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Abstract—Time drift in distributed systems is an important
issue especially for mobile ad hoc networks. Indeed, it can break
the synchronization between the internal clocks of the nodes.
Consequently, protocols over such networks should consider this
problem in the case where they need to use time information. In
this paper, we define a new collaborative system for autonomous
mobile robots called AMiRALE. We present three versions of
this system each with different time constraints. We provide its
theoretical description as well as simulation results according to
a park cleaning scenario. Results show that time synchronization
has a limited impact on the efficiency of our collaborative system.
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I. INTRODUCTION

According to several studies [1] [2] [3], there were more
than 10 billions connected and communicating objects across
the world in 2013. This number is expected to grow up to
reach 30 to 80 billions in 2020. Among those connected
objects, there were more than 4 billions civilian robots in 2012
which represented a market of more than 10 billion euros [4].
This market should exceed 100 billion euros before 2020 [1].
One of the emerging robotic approaches is collaboration [5]
[6] [7] which is the way to use several robots in order to
achieve a global goal. Over the last few years, collaboration
between robots has been widely studied through several topics
as swarm architecture [8], distributed intelligence [9] [10],
task-allocation [11] and fault tolerance [12]. In a realistic
approach, there is no central control agent which manages
each individual robot. Indeed, a distributed system is preferred,
which means that each robot in the swarm is independent and
communicates with the others in order to adapt its own behav-
ior. This decentralized approach, compared to a centralized
scheme, brings several advantages such as natural exploitation
of parallelism, reliability, and scalability [13]. Despite these
benefits, distributed systems face an important challenge which
is time synchronization [14]. Indeed, even though each entity
of the swarm has its own clock, the distributed aspect implies
that those clocks can drift and thus not be synchronized [15].

In this paper we propose a new distributed system which
enables collaboration between several mobile robots. We have
developed several versions of our proposal which take care
of the time drift problem between the clocks of the robots.
We aim to investigate the performance differences of those
versions in order to highlight the pros and cons of choosing
one of them. The remainder of this paper is organized as

follows. We first provide a short explanation about the time
drift problem and its common existing solutions in distributed
systems. In Section III, we describe our new collaboration
model and its several time synchronization adaptations. In
Section IV, we present and discuss several simulation results.
We finally conclude and present future work in Section V.

II. TIME SYNCHRONIZATION

In distributed systems, time is a key problem. Indeed, each
node of such a network should have its own internal clock
and the time can drift differently from one node to another for
several reasons like temperature variations or quartz proper-
ties [15]. This problem has been well known for many years
and has led to the creation of the NTP protocol [16]. In
MANETs [17] (Mobile Ad-Hoc Networks), nodes are moving,
involving various disconnections in the network over time. In
other words, in a such network, it is not possible to ensure
that a communication is always possible between two nodes.
Therefore, making one (or several) of these nodes a central
time synchronization agent (as for NTP) is not suitable.

Most of the previous studies on collaborative swarms of
mobile nodes do not address the problem of time synchro-
nization between nodes. Indeed, even if their communication
protocols involve time (through timeouts and periods for
instance), they usually consider that time is synchronized by a
global entity [18] [19] [20] (e.g., GPS or global timing agent).
Even in this case, it is possible for a node to loose for an
arbitrary time the connection with the global timing agent. For
instance, it has been proven that vegetation or landform could
lead to communication failures with a GPS system and thus
it could introduce temporal aberrations between nodes [21].
Moreover, a large part of mobile robots and connected objects
are not equipped with such synchronization mechanisms be-
cause of energy, bandwidth, hardware and unstable connections
constraints [22].

Three main approaches exist in order to overcome the
time drift problem in distributed systems [23]. The relative
ordering orders events without time reference. In this scheme,
communications between robots don’t contain any direct time
reference (i.e., date or clock value) [24]. In the relative timing,
nodes take into account the disparity of drift time from the
others. In this scheme, communications between robots usually
contain time deviation values (i.e., delta) instead of absolute
dates [25]. Finally the global timing ensures that all clocks are
synchronized by using a global timing agent (e.g., NTP) [16].



In this paper, we present three versions (i.e., one per
synchronization mechanism) of a distributed collaborative sys-
tem for a swarm of heterogeneous robots and we study their
efficiency differences through a park cleaning scenario.

