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Systematic comparison of trip distribution laws and models

Maxime Lenormand,1 Aleix Bassolas,1 and José J. Ramasco1

1Instituto de F́ısica Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB),
Campus UIB, 07122 Palma de Mallorca, Spain

Trip distribution laws are basic for the travel demand characterization needed in transport and
urban planning. Several approaches have been considered in the last years. One of them is the
so-called gravity law, in which the number of trips is assumed to be related to the population at
origin and destination and to decrease with the distance. The mathematical expression of this law
resembles Newton’s law of gravity, which explains its name. Another popular approach is inspired by
the theory of intervening opportunities which argues that the distance has no effect on the destination
choice, playing only the role of a surrogate for the number of intervening opportunities between them.
In this paper, we perform a thorough comparison between these two approaches in their ability at
estimating commuting flows by testing them against empirical trip data at different scales and
coming from different countries. Different versions of the gravity and the intervening opportunities
laws, including the recently proposed radiation law, are used to estimate the probability that an
individual has to commute from one unit to another, called trip distribution law. Based on these
probability distribution laws, the commuting networks are simulated with different trip distribution
models. We show that the gravity law performs better than the intervening opportunities laws to
estimate the commuting flows, to preserve the structure of the network and to fit the commuting
distance distribution although it fails at predicting commuting flows at large distances. Finally, we
show that the different approaches can be used in the absence of detailed data for calibration since
their only parameter depends only on the scale of the geographic unit.

Everyday, billions of individuals around the world
travel. These movements form a socio-economic com-
plex network, backbone for the transport of people,
goods, money, information or even diseases at differ-
ent spatial scales. The study of such spatial networks
is consequently the subject of an intensive scientific
activity [1]. Some examples include the estimation of
population flows [2–9], transport planning and mod-
eling [10, 11], spatial network analysis [12, 13], study
of urban traffic [12] and modeling of the spreading of
infectious diseases [14–16].

Trip distribution modeling is thus crucial for the
prediction of population movements, but also for an
explanatory purpose, in order to better understand
the mechanisms of human mobility. There are two
major approaches for the estimation of trip distribu-
tion at an aggregate level. The traditional gravity
approach, in analogy with the Newton’s law of grav-
itation, is based on the assumption that the amount
of trips between two locations is related to their pop-
ulations and decays with a function of the distance
[17–20]. In contrast to the gravity law, the Stouffer’s
law of intervening opportunities [21] hinges on the as-
sumption that the number of opportunities plays a
more important role in the location choices than the
distance, particularly in the case of migration choices.
The original law proposed by Stouffer has been re-
formulated by Schneider [22] and extensively studied
since then [19, 23–27]. The two approaches have been
widely compared during the second half of the twen-
tieth century [28–31] showing that generally both ap-
proaches performed comparably. However, the sim-
plicity of the mathematical form of the gravity ap-
proach appears to have weighted in its favor [11]. In-
deed, the gravity approach has been extensively used
in the past few decades to model, for instance, flows
of population [2, 3, 5–7, 14–16, 32–35], spatial acces-

sibility to health services [36], volume of international
trade [37, 38], traffic in transport networks [39, 40]
and phone communications [41].

However, the concept of intervening opportunities
has recently regained in popularity thanks to the re-
cently proposed radiation approach [4, 8, 42, 43]. This
approach is inspired by a simple diffusion model where
the amount of trips between two locations depends
on their populations and the number of opportuni-
ties between them. The gravity law and the radiation
law have been compared several times during the last
years giving the superiority to either of the approaches
depending on the study [4, 5, 8, 33, 34]. Two main is-
sues can be identified in these comparisons. First, the
inputs used to simulate the flows are not always identi-
cal. For example, in the comparison proposed in [33],
the gravity law tested takes as input the population,
whereas the radiation law is based on the number of
jobs. Second, in all these studies, the models used to
generate the trips from the radiation and the gravity
laws are not constrained in the same way. The radi-
ation models are always production constrained, this
means that the number of trips, or at least an estima-
tion of the number of trips generated by census unit, is
preserved. The models used to generate the trips with
the gravity laws can be either, unconstrained [4, 33],
only the total number of trips is preserved or dou-
bly constrained [5, 8], both the trips produced and
attracted by a census unit are preserved. Therefore,
to fairly compare different approaches the same input
data must be used and, most importantly, we need to
differentiate the law, gravity or intervening opportuni-
ties, and the modeling framework used to generate the
trips from this law. Indeed, both the gravity laws and
the intervening opportunities laws can be expressed
as a probability to move from one place to another,
called trip distribution law, and based on these proba-
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Figure 1. Position of the units’ centroids for the six countries. 〈S〉 represents the average surface of the census units (i.e.
municipalities, counties or wards).

