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Singular perturbation approximation of linear

hyperbolic systems of balance laws

(full version)

Ying Tang, Christophe Prieur, and Antoine Girard

Abstract

This paper deals with a class of linear hyperbolic systems of balance laws with multiple time scales.

The scale of time constants is modeled by a perturbation parameter. This parameter is introduced in

both dynamics and boundary conditions. The solution of the full system is approximated by that of

the reduced subsystem when the perturbation parameter is small enough. Lyapunov technique is used

to prove it. The main result is illustrated by an academic example. Moreover, the boundary control

synthesis to a gas flow transport model is shown based on singular perturbation approach.

keywords Linear hyperbolic system, Balance law, Singular perturbation method, Lyapunov

technique

I. INTRODUCTION

Singular perturbation techniques were introduced in control of finite dimensional systems in

late 1960s and became a powerful tool for control design [10], [11], [12], [13]. A class of

infinite dimensional singularly perturbed hyperbolic systems has been studied in [19], [17]. Many

distributed physical systems are described by such systems. Among the potential applications,
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gas flow in pipelines [5] and [7], hydraulic networks [1], electrical transmission networks [6] or

road traffic networks [8] are of significant importance.

This paper focuses on a class of linear hyperbolic systems of balance laws where the perturbation

parameter ε is introduced in both dynamics and boundary conditions. The first contribution of

this paper is the Tikhonov approximation of linear hyperbolic system with source term. More

precisely, the solution of the full system can be approximated by that of the reduced subsystem

when the perturbation parameter is sufficiently small. This is proved by a Lyapunov function. To

the best of our knowledge, this is the first paper dealing with such systems. An academic example

is used to illustrate the main result. The second contribution is the boundary control synthesis

for application to a gas transport model where the slow dynamics is stabilized in finite time.

This system is written as a singularly perturbed model where the transport velocities depend on

ε that is different to our previous work [19]. In that work, a class of linear hyperbolic system

of conservation laws has been studied and a different approach has been used to model the gas

transport system where the transport velocities are constant values.

The paper is organized as follows. Section II presents the full system and the reduced subsystem

under consideration. The Tikhonov approximation is given in Section III. Section IV shows the

statement of the proof of the Tikhonov theorem. In Section V we first use an academic example

to illustrate the general main result. Then, a physical application to a gas flow transport model

based on singular perturbation method is shown in the same section. The conclusions are given

in Section VI. The paper ends with an appendix which contains the proofs of some auxiliary

results.

Notation. Given a matrix A ∈ Rm×m, A−1 and A> represent the inverse and the transpose matrix of A respectively.

The minimum and maximum eigenvalues of the matrix A are denoted by λ(A) and λ(A). For a positive integer

n, In is the identity matrix in Rn×n. | · | denotes the usual Euclidean norm in Rn and ‖ · ‖ is associated with the

matrix norm. ‖ · ‖L2 denotes the associated norm in L2(0, 1) space, defined by ‖f‖L2 =
√∫ 1

0
|f(x)|2dx for all

functions f ∈ L2(0, 1). Similarly, The associated norm in H2(0, 1) space is denoted by ‖ · ‖H2 , defined for all

functions f ∈ H2(0, 1), by ‖f‖H2 =

√∫ 1

0

(
|f(x)|2 + |f ′(x)|2 + |f ′′(x)|2

)
dx. According to [4], for all matrices

G ∈ Rn×n, ρ1(G) = inf{‖∆G∆−1‖,∆ ∈ Dn,+}, where Dn,+ denotes the set of diagonal positive matrices in

Rn×n.
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II. SYSTEM DESCRIPTION

Consider the following linear hyperbolic system of balance laws

yt(x, t) + Λ1(ε)yx(x, t) = a(ε)y(x, t) + b(ε)z(x, t), (1a)

εzt(x, t) + Λ2(ε)zx(x, t) = c(ε)y(x, t) + d(ε)z(x, t), (1b)

where x ∈ [0, 1], t ∈ [0,+∞). Λ1(ε) is a diagonal matrix in Rn×n such that Λ1(ε) = diag(λ1(ε), · · · , λn(ε)),

where the i first elements are negative and the n−i last elements are positive. Similarly Λ2(ε) is a

diagonal matrix in Rm×m, such that Λ2(ε) = diag(λ1(ε), · · · , λm(ε)), where the l first elements

are negative and the m−l last elements are positive. y =
(
y−

y+

)
where y− : [0, 1]×[0,+∞)→ Ri

and y+ : [0, 1] × [0,+∞) → Rn−i. z =
(
z−

z+

)
where z− : [0, 1] × [0,+∞) → Rl and

z+ : [0, 1] × [0,+∞) → Rm−l. 0 < ε � 1, The matrices a(ε), b(ε), c(ε) and d(ε) are in

appropriate dimensions and vanish at ε = 0.