III. AMIRALE: A COLLABORATIVE SYSTEM

In this section we present AMiRALE (Asynchronous Mis-
sions Relay for Autonomous and Lively Entities), a collab-
orative and distributed system for heterogeneous swarms of
mobile nodes (e.g., robots, UAVs). AMiRALE enables a swarm
of specialized mobile nodes to perform common tasks collab-
oratively.

A certain set of events (e.g., temperature threshold ex-
ceeded, suspicious movement) requires a reaction of the swarm
(e.g., sending a signal to a control center, triggering an alarm).
A mission is the set of information that describes such an
action to be performed by the swarm. A sensor is a node
that is able to detect an event (through its sensors) and create
the corresponding mission. A solver is a node that is able to
apply the specific action required by the mission. Finally, a
forwarder is just a node which forwards a mission through
the swarm. The swarm is able to manage several types of
missions, one node can thus have several roles. Moreover, a
sensor node for a specific mission type is not always a solver
for this same type (because of energy consumption, space
and weight limitations, etc.). Therefore, the system requires a
dissemination mechanism and a task-allocation strategy. Each
node has its own clock, its own memory (missions’ database)
and an unique identifier. At a regular period, nodes share some
parts of their database to their neighbors and update the status
of the received missions. There is no synchronization between
the nodes, all operations are made locally and communications
are performed through broadcasts. One of the fields of the
mission description is its internal state which evolves while the
mission is propagated through the network. This state can take
five different values which are strictly ordered. This order is
used later in this paper to describe the evolution of the system:

1) start: the mission has been created but no node is
currently trying to solve it;

2) will: the mission has been caught by a solver, and it
is preparing to solve it (e.g., moving to the location
where the mission takes place);

3) do: the mission is currently being solved;
4) abort: the mission has been dropped because it has

apparently already been solved (e.g., a target object
that the solver is supposed to remove has disap-
peared);

5) end: the mission is solved.

The start state is only set at mission creation time by the
node that generates it. The other states can only be set by
solvers. A forwarder is a read-only node; i.e., it cannot modify
the state field. As explained before, states are strictly ordered:
start < will < do < abort < end. Each mission description
contains a state, a creator identifier and creation date, the date
of last modification and the identifier of the last node that
updated it.

When a node receives a newer version of one of the
missions it is aware of, it updates this mission in its local
memory and broadcasts the new version. When a solver gets

a mission in start state that it is able to solve, it turns the state
field to will and prepares itself to solve it (e.g., by moving
to a specific location if required). When it begins solving the
mission, it turns its state field to do. If the solver detects that
the mission has apparently already been solved (e.g., a target
object that the solver is supposed to remove has disappeared),
it turns the state field to abort. Finally, when it has succeeded
in solving the mission, it turns the state field to end. A solver
can be in will or do mode for only one mission at a time.
Furthermore, a solver can stay in the will (resp. do) state only
for a limited time. If a time threshold is exceeded, the solver
leaves the mission if and only if it is informed by another
solver that this last one is now taking care of the same mission.
Additionally, if a solver is informed that the mission it is
dealing with (will or do state) has evolved to a greater state, it
leaves the mission and updates the corresponding description.
For a specific mission type, if a node is neither a sensor, nor
a solver, it is considered as a forwarder.

Since several decisions and improvements are application-
dependent (e.g., creating a new mission for an event which
is already considered, not sharing a mission because it has
been already shared enough for a certain amount of time),
AMiRALE includes several user defined functions called filters
in order to improve the behavior of the distributed system.

As explained before, each mission contains two time in-
formation: the date of creation and the date of last update.
In the case where all nodes of the swarm have their clocks
synchronized (i.e., global timing), missions can be shared
without modifications. The first version of AMiRALE is based
on this assertion. The two other versions of AMiRALE are
working on desynchronized swarms. In other words, each node
of the swarm has its own clock and no time synchronization
is operated on these clocks. The relative timing version uses
delta times rather than raw dates in messages. This is the
only difference, the internal behavior is the same as the
global timing version. The last version operates in relative
ordering. In this version, the shared missions do not contain
any time reference. Thresholds overruns are considered from
the moment when the node has received the mission. Here,
the global behavior is quite different, since time constraints
are less accurate compared to the two other versions. A node
can switch from one version of AMiRALE to another if it
considers that the requirements are no longer met (e.g., loss
of the GPS signals). This capability enables to avoid the issue
of communication failures between nodes and timing agents,
introduced in Section II.

