
HAL Id: hal-01175878
https://hal.science/hal-01175878v1

Submitted on 30 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Mission-Oriented Service Discovery Mechanism for
Highly Dynamic Autonomous Swarms of Unmanned

Systems
Vincent Autefage, Serge Chaumette, Damien Magoni

To cite this version:
Vincent Autefage, Serge Chaumette, Damien Magoni. A Mission-Oriented Service Discovery Mech-
anism for Highly Dynamic Autonomous Swarms of Unmanned Systems. 12th IEEE International
Conference on Autonomic Computing, Jul 2015, Grenoble, France. pp.31-40, �10.1109/ICAC.2015.28�.
�hal-01175878�

https://hal.science/hal-01175878v1
https://hal.archives-ouvertes.fr

A Mission-Oriented Service Discovery Mechanism for Highly Dynamic Autonomous
Swarms of Unmanned Systems

Vincent Autefage
Univ. Bordeaux, LaBRI

Talence, France
autefage@labri.fr

Serge Chaumette
Univ. Bordeaux, LaBRI

Talence, France
serge.chaumette@labri.fr

Damien Magoni
Univ. Bordeaux, LaBRI

Talence, France
magoni@labri.fr

Abstract—Over the past few years, many research projects
have begun to focus on swarms of mobile unmanned systems
(e.g., drones, ground robots) globally referred as UMS. These
systems, because of the many sensors and actuators they can
embed, are suitable for autonomous missions in 3D (Dull,
Dirty and Dangerous) environments for instance. However,
embedding a large number of capabilities in all of members
of a swarm is expensive in terms of cost, weight and energy
consumption. Thus, it is usually more efficient to embed only a
single or a few capabilities within each UMS. It then becomes
necessary to provide a discovery mechanism built into the
swarm in order to allow its members to share their capabilities
and to collaborate for achieving a global mission. These shared
capabilities are called services. In this paper, we propose a new
service discovery system called AMiRALE for Asynchronous
Missions Relay for Autonomous and Lively Entities dedicated to
highly volatile, autonomous and mobile swarms of UMS. Our
solution is independent of both nodes’ mobility and connectivity
patterns. Moreover, it supports heterogeneous swarms and
degraded conditions of operation (i.e., message loss, UMS loss
and disconnected network). It is also totally decentralized
and enables both discovery and service usage. We provide a
description of the theoretical model of our AMiRALE system
as well as several simulation results obtained from a park
cleaning scenario.

Keywords-Autonomous Swarm, UMS, Service Discovery, Col-
laboration.

I. INTRODUCTION

Mobile swarms of UMS (Unmanned Systems) offer a lot
of opportunities in both civil and military domains. Still, they
raise a number of issues that need to be addressed in order
to make it possible to use them in real world applications.

In the civil context, swarms can be used for applications
like surveillance or search and rescue operations. We give
two illustrative examples here. Among recent research is
a project developed at the University of Pennsylvania [1]
that targets the exploration of a damaged building with a
number of tiny ground and aerial vehicles. The goal is to
collect information about its state of degradation and to
construct a 3D map of the inside (i.e., SLAM - Simultaneous
Localization and Mapping). Another example is the CARUS
project [2] which has been developed at the University
of Bordeaux. The goal is to enable a swarm of UAVs
(Unmanned Aerial Vehicles) to autonomously achieve the

surveillance of a region by dynamically sharing small areas
of this region between a number of UAVs. It can for
instance be used to monitor the occurrence of forest fires.
CARUS is focused on distributed and autonomous decision-
making (including retasking) within the swarm contrary to
most other research projects that are more or even totally
centralized.

Of course, in the military domain swarming raises many
opportunities to increase troops support and situation man-
agement. The army is pushing forward the research effort
both in terms of algorithms and scenarios. In the US, the
Tactical Technology Office (TTO) of the DARPA has issued
a solicitation entitled Collaborative Operations in Denied
Environment [3] (CODE), whose goal is to support research
projects around aerial swarming. Among the scenarios put
forward in the solicitation is tactical reconnaissance. In
Europe many projects are also funded by governmental
agencies and large companies.

Among the many issues raised by autonomous swarms
is service discovery. Because of the cost of the hardware
(e.g., sensors, actuators) and the limited weight and space
of the payload that unmanned systems can embed, it is worth
dispatching a subset of the capabilities required to achieve
a mission among the entities of a swarm. It then becomes
necessary to provide a system that enables an entity to locate
a remote capability (and to use it by relocating its carrier if
necessary). This is called service discovery. Of course, such
a mechanism also has to provide access to the capability
once it has been located which sometimes means moving
the UMS that embeds this capability (e.g., a camera) to the
appropriate location.

Mobile swarms of UMS are compliant with the MANET
(Mobile Ad-hoc Network) model [4]; this kind of swarm
defines a dynamic topology in which unmanned systems
are the mobile communicating nodes. Even though ser-
vice discovery has been widely studied in the context of
MANETs [5], most of existing solutions are mainly focusing
on the location problem; i.e., they do not provide any
access mechanism, focusing only on the discovery aspect.
In our context, capability relocation furthermore impacts
the network and the discovery process itself. Indeed, both

operations (i.e., discovery and use) are achieved over a
network configuration which keeps on changing all the time.
This is due to the dynamic nature of such networks where the
entities that embed the capabilities move around if required.
Unfortunately, existing discovery mechanisms for ad-hoc
networks are dependent on the mobility model of the nodes
and usually require specific connectivity patterns between
them. They thus cannot be used in our context.