The boundary condition under consideration is given by(
y−(1,t)

y+(0,t)

z−(1,t)

z+(0,t)

)
= G(ε)

(
y−(0,t)

y+(1,t)

z−(0,t)

z+(1,t)

)
, t ∈ [0,+∞), (2)

where G(ε) =
(
G11(ε) G12(ε)
G21(ε) G22(ε)

)
is a matrix in R(n+m)×(n+m) with the matrices G11(ε) in Rn×n,

G12(ε) in Rn×m, G21(ε) in Rm×n, G22(ε) in Rm×m. Given two functions y0 : [0, 1] → Rn and

z0 : [0, 1]→ Rm, the initial condition is(
y(x,0)
z(x,0)

)
=
(
y0(x)

z0(x)

)
, x ∈ [0, 1]. (3)

Replacing y(x, t) by
(
y−(1−x,t)
y+(x,t)

)
and z(x, t) by

(
z−(1−x,t)
z+(x,t)

)
, it may be assumed, without loss of

generality, that the matrices Λ1(ε) and Λ2(ε) are diagonal positive. The full system (4) can then

be rewritten under the form

yt(x, t) + Λ1(ε)yx(x, t) = a+(ε)y(x, t) + a−(ε)y(1− x, t)

+b+(ε)z(x, t) + b−(ε)z(1− x, t), (4a)

εzt(x, t) + Λ2(ε)zx(x, t) = c+(ε)y(x, t) + c−(ε)y(1− x, t)

+d+(ε)z(x, t) + d−(ε)z(1− x, t). (4b)

Then the boundary condition (2) becomes(
y(0,t)
z(0,t)

)
= G(ε)

(
y(1,t)
z(1,t)

)
, t ∈ [0,+∞). (5)
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It is shown in [3, Section 2.1] that for all (y0 z0)> ∈ L2(0, 1), there exists a unique weak solution

(y z)> ∈ C0([0,+∞), L2(0, 1)) for the Cauchy problem (4)-(5).

The linear hyperbolic system (4)-(5) is exponentially stable to the origin in L2-norm, if there

exist σ1 > 0 and C1 > 0, such that for every (y0 z0)> ∈ L2(0, 1), the solution to the system

(4)-(3) satisfies
∥∥∥( y(.,t)

z(.,t)

)∥∥∥
L2

6 C1e
−σ1t

∥∥∥( y0
z0

)∥∥∥
L2

, for all t ∈ [0,+∞).

Adapting the approach in [14], [9] to infinite dimensional systems, the reduced subsystem for

(4) and (5) is formally computed as follows. By setting ε = 0 in (4b), yields

yt(x, t) + Λ1(0)yx(x, t) = 0, (6a)

zx(x, t) = 0. (6b)

Substituting (6b) into the second line of the boundary condition (5) and assuming (Im−G22(0))

invertible, yields

z(., t) = (Im −G22(0))−1G21(0)y(1, t),

y(0, t) = (G11(0) +G12(0)(Im −G22(0))−1G21(0))y(1, t).

The reduced subsystem is thus written as

ȳt(x, t) + Λ1(0)ȳx(x, t) = 0, x ∈ [0, 1], t ∈ [0,+∞), (7)

with the boundary condition

ȳ(0, t) = Grȳ(1, t), t ∈ [0,+∞), (8)

where Gr = G11(0) + G12(0)(Im − G22(0))−1G21(0), whereas the initial condition is given as

the same as for the full system

ȳ(x, 0) = ȳ0(x) = y0(x), x ∈ [0, 1]. (9)

The compatibility conditions for the existence of solutions of (7)-(9) in H2-norm are given as

follows
ȳ0(0) = Grȳ

0(1),

ȳ0
x(0) = Λ−1

1 (0)GrΛ1(0)ȳ0
x(1).

(10)

Due to Proposition 2.1 in [4], for every ȳ0 ∈ H2(0, 1) satisfying the compatibility conditions (10),

the Cauchy problem (7)-(9) has a unique maximal classical solution ȳ ∈ C0([0,+∞), H2(0, 1)).

The system (7)-(9) is exponentially stable to the origin in H2-norm, if there exist σ2 > 0 and
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C2 > 0, such that for every ȳ0 ∈ H2(0, 1) satisfying the compatibility conditions (10), the

solution to the system (7)-(9) satisfies ‖ȳ(., t)‖H2 6 C2e
−σ2t‖ȳ0‖H2 , for all t ∈ [0,+∞).

Remark 1. Compared with [19], the transport velocities of the full system in the present work

depend on ε as well as the boundary conditions. Moreover, we consider an additional source

term which is also dependent on ε. Due to the presence of ε in both dynamics and boundary

conditions, the full system becomes more complex. The assumptions on the continuity for such

terms with respect to ε should be used to ensure that the Tikhonov approximation is valid for ε

sufficiently small. The proof of the main result is then more sophisticated and is a non trivial

extension. ◦

III. TIKHONOV APPROXIMATION OF LINEAR HYPERBOLIC SYSTEMS OF BALANCE LAWS

In this section, the approximation of the solutions to the full system by that to the reduced

subsystem is established by Lyapunov techniques. First let us consider the following assumptions.

Assumption 1. The functions Λ1 and Λ2 are Lipschitz continuous at 0, that is there exist positive

constants R1 and ε̄ such that for all 0 < ε < ε̄,

‖Λ1(ε)− Λ1(0)‖ 6 εR1, ‖Λ2(ε)− Λ2(0)‖ 6 εR1.

Assumption 2. Let ε̄ as in Assumption 1, the functions a, b, c and d are Lipschitz continuous

at 0, that is there exits a positive constant R2, such that for all 0 < ε < ε̄,

‖a(ε)‖ 6 εR2, ‖b(ε)‖ 6 εR2, ‖c(ε)‖ 6 εR2, ‖d(ε)‖ 6 εR2.

Assumption 3. Let ε̄ as in Assumption 1, the functions G11, G12, G21 and G22 are Lipschitz

continuous at 0, that is there exists a positive value R3, such that for all 0 < ε < ε̄,

‖G11(ε)−G11(0)‖ 6 εR3, ‖G12(ε)−G12(0)‖ 6 εR3,

‖G21(ε)−G21(0)‖ 6 εR3, ‖G22(ε)−G22(0)‖ 6 εR3.

