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A B S T R A C T

Reliable estimates of past land cover are critical for assessing potential effects of anthropogenic land-

cover changes on past earth surface-climate feedbacks and landscape complexity. Fossil pollen records

from lakes and bogs have provided important information on past natural and human-induced

vegetation cover. However, those records provide only point estimates of past land cover, and not the

spatially continuous maps at regional and sub-continental scales needed for climate modelling.

We propose a set of statistical models that create spatially continuous maps of past land cover by

combining two data sets: 1) pollen-based point estimates of past land cover (from the REVEALS model)

and 2) spatially continuous estimates of past land cover, obtained by combining simulated potential

vegetation (from LPJ-GUESS) with an anthropogenic land-cover change scenario (KK10). The proposed

models rely on statistical methodology for compositional data and use Gaussian Markov Random Fields

to model spatial dependencies in the data.

Land-cover reconstructions are presented for three time windows in Europe: 0.05, 0.2, and 6 ka years

before present (BP). The models are evaluated through cross-validation, deviance information criteria

and by comparing the reconstruction of the 0.05 ka time window to the present-day land-cover data

compiled by the European Forest Institute (EFI). For 0.05 ka, the proposed models provide

reconstructions that are closer to the EFI data than either the REVEALS- or LPJ-GUESS/KK10-based

estimates; thus the statistical combination of the two estimates improves the reconstruction. The

reconstruction by the proposed models for 0.2 ka is also good. For 6 ka, however, the large differences

between the REVEALS- and LPJ-GUESS/KK10-based estimates reduce the reliability of the proposed

models. Possible reasons for the increased differences between REVEALS and LPJ-GUESS/KK10 for

older time periods and further improvement of the proposed models are discussed.
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1. Introduction

Anthropogenic impacts on past land cover have potentially
influenced the climate system more significantly than previously
assumed (e.g. Ruddiman, 2005). Many simulation studies have
evaluated the biogeophysical effects of vegetation and land-use
changes on past climate at the global scale (e.g. Claussen et al.,
2001; Brovkin et al., 2006; Pitman et al., 2009; Pongratz et al.,
2010; de Noblet-Ducoudré et al., 2012; Christidis et al., 2013).
However, descriptions of past land cover vary considerably among
studies, including: static present-day land cover (Strandberg et al.,
2011), dynamic (or static) potential land cover simulated by
dynamic vegetation models (DVMs) (e.g. Brovkin et al., 2002;
Hickler et al., 2012), and land-cover estimates combining DVMs
and anthropogenic land-cover change (ALCC) scenarios (Pongratz
et al., 2009; de Noblet-Ducoudré et al., 2012). The existing ALCC
scenarios (e.g. Kaplan et al., 2009; Pongratz et al., 2009; Klein
Goldewijk et al., 2011) also differ significantly from each other
(Gaillard et al., 2010) and their reliability still needs to be
evaluated.

Palaeoecology has provided important information on past
vegetation and land cover using fossil pollen and plant macro-
remains deposited and preserved in lake and bog sediments over
thousands of years. Although those palaeorecords provide insights
into the past vegetation that modelling approaches cannot, the
interpretation of palaeorecords, particularly quantification of land-
cover changes in specific spatiotemporal scales, remains difficult.
In addition palaeorecords are point estimates of land cover around
study sites. Therefore, the gaps between estimates at study points
need to be filled if palaeorecords of land-cover changes are to be
useful in climate modelling and other simulation studies that
require quantitative and spatially continuous input datasets. To
achieve this interpolation process we propose a new statistical
approach based on statistical spatial models and methods
developed in Tjelmeland and Lund (2003), Lindgren et al. (2011)
and Rue et al. (2009). Our approach takes spatially continuous
estimates of past land cover from a DVM and an ALCC scenario as
covariates and then constrains those using the point estimates of
pollen-based land cover; thus it can potentially avoid problems
that conventional interpolation methods using fossil pollen
records have. The DVMs and ALCC scenarios provide a way of
capturing land-cover changes due to the non-stationary environ-
mental conditions in Europe over areas with few or no pollen-
based observations.

This paper aims at reconstructing the land cover in Europe at
6.0, 0.2 and 0.05 ka (calibrated year BP) using the methods
developed in this study. The work is part of the LANDCLIM project
(LAND cover – CLIMate interactions in Europe during the
Holocene; Gaillard et al., 2010) that assesses the possible effects
of long-term changes in anthropogenic land cover on the Holocene
climate (Strandberg et al., 2014). Our objective is also to provide
methods and reconstructions that can be used in the evaluation of
ecological complexity of European landscapes in the past, i.e. give
us new insights on the respective roles played by climate, soils,
geography, geology and human impact in landscape dynamics at
the spatio-temporal resolutions we are working with. Here is a
brief roadmap of this paper to explain and help sort out the
complex web of different models and datasets used in the analysis.

Section 2 describes a statistical approach for compositional data
(Aitchison, 1986) such as land-cover estimates in proportion. To
avoid the time-consuming inference in Tjelmeland and Lund
(2003), the spatial dependence is modelled using a Gaussian
Markov Random Field (GMRF) (Lindgren et al., 2011) with fast
inference obtained through R-INLA (Rue et al., 2009; Lindgren and
Rue, 2013). Two standard linear regression models and two GMRF-
based models are developed to explain REVEALS land-cover by
various sets of covariates (i.e. estimates from a DVM and an ALCC
scenario, elevation, longitude and latitude).

Section 3 describes models and databases used for reconstruc-
tion of past and recent (0.05 ka) land cover with the new statistical
approach and for data-model comparison. Pollen-based estimates
of three land-cover types (coniferous, broadleaved and unforested)
at 18�18 resolution are obtained using the REVEALS model (Sugita,
2007); hereafter those estimates are referred to as grid-based
REVEALS (GB-REVEALS). Potential natural vegetation is simulated
by a process-based dynamic ecosystem model LPJ-GUESS (Smith
et al., 2001), and anthropogenic land cover is extracted from the
ALCC KK10 scenario of Kaplan et al. (2009) based on human
population history and technology development. KK10 is
the existing ALCC scenario that is closest to the pollen-based
GB-REVEALS in terms of degree of past deforestation (Trondman
et al., 2012; Strandberg et al., 2014; Kaplan et al., 2014). Combined
estimates of model-based potential vegetation and ALCC, hereafter
referred to as LPJ-GUESSKK10, are used as one of the main covariates
in the data analysis. In addition, the present-day land cover is
obtained from the land-cover database of the European Forest
Institute (EFI).

