Yet another local search method for constraint
solving. In proceedings of SAGA’01, 73–90. Springer
Verlag.

[Hagelbäck 2015] Hagelbäck, J. 2015. Hybrid pathfind-
ing in StarCraft. IEEE Transactions on Computational
Intelligence and AI in games.

[Kulik and Shachnai 2010] Kulik, A., and Shachnai, H.
2010. There is no eptas for two-dimensional knapsack.
Information Processing Letters 110(16):707–710.

[Lemâıtre, Lourdeaux, and Chopinaud 2015] Lemâıtre,
J.; Lourdeaux, D.; and Chopinaud, C. 2015. Towards
a resource-based model of strategy to help designing
opponent AI in RTS games. In Proceedings of the
International Conference on Agents and Artificial
Intelligence (ICAART). LNCS Springer.

[Richoux, Baffier, and Uriarte 2015] Richoux, F.;
Baffier, J.-F.; and Uriarte, A. 2015. Ghost: A combi-
natorial optimization solver for rts-related problems.
Working paper: https://hal.archives-ouvertes.fr/hal-
01152231.

[Thiago, Ramalho, and Queiroz 2014] Thiago, S.; Ra-
malho, G.; and Queiroz, S. 2014. Resource management
in complex environments: Applying to real time strat-
egy games. In Proceedings of the Brazilian symposium
on Computer Games and Digital Entertainment.

3www.insaneunity.com

http://www.insaneunity.com

	Introduction
	GHOST: A General meta-Heuristic Optimization Solving Tool
	A brief introduction to CSP / COP
	GHOST architecture

	The pathfinding problem
	Problem statement and model
	GHOST implementation and results
	Discussion

	The resource allocation problem
	Problem statement and model
	GHOST implementation and results
	Discussion

	Future work