We are ready to state the main result in the following theorem.

Theorem 1. Consider the linear hyperbolic system (4)-(5), under Assumptions 1-3, if ρ1(G(0)) <

1, there exist positive values C1, C2, θ, ε∗ such that for all 0 < ε < ε∗, for any initial condition
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y0 ∈ H2(0, 1) satisfying compatibility conditions (10) with ȳ0 = y0, and z0 ∈ L2(0, 1), it holds

for all t > 0

‖y(., t)− ȳ(., t)‖2
L2 6 εC1e

−θt
(
‖ȳ0‖2

H2 + ‖z0 − (Im −G22(0))−1G21(0)ȳ0(1)‖2
L2

)
, (11)

∫ +∞

0

‖z(., t)− (Im −G22(0))−1G21(0)ȳ(1, t)‖2
L2dt 6

εC2

(
‖ȳ0‖2

H2 + ‖z0 − (Im −G22(0))−1G21(0)ȳ0(1)‖2
L2

)
. (12)

Corollary 1. If ρ1(G(0)) < 1, under Assumptions 1-3, the full system (4) with the boundary

condition (5) is exponentially stable in L2-norm for all 0 < ε < ε∗.

The proofs of Theorem 1 and Corollary 1 are given in the following section.

IV. PROOF OF THEOREM 1 AND COROLLARY 1

Proof of Theorem 1: In the following we will use three steps to prove Theorem 1.

Step 1) Let us perform the following change of variables,

η(x, t) = y(x, t)− ȳ(x, t), (13a)

δ(x, t) = z(x, t)− (Im −G22(0))−1G21(0)ȳ(1, t), (13b)

where η stands for the error between the slow dynamics y in (4) and ȳ in (7), and δ is the error

between the fast dynamics z in (4) and its equilibrium point. In all the following, it is assumed

ε ∈ (0, ε̄). Due to (13) and (7), the system (4) can be rewritten in the new variables (η, δ) as

October 17, 2015 DRAFT
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follows

ηt(x, t) + Λ1(ε)ηx(x, t) = a+(ε)η(x, t) + a−(ε)η(1− x, t)

+b+(ε)δ(x, t) + b−(ε)δ(1− x, t) + a+(ε)ȳ(x, t)

+a−(ε)ȳ(1− x, t)− (Λ1(ε)− Λ1(0))ȳx(x, t)

+b(ε)(Im −G22(0))−1G21(0)ȳ(1, t), (14a)

εδt(x, t) + Λ2(ε)δx(x, t) = c+(ε)η(x, t) + c−(ε)η(1− x, t)

+d+(ε)δ(x, t) + d−(ε)δ(1− x, t)

+c+(ε)ȳ(x, t) + c−(ε)ȳ(1− x, t)

+d(ε)(Im −G22(0))−1G21(0)ȳ(1, t)

+ε(Im −G22(0))−1G21(0)Λ1(0)ȳx(1, t) (14b)

Due to (5) and (8), the boundary condition for system (14) is computed as follows

η(0, t) = y(0, t)− ȳ(0, t)

= G11(ε)η(1, t) +G12(ε)δ(1, t) +Gd1(ε)ȳ(1, t),

δ(0, t) = z(0, t)− (Im −G22(0))−1G21(0)ȳ(1, t)

= G21(ε)η(1, t) +G22(ε)δ(1, t) +Gd2(ε)ȳ(1, t).

The boundary condition is written as(
η(0,t)
δ(0,t)

)
=
(
G11(ε) G12(ε)
G21(ε) G22(ε)

)(
η(1,t)
δ(1,t)

)
+
(
Gd1(ε)
Gd2(ε)

)
ȳ(1, t), (15)

where Gd1(ε) = (G11(ε) − G11(0)) + (G12(ε) − G12(0))(Im − G22(0))−1G21(0) and Gd2(ε) =

(G21(ε)−G21(0)) + (G22(ε)−G22(0))(Im −G22(0))−1G21(0).

Remark 2. Due to Assumption 3, there exists a positive constant r1, such that ‖Gd1(ε)‖ 6 εr1,

‖Gd2(ε)‖ 6 εr1. ◦

The candidate Lyapunov function for system (14)-(15) is V = V1+V2, with V1 =
∫ 1

0
e−µxη>(x, t)Qη(x, t) dx

and V2 = ε
∫ 1

0
e−µxδ>(x, t)Pδ(x, t) dx, where µ > 0, Q a positive diagonal matrix in Rn×n and

P a positive diagonal matrix in Rm×m.

Let us compute the time derivative of V1 along (14a), we get V̇1 =
∫ 1

0
e−µx(2η>(x, t)Qηt(x, t)) dx.

October 17, 2015 DRAFT
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Using the expression in (14a) to replace ηt and performing an integration by parts for the integral

2
∫ 1

0
e−µxη>(x, t)QΛ1(ε)ηx(x, t)dx yield

V̇1 = −[e−µxη>(x)QΛ1(ε)η(x)]x=1
x=0∫ 1

0

e−µxη>(x, t) (µQΛ1(ε)− 2Qa+(ε)) η(x, t) dx

+2

∫ 1

0

e−µxη>(x, t)Qa−(ε) η(1− x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qb+(ε)δ(x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qb−(ε)δ(1− x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qa+(ε)ȳ(x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qa−(ε)ȳ(1− x, t) dx

−2

∫ 1

0

e−µx η>(x, t)Q (Λ1(ε)− Λ1(0)) ȳx(x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qb(ε) (Im −G22(0))−1 G21(0)ȳ(1, t) dx.