Section 4 describes the results and Section 5 discusses the
significance and implications of the approach developed in this
study. The reconstruction of recent land cover is compared to the
EFI forest map for evaluation, and pros and cons of the new
statistical approach are assessed in detail.

2. Development of the statistical model

2.1. Methods for compositional data

In each grid cell three land-cover types (LCTs) – coniferous
forest, broadleaved forest, and unforested land – are expressed as
proportions. To account for the restrictions inherent to composi-
tional data we apply logratio transformation (Aitchison, 1986) for
the LCT data.

Letting yi(s) denote the fraction of the ith LCT at grid cell
location s 2 R2; the values have to sum to one and be non-negative,
i.e.

XD

i¼1

yiðsÞ ¼ 1 and 0 � yiðsÞ � 1; 8 i: (1)

These conditions complicate any statistical analysis. A common
solution (Aitchison, 1986; Tjelmeland and Lund, 2003) is to
transform the data, allowing modelling to proceed without being
encumbered by the restrictions in Eq. (1). Several possible
transformations exist. Here we use the additive logratio (alr)
following Tjelmeland and Lund (2003);

uiðsÞ ¼ log
yiðsÞ
yDðsÞ

; i ¼ 1; . . . ; D � 1; (2)

with D denoting the number of components (D = 3 for our three
LCTs). The alr takes the set of D compositional values in [0, 1] and
transforms them into D � 1 real valued (i.e. unrestricted) data,
ui(s). The original fractions can be recovered from ui(s) through the
inverse transformation:

yiðsÞ ¼ expðuiðsÞÞ
1 þ

PD�1
i expðuiðsÞÞ

; i ¼ 1; . . . ; D � 1;

yDðsÞ ¼ 1

1 þ
PD�1

i expðuiðsÞÞ
;

(3)

where it is easy to see that the yi(s) obeys the restrictions in Eq. (1).
The alr transformation has its own limitations. It requires

proportions to be yi(s) > 0 and yi(s) < 1 eliminating the possibility
of an equality in Eq. (1). This limitation is not an issue for the data



Fig. 1. A ternary diagram containing four 3-compositional data points, each

consisting of coniferous forest (C), broadleaved forest (B), and unforested land (U).

The points correspond to compositions of y(s) = (yC(s), yB(s), yU(s)). Numbers along

the lines between points indicate their distances according to Eq. (4) from y(1). The

figure is inspired by Fig. 1 in Billheimer et al. (2001).
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used in this paper, since all LCTs are present in all grid cells. Note
that increasing y1 implies a lowering of y2 and y3 through the sum
to one constraint; thus u1 and u2 are dependent, an important fact
for the modelling that is further discussed in Section 2.2.

To compute the difference between two compositions we use
the compositional distance (Aitchison, 1986):

Dðu; vÞ ¼ ½ðu � vÞT H�1ðu � vÞ�1=2
(4)

where u and v are alr transforms of compositions and H is a d � d-
matrix (d = D � 1) with elements hij = 2 if i = j, and hij = 1 if i 6¼ j.

A convenient way of illustrating the variability of D-composi-
tional data is a ternary diagram (see Aitchison, 1986, Chap. 1.4).
Fig. 1 illustrates the concept using four compositional data points,
each containing coniferous forest (C), broadleaved forest (B), and
unforested land (U). In a ternary diagram, a point close to a vertex
(e.g. y(3) close to U) has large proportion of the corresponding
vertex and a point close to each edge (e.g. y(4) close to U-C) has a
low proportion of the opposite vertex (B).

2.2. Statistical model

The transformed data, (u1, u2) = alr(yC, yB, yU), is modelled as a
multivariate Gaussian process (see Tjelmeland and Lund, 2003),

u1

u2

� �
¼ m1

m2

� �
þ A

z1

z2

� �
þ e; z1

z2

� �
2 N ð0; SzÞ;

e 2 N ð0; Is2
eÞ:

(5)

Here u1 and u2 are column vectors containing the alr transformed
(Eq. (2)) compositional values for the Nobs observed locations; mi

are column vectors of mean values for each location; e are
independent Gaussian residuals with variance s2

e; and zi are
spatially dependent residual fields modelling any remaining
dependence in the observations, the Nobs � N matrix A is a sparse
matrix that extracts elements corresponding to the observed
locations from zi. The multivariate Normal model contains two
main components: a mean field, m, and a spatially dependent
residual field, z. Those two components are described below.

2.2.1. Mean field

The mean field is modelled as a linear combination of covariates

mi ¼ 1b0;i þ
X

p

B pðsÞbp;i (6)

where Bp is a column vector containing the pth covariate, bp,i are
unknown regression coefficients and 1 is a column vector of ones
(the intercept). Two sets of different covariates are used for
vegetation reconstruction in this study: B – contains the alr
transformation of LPJ-GUESSKK10 (LPJ-GUESS estimates adjusted
for human impact with the KK10 scenario; see next section) and
Bgeo – contains LPJ-GUESSKK10 and the geographical coordinates,
i.e. longitude and latitude. Both B and Bgeo also take elevation as a
covariate. The geographical covariates are fixed over the different
time windows, thus possibly adjusting reconstructions for
geographically consistent biases in the potential vegetation.

As an alternative to potential vegetation, some bioclimatic
covariates (i.e. temperature, precipitation, and soil suitability),
used as drivers for LPJ-GUESS, were also included directly in the
mean field. Those alternatives did not improve the reconstructions
and, for brevity, the results are neither shown nor discussed in this
paper.

Using only the mean field, Eq. (6) and without spatially
dependent residual fields (i.e. zi = 0), the full model Eq. (5) reduces
to a standard linear regression. We construct two Regression
Models RM and RMgeo with B and Bgeo, respectively.

2.2.2. Residual field

The inclusion of coordinates in the mean field only implies a
linear dependence between the transformed composition in each
grid cell and the corresponding coordinates; no other dependence
among neighbouring locations is implied. Any remaining spatial
structure can be accounted for by imposing a more complex model
for the covariance matrix, Sz, of the residual field z in Eq. (5).
Tjelmeland and Lund (2003) used a Gaussian field (GF) specified
through the covariance function, and Paciorek and McLachlan
(2009) used a thin plate spline to model the spatial structure. Here
we replace the GF with a Gaussian Markov Random Field (GMRF)
(Lindgren et al., 2011); this has two main benefits:

1 GMRF has computational benefits over the covariance formula-
tions, and

2 it allows the use of standard software (the R-INLA package
Lindgren and Rue, 2013; Rue et al., 2009) for inference.

