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This paper deals with a class of linear hyperbolic systems of balance laws with multiple time scales.

The scale of time constants is modeled by a perturbation parameter. This parameter is introduced in both dynamics and boundary conditions. The solution of the full system is approximated by that of the reduced subsystem when the perturbation parameter is small enough. Lyapunov technique is used to prove it. The main result is illustrated by an academic example. Moreover, the boundary control synthesis to a gas flow transport model is shown based on singular perturbation approach.

gas flow in pipelines [START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF] and [START_REF] Gugat | Existence of classical solutions and feedback stabilization for the flow in gas networks[END_REF], hydraulic networks [START_REF] Bastin | Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks[END_REF], electrical transmission networks [START_REF] Gugat | Boundary feedback stabilization of the telegraph equation: Decay rates for vanishing damping term[END_REF] or road traffic networks [START_REF] Haut | A second order model of road junctions in fluid models of traffic networks[END_REF] are of significant importance. This paper focuses on a class of linear hyperbolic systems of balance laws where the perturbation parameter is introduced in both dynamics and boundary conditions. The first contribution of this paper is the Tikhonov approximation of linear hyperbolic system with source term. More precisely, the solution of the full system can be approximated by that of the reduced subsystem when the perturbation parameter is sufficiently small. This is proved by a Lyapunov function. To the best of our knowledge, this is the first paper dealing with such systems. An academic example is used to illustrate the main result. The second contribution is the boundary control synthesis for application to a gas transport model where the slow dynamics is stabilized in finite time.

This system is written as a singularly perturbed model where the transport velocities depend on that is different to our previous work [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF]. In that work, a class of linear hyperbolic system of conservation laws has been studied and a different approach has been used to model the gas transport system where the transport velocities are constant values.

The paper is organized as follows. Section II presents the full system and the reduced subsystem under consideration. The Tikhonov approximation is given in Section III. Section IV shows the statement of the proof of the Tikhonov theorem. In Section V we first use an academic example to illustrate the general main result. Then, a physical application to a gas flow transport model based on singular perturbation method is shown in the same section. The conclusions are given in Section VI. The paper ends with an appendix which contains the proofs of some auxiliary results.

Notation. Given a matrix A ∈ R m×m , A -1 and A represent the inverse and the transpose matrix of A respectively.

The minimum and maximum eigenvalues of the matrix A are denoted by λ(A) and λ(A). For a positive integer n, I n is the identity matrix in R n×n . | • | denotes the usual Euclidean norm in R n and • is associated with the matrix norm. • L 2 denotes the associated norm in L 2 (0, 1) space, defined by f L 2 = 1 0 |f (x)| 2 dx for all functions f ∈ L 2 (0, 1). Similarly, The associated norm in H 2 (0, 1) space is denoted by • H 2 , defined for all functions f ∈ H 2 (0, 1), by f

H 2 = 1 0 |f (x)| 2 + |f (x)| 2 + |f (x)| 2 dx.
According to [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], for all matrices G ∈ R n×n , ρ 1 (G) = inf{ ∆G∆ -1 , ∆ ∈ D n,+ }, where D n,+ denotes the set of diagonal positive matrices in R n×n . [START_REF] Shampine | Solving hyperbolic PDEs in Matlab[END_REF] DRAFT

II. SYSTEM DESCRIPTION

Consider the following linear hyperbolic system of balance laws

y t (x, t) + Λ 1 ( )y x (x, t) = a( )y(x, t) + b( )z(x, t), (1a) 
z t (x, t) + Λ 2 ( )z x (x, t) = c( )y(x, t) + d( )z(x, t), (1b) 
where

x ∈ [0, 1], t ∈ [0, +∞). Λ 1 ( ) is a diagonal matrix in R n×n such that Λ 1 ( ) = diag(λ 1 ( ), • • • , λ n ( )),
where the i first elements are negative and the n-i last elements are positive. Similarly

Λ 2 ( ) is a diagonal matrix in R m×m , such that Λ 2 ( ) = diag(λ 1 ( ), • • • , λ m ( ))
, where the l first elements are negative and the m-l last elements are positive.

y = y - y + where y -: [0, 1]×[0, +∞) → R i and y + : [0, 1] × [0, +∞) → R n-i . z = z - z + where z -: [0, 1] × [0, +∞) → R l and z + : [0, 1] × [0, +∞) → R m-l . 0 < 1,
The matrices a( ), b( ), c( ) and d( ) are in appropriate dimensions and vanish at = 0.