Another key issue is that to ensure autonomy and to
support degraded mode of operation, the approach has to
be totally distributed with no node playing a central role.
All nodes should thus run the same algorithm.

To the best of our knowledge, no discovery mechanism
has been designed that would offer these specific
characteristics.

In this paper, we propose an original and dedicated
service discovery mechanism which we call AMiRALE
(Asynchronous Missions Relay for Autonomous and Lively
Entities) to solve these issues. The remainder of this paper
is organized as follows. We first provide a state of the art
focusing on the main types of existing service discovery
systems in Section II. In Section III, we detail the theoret-
ical model describing our service discovery mechanism for
highly mobile and volatile swarms. In Section IV, we present
several simulation results showing the performances of our
service discovery model compared to two other models. We
finally conclude and discuss future work in Section V.

II. STATE OF THE ART

Basically, service discovery is the way for an entity x
(i.e., client) to locate a capability (i.e., service) which is
available on another node (i.e., provider) of the network.
Service discovery requires the availability of information
on the services that can be used including their location
in the network. Three major architectures are usually con-
sidered [5]:
• centralized directory-based where a unique node hosts

the location of all the services of the network;
• distributed directory-based where the service directory

is split over several nodes;
• directory-less where each node hosting a service is in

charge of announcing it to the rest of the network nodes.
According to previous studies [6] [7], the directory-less

architecture is the most robust when a high level of mobility
is considered but it is more adapted to small scale rather
than large scale networks. Moreover, it is admitted that a
decentralized architecture is more fault-tolerant, has a nat-
ural exploitation of parallelism, is reliable and scalable [8].
This kind of service discovery mechanisms can operate in
two ways [9]:
• pull mode which is a reactive-like strategy;
• push mode which is a proactive-like strategy.

In push mode, providers constantly broadcast the list of
services they offer which means that a client will be able to
know (with a good probability) where a service is located
before trying to use it. In pull mode, the client does not
know the holder of a service in advance. The location is
computed at the request time. In a highly dynamic network,
the push mode is the best in terms of delay because accessing
the service does not require to calculate the location at the
request time [6] [10] which can be costly and inefficient if
the network keeps on changing. However, the presence of a
large number of services can decrease the performance of
the approach because of the many announcement messages
that can lead to a high packet collision rate [11].

Despite the existence of many service discovery mecha-
nisms, several problems are still open [12]:
• Service usage (i.e., the way to access a service once

it has been discovered) is not addressed in most of
existing solutions.

• Service selection which is required when a same ser-
vice is hosted by several different nodes is also often
ignored.

• The performance of MANET applications is closely
dependent on the mobility of the nodes of the net-
work [6] [13]. This is due to the fact that mobility has
a strong impact on connectivity patterns [14]. A service
discovery mechanism should thus be able to adapt its
behavior to this parameter.

We also want to address two other problems in this paper:
• Autonomy: so as to ensure degraded mode of operation,

each node of the swarm should be totally autonomous
and take its own decisions. In other words, there can
be no supervisor; i.e., no entity should play a central
role.

• Resilience: the support of the volatility in the network.
Indeed, nodes (providers or clients) may join or leave
the network at any time without jeopardizing the current
tasks of the swarm.

As explained before, mobility has a strong impact on
the efficiency of the discovery process and the size of the
network is important too. In order to provide an efficient
and scalable solution, it is thus crucial to make it context-
adaptive [7]:
• a small scale and a highly mobile swarm should use

a proactive directory-less mechanism (flooding based
approach) ;

• a medium scale swarm with limited mobility should use
a directory-less mechanism on top of a routing overlay
(cross-layer approach) ;

• a large scale swarm with little mobility should use a
directory-based mechanism on top of a routing overlay.

To the best of our knowledge, other mixes of scale
and mobility have not been studied because they do not
correspond to effective configurations. In this paper, we

focus on a part of this global system, AMiRALE, which is
our solution for reasonable scale (i.e., few dozens of nodes)
and highly mobile swarms of autonomous UMS. It should
nevertheless be noticed that AMiRALE remains operational,
even if not the best solution, for swarms with low mobility.
In addition to service discovery, it also addresses service
usage and service selection as introduced in the previous
section. It is totally decentralized and supports dynamic
changes of the topology (i.e., mobility and resilience).

III. THEORETICAL MODEL

A. Overall Description
Most existing service discovery mechanisms focus on the

location of the services rather than on the actions induced
by them. We can draw a parallel between IP networks and
content-based networks [15]. A content-based network is
more focused on the data itself than on its holder. AMiRALE
is based on a similar idea. In the autonomous swarms that we
consider, UMS are programmed to collaboratively achieve
missions. Usually, missions are partly known at swarm
ignition time, while they can still evolve because of external
events. Events are caught by sensors and actions are achieved
by using UMS capabilities (i.e., sensors and actuators).