bility distributions, the total number of trips can then
be simulated using different trip distribution models
including different level of constraints.

In this work, we test and compare, in a system-
atic and rigorous way, gravity and intervening op-
portunities laws against commuting census data com-
ing from six different countries using four different
constrained models to generate the networks: uncon-
strained model, single constrained models (production
or attraction) and the well-known doubly constrained
model. For the gravity law, since the form of the dis-
tance decay functions may vary from one study to an-
other [1, 7, 14, 15, 44–46] both the power and the expo-
nential forms are tested to model the impact of the dis-
tance. The intervening opportunities law is given by
the Schneider’s version of the Stouffer’s original law as
it is usually the case. We also considered two versions
of the radiation law, the original free-parameter model
[4] and the extended version proposed in [8]. The sim-
ulated networks are compared with the observed ones
on different aspects showing that, globally, the gravity
law with an exponential distance decay function out-
performs the other laws in the estimation of commut-
ing flows, the conservation of the commuting network
structure and the fit of the commuting distance dis-
tribution even if it fails at predicting commuting flows
at large distances. Finally, we show that the different
laws can be used in absence of detailed data for cal-
ibration since their only parameter depends only on
the scale of the geographic census unit.

DATA

In this study, the trip distribution laws and mod-
els are tested against census commuting data of six
countries: England and Wales, France, Italy, Mex-
ico, Spain and the United States of America (here-
after called E&W, FRA, ITA, MEX, SPA and USA,
respectively) and two cities: London and Paris (here-
after called LON and PAR, respectively).

• The England & Wales dataset comes from the
2001 Census in England and Wales made avail-
able by the Office for National Statistics (data
available online at https://www.nomisweb.
co.uk/query/construct/summary.asp?mode=
construct&version=0&dataset=124).

• The French dataset was measured for the 1999
French Census by the French Statistical Insti-
tute (data available upon request at http://
www.cmh.ens.fr/greco/adisp_eng.php).

• The Italian’s commuting network was extracted
from the 2001 Italian Census by the National
Institute for Statistics (data available upon re-
quest at http://www.istat.it/it/archivio/
139381).

• Data on commuting trips between Mexican’s
municipalities in 2011 are based on a micro-
data sample coming from the Mexican Na-
tional Institute for Statistics (data available on-

https://www.nomisweb.co.uk/query/construct/summary.asp?mode=construct&version=0&dataset=124
https://www.nomisweb.co.uk/query/construct/summary.asp?mode=construct&version=0&dataset=124
https://www.nomisweb.co.uk/query/construct/summary.asp?mode=construct&version=0&dataset=124
http://www.cmh.ens.fr/greco/adisp_eng.php
http://www.cmh.ens.fr/greco/adisp_eng.php
http://www.istat.it/it/archivio/139381
http://www.istat.it/it/archivio/139381
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line at http://www3.inegi.org.mx/sistemas/
microdatos/default2010.aspx).

• The Spanish dataset comes from the 2001 Span-
ish Census made available by the Spanish Na-
tional Statistics Institute (data available upon
request at http://www.ine.es/en/censo2001/
index_en.html).

• Data on commuting trips between United
States counties in 2000 comes from the
United State Census Bureau (data available on-
line at https://www.census.gov/population/
www/cen2000/commuting/index.html).

Each case study is divided into n census units of
different spatial scale: from the Output Area in Lon-
don with an average surface of 1.68 km2 to the coun-
ties in the United States with an average surface of
2596.8 km2. See Table 1 for a detailed description of
the datasets.