The boundary condition under consideration is given by

y -(1,t) y + (0,t) z -(1,t) z + (0,t) = G( ) y -(0,t) y + (1,t) z -(0,t) z + (1,t) , t ∈ [0, +∞), (2) 
where

G( ) = G 11 ( ) G 12 ( ) G 21 ( ) G 22 ( ) is a matrix in R (n+m)×(n+m) with the matrices G 11 ( ) in R n×n , G 12 ( ) in R n×m , G 21 ( ) in R m×n , G 22 ( ) in R m×m . Given two functions y 0 : [0, 1] → R n and z 0 : [0, 1] → R m , the initial condition is y(x,0) z(x,0) = y 0 (x) z 0 (x) , x ∈ [0, 1]. (3) 
Replacing y(x, t) by y -(1-x,t)

y + (x,t)
and z(x, t) by z -(1-x,t)

z + (x,t)
, it may be assumed, without loss of generality, that the matrices Λ 1 ( ) and Λ 2 ( ) are diagonal positive. The full system (4) can then be rewritten under the form

y t (x, t) + Λ 1 ( )y x (x, t) = a + ( )y(x, t) + a -( )y(1 -x, t) +b + ( )z(x, t) + b -( )z(1 -x, t), (4a) 
z t (x, t) + Λ 2 ( )z x (x, t) = c + ( )y(x, t) + c -( )y(1 -x, t) +d + ( )z(x, t) + d -( )z(1 -x, t). ( 4b 
)
Then the boundary condition (2) becomes

y(0,t) z(0,t) = G( ) y(1,t) z(1,t) , t ∈ [0, +∞). (5) 
October 17, 2015 DRAFT It is shown in [3, Section 2.1] that for all (y 0 z 0 ) ∈ L 2 (0, 1), there exists a unique weak solution (y z) ∈ C 0 ([0, +∞), L 2 (0, 1)) for the Cauchy problem (4)- [START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF].

The linear hyperbolic system (4)-( 5) is exponentially stable to the origin in L 2 -norm, if there exist σ 1 > 0 and C 1 > 0, such that for every (y 0 z 0 ) ∈ L 2 (0, 1), the solution to the system (4)-(3) satisfies

y(.,t) z(.,t) L 2 C 1 e -σ 1 t y 0 z 0 L 2
, for all t ∈ [0, +∞).

Adapting the approach in [START_REF] Saberi | Quadratic-type Lyapunov functions for singularly perturbed systems[END_REF], [START_REF] Khalil | Nonlinear systems[END_REF] to infinite dimensional systems, the reduced subsystem for (4) and ( 5) is formally computed as follows. By setting = 0 in (4b), yields

y t (x, t) + Λ 1 (0)y x (x, t) = 0, (6a) 
z x (x, t) = 0. (6b) 
Substituting (6b) into the second line of the boundary condition [START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF] and assuming

(I m -G 22 (0)) invertible, yields z(., t) = (I m -G 22 (0)) -1 G 21 (0)y(1, t), y(0, t) = (G 11 (0) + G 12 (0)(I m -G 22 (0)) -1 G 21 (0))y(1, t).
The reduced subsystem is thus written as

ȳt (x, t) + Λ 1 (0)ȳ x (x, t) = 0, x ∈ [0, 1], t ∈ [0, +∞), (7) 
with the boundary condition

ȳ(0, t) = G r ȳ(1, t), t ∈ [0, +∞), (8) 
where G r = G 11 (0) + G 12 (0)(I m -G 22 (0)) -1 G 21 (0), whereas the initial condition is given as the same as for the full system

ȳ(x, 0) = ȳ0 (x) = y 0 (x), x ∈ [0, 1]. (9) 
The compatibility conditions for the existence of solutions of ( 7)-( 9) in H 2 -norm are given as

follows ȳ0 (0) = G r ȳ0 (1), ȳ0 x (0) = Λ -1 1 (0)G r Λ 1 (0)ȳ 0 x (1). (10) 
Due to Proposition 2.1 in [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], for every ȳ0 ∈ H 2 (0, 1) satisfying the compatibility conditions [START_REF] Kokotović | Singular perturbations of a class of time optimal controls[END_REF],

the Cauchy problem ( 7)-( 9) has a unique maximal classical solution ȳ ∈ C 0 ([0, +∞), H 2 (0, 1)).

The system (7)-( 9) is exponentially stable to the origin in H 2 -norm, if there exist σ 2 > 0 and October 17, 2015 DRAFT C 2 > 0, such that for every ȳ0 ∈ H 2 (0, 1) satisfying the compatibility conditions [START_REF] Kokotović | Singular perturbations of a class of time optimal controls[END_REF], the solution to the system (7)-( 9) satisfies ȳ(., t) H 2 C 2 e -σ 2 t ȳ0 H 2 , for all t ∈ [0, +∞). Remark 1. Compared with [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF], the transport velocities of the full system in the present work depend on as well as the boundary conditions. Moreover, we consider an additional source term which is also dependent on . Due to the presence of in both dynamics and boundary conditions, the full system becomes more complex. The assumptions on the continuity for such terms with respect to should be used to ensure that the Tikhonov approximation is valid for sufficiently small. The proof of the main result is then more sophisticated and is a non trivial extension.

•

III. TIKHONOV APPROXIMATION OF LINEAR HYPERBOLIC SYSTEMS OF BALANCE LAWS

In this section, the approximation of the solutions to the full system by that to the reduced subsystem is established by Lyapunov techniques. First let us consider the following assumptions.