Similarly, we compute the time derivative of V2 along (14b), it follows V̇2 = ε
∫ 1

0
e−µx(2δ>(x, t)Pδt(x, t)) dx.

Using the expression in (14b) to replace δt and performing an integration by parts for the integral

2
∫ 1

0
e−µxδ>(x, t)PΛ2(ε)δx(x, t)dx yield

October 17, 2015 DRAFT
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V̇2 = −[e−µxδ>(x)PΛ2(ε)δ(x)]x=1
x=0

−
∫ 1

0

e−µxδ>(x, t) (µPΛ2(ε)− 2Pd+(ε)) δ(x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pd−(ε)δ(1− x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pc+(ε)η(x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pc−(ε)η(1− x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pc+(ε)ȳ(x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pc−(ε)ȳ(1− x, t) dx

+2

∫ 1

0

e−µx δ>Pd(ε) (Im −G22(0))−1 G21(0)ȳ(1, t) dx

+2ε

∫ 1

0

e−µx δ>P (Im −G22(0))−1 G21(0)Λ1(0)ȳx(1, t) dx.

Combining V̇1 and V̇2, we obtain V̇ (η, δ, ε) = V̇1 + V̇2 = T1 + T2 + T3, with:

T1 =−
[
e−µx

(
η>(x)QΛ1(ε)η(x) + δ>(x)PΛ2(ε)δ(x)

)]x=1

x=0

,

T2 = −
∫ 1

0

e−µxη>(x, t) (µQΛ1(ε)− 2Qa+(ε)) η(x, t) dx

−
∫ 1

0

e−µxδ>(x, t) (µPΛ2(ε)− 2Pd+(ε)) δ(x, t) dx

+2

∫ 1

0

e−µxη>(x, t)

(
Qb+(ε) + c+>(ε)P

)
δ(x, t) dx

+2

∫ 1

0

e−µxη>(x, t)Qa−(ε) η(1− x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qb−(ε)δ(1− x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pd−(ε)δ(1− x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pc−(ε)η(1− x, t) dx,
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T3 = −2

∫ 1

0

e−µx η>(x, t)Q (Λ1(ε)− Λ1(0)) ȳx(x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qb(ε) (Im −G22(0))−1 G21(0)ȳ(1, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qa+(ε)ȳ(x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pc+(ε)ȳ(x, t) dx

+2

∫ 1

0

e−µx η>(x, t)Qa−(ε)ȳ(1− x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pc−(ε)ȳ(1− x, t) dx

+2

∫ 1

0

e−µx δ>(x, t)Pd(ε) (Im −G22(0))−1 G21(0)ȳ(1, t) dx

+2ε

∫ 1

0

e−µx δ>(x, t)P (Im −G22(0))−1 G21(0)Λ1(0)ȳx(1, t) dx.

In order to deal with the terms ȳ(1, .) and ȳx(1, .) in T3, let us consider the following estimates.

By Poincaré inequality, it holds for all t > 0,

|ȳ(1, .)| =

∣∣∣∣∫ 1

0

(
ȳ + xȳx

)
dx

∣∣∣∣ 6 √2‖ȳ(., t)‖H2 , (16)

|ȳx(1, .)|=
∣∣∣∣∫ 1

0

(
ȳx + xȳxx

)
dx

∣∣∣∣ 6 √3‖ȳ(., t)‖H2 . (17)

Step 2) To estimate the terms T1-T3, let us state the following lemmas. The stability of the

reduced subsystem in H2-norm is given in Lemma 1.

Lemma 1. [19] Consider the reduced subsystem (7)-(9), if ρ1(G(0)) < 1, there exist Cr > 0,

such that for any initial condition ȳ0 ∈ H2(0, 1) satisfying the compatibility conditions (10) and

for all t > 0,

‖ȳ(., t)‖2
H2 6 Cre

−µλ(Λ1(0))t‖ȳ0‖2
H2 . (18)

Lemma 2. If ρ1(G(0)) < 1, under Assumptions 1 and 3, there exist positive values CT1 and ε∗1,

such that for all ε ∈ (0, ε∗1) and t > 0,

T1 6 εCT1e
−µλ(Λ1(0))t‖ȳ0‖2

H2 . (19)
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Proof. Using boundary condition (15) and after developing and reorganizing, the first term T1 =

T11 + T12 with

T11 = −

η(1)

δ(1)

>e−µQΛ1(ε) 0

0 e−µPΛ2(ε)

η(1)

δ(1)


+

η(1)

δ(1)

>G>(ε)

QΛ1(ε) 0

0 PΛ2(ε)

G(ε)

η(1)

δ(1)

 ,

T12 = ȳ>(1) M1(ε) ȳ(1) + 2η>(1) M2(ε) ȳ(1)

+2δ>(1) M3(ε) ȳ(1),

where M1(ε) =

(
G>d1(ε)QΛ1(ε)Gd1 + G>d2(ε)PΛ(ε)Gd2(ε)

)
, M2(ε) =

(
G>11(ε)QΛ1(ε)Gd1(ε) +

G>21(ε)PΛ2(ε)Gd2(ε)

)
, M3(ε) =

(
G>12(ε)QΛ1(ε)Gd1(ε)+G>22(ε)PΛ2(ε)Gd2(ε)