We now briefly present the GMRF model. According to Whittle
(1954, 1963) GFs with Matérn covariance

covðzð0Þ; zðsÞÞ ¼ s2 ðkkskÞ
nKnðkkskÞ

GðnÞ2n�1
(7)

are the solutions to Stochastic Partial Differential Equation (SPDE)

ðk2 � DÞ
a
2zðsÞ ¼ tWðsÞ; s 2 Rd; a ¼ n þ d=2; (8)

where WðsÞ is Gaussian white noise, D ¼ @2

@s2
x
þ @2

@s2
y

is the Laplacian, k
is the spatial scale parameter, n controls the smoothness, t controls
the variance of z and is linked to s2 (see Lindgren et al., 2011, Chap.
2.1), and Kn is the modified Bessel function of the second kind.
Lindgren et al. (2011) showed that a GMRF representation of a
Matérn GF can be explicitly constructed with precision matrix
Q. Let the z’s in Eq. (5) be a GMRF defined on a regular lattice, then
in case of a = 2 the appropriate precision matrix is obtained by

Q ¼ 1

t2
k4C þ 2k2G þ GC�1G|fflfflffl{zfflfflffl}

G2

0
@

1
A (9)

where C, G, and G2 are sparse matrices (see Lindgren et al., 2011, for
details). A special case of Eq. (8) is the intrinsic Matérn model with
k = 0, given by

ð�DÞa=2
zðsÞ ¼ tWðsÞ; (10)



Fig. 2. The left plot shows the availability of GB-REVEALS for all three time-windows. The right plot shows the elevation for each grid cell (truncated to �0).

1 x = date of the core surface, e.g. AD 2005-100 BP if x = AD 2005.
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this is a spline smoothing model (see Duchon, 1976; Kimeldorf and
Wahba, 1970; Nychka, 2000; Wahba, 1981). In this case, Q is the
precision matrix of an intrinsic GMRF.

To obtain a suitable dependence model for z, we assume the
same precision Q for both fields, z1 and z2, in Eq. (5), but allow the
fields to be correlated. The result is a separable precision (inverse
covariance) matrix that can be expressed as a Kronecker product,

S�1
z ¼

1 r
r 1

� ��1

�Q ; (11)

where r is the correlation between the fields.

2.2.3. Interpretation of the statistical model

The purpose of the residual field is to capture spatial structure
not explained by the mean field; if GB-REVEALS in several nearby
grid cells deviate in a similar fashion from the regression model
then predictions at adjacent grid cells should take this information
into account. The intrinsic GMRF model (IGMRF) used here can be
interpreted as either universal Kriging using a Matérn-covariance
with very large range (Lindgren et al., 2011), or as spline smoothing
of the residuals (Nychka, 2000; Wahba, 1981). Predictions at an
unobserved grid location are essentially given by

ûiðs0Þ ¼ b̂0;i þ
X

p

B pðs0Þb̂p;i þ
X2

j¼1

X
s 2 observed

cðs

� s0; jÞ u jðsÞ � b̂0; j �
X

p

B pðsÞb̂ p; j

  !
: (12)

Here c(s, i) are weighting coefficients that depend on t, se, and r in
Eq. (A.2) in Appendix A and decay as the distance from s0 increases
(see Rue and Held, 2004; Lindgren et al., 2011, for details). Note
that the predictions include residuals from both fields; this is due
to the correlation, r, introduced in Eq. (11).

For prediction and cross-validation both the regression
parameters (b) and the parameters describing the spatial structure
(t; s2

e ; r) are calibrated based on a validation set (i.e. selected grid
cells with GB-REVEALS). These parameters are then used to
compute predictions at unobserved sites and sites left-out for the
cross-validation.

For details regarding the calibration and reconstruction see
Appendix A.

2.2.4. Models used for data analysis

For reconstruction of land-cover types using the GB-REVEALS
and LPJ-GUESSKK10 data we consider a total of four models.
The two regression models, RM and RMgeo, without spatial
dependencies and the two models, IGMRF and IGMRFgeo, with
spatial dependencies. The two spatially dependent models are
created by adding spatial residual fields, z, to the same mean fields,
Eq. (6), as in the regression models. All four models have been
implemented in R (R Core Team, 2014) using the R-INLA package
(Rue et al., 2009; Lindgren and Rue, 2013).

3. Land-cover type and auxiliary data

The target region of the LANDCLIM project is Europe (Fig. 2;
Gaillard et al., 2010). The data used for validation and application
of the statistical models proposed in the previous section consist of
1) GB-REVEALS extracted from the LANDCLIM-REVEALS database,
2) DVM LPJ-GUESS estimates of potential natural vegetation and
ALCC KK10 scenario estimates, and 3) the present-day forest map
of Europe, geographical coordinates (longitude and latitude), and
elevation.

The two selected time windows of the past are characterized by
contrasting human impact on land cover (Gaillard et al., 2010;
Strandberg et al., 2014) and recent land cover is used to validate
the methods:

6 ka (5.7–6.2 ka) – the mid-Holocene warm period characterized
by low human impact, often used as a baseline time-window
to assess the effects of orbital forcing and pre-industrial
greenhouse gases on climate (e.g. Harrison et al., 1998; Kohfeld
and Harrison, 2000; Braconnot et al., 2012).
0.2 ka (0.1–0.35 ka) – the Little Ice Age (AD 1550–1850), a cool
period in Europe with substantial anthropogenic land cover but
low levels of human-induced greenhouse gases; AD 1850 and
AD 1750 were used as pre-industrial baselines in the two last
IPCC (Intergovernmental Panel on Climate Change) reports
(Pachauri and Reisinger, 2007; Stocker et al., 2013).
0.05 ka (x1–0.1 ka) – recent land cover is characterized by
afforestation of large areas of Europe in mountainous areas and
other regions, such as southern Sweden, northern Germany and
Poland, and the Baltic states (Krzywinski et al., 2009).