These three versions of AMiRALE have been formalized
through an extended dynamic graph relabeling formalism
called ADAGRS [20] [26] (Asynchronous Dynamicity Aware
Graph Relabeling System) which is only based on one way
broadcasts and local computations. The limitations imposed
by this model are the key to ensure a totally decentralized and
distributed approach. The complete model of the three versions
is available in a technical report [27]. Due to space limitations,
we cannot write the detailed model in this paper.



IV. EXPERIMENTATION

A. Simulation Scenario

In order to study the differences between the time synchro-
nization versions of AMiRALE, we evaluate each one through
a park cleaning scenario called ParCS [28]. This scenario offers
a solution to achieve a selective collection of waste in a park by
using an autonomous swarm composed of UGVs (Unmanned
Ground Vehicles). These vehicles are self-organized so as to
manage the collection of waste and to clean the park. Each
UGV is specialized, which means that it can only clean one
kind of garbage (e.g., paper, glass, compost, plastic). This
specialization makes the swarm heterogeneous. However, each
UGV is able to sense any kind of garbage. In this scenario,
each mobile robot is moving by following a random way-point
mobility model [29]. All waste pieces are thrown uniformly in
the park.

B. Simulation Setup

AMiRALE is used here to enable the collaboration between
the mobile robots. Several optimizations in the model are
performed (through user filters introduced in Section III) in
order to improve the global efficiency of the swarm. When
a sensor detects a garbage, a mission is generated only if no
other mission concerning the same garbage already exists in
the missions’ database of this sensor (filter fe

ignore). A solver
takes the mission relative to the closest garbage that it can clean
(filter fe

pass). A node does not broadcast a mission if this last
one is is marked as solved and no other contrary information
has been received for more than 1000 seconds. Also, a mission
is not shared if a similar version has been received for less than
100 seconds without contradiction (filter fe

blind). If two solvers
are targeting the same mission and they are close enough to
exchange their respective versions, the farthest node from the
garbage leaves the mission for the benefit of the other (filter
fe
select). A solver is allowed to keep a mission in will or do state

for 1000 seconds. Each robot broadcasts its known missions
every 5 seconds.

We have run our simulations in a dynamic graph simulator
called JBotSim [30] [31]. This software is actually a Java li-
brary which enables the design of low and high level scenarios
and behaviors of communicating heterogeneous mobile nodes.
Our simulation parameters are described in Table I.

Table I. EXPERIMENTATION PARAMETERS

Parameter Value
Park size 1000 x 1000 m

Robots size 1 x 1 m
Robots speed 5 m / second

Robots sensing range 30 m
Robots communication range 30 m
Robots communication delay 1 second

Number of runs per simulation 500

For the relative timing and the relative ordering AMiRALE
versions, the internal clock of each node is desynchronized
by more than 1 second which means that no node has the
same clock value at the same moment. We evaluate here the
complete cleaning time and the average number of shared
missions in function of several parameters:

• number of types: number of existing garbage types in
the park (Figure 3);

• number of garbage: number of garbage per type (Fig-
ure 1);

• number of robots: number of robots per type (Figure
2);

• frequency of failures: frequency at which a random
robot is deleted from the map and replaced by a new
similar and memory-empty one (Figure 4).

C. Simulations Results

Figure 1 exhibits the total cleaning time in seconds and the
average number of shared missions for the different AMiRALE
versions (global timing, relative timing and relative ordering)
as a function of the number of garbage per type. The number
of types is set to 6 as the number of robots per type (i.e., 36
robots in total).
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Figure 1. Cleaning time and number of shared missions for 6 types and 6
robots per type as a function of the number of garbage.

