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ABSTRACT 

 

This paper presents a new model called Autoregressive 

Fractional Brownian Field (ARFBF) for analyzing textures 

which contain stationary and non-stationary components. 

The paper also proposes two estimation methods for the 

parameter of an isotropic fractional Brownian field based on 

Wavelet Packet (WP) spectrum: the Log-Regression on 

Diagonal WP spectrum (Log-RDWP) and the Log-

Regression on Polar representation of WP spectrum (Log-

RPWP). The Log-RPWP method provides a better estima-

tion performance for small size images. We show the inter-

est of ARFBF model and Log-RPWP for characterizing 

High-Resolution Transmission Electron Microscopy 

(HRTEM) images.    

 

Index Terms— Autoregressive Field, Fractional Brownian 

Field, Texture, Transmission Electron Microscopy  

 

1. INTRODUCTION 

 

Texture is one of the most important features for visual 

perception and an informative component in almost all im-

aging systems (optical, radar, sonar, ultrasound, X-ray, 

microscopy, etc.). In this paper, we derive statistical models 

for HRTEM textures. The HRTEM textures correspond to 

the observation of material microstructures at nanometer 

scale. Possible applications of modeling these textures have 

some environmental impacts:  

• refining with low environmental impact using more 

specialized catalysts,  

• improving post-treatment for making standard and 

hybrid motors cleaner and more efficient by means 

of a better understanding of soot nanostructure. 

Recently, many developments in visualization and analysis 

of catalysts using TEM micrographs have been proposed [1, 

2, 3, 4]. With TEM micrographs at high resolution, (see 

Figure 1) dark or bright linear patterns (fringes) can be ob-

served and correspond to atomic plane of active phases 

deposited on the support.  

 


 

The selectivity and activity can be linked to some descrip-

tive parameters of the structure characterization [1] as, for 

instance, number of fringes per packet, interlayer spacing 

values and fringe lengths. We propose to use a model-based 

approach to characterize these fringes. 

 

 

 

 

 

 

 

 

 

 

               

Figure 1: TEM Image of catalyst with active phases (black fringes) deposit-
ed on the support.  

  
Figure 2: TEM Image close up on active phases of catalyst supports. 

 
The AutoRegressive (AR) model has been studied for many 

years in order to characterize second order stationary pro-

cesses. References [5] and [6] show the interest of such a 

model for textured image segmentation and color texture 

characterization, respectively. 

 

One classical model for describing many stochastic non-

stationary natural phenomena is the fractional Brownian 

motion (fBm) [7, 8, 9, 10, 11], noted as   ( ). H is called 

the Hurst parameter. In two dimensions (2D), fBm is called 

Fractional Brownian Field (FBF).  

 

This work was supported by ARC6-TIC, Rhône-Alpes 

region, France. 



We propose here the AutoRegressive Fractional Brownian 

Field (ARFBF) model which allows characterizing second-

order stationary properties with its AR part and non-

stationary properties with its FBF part. 

 

For estimating the Hurst parameter of ARFBF model, we 

provide two estimation methods based on Wavelet Packet 

(WP) spectrum [10]: the Log-Regression on Diagonal WP 

spectrum (Log-RDWP) and the Log-Regression on Polar 

representation of WP spectrum (Log-RPWP). 

 

This paper is organized with four sections and we detail 

them as follows. Section 2 introduces AR and FBF fields. 

This section also presents the new 2D ARFBF model and its 

parameter estimation. Section 3 presents the experimental 

results: estimation performance for Hurst parameter estima-

tion methods and the application of ARFBF to High-

Resolution Transmission Electron Microscopy (HRTEM) 

images. Finally section 4 concludes this paper and some 

perspectives of this work are given.    

 

2. 2D ARFBF MODEL  

 

2.1. Autoregressive (AR) and fractional Brownian field 

(FBF) models 

 

In this section, we give a brief description about the AR and 

the FBF models, both in the spatial and the spectral do-

mains.  

 

2.1.1. Definition and properties of AR model 

 

Let us define a centered second-order stationary field 

as   * (   )+  (   )    . A is a 2D AR process if  
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where      is a 2D prediction support. The set {      } 

contains the coefficients of the AR process. The spectral 

density function of an AR process can be written as [6]:  
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where (  )
  is the variance of a 2D white Gaussian noise 

  * (   )+.  
 

2.1.2. Definition and properties of FBF model  

 

The FBF, noted here as   *  (   )+, is a zero-mean real 

valued isotropic fractional Brownian field with Hurst pa-

rameter H,         Its autocorrelation function is  

  (       )  
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The spectrum of FBF is defined by association and can be 

written as [10, 12]:  
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where  ( )  
  (    )    
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, ‖ ‖  √     ,    is the 

variance of a white Gaussian noise and   is the gamma 

function. 
 