)
. Since ρ1(G(0)) <

1, let ∆ = ( ∆1 0
0 ∆2

), such that ‖∆G(0)∆−1‖ = σ < 1. Let ∆(ε) =

(
∆1Λ

− 1
2

1 (0)Λ
1
2
1 (ε) 0

0 ∆2Λ
− 1

2
2 (0)Λ

1
2
2 (ε)

)
,

under Assumption 1, due to the continuity of Λ1(ε) and Λ2(ε), there exists positive ε∗11 small

enough such that for all ε ∈ (0, ε∗11), ‖∆(ε)G(ε)∆−1(ε)‖ = σ∗ < 1. Let Q = ∆2
1(ε)Λ−1

1 (ε),

P = ∆2
2(ε)Λ−1

2 (ε) and 0 < µ < −2 lnσ∗, there exists a positive value β such that it holds for

all ε ∈ (0, ε∗11)

T11 = −

η(1)

δ(1)

>(e−µ∆2(ε)−G>(ε)∆2(ε)G(ε)

)

×

η(1)

δ(1)

 = −β(|η(1)|2 + |δ(1)|2) < 0. (20)

Using Young’s inequality, such that for all k > 0, T12 follows

T12 6 ‖M1(ε)‖|ȳ(1)|2 + k‖M2(ε)‖|η(1)|2 + k‖M3(ε)‖|δ(1)|2

+
‖M2(ε)‖+ ‖M3(ε)‖

k
|ȳ(1)|2.

By choosing k = 1 and using Assumption 3 and Remark 2, it follows T12 6 εN1|η(1)|2 +

εN2|δ(1)|2 + εN3|ȳ(1)|2, where N1-N3 are positive. Combined with (20) , it yields T1 6 −(β −

εN1)|η(1)|2− (β−εN2)|δ(1)|2 +εN3|ȳ(1)|2.Let ε∗12 = min
(

β
N1
, β
N2

)
, using the estimates in (16)

and Lemma 1, then for all 0 < ε < ε∗1 = min(ε∗11, ε
∗
12), T1 follows T1 6 εCT1e

−µλ(Λ1(0))t‖ȳ0‖2
H2 .

This concludes the proof of Lemma 2.
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Lemma 3. Under Assumptions 1 and 2, there exist positive values CT2 and ε∗2, such that for all

ε ∈ (0, ε∗2),

T2 6 −CT2
∫ 1

0

e−µx
(
η>Qη + δ>Pδ

)
dx. (21)

Proof. Due to the continuity of Λ1(ε) and Λ2(ε) in Assumption 1, we may assume that ‖Λ1(ε)‖ >
λ(Λ1(0))

2
, ‖Λ2(ε)‖ > λ(Λ2(0))

2
, since

∫ 1

0
|η(x)|dx =

∫ 1

0
|η(1 − x)|dx and

∫ 1

0
|δ(x)|dx =

∫ 1

0
|δ(1 −

x)|dx, for all ε ∈ (0, ε̄) and under Assumption 2, it deduced from T2

T2 6 −
(
µλ(Q)λ(Λ1(0))

2
− 4εR2‖Q‖

)∫ 1

0

e−µx|η|2 dx

−
(
µλ(P )λ(Λ2(0))

2
− 4εR2‖P‖

)∫ 1

0

e−µx|δ|2 dx

+4εR2(‖Q‖+ ‖P‖)
∫ 1

0

e−µx|η| |δ| dx.

Using Young’s inequality to the third term, for all k2 > 0, it holds

T2 6 −
(
µλ(Q)λ(Λ1(0))

2
− 4εR2‖Q‖ − 2εk2R2(‖Q‖+ ‖P‖)

)
×
∫ 1

0

e−µx|η|2 dx−
(
µλ(P )λ(Λ2(0))

2
− 4εR2‖P‖

−2εR2(‖Q‖+ ‖P‖)
k2

)
×
∫ 1

0

e−µx|δ|2 dx.

By choosing k2 = 1, let ε∗2 = min
(

µλ(Q)λ(Λ1(0))
4R2(3‖Q‖+‖P‖) ,

µλ(P )λ(Λ2(0))
4R2(3‖P‖+‖Q‖)

)
, there exists a positive constant

CT2 , then for all ε < ε∗2, it holds T2 6 −CT2
∫ 1

0
e−µx(η>Qη + δ>Pδ) dx. This concludes the

proof of Lemma 3.

Lemma 4. Under Assumptions 1 and 2, there exist positive constants CT31 , CT32 and CT33 , such

that for all positive value ε and for all t > 0,

T3 6 εCT31

∫ 1

0

e−µx|η|2 dx+ εCT32

∫ 1

0

e−µx|δ|2 dx+ εCT33e
−µλ(Λ1(0))t‖ȳ0‖2

H2 . (22)
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Proof. Under Assumptions 1 and 2, due to
∫ 1

0
|ȳ(x)|dx =

∫ 1

0
|ȳ(1− x)|dx, T3 follows

T3 6 2εeµR1‖Q‖
∫ 1

0

|η| |ȳx| dx+ 4εeµR2‖Q‖
∫ 1

0

|η| |ȳ| dx

+2εeµR2‖Q‖‖(Im −G22(0))−1G21(0)‖
∫ 1

0

|η| |ȳ(1)| dx

+2εR2e
µ‖P‖‖(Im −G22(0))−1G21(0)‖

∫ 1

0

|δ| |ȳ(1)| dx

+4εeµR2‖P‖
∫ 1

0

|δ| |ȳ| dx

+2εeµ‖P (Im −G22(0))−1G21(0)Λ1(0)‖
∫ 1

0

|δ| |ȳx(1)| dx.