3.1. Land-cover reconstruction using fossil pollen

The LCT data used for analysis are calculated from mean
REVEALS estimates for 25 major plant taxa in 18�18 grid cells
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following the LANDCLIM protocols described in Gaillard et al.
(2010), Mazier et al. (2012), and Trondman et al. (2014). REVEALS
(Sugita, 2007) is a mechanistic model for regional vegetation
reconstruction that takes into account the inter-taxonomic
differences in pollen productivity and dispersal, and size of
sedimentary basins from which pollen data are obtained. It has
been tested in several regions of Europe and North America
(Hellman et al., 2008a,b; Soepboer et al., 2010; Sugita et al.,
2010). Hellman et al. (2008b) showed that the spatial scale of
REVEALS estimates of land cover was generally closer to
100 km � 100 km than 50 km � 50 km; however, the difference
in fit between the REVEALS estimates and the actual land cover
was small between the two spatial scales. Therefore, the 18�18
spatial scale chosen for the LANDCLIM project is adequate for the
REVEALS model. The LANDCLIM database includes more than
600 Holocene pollen records that are compiled from the
European Pollen Database, various national pollen databases
and archives, and individual contributors. In our study, the
number of 18�18 grid cells with GB-REVEALS are 184, 179, and
168 (out of a total of 644, 675, and 658 grid cells over the study
region) for the 6, 0.2, and 0.05 ka time windows, respectively
(Fig. 2). The total number of grid cells and the number of grid
cells with GB-REVEALS differ among the time periods because of
the differences in the coastline of the ALCC scenario used, and the
differences in availability of pollen data among the time
windows, respectively.

3.2. Estimates of potential vegetation and anthropogenic land cover

For estimating changes in the distribution and cover of LCTs in
each 18�18 grid cell, we use a combination of simulated potential
vegetation and estimates from ALCC scenario as follows.

3.2.1. Potential natural vegetation

Potential vegetation in the study region is simulated by a
process-based dynamic ecosystem model LPJ-GUESS 2.1 (Lund-
Potsdam-Jena-General Ecosystem Simulator, Smith et al., 2001;
Sitch et al., 2003). For the three, above specified, time windows
LPJ-GUESS was run using climate input data provided by 1) the
SMHI Rossby Centre Regional Climate Model (RCA3) (Samuelsson
et al., 2011) with a 0.448 spatial resolution over Europe for 6 ka
(5859–5811) BP and 0.2 ka (AD 1700–1800), (Strandberg et al.,
2014) and 2) the Climatic Research Unit with a 0 . 5� resolution
for 0.05 ka (AD 1901–2006) (Mitchell and Jones, 2005). The
modern soil-texture data as described in Sitch et al. (2003) were
used in all simulations. Percentage covers of plant functional
types simulated by LPJ-GUESS are averaged over the modelled
periods and converted to the three LCTs in proportion. All the
estimates are upscaled, by averaging, to 18�18 resolution. See
Appendix B for a more detailed description of mechanisms and
parameterizations in LPJ-GUESS.

3.2.2. Anthropogenic deforestation

Anthropogenic deforestation in the study region is extracted
from the standard scenario of the ALCC KK10 (Kaplan et al., 2009).
The KK10 scenario is based upon estimates of past human
population density and the land requirement per capita to
estimate the area of land needed for sustaining the assumed
population. The spatial distribution of anthropogenic land cover is
determined by environmental suitability estimates based mainly
on climate conditions and soil type. We chose the KK10 scenario to
represent anthropogenic deforestation, because there is a good
correlation between GB-REVEALS and KK10 (Trondman et al.,
2012; Strandberg et al., 2014; Kaplan et al., 2014). The KK10
scenario provides estimates of the fraction of land used for agrarian
activities (i.e. deforested land) at 50 spatial resolution. These
estimates are averaged for 100-year time windows around 6 and
0.2 ka BP and upscaled to 18�18 resolution.

3.2.3. LCT estimates based on the LPJ-GUESS and KK10 simulations

Because LPJ-GUESS does not account for the increase in
unforested area due to human impact (Fig. 3), this study uses
the following adjustment to estimate land cover:

PðConiferousadj:Þ ¼ PðConiferousÞ 	 ð1 � PðHLUKK10ÞÞ;
PðBroadleavedadj:Þ ¼ PðBroadleavedÞ 	 ð1 � PðHLUKK10ÞÞ;
PðUnforestedadj:Þ¼ PðUnforestedÞ	ð1 � PðHLUKK10ÞÞþPðHLUKK10Þ:

(13)

In each grid cell, the LPJ-GUESS-based proportions of the area
occupied by coniferous forest, broadleaved forest and unforested
land are expressed as PðConiferousÞ, PðBroadleavedÞ and
PðUnforestedÞ, respectively; the estimated proportion of human
induced deforestation from the KK10 scenario is
PðHLUKK10Þ. Adjusted land cover proportions – PðConiferousadj:Þ,
PðBroadleavedadj:Þ and PðUnforestedadj:Þ – are calculated in such a
way that the cover fractions of all the potential vegetation
components are uniformly reduced by the predicted anthropo-
genic land-cover proportion. The anthropogenic land-cover
proportions, PðHLUKK10Þ, are then added to the unforested fraction,
PðUnforestedÞ. The resulting adjusted land-cover proportions are
then used as explanatory variables in the mean field, Eq. (6).

3.3. Present-day land cover, elevation, longitude and latitude

Data on the present-day land cover in the study region were
obtained from the forest map of Europe compiled by the European
Forest Institute (EFI). Raster maps based on a combination of
satellite data (NOAA-AVHRR) and national forest-inventory
statistics from 1990 to 2005 (Päivinen et al., 2001; Schuck et al.,
2002) were downloaded from the EFI webpage (http://www.e-
fi.int/portal/virtual_library/information_services/mapping_ser-
vices/forest_map_of_europe). The forest maps (with proportions of
coniferous- and broadleaved-forest cover) were upscaled, by
averaging, from 1 km � 1 km to 18�18 resolution. The proportion
of unforested area was calculated by subtracting the total sum of
forested covers from 1.0.

The elevation data were obtained from the Shuttle Radar
Topography Mission (SRTM) (Becker et al., 2009) downloaded from
ftp://topex.ucsd.edu/pub/srtm30_plus/ on 2011–09–03, averaged
over each GB-REVEALS grid-cell, and truncated to �0 to avoid a few
grid cells along Norway’s coast with elevation down to �1000. The
geographical coordinates consist of the longitude and latitude of
the central point of each GB-REVEALS grid cell.

4. Results

4.1. Evaluation of the statistical models

To evaluate and validate the four statistical models, we
compared the differences between the reconstructed values for
the 0.05 ka and the data from the EFI forest map (EFI-FM) using
compositional distances (Eq. (4)) for individual grid cells. The
average distances (i.e. the mean difference between the model-
based reconstruction and EFI-FM) are 1.711, 1.520, 1.782, and
1.517 for IGMRFgeo, IGMRF, RMgeo, and RM, respectively. Thus the
models without geographic coordinates (RM and IGMRF) provide
estimates closer to those from EFI-FM than the other two models.