Assumption 1. The functions Λ 1 and Λ 2 are Lipschitz continuous at 0, that is there exist positive constants R 1 and ¯ such that for all 0 < < ¯ ,

Λ 1 ( ) -Λ 1 (0) R 1 , Λ 2 ( ) -Λ 2 (0) R 1 .
Assumption 2. Let ¯ as in Assumption 1, the functions a, b, c and d are Lipschitz continuous at 0, that is there exits a positive constant R 2 , such that for all 0 < < ¯ ,

a( ) R 2 , b( ) R 2 , c( ) R 2 , d( ) R 2 .
Assumption 3. Let ¯ as in Assumption 1, the functions G 11 , G 12 , G 21 and G 22 are Lipschitz continuous at 0, that is there exists a positive value R 3 , such that for all 0 < < ¯ ,

G 11 ( ) -G 11 (0) R 3 , G 12 ( ) -G 12 (0) R 3 , G 21 ( ) -G 21 (0) R 3 , G 22 ( ) -G 22 (0) R 3 .
We are ready to state the main result in the following theorem.

Theorem 1. Consider the linear hyperbolic system (4)-( 5), under Assumptions 1-3, if ρ 1 (G(0)) < 1, there exist positive values C 1 , C 2 , θ, * such that for all 0 < < * , for any initial condition October 17, 2015 DRAFT y 0 ∈ H 2 (0, 1) satisfying compatibility conditions [START_REF] Kokotović | Singular perturbations of a class of time optimal controls[END_REF] with ȳ0 = y 0 , and z 0 ∈ L 2 (0, 1), it holds for all t 0 y(., t) -ȳ(., t) 2

L 2 C 1 e -θt ȳ0 2 H 2 + z 0 -(I m -G 22 (0)) -1 G 21 (0)ȳ 0 (1) 2 L 2 , ( 11 
) +∞ 0 z(., t) -(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) 2 L 2 dt C 2 ȳ0 2 H 2 + z 0 -(I m -G 22 (0)) -1 G 21 (0)ȳ 0 (1) 2 L 2 . ( 12 
)
Corollary 1. If ρ 1 (G(0)) < 1, under Assumptions 1-3, the full system (4) with the boundary condition ( 5) is exponentially stable in L 2 -norm for all 0 < < * .

The proofs of Theorem 1 and Corollary 1 are given in the following section.

IV. PROOF OF THEOREM 1 AND COROLLARY 1

Proof of Theorem 1: In the following we will use three steps to prove Theorem 1.

Step 1) Let us perform the following change of variables,

η(x, t) = y(x, t) -ȳ(x, t), (13a) 
δ(x, t) = z(x, t) -(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t), (13b) 
where η stands for the error between the slow dynamics y in (4) and ȳ in [START_REF] Gugat | Existence of classical solutions and feedback stabilization for the flow in gas networks[END_REF], and δ is the error between the fast dynamics z in (4) and its equilibrium point. In all the following, it is assumed ∈ (0, ¯ ). Due to ( 13) and (7), the system (4) can be rewritten in the new variables (η, δ) as October 17, 2015 DRAFT follows

η t (x, t) + Λ 1 ( )η x (x, t) = a + ( )η(x, t) + a -( )η(1 -x, t) +b + ( )δ(x, t) + b -( )δ(1 -x, t) + a + ( )ȳ(x, t) +a -( )ȳ(1 -x, t) -(Λ 1 ( ) -Λ 1 (0))ȳ x (x, t) +b( )(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t), (14a) 
δ t (x, t) + Λ 2 ( )δ x (x, t) = c + ( )η(x, t) + c -( )η(1 -x, t) +d + ( )δ(x, t) + d -( )δ(1 -x, t) +c + ( )ȳ(x, t) + c -( )ȳ(1 -x, t) +d( )(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) + (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0)ȳ x (1, t) (14b) 
Due to ( 5) and ( 8), the boundary condition for system ( 14) is computed as follows

η(0, t) = y(0, t) -ȳ(0, t) = G 11 ( )η(1, t) + G 12 ( )δ(1, t) + G d1 ( )ȳ(1, t), δ(0, t) = z(0, t) -(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) = G 21 ( )η(1, t) + G 22 ( )δ(1, t) + G d2 ( )ȳ(1, t).
The boundary condition is written as

η(0,t) δ(0,t) = G 11 ( ) G 12 ( ) G 21 ( ) G 22 ( ) η(1,t) δ(1,t) + G d1 ( ) G d2 ( ) ȳ(1, t), (15) 
where

G d1 ( ) = (G 11 ( ) -G 11 (0)) + (G 12 ( ) -G 12 (0))(I m -G 22 (0)) -1 G 21 (0) and G d2 ( ) = (G 21 ( ) -G 21 (0)) + (G 22 ( ) -G 22 (0))(I m -G 22 (0)) -1 G 21 (0).
Remark 2. Due to Assumption 3, there exists a positive constant r 1 , such that G d1 ( )

r 1 , G d2 ( ) r 1 . •
The candidate Lyapunov function for system ( 14)-( 15) is

V = V 1 +V 2 , with V 1 = 1 0 e -µx η (x, t)Qη(x, t) dx and V 2 =
1 0 e -µx δ (x, t)P δ(x, t) dx, where µ > 0, Q a positive diagonal matrix in R n×n and P a positive diagonal matrix in R m×m .