For a specific event e, we call Sense (sensor) a node
which can capture this event. This node generates a new
mission called mn:k

e where n is the identifier of the creator
node and k is a mission sequence number relative to this
node. This mission is described by a message (a view
called vn:k

e which is a reduced form of the mission mn:k
e)

that travels the network through intermediate nodes called
Forwe (forwarders), until it reaches a final node which can
solve the mission mn:k

e . Such a final node is called Solve
(solver). One of the fields of the mission description mn:k

e

is an internal state which evolves while the view travels
through the network. This state can take five different values
which are strictly ordered. This order is used later in this
paper to describe the evolution of the system:

1) start: the mission has been created but no node is
currently trying to solve it;

2) will: the mission has been caught by a solver, and it
is preparing to solve it (e.g., moving to the location
where the mission takes place);

3) do: the mission is currently being solved;
4) abort: the mission has been dropped because it has

apparently already been solved (e.g., a target object
that the solver is supposed to remove has disappeared);

5) end: the mission is solved.
The start state is only set at mission creation time by

the node that generates it. The other states can only be set
by solvers. A forwarder is a read-only node; i.e., it cannot
modify the state field. As explained before, states are strictly
ordered: start < will < do < abort < end. A finite
state machine of the evolution of the state field is shown
in Figure 1.

start

end

will

do

abort

Figure 1. Finite state machine of the state mission field.

We assume here that each UMS has a unique identifier
and its own clock. Each mission description contains a state,
a creator identifier and creation date, the date of modification
and the identifier of the last node that updated it. At regular
time intervals, the nodes of the swarm broadcast to their
neighborhood the list of mission views they are aware of
in order to update each other. Note that nodes communicate
only asynchronously and one way.

When a Sense node catches an event e, it is possible
that another mission initiated because of e already exists.
However, the decision to generate a new mission is applica-
tion dependent, therefore a user function called fe

ignore will
decide if the event e has to be ignored or not. When a node
receives a newer view of one of the missions it is aware of,
it updates this mission in its local memory and broadcasts
the new mission view. When a solver gets a mission in the
start state that it is able to solve, it turns the state field of
the mission to will and prepares itself to solve it (e.g., by
moving to a specific location if required). When it begins
solving the mission, it turns its state field to do. If the solver
detects that the mission has apparently already been solved
(e.g., a target object that the solver is supposed to remove
has disappeared), it turns the state field to abort. Finally,
when it has succeeded in solving the mission, it turns the
state field to end. A solver can be in will or do mode for
only one mission at a time. Furthermore, a solver Solve
can stay in the will (resp. do) state only for a limited time
Ψe

will (resp. Ψe
do). If one of these thresholds is exceeded,

the solver leaves the mission if and only if it is informed by
another solver that this last one is now taking care of the
same mission. Additionally, if a solver is informed that the
mission it is dealing with (will or do state) has evolved to a
greater state, it leaves the mission and updates the relative
description. For a specific mission relative to an event e,

if a node is not a Sense nor a Solve, it is considered as
a Forwe. By default, a forwarder is able to deal with a
mission of type e even it has not been aware of this kind
of event before. Indeed, views contain specific information
(i.e., thresholds) of the relative type. In other words, it is
possible to add several new mission types during the swarm
operation.

B. Time Synchronization and Clock Issues

As explained before, each node has its own internal clock
and the time can thus drift differently from one node to
the other. Consequently, it is necessary to take this problem
into account in our discovery system. Three main approaches
exist [16]:
• relative ordering where events are ordered without time

reference;
• relative timing where nodes take into account the time

drift relative to the others;
• global timing where all the clocks are synchronized (by

using GPS information for instance).
Consequently, we have developed three versions of AMi-

RALE, one for each synchronization technique. In this paper,
we only detail the global timing one. The complete descrip-
tion of each version of the theoretical model is available in
a technical report [17].

C. AMiRALE Global Timing Model

We decided on formalizing this model on top of the ADA-
GRS [2] [18] (Asynchronous Dynamicity Aware Graph Re-
labeling System) which is only based on one way broadcasts
and local computations. The limitations imposed by this
model are the keys to ensure degraded mode of operation and
autonomy by fostering a totally decentralized and distributed
approach.

As explained before, a node can have three different roles:
• Sense which means that the node can sense an event

e and creates the relative mission mn:k
e ;

• Solve which means that the node can solve a mission
mn:k

e ;
• Forwe which means that the node can forward a

mission mn:k
e (default role if the node is not a sensor

nor a solver for the type e).
We define an additional generic role called Anye that

stands for any of the above roles and what we use to simplify
the description of the formal model.

Rules are used to describe the interactions of a node with a
mission of type e. There are 5 different rule types which are
presented in Figure 2. For each of these rules, the 2 circles
represent the role of the node before and after applying the
rule. The set under the circles represents the current value of
the mission mn:k

e . The rule is applied only if the precondition
c is satisfied.

We now describe the different rules:

(1):

event e
Sense

{ ∅ }

<precondition c>

Sense

{ <mn:k
e > }

(2):

Solve

{ <mn:k
e > }

<precondition c>

Solve

{ <m′n:k
e > }

(3):
app(<mn:k

e >)

Solve

{ <mn:k
e > }

<precondition c>

Solve

{ <m′n:k
e > }

(4):

Anye

{ <mn:k
e > }

self :: 〈 <vn:k
e > 〉 <precondition c>

Anye

{ <m′n:k
e > }

(5):

src :: 〈 <vn:k
e > 〉

Anye

{ <mn:k
e > }

<precondition c>

Anye

{ <m′n:k
e > }

Figure 2. Rules types of the AMiRALE model.

1) This rule is the only one that causes a new mission to
be created. A Sense node named n creates the mission
mn:k

e if precondition c is true. This precondition will
be used in the instantiation to check if a similar
mission initiated because of the same event e is already
being solved or under resolution.