Using again Young’s inequality, for all positive k3, it holds

T3 6 εk3e
µ‖Q‖

(
R1 + 2R2 +R2‖(Im −G22(0))−1G21(0)‖

)
×
∫ 1

0

e−µx|η|2 dx+ εk3e
µ‖P‖

(
R2‖(Im −G22(0))−1G21(0)‖

+2R2 + ‖(Im −G22(0))−1G21(0)Λ1(0)‖
)
×
∫ 1

0

e−µx|δ|2 dx

+εeµ‖Q‖
(
R1 + 2R2 +R2‖(Im −G22(0))−1G21(0)‖

k3

)
×
∫ 1

0

e−µx(|ȳx|2 + |ȳ|2 + |ȳ(1)|2) dx

+εeµ‖P‖
(
R2‖(Im −G22(0))−1G21(0)‖+ 2R2

k3

+
‖(Im −G22(0))−1G21(0)Λ1(0)‖

k3

)
×
∫ 1

0

e−µx(|ȳx(1)|2 + |ȳ|2 + |ȳ(1)|2) dx.

Choosing k3 = 1, using the estimates (16) and (17) and Lemma 1, we obtain T3 6 εCT31
∫ 1

0
e−µx|η|2 dx+

εCT32
∫ 1

0
e−µx|δ|2 dx + εCT33e

−µλ(Λ1(0))t‖ȳ0‖2
H2 , where CT31 , CT32 and CT33 are positive. This

concludes the proof of Lemma 4.

Step 3) Using Lemmas 2-4, we obtain

V̇ (η, δ, ε) 6 −(CT2 − εCv)
∫ 1

0

e−µx (η>Qη + δ>Pδ) dx

+ε(CT1 + CT33)e
−µλ(Λ1(0))t‖ȳ0‖2

H2 , (23)
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where Cv = max
(
CT31
λ(Q)

,
CT32
λ(P )

)
. Let ε∗3 =

CT2
2Cv

, ε∗1 in Lemma 2, ε∗2 in Lemma 3 and ε∗ =

min(ε∗1, ε
∗
2, ε
∗
3), there exists $ > 0 such that for all ε ∈ (0, ε∗),

V̇ (η, δ, ε)6−$V (η, δ, ε) + ε(CT1 + CT33)e
−µλ(Λ1(0))t‖ȳ0‖2

H2 .

In the above inequality, the term ‖ȳ0‖2
H2 is seen as a disturbance and it follows that

V (η, δ, ε) 6 e−$tV (η0, δ0, ε)

+ε(CT1 + CT33)e
−$t e

($−µλ(Λ1(0)))t − 1

$ − µλ(Λ1(0))
‖ȳ0‖2

H2 . (24)

Since $ < CT2 , we may let $ < µλ(Λ1(0)), thus (24) can be rewritten as follows V (η, δ, ε) 6

e−$tV (η0, δ0, ε)+εM̄e−$t‖ȳ0‖2
H2 . Since V (η, δ, ε) is lower and upper estimated by e−µλ(Q)‖η‖2

L2+

εe−µλ(P )‖δ‖2
L2 6 V (η, δ, ε) 6 ‖Q‖‖η‖2

L2 + ε‖P‖‖δ‖2
L2 , it follows

‖η(., t)‖2
L2 6

eµe−$t

λ(Q)
V (η0, δ0, ε) +

εM̄eµe−$t

λ(Q)
‖ȳ0‖2

H2 .

Due to the initial condition y0 = ȳ0 i.e. η0 = 0, the following inequality holds

‖η(., t)‖2
L2 6

ε‖P‖eµe−$t

λ(Q)
‖δ0‖L2 +

εM̄eµe−$t

λ(Q)
‖ȳ0‖2

H2 .

This proves (11). Noting that for ε < ε∗, the term −(CT2 − εCv)
∫ 1

0
e−µxη>Qηdx in the right

hand side of (23) is always negative, then V̇ (η, δ, ε) is rewritten as follows

V̇ (η, δ, ε) 6 −$
∫ 1

0

e−µxδ>Pδ dx

+ε(CT1 + CT33)e
−µλ(Λ1(0))t‖ȳ0‖2

H2 .

Performing an integration of both sides from 0 to +∞, it follows∫ +∞

0

‖δ(., t)‖2
L2 dt 6

eµ

λ(P )$

(
V (η0, δ0, ε)− lim

t→+∞
V (η, δ, ε)

+ε (CT1 + CT33) ‖ȳ0‖2
H2

∫ +∞

0

e−µλ(Λ1(0))tdt

)
,

since lim
t→+∞

V (η, δ, ε) = 0 and η0 = 0, it follows∫ +∞

0

‖δ(., t)‖2
L2dt 6

εeµ‖P‖
λ(P )$

‖δ0‖L2 +
εeµ (CT1 + CT33)

µλ(P )λ(Λ1(0))$
‖ȳ0‖2

H2 .

This proves (12) and concludes the proof of Theorem 1.

Proof of Corollary 1: Due to (18), the reduced subsystem is exponentially stable in H2-norm.

The error system (14)-(15) is exponentially stable in L2-norm according to (24). By (13) we

prove that the full system is exponentially stable in L2-norm.
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V. NUMERICAL RESULTS

A. Academic example

We consider the following academic example which illustrates the full generality of our result.