Let us compute the time derivative of V 1 along (14a), we get V1 = 1 0 e -µx (2η (x, t)Qη t (x, t)) dx.

October 17, 2015 DRAFT Using the expression in (14a) to replace η t and performing an integration by parts for the integral

2 1 0 e -µx η (x, t)QΛ 1 ( )η x (x, t)dx yield V1 = -[e -µx η (x)QΛ 1 ( )η(x)] x=1 x=0 1 0 e -µx η (x, t) (µQΛ 1 ( ) -2Qa + ( )) η(x, t) dx +2 1 0 e -µx η (x, t)Qa -( ) η(1 -x, t) dx +2 1 0 e -µx η (x, t)Qb + ( )δ(x, t) dx +2 1 0 e -µx η (x, t)Qb -( )δ(1 -x, t) dx +2 1 0 e -µx η (x, t)Qa + ( )ȳ(x, t) dx +2 1 0 e -µx η (x, t)Qa -( )ȳ(1 -x, t) dx -2 1 0 e -µx η (x, t)Q (Λ 1 ( ) -Λ 1 (0)) ȳx (x, t) dx +2 1 0 e -µx η (x, t)Qb( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx.
Similarly, we compute the time derivative of V 2 along (14b), it follows V2 = 1 0 e -µx (2δ (x, t)P δ t (x, t)) dx. Using the expression in (14b) to replace δ t and performing an integration by parts for the integral

2 1 0 e -µx δ (x, t)P Λ 2 ( )δ x (x, t)dx yield October 17, 2015 DRAFT V2 = -[e -µx δ (x)P Λ 2 ( )δ(x)] x=1 x=0 - 1 0 e -µx δ (x, t) (µP Λ 2 ( ) -2P d + ( )) δ(x, t) dx +2 1 0 e -µx δ (x, t)P d -( )δ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c + ( )η(x, t) dx +2 1 0 e -µx δ (x, t)P c -( )η(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c + ( )ȳ(x, t) dx +2 1 0 e -µx δ (x, t)P c -( )ȳ(1 -x, t) dx +2 1 0 e -µx δ P d( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx +2 1 0 e -µx δ P (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0)ȳ x (1, t) dx.
Combining V1 and V2 , we obtain V (η, δ, ) = V1 + V2 = T 1 + T 2 + T 3 , with:

T 1 = -e -µx η (x)QΛ 1 ( )η(x) + δ (x)P Λ 2 ( )δ(x) x=1 x=0 , T 2 = - 1 0 e -µx η (x, t) (µQΛ 1 ( ) -2Qa + ( )) η(x, t) dx - 1 0 e -µx δ (x, t) (µP Λ 2 ( ) -2P d + ( )) δ(x, t) dx +2 1 0 e -µx η (x, t) Qb + ( ) + c + ( )P δ(x, t) dx +2 1 0 e -µx η (x, t)Qa -( ) η(1 -x, t) dx +2 1 0 e -µx η (x, t)Qb -( )δ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P d -( )δ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c -( )η(1 -x, t) dx,
October 17, 2015 DRAFT

T 3 = -2 1 0 e -µx η (x, t)Q (Λ 1 ( ) -Λ 1 (0)) ȳx (x, t) dx +2 1 0 e -µx η (x, t)Qb( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx +2 1 0 e -µx η (x, t)Qa + ( )ȳ(x, t) dx +2 1 0 e -µx δ (x, t)P c + ( )ȳ(x, t) dx +2 1 0 e -µx η (x, t)Qa -( )ȳ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c -( )ȳ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P d( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx +2 1 0 e -µx δ (x, t)P (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0)ȳ x (1, t) dx.
In order to deal with the terms ȳ(1, .) and ȳx (1, .) in T 3 , let us consider the following estimates.

By Poincaré inequality, it holds for all t 0,

|ȳ(1, .)| = 1 0 ȳ + xȳ x dx √ 2 ȳ(., t) H 2 , (16) 
|ȳ x (1, .)| = 1 0 ȳx + xȳ xx dx √ 3 ȳ(., t) H 2 . ( 17 
)
Step 2) To estimate the terms T 1 -T 3 , let us state the following lemmas. The stability of the reduced subsystem in H 2 -norm is given in Lemma 1.

Lemma 1. [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF] Consider the reduced subsystem ( 7)-( 9), if ρ 1 (G(0)) < 1, there exist C r > 0, such that for any initial condition ȳ0 ∈ H 2 (0, 1) satisfying the compatibility conditions [START_REF] Kokotović | Singular perturbations of a class of time optimal controls[END_REF] and for all t 0, ȳ(., t) 2

H 2 C r e -µλ(Λ 1 (0))t ȳ0 2 H 2 . ( 18 
)
Lemma 2. If ρ 1 (G(0)) < 1, under Assumptions 1 and 3, there exist positive values C T 1 and * 1 , such that for all ∈ (0, * 1 ) and t 0,