2) This rule enables a solver node to autonomously
modify the state of a mission. After applying this rule,
the mission mn:k

e is updated to its new version m′n:k
e .

3) This rule enables a solver node to react to an ap-
plicative event app(mn:k

e) (e.g., action success, action
aborted) and to modify the related mission description.

4) This rule enables a node to broadcast a mission view.
This broadcast operation is described as self :: vn:k

e

where self is the identifier of the current node and
vn:k
e the view of the current mission mn:k

e .
5) This rule enables a node to modify a mission after

being informed of a new version thereof. The received
message is described as src :: vn:k

e where vn:k
e is the

view of the mission mn:k
e received from the sender

called src.

Each mission mn:k
e is a 7-tuple {e, k, n, t, s, n′, t′} where

e is the type of the mission (i.e., event type), k is a mission
sequence number relative to its initiator node and n is the

identifier of the node that has created the mission (i.e., the
initiator node). The 3-tuple {e, k, n} is the identifier of the
mission. t is the date of its creation, s is its current state
(i.e., start, will, etc.), n′ is the identifier of the last node
which updated the current state, and t′ is the date of the
last mission update. Data are not represented in our formal
model. As explained before, each node broadcasts the view
of the missions it is aware of at regular time intervals. In
the global timing approach, a view is equal to the relative
mission; i.e., mn:k

e = vn:k
e . A view can also embed extra

information (e.g., position of the sender, battery life time).
We provide in Figures 3 to 8 the complete system of rules

that composes the global timing AMiRALE model. We note
self the node which applies the rule and now the current date
according to the clock of self. We remind that clocks are
globally synchronized in this version of AMiRALE. free()
indicates that the node applying the rule is not in a will
or do state for any mission for the moment. As indicated
here-before, the model uses several user functions which are
application dependent. We call those user functions filters.
The complete list of filters is detailed as follows:
• fe

ignore(m
n:k
e) is used to decide if a new mission should

be created or not when a new event is captured by a
sensor node (e.g., a similar mission was perhaps already
initiated because of the same event e).

• fe
select(self : mn:k

e , src : vn:k
e) enables the local node

self to decide if it has to leave the mission mn:k
e

because src, which has sent the view vn:k
e , is also

taking care of the mission and is more advanced in
the process.

• fe
blind(mn:k

e) is used to decide if a view should be
broadcasted or not. This filter can help to reduce
potential network traffic and collisions.

• fe
pass(m

n:k
e) is used by a Solve to decide if the mission

mn:k
e should not be selected. This function enables to

implement a mission selection scheduler and to prevent
several nodes to select certain missions (e.g., battery is
too weak to solve this mission).

• fe
check(vn:k

e) is used by nodes to ignore several views.
This function enables to implement safety verifications
or security policy (e.g., several nodes are not allowed
to share or to modify certain mission types).

Rules of Figures 5 and 7 enable the swarm to be resilient
since it ensures that a mission can be taken back by another
solver if the first one has encountered several failures (e.g.,
engine failure, low battery, solving problem). Service usage
is provided by solver local rules (Figure 5 and 6). Service
selection is implemented through both solver local decisions
rules and solver message reception rules (Figure 5 and 7).
The autonomy is given by the use of only local computations
and asynchronous communications (Figure 4). Finally, filters
enable to customize the model behavior to a target scenario
and therefore improve the collaboration performances.

e
Sense

{ ∅ }

!fe
ignore(mn:k

e)

Sense

{ e, k, self, now, start, self, now }

Figure 3. Sensor rule of AMiRALE.

Anye

{ e, k, n, t, s, n′, t′ }

self :: 〈 e, k, n, t, s, n′, t′ 〉 !fblind(mn:k
e)

Anye

{ e, k, n, t, s, n′, t′ }

Figure 4. Message (view) sending rule of AMiRALE.

Solve

{ e, k n, t, start, n, t }

!fe
pass(mn:k

e) & free()

Solve

{ e, k, n, t, will, self, now }

Solve

{ e, k, n, t, will, n′, t′ }

n′ 6= self & (now − t′) > Ψe
will & !fe

pass(mn:k
e) & free()

Solve

{ e, k, n, t, will, self, now }

Solve

{ e, k, n, t, do, n′, t′ }

n′ 6= self & (now − t′) > Ψe
do & !fe

pass(mn:k
e) & free()

Solve

{ e, k, n, t, do, self, now }

Figure 5. Solver local-decision management of AMiRALE.

mn:k
e ready

Solve

{ e, k, n, t, will, self, t′ }

Solve

{ e, k, n, t, do, self, now }

mn:k
e finished

Solve

{ e, k, n, t, do, self, t′ }

Solve

{ e, k, n, t, end, self, now }

mn:k
e aborted

Solve

{ e, k, n, t, do, self, t′ }

Solve

{ e, k, n, t, abort, self, now }

Figure 6. Solver local-event management of AMiRALE.

n′ :: 〈 e, k, n, t, will, n′, t′ 〉
Solve

{ e, k, n, t, will, self, t′′ }

n′ 6= self & fe
check(vn:k

e) & (now − t′) < Ψe
will & [fe

select(self : mn:k
e , n′ : vn:k

e) = n′ ‖ (now − t′′) > Ψe
will]

Solve

{ e, k, n, t, will, n′, t′ }

n′ :: 〈 e, k, n, t, do, n′, t′ 〉
Solve

{ e, k, n, t, do, self, t′′ }

n′ 6= self & fe
check(vn:k

e) & (now − t′) < Ψe
do & t′′ > t′

Solve

{ e, k, n, t, do, n′, t′ }

Figure 7. Solver message (view) reception of AMiRALE.