Consider system (4) with Λ1(ε) = 1 + ε, Λ2(ε) = ε − 1, a(ε) = 0.1ε, b(ε) = 0.2ε, c(ε) = 0.05ε

and d(ε) = 0.4ε, which satisfies Assumptions 1 and 2. The boundary condition (5) is given

by Gexp =
(

0.5+ε 1+ε
0.5+ε −0.5+ε

)
, thus Assumption 3 holds. Considering a diagonal positive matrix

∆ = ( 0.5 0
0 0.7 ), it holds ‖∆G(0)∆−1‖ < 1, thus the condition ρ1(G(0)) < 1 is satisfied. Theorem

1 applies. To numerically compute the solutions of system (4) with Gexp, we discretize it by using

a two-step variant of the Lax-Wendroff method (see [15] and [16]). Precisely, the space domain

[0,1] is divided into 100 intervals of identical length, the final time is chosen as 30. We take a

time-step dt = (0.9ε/|ε−1|)dx that satisfies the CFL condition and select the initial conditions as

follows, such that y0 satisfies the compatibility condition for all x ∈ [0, 1], y0(x) = 1−cos(4πx),

z0(x) = sin(2πx). The evolutions of ‖η(., t = 3)‖2
L2 and of

∫ 30

0
‖δ(., t)‖2

L2dt for different ε are

given by Table I. The values are close to zero and decrease as ε decreases. The time evolutions

of log ‖η(x, t)‖2
L2 for different values of ε are shown in Figure 1. It is observed that the values

decrease as time tends to infinity. Moreover, the values increase as ε increases.

ε 0.005 0.01 0.015

‖η(., t = 3)‖2L2 3× 10−3 1.2× 10−2 2.8× 10−2∫ 30

0
‖δ(., t)‖2L2dt 7× 10−3 2.6× 10−2 5.7× 10−2

TABLE I: Evolutions of square of L2-norm of η and of time integral of square of L2-norm of δ for different ε
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Fig. 1: Time evolution of log ‖η‖2L2 for different value of ε.

Remark 3. The simulation cost is lower when we simulate the reduced subsystem with a time-step

which does not depend on ε and satisfies the CFL condition λ(Λ1(0))dt < dx than simulating

the full system by using a smaller time-step satisfying CFL condition λ(Λ2(ε))dt < εdx. ◦

B. Physical application

a) System description: The gas dynamics through a constant cross section tube, where all the

friction losses and heat transfers are neglected, can be modeled by the following Euler equations

as considered in [20, Chapter 2], by considering a tube of length equals to 1.(
u
ρ
p

)
t
+

(
u 0 1

ρ

ρ u 0
a2ρ 0 u

)(
u
ρ
p

)
x

= 0, (25)

where u = u(x, t) stands for the gas velocity at location x in [0, 1] and at time t; ρ = ρ(x, t)

represents the gas density; p = p(x, t) is the gas pressure; a is sound speed in ideal gas. System

(25) admits a constant in space steady-state (u∗, ρ∗, p∗). The deviations of the state (u, ρ, p)

around the steady-state are defined as u = u−u∗, ρ = ρ−ρ∗, p = p−p∗. Then the linearization

of system (25) at this equilibrium is given by(
u
ρ
p

)
t
+

(
u∗ 0 1

ρ∗
ρ∗ u∗ 0

a∗2ρ∗ 0 u∗

)(
u
ρ
p

)
x

= 0. (26)

Performing a change of variable, we obtain a system in Riemann coordinates(
M1
M2
M3

)
t
+
(
u∗ 0 0
0 u∗−a∗ 0
0 0 u∗+a∗

)(
M1
M2
M3

)
x

= 0, (27)
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with

M =
(
M1
M2
M3

)
=

(
0 1 1

1 − ρ
∗
a∗

ρ∗
a∗

0 −a∗ρ∗ a∗ρ∗

)−1 (
u
ρ
p

)
. (28)

Assuming the propagation speed of gas is much slower than the sound speed, i.e. u << a, we

define ε = u∗

a∗
. The system (27) can be rewritten as follows(

M1
εM2
εM3

)
t
+

(
u∗ 0 0
0 u∗(ε−1) 0
0 0 u∗(1+ε)

)(
M1
M2
M3

)
x

= 0. (29)

b) Boundary conditions: The setup is provided with fans which are located at the two extremities

of the tube. The rotation speed is considered as the control action. Let us consider the following

three boundary conditions for system (25).

1. The first boundary condition describes the operation of the inflow fan (see the fan specification

map in [21]),

u(0, t)s = σc0(t)(p(0, t)− pin), (30)

where s stands for the tube’s constant cross section, σ is a constant coefficient, the control input

is denoted by c0(t) and pin is a constant pressure before the inflow fan.

2. Similarly, the second boundary condition is given by the outflow fan,

u(1, t)s = σc1(t)(pout − p(1, t)), (31)

the control input is denoted by c1(t) and pout is a constant pressure behind the outflow fan.

3. The third boundary condition is a physical constraint. Precisely, the gas pressure at the inflow

fan is close to the atmospheric pressure (see [2]),

ρ(0, t) = ρ̃ (32)

where ρ̃ is constant.