2.2. Definition and properties of the ARFBF model  

 

The 2D ARFBF, hereafter denoted   * (   )+, is defined 

as the convolution of the AR field A and the FBF F.  
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In the equation (5), the random field   is an AR when FBF 

is a white noise (   ). When AR is a white noise, then Z 

behaves as an FBF in the spectral domain. Otherwise, Z is a 

more general field containing both AR and FBF contribu-

tions. From equation (5), the ARFBF spectrum reduces to:  
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From equation (6), the spectrum of ARFBF has one singular 

frequency at the origin (zero frequency point). 

 

Let us denote now one HRTEM image as   * (   )+ and 

its wavelet packet spectrum as   . The image characteriza-

tion procedure with ARFBF model can be written as fol-

lows: 

 In the first step, we estimate the parameter H from 

    and thus       associated to I is derived. The 

contribution of the FBF in I is obtained and a re-

sidual can be computed. 

 In the second step, we remove the contribution of 

the FBF in I, the residual is modeled by an AR 

model with spectrum defined as follows: 
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where            . From this residual, parameters of the 

AR part are estimated with classical Yule-Walker method 

[5, 6]. 

 

In the next section, we present two estimation methods for 

Hurst parameter (the first step of the previous proposed 

procedure). 

 

2.3. Parameter Estimation 

 

From equation (4), the spectrum of FBF has the form, 
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This spectrum thus shows an exponential decay and the 

following provides the Log-RDWP and Log-RPWP estima-

tion methods for the decay parameter       .  

 

In the literature, there exist some methods for estimating the 

Hurst parameter [12] and [7]. These references present the 

log-regression parameter estimation based on periodogram 

for 1D fractional Brownian motion (fBm). The wavelet 

packet estimation method has been shown to be more rele-

vant than the periodogram parameter estimation in 1D [10]. 

Thus we propose, in this paper, two different methods (Log-

RDWP estimation method and Log-RPWP estimation meth-

od) based on 2D wavelet packet spectrum for the estimation 

of the Hurst parameter from an image.  

 

2.3.1. Log-RDWP estimation method 

 

This estimation method relies on the following formula: 
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where   
  

 (   ) 
 is the number of all possible combina-

tions of the log-ratios,  ̂    denotes the spectrum estimated 

from method [10], ‖ ‖  √     , N is the number of 

considered 2D frequencies,       and      . 

 

2.3.2. Log-RPWP estimation method  
 

The polar estimation method consists in the following steps. 

In the first step, the spectrum with polar coordinates    is 

computed:  

                             (   )     .  ̂(   )/                         (  ) 

where   ̂  is the spectrum estimated from method [10] of the 

input image with Cartesian coordinates and   is the Carte-

sian-to-polar transform. In the second step, averages are 

done over the angles: 
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This procedure can be justified by the isotropy of the FBF 

model considered. In the third step,   is estimated by: 
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where   
  

 (   ) 
 is the number of all possible combina-

tions of the log-ratios, N is the number of averages. 

3. RESULTS AND APPLICATION 

 

3.1. Experimental Results  

 

In order to evaluate the performance of the Log-RDWP and 

Log-RPWP estimation methods, we generate 10 realizations 

of a FBF for   *               + and for two different 

image sizes:         and          .  

 

 
Table 1: Mean values of estimated   and their variances computed from 
Monte-Carlo simulations on 10 FBF realizations with image size equal 

to        .  

 

  
Table 2: Mean values of estimated   and their variances computed from 
Monte-Carlo simulations on 10 FBF realizations with image size equal 

to           .  

 

Size Image

Real Value

Estimated α Var(α) α Var(α) α Var(α) α Var(α)

RDWP_8 1,781 0,145 2,132 0,160 2,651 0,424 3,236 0,292

RDWP_12 2,186 0,038 2,553 0,086 2,993 0,053 3,553 0,090

RDWP_16 1,833 0,039 2,293 0,031 2,772 0,044 3,343 0,039

RDWP_20 2,197 0,039 2,612 0,007 3,035 0,030 3,542 0,037

RDWP_24 2,145 0,045 2,688 0,019 3,050 0,019 3,510 0,018

RDWP_28 2,074 0,021 2,693 0,011 3,066 0,010 3,483 0,025

RDWP_32 1,935 0,009 2,523 0,007 2,987 0,025 3,400 0,014

RDWP_64 1,778 0,008 2,487 0,006 2,936 0,006 3,433 0,002

RPWP_8 2,649 0,026 3,133 0,056 3,594 0,081 4,138 0,023

RPWP_12 2,501 0,017 2,947 0,035 3,398 0,029 3,895 0,010

RPWP_16 2,486 0,004 2,948 0,016 3,435 0,018 3,942 0,003

RPWP_20 2,441 0,004 2,906 0,007 3,363 0,008 3,860 0,003

RPWP_24 2,377 0,002 2,875 0,005 3,335 0,006 3,799 0,002

RPWP_28 2,322 0,002 2,844 0,003 3,312 0,005 3,767 0,002

RPWP_32 2,282 0,001 2,819 0,002 3,298 0,004 3,746 0,001

RPWP_64 1,842 0,001 2,544 0,001 3,081 0,001 3,584 0,001

512*512

2,4 2,8 3,2 3,6

Size Image

Real Value

Estimated α Var(α) α Var(α) α Var(α) α Var(α)