:: 〈 e, k, n, t s, n′, t′ 〉
Anye

{ ∅ }

fe
check(vn:k

e)

Anye

{ e, k, n, t, s, n′, t′ }

:: 〈 e, k, n, t, s′, n′, t′ 〉
Anye

{ e, k, n, t, s, n′′, t′′ }

n′ 6= self & s′ > s & fe
check(vn:k

e)

Anye

{ e, k, n, t, s′, n′, t′ }

:: 〈 e, k, n, t, will, n′, t′ 〉
Anye

{ e, k, n, t, will, n′′, t′′ }

n′ 6= n′′ 6= self & t′ > t′′ & fe
check(vn:k

e)

Anye

{ e, k, n, t, will, n′, t′ }

:: 〈 e, k, n, t, do, n′, t′ 〉
Anye

{ e, k, n, t, do, n′′, t′′ }

n′ 6= n′′ 6= self & t′ > t′′ & fe
check(vn:k

e)

Anye

{ e, k, n, t, do, n′, t′ }

Figure 8. General message (view) reception of AMiRALE.

D. Flooding Control

The service discovery mechanism that we propose is
based on flooding. Consequently, if the density of nodes
is very high, network congestion can appear [19]. Several
solutions exist to solve this issue. AMiRALE uses the
aggregation of messages [6]. All views are sent in one unique
broadcast packet which significantly reduces the network
congestion. It is furthermore possible to use three other
efficient techniques [20]:

• counter-based approach which prevents a node from
broadcasting a view that has been received or sent more
than n times in a given time interval;

• probabilistic-based approach which causes a view to
be broadcasted depending on a pseudo-random draw;

• jitter-based approach in which a small delay is added
before sending a message. This technique enables to
de-synchronize the broadcasts issued by nodes and to
remove part of the collisions.

These techniques can easily be added to our service
discovery system in both the formal model (by means of
the fe

blind user function) and the real implementation.

IV. EVALUATION

A. Scenario and Collaborative Models

In order to assess the benefits of AMiRALE, we chose
to evaluate it in a park cleaning scenario called ParCS [21].
Indeed, this scenario offers a solution to achieve a selective
collection of waste in a park by using an autonomous swarm
composed of UGVs (Unmanned Ground Vehicles). These
vehicles are self-organized so as to manage the collection
of waste and to clean the park. Each UGV is specialized,
which means that it can only clean one kind of garbage (e.g.,
paper, glass, compost, plastic). This specialization makes the
heterogeneity aspect of the swarm. However, each UGV is
able to sense any kind of garbage. In this scenario, each
mobile robot is moving by following a random way-point
mobility model [22]. All waste pieces are thrown uniformly
in the park.

In order to evaluate the performances of our proposed
solution, we compare it with two other existing schemes:
• the worst-case solution: a full random behavior with

no communication between robots what we call Mute
model;

• the best-case solution: a centralized and omniscient
Black Board system with a shared-memory what we
call Black Board model.

1) Mute Model: in this solution, all mobile robots are
moving randomly and independently from the others. Each
UGV cleans a garbage of its own type when it senses it.

There is no communication here, which means that a garbage
will be cleaned only if a mobile robot moves close enough
to it during its travel. This solution is the worst possible
in terms of collaboration and efficiency since it is more a
collective approach than a collaborative scheme [23] [24].

2) Black Board Model: the Black Board [25] is a well
known model usually used for solving expert problems
[26]. The main idea of the Black Board is that a group
of specialized entities are working together on a common
problem. This problem can be subdivided in several pieces
(i.e., tasks) that can be achieved by the different specialists
in function of their specific capacities. When an entity is able
to solve a task, it locks it on the black board. When the task
is over, it is removed from the Black Board. This concept
has been widely used in computer science for many years
and possesses a lot of benefits [27]. This approach is based
on opportunistic cooperation as AMiRALE is. The shared-
memory Black Board implementation is the best in terms of
collaboration efficiency but it is completely unrealistic [28].
Indeed, in this implementation all the nodes share a single
memory which means that any event, action or knowledge
from a node is simultaneously available for the others. In
this approach, no communication is needed. This model is
theoretically the best since the information dissemination is
provided atomically. For this solution, each entity is also
moving randomly and cleaning compliant garbage. However,
when a mobile robot senses a garbage of an incompatible
type, its location is written on the Black Board. Each robot
consults periodically the content of the Black Board and
locks the closest compatible garbage that it finds when it is
possible. When a garbage is locked, the responsible robot
goes directly to the garbage position in order to remove it.
When the garbage is cleaned, the corresponding information
is removed from the Black Board. Te preemption is not
allowed, which means that a locked garbage cannot be
cleaned by another robot. In the case of robot failure (i.e.,
robot is done), the possible locked garbage is automatically
unlocked by the Black Board itself. In other words, not any
dead lock can appear in this scheme [29].

B. AMiRALE Configuration

AMiRALE is used here to enable the collaboration be-
tween mobile robots. The mission type e represents a type
of garbage (e.g., paper, glass, compost, plastic). Thus, a
robot which can clean an e garbage is a Solve. For all e, all
robots are Sense; i.e., each robot can sense garbage of any
types. User defined functions and variables are configured
as follows:
• fe

ignore returns true when a mission already exists for
the sensed garbage in the sensor missions database.