We also adopted a 6-fold cross-validation scheme for each of
the three time windows (see Hastie et al., 2001, Chap. 7.10). To
assess the possible variability due to the selection of different
groupings, the cross-validation is run for 10 different, randomly
selected, 6 folds. Average compositional errors and standard

http://www.efi.int/portal/virtual_library/information_services/mapping_services/forest_map_of_europe
http://www.efi.int/portal/virtual_library/information_services/mapping_services/forest_map_of_europe
http://www.efi.int/portal/virtual_library/information_services/mapping_services/forest_map_of_europe
ftp://topex.ucsd.edu/pub/srtm30_plus/


Fig. 3. Available data for the 0.05 ka period, showing the proportion of LCTs. From top to bottom, data for the present-day window from EFI-FM, GB-REVEALS, LPJ-GUESS, and

LPJ-GUESSKK10 (Eq. (13)).
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Table 1
Average compositional error (and standard deviation) from 10 different 6-fold

cross-validations for each of the 4 different models, and 3 time windows.

Model 0.05 ka 0.2 ka 6 ka

CVerror (sd) CVerror (sd) CVerror (sd)

RM 1.565 (0.033) 1.843 (0.057) 1.761 (0.041)

RMgeo 1.631 (0.051) 1.985 (0.068) 1.825 (0.049)

IGMRF 1.679 (0.046) 2.020 (0.071) 1.928 (0.048)

IGRMFgeo 1.705 (0.049) 2.060 (0.077) 1.956 (0.053)

Table 2
Deviance information criteria (DIC) for each of the 4 different models, and 3 time

windows.

DIC 0.05 ka 0.2 ka 6 ka

IGMRFgeo 750.13 891.84 �2123.6

IGMRF 664.05 839.51 �2128.82

RMgeo 1058.59 1194.41 1319.18

RM 1142.96 1348.56 1372.9
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deviations are shown in Table 1. For the cross-validation (CV) the
RM model is consistently best for all time windows followed by
RMgeo, IGMRF, and IGMRFgeo. However, longitudinal effects
introduced by the geographic coordinates result in unsatisfactory
reconstructions from the RMgeo and IGMRFgeo model for areas of
eastern Europe with few GB-REVEALS. Due to the scarcity of the
GB-REVEALS data, these longitudinal effects are not penalised by
the cross-validation, but show up in the comparisons with EFI-FM
data; this leads us to prefer IGMRF over the RMgeo.

In addition, we computed the deviance information criteria
(DIC; see Gelman et al., 2014, Chap. 7.2) for each of the models
(Table 2); the DIC is a generalization of the Akaike information
criterion (AIC; Akaike, 1969). The DIC suggests that the IGMRF
models outperform the regression models for all time windows,
indicating the need for spatial dependency. The results of CV and
DIC lead us to choose RM and IGMRF as the best model.

Accordingly we proceeded with the data analysis using the RM
and IGMRF only. The reconstructions from the RM and IGMRF are
shown in Fig. 4.

4.2. Assessment of the data quality

To gain an overall understanding of data quality and to detect
possible method-inherent biases, the compositional distances are
calculated between the EFI-FM and either LPJ-GUESSKK10, GB-
REVEALS, or the statistical reconstructions, RM and IGMRF, for the
0.05 ka. The distances between LPJ-GUESSKK10 and GB-REVEALS
are also computed for each of the three time windows, allowing us
to investigate how much these two datasets differ in each time
window. The discrepancy between LPJ-GUESSKK10 and GB-
REVEALS increases from the 0.05 to 6 ka (average distance of
1.644, 1.701, and 2.054 for the 0.05, 0.2, and 6 ka windows,
respectively; Fig. 5). Reasons behind these discrepancies are
presented in Section 5.2.

For the 0.05 ka time window the RM- and IGMRF-based
reconstructions are closer to EFI-FM (average distance:
1.517 and 1.519, respectively) than either LPJ-GUESSKK10 (2.081)
or GB-REVEALS (1.675) alone. Further, the RM- and IGMRF-based
reconstructions, when averaged only over grid cells where we have
GB-REVEALS, are closer to the EFI-FM data than GB-REVEALS – RM
1.499, IGMRF 1.592, and GB-REVEALS 1.675. Thus, the statistical
modelling approach reduces the compositional error of the land-
cover reconstructions.
Spatially, discrepancies between EFI-FM and GB-REVEALS
or LPJ-GUESSKK10 are noticeable along the coastal areas of
western Europe, in central Sweden and southern Finland, with
the largest disagreement at the northern British Isles. The
discrepancies are more pronounced for LPJ-GUESSKK10 than
either GB-REVEALS or one of the proposed statistical model
(Fig. 5). When comparing LPJ-GUESSKK10 and GB-REVEALS, the
patchy nature of GB-REVEALS makes it hard to distinguish any
specific spatial patterns among the discrepancies.

4.3. Qualitative differences among the models

In general, IGMRF captures more of the local variability in GB-
REVEALS than RM, while RM smooths GB-REVEALS. For example,
the high variation of unforested land in Britain and the Alps is well
captured by IGMRF while RM is capable of capturing the gradual
changes in vegetation abundances observable along the western
coast of Norway and around the northern Baltic (Fig. 4).

Both statistical models overestimate the abundance of broad-
leaved forest relative to the EFI-FM data. Fig. 6 shows that the low
abundance of broadleaved forest in EFI-FM can be seen as a cluster
of EFI-FM data along the U-C edge (corresponding to 
0% of
broadleaved cover) for which no matching GB-REVEALS exists. This
is due to GB-REVEALS having a higher abundance of broadleaved
forest than EFI-FM (Fig. 6).

4.4. Statistical reconstruction of past land cover

Figs. 7 and 8 show the reconstructed land cover at 0.2 and 6 ka
using RM and IGMRF. In northern Europe, there is a general shift
from largely unforested to more coniferous-dominated land cover
between 0.2 and 0.05 ka (Fig. 4). The shift reflects a considerable
decrease in agrarian land use in favour of modern forestry with
conifer species in many regions (e.g. Poska et al., 2008; Fredh et al.,
2013). Both models capture the shift (Figs. 4 and 7). Further, IGMRF
is capable of capturing a number of sub-regional structures such as
the high abundance of unforested land in Britain, especially in its
northernmost regions (Fyfe et al., 2013) and the high abundance of
coniferous forest around the Alps, central Sweden, and southern
Finland; these patterns are also present in GB-REVEALS for 0.2 ka.