T 1 C T 1 e -µλ(Λ 1 (0))t ȳ0 2 H 2 . ( 19 
)
October 17, 2015 DRAFT

Proof. Using boundary condition [START_REF] Shampine | Solving hyperbolic PDEs in Matlab[END_REF] and after developing and reorganizing, the first term T 1 =

T 11 + T 12 with

T 11 = -   η(1) δ(1)     e -µ QΛ 1 ( ) 0 0 e -µ P Λ 2 ( )     η (1) 
δ( 1)

  +   η (1) 
δ( 1)

  G ( )   QΛ 1 ( ) 0 0 P Λ 2 ( )   G( )   η (1) δ(1) 
  ,

T 12 = ȳ (1) M 1 ( ) ȳ(1) + 2η (1) M 2 ( ) ȳ(1) +2δ (1) M 3 ( ) ȳ(1),
where

M 1 ( ) = G d1 ( )QΛ 1 ( )G d1 + G d2 ( )P Λ( )G d2 ( ) , M 2 ( ) = G 11 ( )QΛ 1 ( )G d1 ( ) + G 21 ( )P Λ 2 ( )G d2 ( ) , M 3 ( ) = G 12 ( )QΛ 1 ( )G d1 ( )+G 22 ( )P Λ 2 ( )G d2 ( ) . Since ρ 1 (G(0)) < 1, let ∆ = ( ∆ 1 0 0 ∆ 2 ), such that ∆G(0)∆ -1 = σ < 1. Let ∆( ) = ∆ 1 Λ -1 2 
1 (0)Λ 1 2 1 ( ) 0 0 ∆ 2 Λ -1 2 2 (0)Λ 1 2 2 ( ) ,
under Assumption 1, due to the continuity of Λ 1 ( ) and Λ 2 ( ), there exists positive * 11 small enough such that for all ∈ (0, *

), ∆( )G( )∆ -1 ( ) = σ * < 1. Let Q = ∆ 2 1 ( )Λ -1 1 ( ), P = ∆ 2 2 ( )Λ -1 11 
( ) and 0 < µ < -2 ln σ * , there exists a positive value β such that it holds for all ∈ (0, * 11 )

T 11 = -   η (1) 
δ( 1)

  e -µ ∆ 2 ( ) -G ( )∆ 2 ( )G( ) ×   η (1) δ(1) 
  = -β(|η(1)| 2 + |δ(1)| 2 ) < 0. (20) 
Using Young's inequality, such that for all k > 0, T 12 follows

T 12 M 1 ( ) |ȳ(1)| 2 + k M 2 ( ) |η(1)| 2 + k M 3 ( ) |δ(1)| 2 + M 2 ( ) + M 3 ( ) k |ȳ(1)| 2 .
By choosing k = 1 and using Assumption 3 and Remark 2, it follows

T 12 N 1 |η(1)| 2 + N 2 |δ(1)| 2 + N 3 |ȳ(1)| 2 ,
where N 1 -N 3 are positive. Combined with [START_REF] Winterbone | Theory of Engine Manifold Design: Wave Action Methods for IC Engines[END_REF] , it yields T 1 -(β - 

N 1 )|η(1)| 2 -(β -N 2 )|δ(1)| 2 + N 3 |ȳ(1)| 2 .Let * 12 = min β N 1 , β N 2 ,
Proof. Due to the continuity of Λ 1 ( ) and Λ 2 ( ) in Assumption 1, we may assume that Λ 1 ( )

λ(Λ 1 (0)) 2 , Λ 2 ( ) λ(Λ 2 (0)) 2
, since 

T 2 - µλ(Q)λ(Λ 1 (0)) 2 -4 R 2 Q 1 0 e -µx |η| 2 dx - µλ(P )λ(Λ 2 (0)) 2 -4 R 2 P 1 0 e -µx |δ| 2 dx +4 R 2 ( Q + P ) 1 0 e -µx |η| |δ| dx.
Using Young's inequality to the third term, for all k 2 > 0, it holds

T 2 - µλ(Q)λ(Λ 1 (0)) 2 -4 R 2 Q -2 k 2 R 2 ( Q + P ) × 1 0 e -µx |η| 2 dx - µλ(P )λ(Λ 2 (0)) 2 -4 R 2 P - 2 R 2 ( Q + P ) k 2 × 1 0 e -µx |δ| 2 dx.
By choosing k 2 = 1, let * 2 = min µλ(Q)λ(Λ 1 (0)) 4R 2 (3 Q + P ) , µλ(P )λ(Λ 2 (0)) 4R 2 (3 P + Q ) , there exists a positive constant C T 2 , then for all < * 2 , it holds T 2 -C T 2 1 0 e -µx (η Qη + δ P δ) dx. This concludes the proof of Lemma 3. Lemma 4. Under Assumptions 1 and 2, there exist positive constants C T 31 , C T 32 and C T 33 , such that for all positive value and for all t 0,

T 3 C T 31 1 0 e -µx |η| 2 dx + C T 32 1 0 e -µx |δ| 2 dx + C T 33 e -µλ(Λ 1 (0))t ȳ0 2 H 2 . ( 22 
)
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Proof. Under Assumptions 1 and 2, due to