• fe
pass is used to select the closest available and com-

patible garbage for a Solve.
• fe

blind is used to reduce the mission diffusion when this
last one is in the end state and not any other robots has

emitted a contradictory information for more than 1000
seconds.

• fe
select enables to select locally the closest solver be-

tween the two implied in the information exchange (i.e.,
each view contains the position of the sender).

• fe
check is not used here since the security aspect is out

of the scope of the paper.
• Ψe

will and Ψe
do are fixed to 1000 seconds.

• Each robot broadcasts its views every 5 seconds.

C. Simulation Parameters

We have run our simulations in a dynamic graph simulator
called JBotSim [30] [31]. This software is actually a Java
library which enables the design of low and high level
scenarios and behaviors of communicating heterogeneous
mobile nodes. Our simulation parameters are described in
Table I.

Table I
EXPERIMENTATION PARAMETERS

Parameter Value
Park size 1000 x 1000 m

Robots size 1 x 1 m
Robots speed 5 m / seconds

Robots sensing range 30 m
Robots communication range 30 m

Number of runs per simulation 200

We evaluate here the complete cleaning time in function
of several parameters:
• number of garbage: number of garbage per type of

garbage (Figure 9);
• number of robots: number of robots per type of garbage

(Figure 10);
• number of types: number of existing garbage types in

the park (Figure 11);
• frequency of failures: frequency at which a random

robot is deleted from the map and replaced by a new
similar and memory-empty one (Figure 13).

D. Simulation Results

Figure 9 exhibits the total cleaning time in seconds for the
different solutions (Mute, Black Board and AMiRALE) as
a function of the number of garbage per type. The number
of types is fixed to 6 as the number of robots per type (i.e.,
36 robots in total). As expected, the cleaning time increases
as the number of garbage is more and more important. The
important values of the standard deviation on the Mute plot
is due to the pure random aspect of the solution. Indeed,
in this case, each robot moves randomly and independently
from the others in the map, cleaning garbage during their
travel. The performance of this solution is strongly linked
to the correlation between the initial robots’ position, the
distribution of garbage on the map and the behavior of the
random way-point mobility model. This is the the reason

0k

5k

10k

15k

20k

25k

30k

35k

40k

45k

 20 40 60 80 100 120

C
le

a
n
in

g
 t
im

e
 (

s
e
c
)

Garbages/Type

Cleaning time (6 types and 6 robots/type)

Mute
Black Board

AMiRALE

Figure 9. Cleaning time for 6 types and 6 robots per type as a function
of the number of garbage (36 robots in total).

0k

20k

40k

60k

80k

100k

120k

 2 4 6 8 10 12

C
le

a
n
in

g
 t
im

e
 (

s
e
c
)

Robots/Type

Cleaning time (6 types and 60 garbages/type)

Mute
Black Board

AMiRALE

Figure 10. Cleaning time for 6 types and 60 garbage per type as a function
of the number of robots (360 garbage in total).

why results are fluctuating. We can also notice that the
Black Board and the AMiRALE plots are very close. Of
course, the Black Board model is better since it does not
require any communication between robots and thus does
not suffer from any distance effect between them. Also, it
is not facing synchronization issues between versions of the
global mission state since it is using a single shared-memory
between robots. AMiRALE provides good results compared
to the Black Board since it only uses local computations and
asynchronous messages.

Figure 10 exhibits the total cleaning time in seconds for
the different solutions as a function of the number of robots
per type. The number of types is fixed to 6 and the number
of garbage per type is fixed to 60 (i.e., 360 garbage in
total). Here, increasing the number of robots reduces the
total cleaning time. Again, the Mute solution exhibits poor
results since the Black Board and AMiRALE provide quite
equivalent results. We can also notice that the steepness of
both the Black Board and the AMiRALE plots tends towards
zero as the number of robots per type increases.

Figure 11 exhibits the total cleaning time in seconds
for the different solutions as a function of the number of

0k

5k

10k

15k

20k

25k

30k

35k

40k

45k

50k

 2 4 6 8 10 12

C
le

a
n
in

g
 t
im

e
 (

s
e
c
)

Types

Cleaning time (6 robots/type and 60 garbages/type)

Mute
Black Board

AMiRALE

Figure 11. Cleaning time for 60 garbage per type and 6 robots per type
as a function of the number of types.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 10 100 1k 10k 100k

C
le

a
n
in

g
 r

a
ti
o

Garbage cleaning time (sec)

Cleaning time per garbages (6 types, 6 robots/type and 60 garbages/type)

Mute
Black Board

AMiRALE

Figure 12. Cleaning time CDF for 6 types, 6 robots per type and 60
garbage per type (36 robots and 360 garbage in total).

types. The number of robots per type is fixed to 6 and the
number of garbage per type is fixed to 60. Therefore, the
global numbers of robots and garbage are increasing with
the number of types. The Mute solution is less and less
efficient as the number of types increases. This means that
the increase of the number of garbage has a stronger effect
than the increase of the number of robots. On the contrary,
Black Board and AMiRALE plots decrease with the growing
of the number of types. Indeed, each robot is able to locate
and communicate to the swarm the existence of a garbage
through sensing even if this last one has a different type.
Again, the performance of AMiRALE and the Black Board
are close.