Broadleaved forest is a major constituent of the land cover at
6 ka over Europe (Fig. 8). IGMRF captures the GB-REVEALS
structure with a locally highly varying (between 20% and 80%)
abundance of unforested land in western Europe and the
Carpathians, while the RM produces a smoother reconstruction
with an averaged (around 40–50%) and regionally smooth
abundance of unforested land. IGMRF also captures the higher
than average abundance of coniferous forest in the south-eastern
Baltic states and the Alps, while RM only captures these features
around the Alps.

Statistical reconstructions of land cover for the 0.05 and 0.2 ka
time windows show a good fit of the statistical models to the
EFI-FM data (for 0.05 ka) and to GB-REVEALS (for both times). For
the 6 ka time window the increasing discrepancies between
GB-REVEALS and LPJ-GUESSKK10 makes it hard for the statistical
models to combine the two data sets; resulting in either over-
smoothing (RM) or exaggeration (IGMRF) of local structures in
the GB-REVEALS.

5. Discussion

5.1. Advantage of the new approach over previously proposed

methods

The statistical method developed and used in this paper utilizes
GMRFs (Lindgren et al., 2011) and the R-INLA package (Rue et al.,



Fig. 4. Reconstructions of proportion of LCTs for the 0.05 ka time window. From top to bottom, the REVEALS data, the RM reconstruction, the IGMRF reconstruction and the

EFI-FM data.
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Fig. 5. The compositional distances among different datasets. The first row shows the distances between EFI-FM, and (from left to right) 1) LPJ-GUESSKK10, 2) GB-REVEALS, and

3) one of the proposed models, IGMRF for the 0.05 ka time window. The second row shows average distances between GB-REVEALS and LPJ-GUESSKK10 for three time-

windows, 0.05, 0.2, and 6 ka.
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2009; Lindgren and Rue, 2013) to obtain fast inference for a
complex statistical model using standard tools. Spatially depen-
dent compositional data has previously been modelled using
similar approaches with different specifications of the latent field,
different applications, and more time consuming calibration
methods (e.g. Billheimer et al., 2001; Tjelmeland and Lund,
2003; Paciorek and McLachlan, 2009).

In addition to the statistical methods used, the inclusion of
estimates from LPJ-GUESS and KK10 provides a way of capturing
the non-linear effects of bioclimatic variables on land cover by
combining data from a DVM (LPJ-GUESS) and an ALCC scenario
(KK10) with grid-based pollen estimates (GB-REVEALS). All the
suggested models rely, to some extent, on covariates and to obtain
a good reconstruction it is important to identify and use covariates
with strong explanatory power. For regions with few GB-REVEALS
the statistical modelling will essentially extrapolate the covariate
behaviour observed in other regions with more data. For our study
the DVM based covariates produce good reconstructions, while the
geographic covariates in the RMgeo model lead to a reconstruction
exhibiting longitudinal effects that do not correspond to patterns
in the EFI-FM data or in the GB-REVEALS.

Pollen-inferred land cover has also been studied by Paciorek
and McLachlan (2009), but over a much smaller geographic area
(roughly equivalent to one of the grid cells in our approach) than
our continent-wide focus. Paciorek and McLachlan (2009) com-
bined pollen data with maps of vegetation abundances to produce
a combined estimate of pollen productivity and land cover. Thus
the focus and geographic extent of their paper is closer to that of
REVEALS (Sugita, 2007) than to ours. Another potential use of the
pollen data (Garreta et al., 2010) is to attempt recovery of past
climate by the inversion of a dynamic vegetation model; this
approach provides past climate, but does not provide spatial
reconstructs of the past land-use.

Although the model provides good results, it may be improved,
for instance by introducing a more elaborate method of adjusting
potential vegetation for human deforestation, Eq. (13) than that
used in this study. Currently, we assume that human deforestation
affects the three land cover classes equally. An interesting
extension would be to include, and estimate, the differential
impact of deforestation on the natural vegetation types. Another
potential improvement would be the inclusion of the estimated
uncertainties in GB-REVEALS; this might allow the model to
disregard uncertain GB-REVEALS values, possibly improving the
reconstruction.

5.2. Biases of land-cover databases and their effects on RM and IGMRF

applications

5.2.1. GB-REVEALS

Possible sources of errors and biases in the GB-REVEALS are
discussed in details in Trondman et al. (2014). Here we mention
the most important ones. The pollen productivity estimates (PPEs)
used to obtain the GB-REVEALS are based on pollen and vegetation
data from low-land areas of NW and W Europe (Broström et al.,
2008; Mazier et al., 2012). This might lead to biased estimates of
the regional vegetation in areas where region-specific PPEs are not
available, such as the high mountain areas of Norway, the Czech
Republic and the Alps. Also, the use of all pollen records available in
each grid cell, i.e. pollen data from both lakes and bogs (small or
large in size) in the LANDCLIM-REVEALS database, may create



Fig. 6. The reconstructions from RM and IGMRF against the EFI-FM data on the top row, and against the 0.05 ka GB-REVEALS on the bottom. The first column shows the ternary

diagram for three compositions (C: Coniferous forest, B: Broadleaved forest, and U: Unforested land). Note the cluster of data points along the U-C edge, representing the low

abundance of broadleaved forest in the EFI-FM data which does not exist in the 0.05 ka GB-REVEALS. The remaining columns show the scatter plots of alr-transformed, (u1,

u2), reconstructed values for IGMRF and RM.
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errors caused by variations in the number, type and size of the
sites used to calculate the GB-REVEALS (Mazier et al., 2012;
Trondman et al., 2014). The best pollen records for the application
of REVEALS are those from large lakes (one or several, >20–30 ha)
or multiple small lakes (�20–30 ha; see Sugita, 2007; Hellman
et al., 2008a, for details). If REVEALS is applied on pollen data from
small sites only, a small number of sites may result in very large
error estimates (Sugita, 2007; Mazier et al., 2012; Trondman et al.,
2014). Further, the REVEALS model assumes that no vegetation is
growing on the surface of the basin where pollen is deposited
(Sugita, 2007), which applies to lakes only. Although REVEALS
includes two versions of the pollen dispersal and deposition
model (one for lakes and one for bogs) the assumption mentioned
above is violated. Therefore, pollen data from large bogs in
particular might bias the GB-REVEALS due to the local vegetation
on the bog (Trondman et al., 2014).