RDWP_8 2,308 0,023 2,801 0,035 3,190 0,029 3,727 0,014

RDWP_12 2,482 0,004 2,949 0,013 3,337 0,009 3,833 0,005

RDWP_16 2,241 0,004 2,748 0,008 3,193 0,007 3,642 0,001

RDWP_20 2,401 0,010 2,898 0,009 3,329 0,012 3,760 0,008

RDWP_24 2,339 0,001 2,842 0,003 3,278 0,004 3,725 0,004

RDWP_28 2,322 0,002 2,834 0,002 3,282 0,002 3,733 0,002

RDWP_32 2,195 0,004 2,709 0,003 3,153 0,004 3,615 0,009

RDWP_64 1,835 0,001 2,510 0,003 3,048 0,002 3,562 0,003

RPWP_8 2,688 0,010 3,209 0,009 3,701 0,015 4,260 0,007

RPWP_12 2,554 0,003 3,070 0,004 3,543 0,004 4,012 0,002

RPWP_16 2,542 0,001 3,060 0,001 3,523 0,002 3,997 0,001

RPWP_20 2,498 0,001 3,011 0,001 3,462 0,001 3,940 0,001

RPWP_24 2,440 0,001 2,953 0,001 3,402 0,001 3,872 0,001

RPWP_28 2,398 0,001 2,919 0,001 3,377 0,001 3,841 0,001

RPWP_32 2,346 0,001 2,892 0,001 3,357 0,001 3,819 0,001

RPWP_64 1,885 0,001 2,570 0,001 3,114 0,001 3,607 0,001

2,4 2,8 3,2 3,6

2048*2048



RDWP_N and RPWP_N mean that α is estimated by the 

Log-RDWP method and Log-RPWP estimation method, 

respectively, where N is the number of samples (see Eq. 9 & 

12). We use the Daubechy filter for computing the WP spec-

trum [10]. The results given in table 1 and table 2 are ob-

tained with a level of decomposition equal to 7. 

 

By computing the Mean Square Error (          
         ) using values in table 1 and table 2, we find that, 

for the small size images, the Log-RPWP method estimates 

the   parameter better than the Log-RDWP method, particu-

larly when N is equal from 24 to 64. For the images with a 

large size, the Log-RDWP method gives comparable results 

to those of the Log-RPWP method.  

 

3.2. Application on HRTEM images: characterization of 

active phases on catalysts supports observed with 

HRTEM images  

 

In this section, we present the application of ARFBF model 

to HRTEM images. The parameters of the model will give a 

characterization of the observed image.  

 

Spectra of HRTEM images mostly show a significant peak 

at the origin frequency and an exponential decay in the 

neighborhood of this peak. This has been emphasized in 

Figure 3 by providing the periodogram and WP spectrum of 

an HRTEM image.  

 

The peak at the zero frequency corresponds to slow grey-

level variations in the HRTEM image and will be modeled 

by an FBF. Fundamentally, this peak is not related to the 

active phase we wish to model. Thus, we propose to remove 

this peak in order to characterize the main information (ac-

tive phase). 

 

For removing the FBF part of the image, we estimate alpha 

from the spectrum   . Then we obtain a spectrum (see equa-

tion (7)) associated with the fringes of the image and 

called      (this spectrum characterizes the AR part of the 

image).  

 

Figure 4 shows the residual image after removing the FBF 

derived from the input HRTEM image and its spectral rep-

resentations. The periodogram of figure 4 shows that the 

energy around the zero frequency has been almost totally 

removed. We finally estimate the parameter of the AR mod-

el from the residual image (see Section 2.2). These parame-

ters allow computing the spectrum given on the right figure 

of the figure 4. This spectrum contains a main bump whose 

shape is associated to the active phase inside the initial 

HRTEM image. This bump deserves to be further analyzed 

with morphological tools in order to characterize this active 

phase. 

 

Figure 3: The initial TEM image, its periodogram representing ,    -  
,    - frequency domain and WP spectrum.  

 

 

Figure 4: The residual part after removing the FBF contribution of the TEM 

image, its periodogram representing,    -  ,    - frequency domain 

and power spectral density (,    -  ,    - frequency domain) comput-
ed using the AR parameters estimated from the left image.   

 
4. CONCLUSION  

 

In this paper, we propose the ARFBF model in order to 

characterize both second-order stationary properties and 

non-stationary properties of textures. We also propose two 

estimation methods for the parameter of FBF: the Log-

RDWP and the Log-RPWP. For images with a small size, 

the Log-RPWP estimation is more relevant than the Log-

RDWP estimation. We finally apply this model to the char-

acterization of HRTEM images.  

 

In this paper, we have considered one spectral peak for the 

non-stationary part. In future work, we will extend the 

ARFBF model to the generalized isotropic fractional fields 

that can admit several spectral peaks [11]. With such a mod-

el, we can address the characterization of an HRTEM image 

presenting several periodicities with different orientations. 
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