Figure 12 is a cumulative distribution function of garbage
cleaning time. The number of types is fixed to 6 as the
number of robots per type and the number of garbage per
type is fixed to 60 (i.e., 36 robots and 360 garbage in
total). We can notice here that the benefit of the AMiRALE
approach is more visible for the cleaning of the last 20% of
garbage.

Figure 13 exhibits the total cleaning time in seconds for
the different solutions as a function of the failures frequency.

0k

5k

10k

15k

20k

25k

30k

35k

40k

100
500

1k 5k 10k

C
le

a
n
in

g
 t
im

e
 (

s
e
c
)

Failures frequency (sec)

Cleaning time (6 types, 6 robots/type and 60 garbages/type)

Mute
Black Board

AMiRALE

Figure 13. Cleaning time for 6 types, 6 robots per type and 60 garbage
per type as a function of the failure frequency (36 robots and 360 garbage
in total).

The number of types is fixed to 6 as the number of robots
per type and the number of garbage per type is fixed to
60 (i.e., 36 robots and 360 garbage in total). At each reset,
a random robot is removed from the map and replace by
a fresh new similar and empty-memory one. As expected,
the impact of a reset on the Black Board is negligible since
the memory of the removed robot is not lost due to the
presence of the shared-memory. The Mute solution is not
facing any important effects of the reset either. The small
variations observed are due to the random behavior of the
robots. We can notice that AMiRALE is also not affected by
the reset. Indeed, even if the memory of the removed robot is
lost, the replication mechanism inside the AMiRALE model
allows the fresh new replacing robot to recover a coherent
global mission state of the scenario by communicating with
the other nodes. We can thus claim here that AMiRALE is
resilient to node failures even for a high frequency (e.g.,
every 100 seconds).

V. CONCLUSION

We have presented AMiRALE, a novel service discovery
mechanism for highly mobile, autonomous, volatile and
collaborative swarms of UMS. It solves issues related to
services location, selection and usage. It supports a degraded
mode of operation thanks to the approach that relies only on
one-way broadcast communications and local computations.
It is totally distributed and decentralized.

We have detailed the theoretical model and have per-
formed several simulations on a park cleaning scenario in
order to compare the benefits of AMiRALE to a collective
solution (i.e, Mute model) without communication between
robots and an optimal theoretic solution based on the Black
Board model which relies on a global shared-memory for
each robot. We have shown that AMiRALE exhibits results
close to the Black Board model and that it is resilient to a
notable frequency of node failures.

We have already evaluate the two other versions of
AMiRALE (i.e., relative ordering and relative timing) with
the presented one (i.e., global timing) on the same park
cleaning scenario [32]. One of our future goals is to add
other vehicle types such as Unmanned Aerial Vehicles to
our park cleaning scenario in order to improve the sensing
process. We will run a prototype of AMiRALE on virtual
machines interconnected by a network emulator such as
NEmu [33] [34] which will enable us to carry out realistic
performance measurements. We also plan to experiment our
scenario in a real park with real vehicles [21]. We have
already started a collaboration with the Mugen Company1

for this purpose. Finally, we plan to demonstrate the benefits
of AMiRALE for other applications and devices related to
connected objects, smart cities and the Internet of Things.

ACKNOWLEDGMENT

This work is partly funded by the Direction Générale de
l’Armement2 and the Région Aquitaine3.

REFERENCES

[1] N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar,
K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida,
K. Ohno, E. Takeuchi, and S. Tadokoro, “Collaborative map-
ping of an earthquake-damaged building via ground and aerial
robots,” Journal of Field Robotics, vol. 29, no. 5, pp. 832–
841, September 2012.

[2] S. Chaumette, R. Laplace, C. Mazel, R. Mirault, A. Dunand,
Y. Lecoutre, and J.-N. Perbet, “Carus, an operational retasking
application for a swarm of autonomous uavs: First return
on experience,” in Proceedings of the 30th IEEE MILCOM,
November 2011, pp. 2003–2010.

[3] DARPA, Collaborative Operations in Denied Environment
(CODE), 2014, solicitation Number: DARPA-BAA-14-33.

[4] J. Mackar and S. Corson, Mobile Ad hoc Networking
(MANET): Routing Protocol Performance Issues and Eval-
uation Considerations, IETF, 1999, rfc 2501.

[5] C. Ververidis and G. Polyzos, “Service discovery for mobile
ad hoc networks: a survey of issues and techniques,” IEEE
Communications Surveys Tutorials, vol. 10, no. 3, pp. 30–45,
March 2008.

[6] J. Hoebeke, I. Moerman, B. Dhoedt, and P. Demeester,
“Analysis of decentralized resource and service discovery
mechanisms in wireless multi-hop networks,” in Wired/Wire-
less Internet Communications, ser. Lecture Notes in Computer
Science. Springer, 2005, vol. 3510, pp. 181–191.

[7] A. Mian, R. Baldoni, and R. Beraldi, “A survey of service
discovery protocols in multihop mobile ad hoc networks,”
IEEE Pervasive Computing, vol. 8, no. 1, pp. 66–74, January
2009.

1http://mugen-sas.com
2http://www.defense.gouv.fr/dga
3http://aquitaine.fr

[8] Y. Cao, A. Fukunaga, A. Kahng, and F. Meng, “Cooperative
mobile robotics: antecedents and directions,” in Intelligent
Robots and Systems 95. ’Human Robot Interaction and Co-
operative Robots’, Proceedings of IEEE/RSJ International
Conference on, vol. 1, August 1995, pp. 226–234.