1 0 |ȳ(x)|dx = 1 0 |ȳ(1 -x)|dx, T 3 follows T 3 2 e µ R 1 Q 1 0 |η| |ȳ x | dx + 4 e µ R 2 Q 1 0 |η| |ȳ| dx +2 e µ R 2 Q (I m -G 22 (0)) -1 G 21 (0) 1 0 |η| |ȳ(1)| dx +2 R 2 e µ P (I m -G 22 (0)) -1 G 21 (0) 1 0 |δ| |ȳ(1)| dx +4 e µ R 2 P 1 0 |δ| |ȳ| dx +2 e µ P (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0) 1 0 |δ| |ȳ x (1)| dx.
Using again Young's inequality, for all positive k 3 , it holds

T 3 k 3 e µ Q R 1 + 2R 2 + R 2 (I m -G 22 (0)) -1 G 21 (0) × 1 0 e -µx |η| 2 dx + k 3 e µ P R 2 (I m -G 22 (0)) -1 G 21 (0) +2R 2 + (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0) × 1 0 e -µx |δ| 2 dx + e µ Q R 1 + 2R 2 + R 2 (I m -G 22 (0)) -1 G 21 (0) k 3 × 1 0 e -µx (|ȳ x | 2 + |ȳ| 2 + |ȳ(1)| 2 ) dx + e µ P R 2 (I m -G 22 (0)) -1 G 21 (0) + 2R 2 k 3 + (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0) k 3 × 1 0 e -µx (|ȳ x (1)| 2 + |ȳ| 2 + |ȳ(1)| 2 ) dx.
Choosing k 3 = 1, using the estimates ( 16) and ( 17) and Lemma 1, we obtain

T 3 C T 31 1 0 e -µx |η| 2 dx+ C T 32 1 0 e -µx |δ| 2 dx + C T 33 e -µλ(Λ 1 (0))t ȳ0 2 H 2
, where C T 31 , C T 32 and C T 33 are positive. This concludes the proof of Lemma 4.

Step 3) Using Lemmas 2-4, we obtain

V (η, δ, ) -(C T 2 -C v ) 1 0
e -µx (η Qη + δ P δ) dx

+ (C T 1 + C T 33 )e -µλ(Λ 1 (0))t ȳ0 2 H 2 , (23) 
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where

C v = max C T 31 λ(Q) , C T 32 λ(P ) . Let * 3 = C T 2 2Cv , * 1 in Lemma 2, * 2 in Lemma 3 and * = min( * 1 , * 2 , * 3 
), there exists > 0 such that for all ∈ (0, * ),

V (η, δ, ) -V (η, δ, ) + (C T 1 + C T 33 )e -µλ(Λ 1 (0))t ȳ0 2 H 2 .
In the above inequality, the term ȳ0 2 H 2 is seen as a disturbance and it follows that

V (η, δ, ) e -t V (η 0 , δ 0 , ) + (C T 1 + C T 33 )e -t e ( -µλ(Λ 1 (0)))t -1 -µλ(Λ 1 (0)) ȳ0 2 H 2 . ( 24 
)
Since < C T 2 , we may let < µλ(Λ 1 (0)), thus (24) can be rewritten as follows V (η, δ, )

e -t V (η 0 , δ 0 , )+ M e -t ȳ0 2 H 2 . Since V (η, δ, ) is lower and upper estimated by e -µ λ(Q) η 2 L 2 + e -µ λ(P ) δ 2 L 2 V (η, δ, ) Q η 2 L 2 + P δ 2 L 2 , it follows η(., t) 2 L 2 e µ e -t λ(Q) V (η 0 , δ 0 , ) + M e µ e -t λ(Q) ȳ0 2 H 2 .
Due to the initial condition y 0 = ȳ0 i.e. η 0 = 0, the following inequality holds η(., t) 2

L 2 P e µ e -t λ(Q) δ 0 L 2 + M e µ e -t λ(Q) ȳ0 2 H 2 .
This proves [START_REF] Kokotović | Singular perturbation and order reduction in control theory-an overview[END_REF]. Noting that for < * , the term

-(C T 2 -C v )
1 0 e -µx η Qηdx in the right hand side of (23) is always negative, then V (η, δ, ) is rewritten as follows

V (η, δ, ) - 1 0
e -µx δ P δ dx

+ (C T 1 + C T 33 )e -µλ(Λ 1 (0))t ȳ0 2 H 2 .
Performing an integration of both sides from 0 to +∞, it follows

+∞ 0 δ(., t) 2 L 2 dt e µ λ(P ) V (η 0 , δ 0 , ) -lim t→+∞ V (η, δ, ) + (C T 1 + C T 33 ) ȳ0 2 H 2 +∞ 0 e -µλ(Λ 1 (0))t dt , since lim t→+∞ V (η, δ, ) = 0 and η 0 = 0, it follows +∞ 0 δ(., t) 2 L 2 dt e µ P λ(P ) δ 0 L 2 + e µ (C T 1 + C T 33 ) µλ(P )λ(Λ 1 (0)) ȳ0 2 H 2 .
This proves [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF] and concludes the proof of Theorem 1.