As expected, the cleaning time and the number of shared
missions increase as the number of garbage is more and
more important. We can notice that the three versions provide
similar performance results. Also we notice that the number
of shared missions increases to 600 missions for 120 wastes
per type (i.e., 720 wastes in total). As explained before, a
shared mission contains a type, 2 node identifiers (creation
and last update), 2 time information (for the global timing and
the relative timing versions), a state and a data. Here the data
is the position of the target garbage (e.g., GPS coordinates).
Since GPS coordinates for a point can be stored in 80 bits [32]
[33] (with a precision of about 1 meter), we can simply
assume that the store size for a mission will not require more
than 171 bits (32 bits per time information, 8 bits per node
identifier, 3 bits for the state, 8 bits for the mission type, and
80 bits for the garbage coordinates). We have also to add
the sender position and the sender identifier which brings the



store size to not exceed 260 bits. If we consider that a node
has to send 600 missions every 5 seconds, we can assume
that the requiring bandwidth is at least a bit more than 30
kbps which is slow enough to use standard protocols usually
used for communications between robots like Wi-Fi [34],
Bluetooth [35] and ZigBee [36].

Figure 2 and Figure 3 exhibit the total cleaning time in sec-
onds and the average number of shared missions respectively
as a function of the number of robots per type and the number
of types. The number of types is set to 6 and the number of
garbage per type is set to 60 (i.e., 360 garbage in total) for the
Figure 2. The number of robots per type is set to 6 and the
number of garbage per type is set to 60 for the Figure 3. In this
last case, the number of robots increases too, since the number
of robots is given per type. We can notice that the total cleaning
time decreases while the number of robots increases. Also, the
average number of shared missions increases in both cases.
In Figure 2, when the number of robots per type increases,
the number of sensors increases too. Therefore the number of
created missions is more important. In Figure 3, the increase
of the number of types implies an expansion of the number of
waste pieces too. This is the reason why the number of shared
missions is more important.
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Figure 2. Cleaning time and number of shared missions for 6 types and 60
garbage per type as a function of the number of robots.

Figure 4 exhibits the total cleaning time in seconds and the
average number of shared missions for the different solutions
as a function of the failures frequency. The number of types
is set to 6 as the number of robots per type and the number of
garbage per type is set to 60 (i.e., 36 robots and 360 garbage
in total). At each reset, a random robot is removed from the
map and replaced by a fresh new similar and empty-memory
one.

We can notice that the three versions are not affected by the
reset in terms of completion time. Indeed, even if the memory
of the removed robot is lost, the replication mechanism inside
the AMiRALE system allows the fresh new replacing robot
to recover a coherent global mission state of the scenario
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Figure 3. Cleaning time and number of shared missions for 60 garbage per
type and 6 robots per type as a function of the number of types.
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Figure 4. Cleaning time and number of shared missions for 6 types, 6 robots
per type and 60 garbage per type as a function of the failure frequency.

by communicating with the other nodes. We can thus claim
here that the three versions of AMiRALE are resilient to node
failures even at a high frequency (e.g., every 100 seconds).
Also, we notice that the number of shared missions is more
important for a high reset frequency (i.e., small value between
two resets). The reason is that the replication mechanism
requires to share an important part of the database in order
to enable the new empty-memory node to recover the status
of each active mission.



V. CONCLUSION

In this paper, we have introduced the three versions of
AMiRALE, a collaborative and distributed system for hetero-
geneous swarms of mobile nodes. Each version is dedicated
to a particular solution of the time drift problem in distributed
systems. We have detailed the theoretical concepts and have
performed several simulations on a park cleaning scenario in
order to compare the three versions of AMiRALE. We have
shown that the three versions provide similar performance
results in terms of total cleaning time, average number of
shared missions and resilience to node failures. We have also
exhibited the fact that the three versions of AMiRALE are
compliant with common communication protocols for robots
in terms of bandwidth requirements (i.e., Wi-Fi, Bluetooth
and ZigBee). For future work, we plan to add other vehicle
types such as Unmanned Aerial Vehicles to our park cleaning
scenario in order to improve the sensing process. We will run a
prototype of AMiRALE on virtual machines interconnected by
a network emulator such as NEmu [37] [38] in order to carry
out performance measurements. We also plan to experiment
our scenario in a real park with real vehicles [28]. We have
already started a collaboration with the Mugen Company1 for
this purpose.
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