In addition, locally grown shade-intolerant deciduous trees,
such as Alnus and Betula, on the wetland and along the shores of
the lakes tend to be over-represented in pollen records. This
may bias the REVEALS reconstructions because the model
cannot fully correct for the over-representation. Although
broadleaved trees are over-represented compared to EFI-FM
in southern Sweden in this study, the validation of the REVEALS
model in the same areas do not exhibit any such over-
representation (Hellman et al., 2008b,a).

When comparing EFI-FM with the 0.05 ka GB-REVEALS it is
important to note that: i) due to the spectral reflectance of
broadleaved forest in combination with that of water resembling
quite closely the spectral reflectance of coniferous forest, EFI
tends to underestimate broadleaved forest along water courses
(Schuck et al., 2002); ii) EFI-FM had the lowest accuracy for
broadleaved forest (c.f. Section 5.2.4); and iii) the GB-REVEALS
cover a much longer time interval (from AD 1850 to the year of
coring at each site) than the EFI-FM (inventory and satellite data
from 1990 to 2005) and, during the past century, parts of our
study region were characterized by the abandonment of
traditional agriculture in favour of sylviculture with plantations
of Picea and Pinus (e.g. Poska et al., 2008; Krzywinski et al., 2009;
Fredh et al., 2013; Cui et al., 2014).

Any biases in GB-REVEALS will be propagated into the statistical
reconstructions and it is not possible to assess the detailed effects
of such biases on the RM and IGMRF applications neither in
qualitative nor in quantitative terms. But it is important to have
these possible biases in mind when the RM and IGMRF
reconstructions are discussed and validated against present-day
data. Nevertheless, GB-REVEALS used in this study are mostly
credible for the time interval they represent (Trondman et al.,
2014) and any biases should be small.

5.2.2. LPJ-GUESS

The largest discrepancies between LPJ-GUESS simulated land
cover and present-day EFI-FM or palaeo-based GB-REVEALS of past
land cover coincide with areas characterized by high rainfall and/or
long-term anthropogenic land cover and inherent specific land-
cover types such as heathlands or blanket-bogs that are difficult to
model using a natural terrestrial vegetation models. For instance,



Fig. 7. Reconstructions for the 0.2 ka time window of proportion of LCTs. From top to bottom, GB-REVEALS, the RM reconstruction, and the IGMRF reconstruction.

B. Pirzamanbein et al. / Ecological Complexity 20 (2014) 127–141 137
the LPJ-GUESS standard soil biogeochemistry used in this study,
which excludes the nutrient cycle (Sitch et al., 2003), can lead to
imprecise estimates of vegetation composition in nutrient-limited
environments, for example at high latitudes (Wårlind, 2013).
Moreover, the absence of dispersal and migratory processes in the
LPJ-GUESS standard setup (Smith et al., 2001) leads to an
overrepresentation of coniferous forest (spruce in particular) in
central and northern Europe, especially during the early and mid
Holocene (Lehsten et al., 2014), which may affect the land-cover
reconstruction at 6 ka. Post-processing of the LPJ-GUESS simulated
natural vegetation for migration processes of taxa such as Fagus

(beech) may decrease the difference between LPJ-GUESS and GB-
REVEALS at 6 k (Poska et al., 2012).

At 0.05 ka (Fig. 3) there is a similar discrepancy between LPJ-
GUESSKK10 and GB-REVEALS along the coasts of Norway. Here, LPJ-
GUESS simulates high cover of coniferous forest while GB-REVEALS
exhibit higher cover of broadleaved forest. This is a consequence of
the bias in LPJ-GUESS mentioned above, but also of long-term
human impact in these regions with the development of grazed
heaths from the Neolithic time that still cover large areas (e.g.
Gaillard et al., 2009).

Further, the LPJ-GUESS estimates of land-cover composition are
highly dependent on the climate input data (RCA3 simulations of
past climate) used to force LPJ-GUESS. Strandberg et al. (2014)
showed that there are some discrepancies between proxy-based
reconstructions of past climate and RCA3 simulations; although
both climate palaeo-proxies and RCA3 simulations show higher
temperatures at 6 ka than at 0.2 ka, the difference in magnitude
between the two time windows and the geographical/spatial
patterns of reconstructed versus simulated temperature and
precipitation can be very large. Biases are seen in particular in
the Scandinavian mountains and in eastern and north-eastern
Europe. The latter will in turn bias the LPJ-GUESS simulated
vegetation and, therefore, the RM and IGMRF applications.



Fig. 8. Reconstructions for the 6 ka time window of proportion of LCTs. From top to bottom, GB-REVEALS, the RM reconstruction, and the IGMRF reconstruction.
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5.2.3. ALCC KK10

The ALCC scenario used for adjustment of LPJ-GUESS is based on
the following assumptions: (1) the parameters that drive
deforestation are similar in different population regions, (2) the
areas with highest suitability for farming are deforested first, and
(3) agricultural products were the major food source for human
populations (Kaplan et al., 2009). As the extent and intensity of
population pressure on the landscape may be characterized by
strong regional to local-scale spatial and temporal differences in
terms of technology development and usage of non-agricultural
food resources, these assumptions might cause over- or under-
estimations of deforestation, especially for the far past (here 6 ka).
For instance, the high fractions of deforested land in the ALCC
scenario at 6 ka in southern Sweden and Belgium do not seem
reasonable when compared to GB-REVEALS at individual sites in
e.g. southern Sweden (Gaillard et al., 2010; Cui et al., 2013).
Further, the low fraction of deforested land along the coasts of
Norway in the ALCC scenarios at 0.05 ka does not agree with the
cover of unforested land in EFI-FM and GB-REVEALS. The ALCC
scenario underestimates unforested land in these areas because
the geographical and geological characteristics do not correspond
to conditions associated with good suitability for farming. As a
consequence, the LPJ-GUESSKK10 estimates of deforested land may
bias the RM and IGMRF applications. Moreover, the correction of
the LPJ-GUESS estimates with the ALCC scenario assumes that all
three LCTs are equally suitable for human land use, which is not
necessarily the case. Many archaeological and palaeoecological
studies in Europe have shown that the areas covered by deciduous
forests tended to be deforested first for cultivation and grazing
because of the favourable soil conditions (e.g. Gaillard and
Göransson, 1991; Poska et al., 0114). The latter could also bias
the RM and IGMRF results.
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5.2.4. EFI-FM

The quality assessment of the EFI-FM by Kempeneers et al.
(2012) shows 88% overall accuracy of the dataset, with accuracy for
broadleaved forest being the lowest at 58%. The mapping
performance was found to be spatially varying, with the best fit
to ground observations in central Europe and an underestimation
of tree cover in areas of sparse forest cover in Spain, Ireland and
parts of Finland. This, together with the temporal miss-alignment
between EFI-FM and GB-REVEALS discussed in Section 5.2.1,
implies that model comparisons at the 0.05 ka time window
needs some caution.