Proof of Corollary 1: Due to (18), the reduced subsystem is exponentially stable in H 2 -norm.

The error system ( 14)-( 15) is exponentially stable in L 2 -norm according to (24). By [START_REF] Kokotović | Singular perturbation of linear regulators: basic theorems[END_REF] we prove that the full system is exponentially stable in L 2 -norm.
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A. Academic example

We consider the following academic example which illustrates the full generality of our result.

Consider system (4) with

Λ 1 ( ) = 1 + , Λ 2 ( ) = -1, a( ) = 0.1 , b( ) = 0.2 , c( ) = 0.05
and d( ) = 0.4 , which satisfies Assumptions 1 and 2. The boundary condition ( 5) is given by G exp = 0.5+ 1+ 0.5+ -0.5+ , thus Assumption 3 holds. Considering a diagonal positive matrix ∆ = ( 0.5 0 0 0.7 ), it holds ∆G(0)∆ -1 < 1, thus the condition ρ 1 (G(0)) < 1 is satisfied. Theorem 1 applies. To numerically compute the solutions of system (4) with G exp , we discretize it by using a two-step variant of the Lax-Wendroff method (see [START_REF] Shampine | Solving hyperbolic PDEs in Matlab[END_REF] and [START_REF] Shampine | Two-step Lax-Friedrichs method[END_REF]). Precisely, the space domain [0,1] is divided into 100 intervals of identical length, the final time is chosen as 30. We take a time-step dt = (0.9 /| -1|)dx that satisfies the CFL condition and select the initial conditions as follows, such that y 0 satisfies the compatibility condition for all x ∈ [0, 1], y 0 (x) = 1-cos(4πx), z 0 (x) = sin(2πx). The evolutions of η(., t = 3) 2 L 2 and of 30 0 δ(., t) 2 L 2 dt for different are given by Table I. The values are close to zero and decrease as decreases. The time evolutions of log η(x, t) 2 L 2 for different values of are shown in Figure 1. It is observed that the values decrease as time tends to infinity. Moreover, the values increase as increases. 

u ρ p t + u 0 1 ρ ρ u 0 a 2 ρ 0 u u ρ p x = 0, (25) 
where u = u(x, t) stands for the gas velocity at location x in [0, 1] and at time t; ρ = ρ(x, t) represents the gas density; p = p(x, t) is the gas pressure; a is sound speed in ideal gas. System (25) admits a constant in space steady-state (u * , ρ * , p * ). The deviations of the state (u, ρ, p) around the steady-state are defined as u = u -u * , ρ = ρ -ρ * , p = p -p * . Then the linearization of system (25) at this equilibrium is given by

u ρ p t + u * 0 1 ρ * ρ * u * 0 a * 2 ρ * 0 u * u ρ p x = 0. ( 26 
)
Performing a change of variable, we obtain a system in Riemann coordinates

M 1 M 2 M 3 t + u * 0 0 0 u * -a * 0 0 0 u * +a * M 1 M 2 M 3 x = 0, (27) 
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M = M 1 M 2 M 3 = 0 1 1 1 -ρ * a * ρ * a * 0 -a * ρ * a * ρ * -1 u ρ p . ( 28 
)
Assuming the propagation speed of gas is much slower than the sound speed, i.e. u << a, we define = u * a * . The system (27) can be rewritten as follows

M 1 M 2 M 3 t + u * 0 0 0 u * ( -1) 0 0 0 u * (1+ ) M 1 M 2 M 3 x = 0. (29) 
b) Boundary conditions: The setup is provided with fans which are located at the two extremities of the tube. The rotation speed is considered as the control action. Let us consider the following three boundary conditions for system (25).

1. The first boundary condition describes the operation of the inflow fan (see the fan specification map in [START_REF] Witrant | HynX team. Air flow modelling in deep wells: application to mining ventilation[END_REF]),

u(0, t)s = σc 0 (t)(p(0, t) -p in ), (30) 
where s stands for the tube's constant cross section, σ is constant coefficient, the control input is denoted by c 0 (t) and p in is a constant pressure before the inflow fan.

2.

Similarly, the second boundary condition is given by the outflow fan,

u(1, t)s = σc 1 (t)(p out -p(1, t)), (31) 
the control input is denoted by c 1 (t) and p out is a constant pressure behind the outflow fan.

3.

The third boundary condition is a physical constraint. Precisely, the gas pressure at the inflow fan is close to the atmospheric pressure (see [START_REF] Castillo | Contrôle de température dans un flux de Poiseuille[END_REF]),

ρ(0, t) = ρ ( 32 
)
where ρ is constant.

The boundary conditions for system (26) are obtained by linearizing the above three boundary conditions,

u(0, t)s = σ[c 0 (t)(p * -p in ) + c * 0 p(0, t)], (33) u 
(1, t)s = σ[c 1 (t)(p out -p * ) -c * 1 p(1, t)], (34) 
ρ(0, t) = 0, (35) 
where c * 0 , c * 1 are the constant control actions at the steady-state (u * , ρ * , p * ). 