[9] L. Cheng, “Service advertisement and discovery in mobile ad
hoc networks,” in Proceedings of CSCW, 2002.

[10] C. Mbarushimana and A. Shahrabi, “Comparative study of re-
active and proactive routing protocols performance in mobile
ad hoc networks,” in 21st International Conference on Ad-
vanced Information Networking and Applications Workshops
(AINAW), vol. 2, May 2007, pp. 679–684.

[11] U. Mohan, K. Almeroth, and E. Belding-Royer, “Scalable
service discovery in mobile ad hoc networks,” in Networking
Technologies, Services, and Protocols; Performance of Com-
puter and Communication Networks; Mobile and Wireless
Communications, ser. Lecture Notes in Computer Science.
Springer, 2004, vol. 3042, pp. 137–149.

[12] J. Su and W. Guo, “A survey of service discovery protocols
for mobile ad hoc networks,” in International Conference on
Communications, Circuits and Systems (ICCCAS), May 2008,
pp. 398–404.

[13] T. Camp, J. Boleng, and V. Davies, “A survey of mobility
models for ad hoc network research,” Wireless communica-
tions and mobile computing, vol. 2, no. 5, pp. 483–502, 2002.

[14] G. Ravikiran and S. Singh, “Influence of mobility models
on the performance of routing protocols in ad-hoc wireless
networks,” in IEEE 59th Vehicular Technology Conference
(VTC), vol. 4, May 2004, pp. 2185–2189.

[15] A. Carzaniga and A. L. Wolf, “Content-based networking: A
new communication infrastructure,” in Developing an Infras-
tructure for Mobile and Wireless Systems, ser. Lecture Notes
in Computer Science. Springer, 2002, pp. 59–68.

[16] B. Kaur and A. Kaur, “A survey of time synchronization pro-
tocols for wireless sensor networks,” in International Journal
of Computer Science and Mobile Computing. IJCSMC, 2013,
vol. 2, no. 9, pp. 100–106.

[17] V. Autefage, “Amirale formal model - a service discovery and
collaboration system formalism based on dynamic graph rela-
beling,” LaBRI - University of Bordeaux, Tech. Rep., Febru-
ary 2015, https://hal.archives-ouvertes.fr/hal-01114961/.

[18] R. Laplace, “Applications et services DTN pour flotte collabo-
rative de drones,” Ph.D. dissertation, University of Bordeaux,
December 2012.

[19] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm
problem in a mobile ad hoc network,” in Proceedings of the
5th annual ACM/IEEE international conference on Mobile
computing and networking. ACM, 1999, pp. 151–162.

[20] B. Williams and T. Camp, “Comparison of broadcasting
techniques for mobile ad hoc networks,” in Proceedings of
the 3rd ACM International Symposium on Mobile Ad Hoc
Networking &Amp; Computing, ser. MobiHoc ’02. ACM,
2002, pp. 194–205.

[21] V. Autefage, A. Casteler, S. Chaumette, N. Daguisé, A. Du-
tartre, and T. Mehamli, “Parcs-s2 : Park cleaning swarm
supervision system – a position paper,” in 9th AIRTEC
International Congress, October 2014.

[22] C. Bettstetter, H. Hartenstein, and X. Pérez-Costa, “Stochastic
properties of the random waypoint mobility model,” Wireless
Networks, vol. 10, no. 5, pp. 555–567, September 2004.

[23] L. E. Parker, “Distributed intelligence: Overview of the field
and its application in multi-robot systems,” in AAAI Fall
Symposium on Regarding the Intelligence in Distributed In-
telligent Systems, 2007.

[24] ——, “Distributed intelligence: Overview of the field and
its application in multi-robot systems,” Journal of Physical
Agents, vol. 2, no. 1, pp. 5–14, 2008.

[25] D. D. Corkill, “Blackboard systems,” AI expert, vol. 6, no. 9,
pp. 40–47, 1991.

[26] C. Ingram, R. Payne, S. Perry, J. Holt, F. Hansen, and
L. Couto, “Modelling patterns for systems of systems archi-
tectures,” in IEEE 8th Annual Systems Conference (SysCon),
March 2014, pp. 146–153.

[27] J. Hunt, “Blackboard architectures,” JayDee Technology Ltd,
vol. 27, 2002.

[28] D. D. Corkill, “Design alternatives for parallel and distributed
blackboard systems,” Tech. Rep., 1988.

[29] N. Kaveh and W. Emmerich, “Deadlock detection in distri-
bution object systems,” in Proceedings of the 8th European
Software Engineering Conference Held Jointly with 9th ACM
SIGSOFT International Symposium on Foundations of Soft-
ware Engineering, ser. ESEC/FSE-9. ACM, 2001, pp. 44–51.

[30] A. Casteigts, “The jbotsim library,” CoRR, vol.
abs/1001.1435, 2010.

[31] ——, JBotSim, http://jbotsim.sourceforge.net.

[32] V. Autefage, S. Chaumette, and D. Magoni, “Comparison of
time synchronization techniques in a distributed collaborative
swarm system,” in 24th European Conference on Networks
and Communications (EuCNC). IEEE, June 2015.

[33] V. Autefage and D. Magoni, “Network emulator: A network
virtualization testbed for overlay experimentations,” in IEEE
17th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks (CA-
MAD), September 2012, pp. 266–270.

[34] V. Autefage, Network Emulator for mobile universes (NEmu),
http://nemu.valab.net.