5.3. Implications of the results

The RM and IGMRF models show a potential to provide spatially
more explicit and realistic reconstruction of the Holocene land
cover than LPJ-GUESS, ALCC KK10 or REVEALS do alone.

The balance between relying on covariates (i.e. RM and mean
field in IGMRF) or on nearby observations (i.e. spatial dependency
part in IGMRF) is an issue in spatial statistical reconstructions. The
RM model essentially consists of a regression of GB-REVEALS onto
covariates (LPJ-GUESSKK10 and elevation). Large spatially varying
discrepancies between GB-REVEALS and the covariates can result
in an inadequate mean field, which needs to be compensated
through spatial dependencies. For the 6 ka time window this is
evident in the very smooth reconstructions from the RM, and the
overfitting of IGMRF to GB-REVEALS. It is important to note that the
RM primarily captures the large-scale variability in land cover,
while IGMRF mainly captures details on a regional scale. Credible
IGMRF reconstructions obviously require that the GB-REVEALS
point data are reliable and that deviations from the mean model,
Eq. (6), are spatially smooth. For areas with few GB-REVEALS (e.g.
the northern Baltic region at 6 ka in our study, Fig. 8) the scarce
data may provide a too strong local influence on the IGMRF
reconstruction. In such cases, the RM reconstructions will be safer
to use because individual GB-REVEALS play a less important role in
the local statistical reconstruction.

6. Conclusions

The results presented here suggest that it is possible to
statistically combine pollen-based reconstructions of land cover
with simulated potential land cover and ALCC scenario to create
spatially-explicit estimates of past land cover over large areas, such
as Europe. Accurate estimates of past land cover is important,
allowing for the assessment of biogeophysical effects of vegetation
and land-use changes on past climate.

The proposed best models provide good reconstructions for the
0.05 and 0.2 ka time windows, although highlighting slightly
different features. The larger differences among GB-REVEALS, LPJ-
GUESSKK10, and the statistical reconstructions at 6 ka suggest that
further modifications and developments of the models are
necessary to improve the estimates of land cover in older time
periods. Future improvements may be possible by: 1) using a more
flexible way of combining an ALCC scenario with estimates from a
DVM, i.e. accounting for the varying suitability of land-cover types
for agrarian activities, 2) including the error estimates of GB-
REVEALS in the statistical modelling.

These pollen-based, spatially continuous land-cover recon-
structions can then be used in the analysis of landscape ecological
complexity in time and space (particularly the IGMRF) and in
climate simulations (preferably RM) following e.g. the same
scheme as Strandberg et al. (2014). A similar approach can be
applied in other parts of the world, such as China, India and Africa,
where long and extensive human activities have modified the
earth surface significantly.
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Appendix A. Calibration and reconstruction

Parameter calibration for the models is either accomplished
through standard linear regression (the RM and RMgeo models), or
by maximising the resulting Gaussian likelihood using the R-INLA
package (Rue et al., 2009; Lindgren and Rue, 2013) (the IGMRF and
IGMRFgeo models). Given calibrated parameters the transformed
compositions u at unobserved locations are reconstructed and
back-transformed Eq. (3) to obtain compositional values at all
locations. Both parameter calibration and reconstruction uses the
same calibration set.

For the linear regression cases the reconstruction of the alr
transformed compositions at an unobserved location, s0, is obtain
as

ûiðs0Þ ¼ m̂iðs0Þ ¼ b̂0;i þ
X

p

B pðs0Þb̂p;i; (A.1)

where b̂ p;i are standard linear regression estimates (i.e. parameter
calibration). For the IGMRF models the reconstruction at all
locations is given by
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where m̂1 is the reconstruction due to the mean field in Eq. (6) and
the second term adjusts nearby locations for deviations between
observations and mean-model (recall that the A-matrix extracts
the observed locations).

Appendix B. LPJ-GUESS

The vegetation is simulated as plant functional types (PFTs)
discriminated in terms of bioclimatic limits, growth form,
phenology, life-history strategy, and various aspects of physiology.
The bioclimatic niche parameterization is based on current
vegetation distribution (Hickler et al., 2012). The model was run
in cohort mode, in which all individuals belonging to the same age
class of a PFT within a patch (local neighbourhood of individuals)
are assumed to be identical in size, form, and response to the
microenvironment. Multiple patches are simulated to encompass
variability across the landscape of a grid cell in stand history,
depending on disturbances, which recur stochastically with an
expected local return time of 100 years, and stand demography.
Competition for resources (light, water, etc.) among individuals
is defined by the prescribed characteristics of the PFTs in
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combination with the emergent vegetation structure of a patch
and its effect on the microenvironment and resource availability
experienced by plants. A full description of LPJ-GUESS is
provided in Smith et al. (2001) and references therein. Plant
physiological and ecosystem biogeochemical processes are mod-
elled as in LPJ-DGVM (Sitch et al., 2003). The current version
includes the updates described in Gerten et al. (2004) and Hickler
et al. (2012).

The simulated PFT-specific leaf-area index (LAI (PTF)) output
was averaged over the modelled period and converted to fractional
plant cover (FPC (PTF)). The LAI (PTF) to FPC (PTF) conversion was
performed by applying the Lambert-Beer law (Monsi and Saeki,
1953) to the area of ground covered by foliage directly above it
(Sitch et al., 2003):

FPCðPFTÞ ¼ 1 � expð�k 	 LAIðPFTÞÞ
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reconstructions for studies on land cover-climate feedbacks. Clim. Past. 6,
483–499.
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M., Kuneš, P., Latałowa, M., Leydet, M., Lindbaldh, M., Mitchell, F., Odgaard, B.,
Peglar, S., Persson, T., Rösch, M., van der Knaap, P., van Geel, B., Smith, A., Wick,
L., 2014. Pollen-based quantitative reconstructions of past land-cover in NW
Europe between 6k years BP and present for climate modelling. Glob. Change
Biol., http://onlinelibrary.wiley.com/doi/10.1111/gcb.12737/abstract.

Wahba, G., 1981. Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat.
Comp. 2 (1), 5–16.
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