(t) = c * 0 + s(1+K 32 ) σa * ρ * (K 32 -1) -c * 0 p * -p in p(0, t), c 1 (t)=c * 1 + s(a * (1+K 23 )-2ρ * K 21 ) σa * 2 ρ * (1-K 23 ) + c * 1 p out -p * p(1, t) + 2sK 21 σ(1-K 23 ) p out -p ρ(1, t),
the following conditions are equivalent to (33)-(35),

M 1 (0,t) M 2 (1,t) M 3 (0,t) = 0 K 12 0 K 21 0 K 23 0 K 32 0 M 1 (1,t) M 2 (0,t) M 3 (1,t) , (36) 
where

K 12 = f (K 32 ) = ρ * (1-K 32 ) a * .
Proof. From (28) and the third line in (36), under the condition K 32 -1 = 0, we obtain u(0, t) = 1+K 32 a * ρ * (K 32 -1) p(0, t). Combined with (33), we get the control action c 0 (t). Similarly under the condition 1 -K 23 = 0, from (28), (34) and the second line in (36), we get the control action

c 1 (t).
The interest of the feedback laws c 0 (t) and c 1 (t) leads in the equivalent form (36) in Riemann coordinates, for which the stability analysis could be studied by applying our main result.

Checking the assumptions of Theorem 1 allows to compute suitable tuning parameters K 21 , K 23 and K 32 . Moreover note that the controllers c 0 (t) and c 1 (t) do not depend on all the state (u, ρ, p) , but depend on some boundary values, namely p(0, t), p(1, t) and ρ(1, t).

C. Boundary condition synthesis based on singular perturbation method

According to Section II, the reduced subsystem for (29) and ( 36) is computed as follows,

M1t + u * M1x = 0, (37) 
with the boundary condition

M1 (0, t) = K r M1 (1, t), (38) 
where K r = ρ * (1-K 32 )K 21 a * (1-K 23 K 32 ) . Due to the Proposition 1 in [START_REF] Tang | Boundary control synthesis for hyperbolic systems: a singular perturbation approach[END_REF], the reduced subsystem (37) and (38) is convergent in finite time T if the boundary condition K r = 0. Assuming 1 -K 23 K 32 = 0, since K 32 = 1 in Proposition 1, it holds K r = 0 as soon as K 21 = 0. The boundary condition matrix K in (36) becomes

K = 0 ρ * (1-K 32 ) a * 0 0 0 K 23 0 K 32 0 . (39) 
To ensure ρ 1 (K) < 1, it is sufficient to choose K < 1. In order to decrease the control cost, we can minimize K that is equivalent to minimize for the reduced subsystem (37) and ( 38) is shown in Figure 2. It is observed that M1 converges to the origin in finite time. Time evolution of η in Figure 3 shows that the error between the full system (29) and (39) and the reduced subsystem (37) and ( 38) is close to 0 as time increases.

K 2 32 + ρ * (1-K 32 ) a * 2 + K 2 23 . K 23 is chosen as zero. Computing the derivative of K 2 32 + ρ * (1-K 32 )
Table II gives the evolutions of η(., t = 0.1) 2 L 2 and of 1 0 δ(., t) 2 L 2 dt. It is found that the values are near zero and increase when increases, as expected from Theorem 1. 

VI. CONCLUSION

This paper is concerned with a class of singularly perturbed linear hyperbolic systems with source term which depends on the perturbation parameter. The hetero-directional transport velocities depend on as well as the boundary conditions. Under some assumptions and the condition ρ 1 (G(0)) < 1, the approximation of the solution of the full system by that of the reduced subsystem has been established in Theorem 1. An academic example has been used to illustrate the main result. Furthermore, a new boundary control synthesis has been given with an application of gas flow transport model where the slow dynamics is convergent in finite time.

For the future work, it would be interesting to study a physical application with small source term which vanishes when the perturbation parameter tends to zero.
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  using the estimates in[START_REF] Shampine | Two-step Lax-Friedrichs method[END_REF] and Lemma 1, then for all 0 < < Lemma 3. Under Assumptions 1 and 2, there exist positive values C T 2 and *

			2 , such that for all
	∈ (0, * 2 ),		
		1	
	T 2	-C T 2	e -µx η Qη + δ P δ dx.
		0	

* 1 = min( * 11 , * 12 ), T 1 follows T 1 C T 1 e -µλ(Λ 1 (0))t ȳ0 2 H 2 .

This concludes the proof of Lemma 2.

TABLE I :

 I Evolutions of square of L 2 -norm of η and of time integral of square of L 2 -norm of δ for different

				Time evolution of log η 2 L 2 for different value of ǫ	
		2					
							ε=0.005
							ε=0.01
		0					ε=0.015
		-2					
	η 2 L 2	-4					
	log						
		-6					
		-8					
		-10					
		0	5	10	15	20	25	30
					t		
	October 17, 2015							DRAFT

  For any values K 23 and K 32 in R, such that K 23 = 1 and K 32 = 1, defining

	Proposition 1. control actions by	
	c 0	
	October 17, 2015	DRAFT

TABLE II :
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