The boundary conditions for system (26) are obtained by linearizing the above three boundary

conditions,

u(0, t)s = σ[c0(t)(p∗ − pin) + c∗0p̂(0, t)], (33)

u(1, t)s = σ[c1(t)(pout − p∗)− c∗1p(1, t)], (34)

ρ(0, t) = 0, (35)

where c∗0, c∗1 are the constant control actions at the steady-state (u∗, ρ∗, p∗).
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Proposition 1. For any values K23 and K32 in R, such that K23 6= 1 and K32 6= 1, defining

control actions by

c0(t) = c∗0 +

s(1+K32)
σa∗ρ∗(K32−1)

− c∗0
p∗ − pin

p(0, t),

c1(t)=c∗1 +

s(a∗(1+K23)−2ρ∗K21)
σa∗2ρ∗(1−K23)

+ c∗1

pout − p∗
p(1, t) +

2sK21

σ(1−K23)

pout − p∗
ρ(1, t),

the following conditions are equivalent to (33)-(35),(
M1(0,t)
M2(1,t)
M3(0,t)

)
=
(

0 K12 0
K21 0 K23

0 K32 0

)(M1(1,t)
M2(0,t)
M3(1,t)

)
, (36)

where K12 = f(K32) = ρ∗(1−K32)
a∗

.

Proof. From (28) and the third line in (36), under the condition K32−1 6= 0, we obtain u(0, t) =

1+K32

a∗ρ∗(K32−1)
p(0, t). Combined with (33), we get the control action c0(t). Similarly under the

condition 1 −K23 6= 0, from (28), (34) and the second line in (36), we get the control action

c1(t).

The interest of the feedback laws c0(t) and c1(t) leads in the equivalent form (36) in Riemann

coordinates, for which the stability analysis could be studied by applying our main result.

Checking the assumptions of Theorem 1 allows to compute suitable tuning parameters K21,

K23 and K32. Moreover note that the controllers c0(t) and c1(t) do not depend on all the state

(u, ρ, p)>, but depend on some boundary values, namely p(0, t), p(1, t) and ρ(1, t).

C. Boundary condition synthesis based on singular perturbation method

According to Section II, the reduced subsystem for (29) and (36) is computed as follows,

M̄1t + u∗M̄1x = 0, (37)

with the boundary condition

M̄1(0, t) = KrM̄1(1, t), (38)

where Kr = ρ∗(1−K32)K21

a∗(1−K23K32)
.

Due to the Proposition 1 in [18], the reduced subsystem (37) and (38) is convergent in finite time
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T if the boundary condition Kr = 0. Assuming 1−K23K32 6= 0, since K32 6= 1 in Proposition

1, it holds Kr = 0 as soon as K21 = 0. The boundary condition matrix K in (36) becomes

K =

(
0
ρ∗(1−K32)

a∗ 0

0 0 K23
0 K32 0

)
. (39)

To ensure ρ1(K) < 1, it is sufficient to choose ‖K‖ < 1. In order to decrease the control

cost, we can minimize ‖K‖ that is equivalent to minimize K2
32 +

(
ρ∗(1−K32)

a∗

)2

+ K2
23. K23

is chosen as zero. Computing the derivative of K2
32 +

(
ρ∗(1−K32)

a∗

)2

with respect to K32, we

obtain K32 = ρ∗2

ρ∗2+a∗2
. Therefore the control actions become c0(t) = c∗0 −

s(a∗2+2ρ∗2)
σa∗3ρ∗

−c∗0
p∗−pin p(0, t),

c1(t) = c∗1 +
s

σa∗ρ∗ +c∗1
pout−p∗ p(1, t).

c) Numerical results: Let us consider the following values for numerical simulation: a∗ =

(200, 150, 100), u∗ = 10, ρ∗ = 2, K = 10−5
(

0 600 0
0 0 0
0 4 0

)
. The time evolution of the solution M̄1

for the reduced subsystem (37) and (38) is shown in Figure 2. It is observed that M̄1 converges

to the origin in finite time. Time evolution of η in Figure 3 shows that the error between the full

system (29) and (39) and the reduced subsystem (37) and (38) is close to 0 as time increases.

Table II gives the evolutions of ‖η(., t = 0.1)‖2
L2 and of

∫ 1

0
‖δ(., t)‖2

L2dt. It is found that the

values are near zero and increase when ε increases, as expected from Theorem 1.

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

-0.5

0

0.5

1

1.5

2

2.5

t

Solution M̄1

x

M̄
1

Fig. 2: Time evolution of the slow dynamic M̄1 in the reduced subsystem (37) and (38).
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0
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0.01

t
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x

η

Fig. 3: Time evolution of η which is the difference between M1 in the full system (29) and (39) and M̄1 in the

reduced subsystem (37) and (38).

ε = u∗

a∗
10
200

10
150

10
100

||η(., t = 0.1)||2L2 4.0× 10−7 9.9× 10−7 2.6× 10−6∫ 1

0
||δ1(., t)||2L2dt 3.7× 10−19 3.1× 10−11 1.1× 10−4∫ 1

0
||δ2(., t)||2L2dt 1.1× 10−14 1.1× 10−11 3.4× 10−7

TABLE II: Evolutions of square of L2-norm of η and of time integral of square of L2-norm δ for different ε

VI. CONCLUSION

This paper is concerned with a class of singularly perturbed linear hyperbolic systems with source

term which depends on the perturbation parameter. The hetero-directional transport velocities

depend on ε as well as the boundary conditions. Under some assumptions and the condition

ρ1(G(0)) < 1, the approximation of the solution of the full system by that of the reduced

subsystem has been established in Theorem 1. An academic example has been used to illustrate

the main result. Furthermore, a new boundary control synthesis has been given with an application

of gas flow transport model where the slow dynamics is convergent in finite time.

For the future work, it would be interesting to study a physical application with small source

term which vanishes when the perturbation parameter tends to zero.
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[10] P.V. Kokotović and A.H. Haddad. Singular perturbations of a class of time optimal controls. IEEE Transactions on

Automatic Control, 20:163–164, 1975.
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