 <S> =  1.68 km2 <S> =  9.93 km2
10 km

London Paris

20 km

Figure 2. Position of the units’ centroids around London
(left) and Paris (right). The black contours represent the
boundaries of the Greater London Authority (left) and the
french département Ile de France (right). 〈S〉 represents the
average unit surface.

Figures 1 and 2 display the centroids of the census
units for the eight case studies. For each unit, the
statistical offices provide the following information:

• Tij , the number of trips between the census units
i and j (i.e. number of individuals living in i and
working in j);

• dij , the great-circle distance between the unit
i and the unit j computed with the Haversine
formula;

• mi, the number of inhabitants in unit i.

In this work we consider only inter-unit flows (i.e.
Tii = 0), mainly because it is not possible to estimate
intra-units flows with the radiation laws [47]. We note
N =

∑n
i,j=1 Tij the total number of commuters, Oi =∑n

j=1 Tij the number of out-commuters (i.e. number
of individuals living in i and working in another census
unit) and Dj =

∑n
i=1 Tij the number of in-commuters

(i.e. number of individuals working in j and living in
another census unit ).

COMPARISON OF TRIP DISTRIBUTION
LAWS AND MODELS

The purpose of the trip distribution models is to
split the total number of trips N in order to generate a
trip table T̃ = (T̃ij)1≤i,j≤n of the estimated number of
trips form each census area to every other. Note that
by trip we are referring to commuting travels from
home to work, there is a return trip not considered in
T̃ and N is also equivalent to the number of unique
commuters. The trip distribution depends on, on one
hand, the characteristics of the census units and the
way they are spatially distributed, and, on the other
hand, the level of constraints required by the model.
Therefore, to fairly compare different trip distribution
modeling approaches we have to consider separately
the law used to calculate the probability to observe a
trip between two census units, called trip distribution
law, and the trip distribution model used to generate
the trip allocation from this law.

Gravity and intervening opportunities laws

The purpose of this study is to test the capacity
of both the gravity and the intervening opportunities
approaches to estimate the probability pij that out
of all the possible travels in the system we have one
between the census unit i and j. This probability is
asymmetric in i and j as the flows themselves, and, by
convention, the self-loops are excluded of the analysis
pii = 0. This probability is normalized to all possible
couples of origins and destinations,

∑n
i,j=1 pij = 1.

Note that pij does not refer to the conditional proba-
bility of a trip starting in i finishes in j P(1|i, j). There
exists a relation between both of them:

pij = P(i)P(1|i, j) (1)

where P(i) stands for the probability of a trip start-
ing in i. P(1|i, j) will appear later for the intervening
opportunities laws as a function of the populations of
origin mi, destination mj and the number of oppor-
tunities between them sij , P(1|mi,mj , sij), but the
basis of our analysis will be pij .

Gravity laws

In the simplest form of the gravity approach, the
probability of commuting between two units i and j
is proportional to the product of the origin popula-
tion mi and destination population mj , and inversely
proportional to the travel cost between the two units:

pij ∝ mimj f(dij), i 6= j (2)

The travel cost between i and j is usually modeled
with an exponential distance decay function,

http://www3.inegi.org.mx/sistemas/microdatos/default2010.aspx
http://www3.inegi.org.mx/sistemas/microdatos/default2010.aspx
http://www.ine.es/en/censo2001/index_en.html
http://www.ine.es/en/censo2001/index_en.html
https://www.census.gov/population/www/cen2000/commuting/index.html
https://www.census.gov/population/www/cen2000/commuting/index.html
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Table 1. Presentation of the datasets

Case study Number of units Number of links
Number of
Commuters

England & Wales 8,846 wards 1,269,396 18,374,407
France 3,645 cantons 462,838 12,193,058
Italy 7,319 municipalities 419,556 8,973,671
Mexico 2,456 municipalities 60,049 603,688
Spain 7,950 municipalities 261,084 5,102,359
United State 3,108 counties 161,522 34,097,929
London 4,664 Output Areas 750,943 4,373,442
Paris 3,185 municipalities 277,252 3,789,487

f(dij) = e−β dij (3)

or a power distance decay function,

f(dij) = dij
−β (4)

As mentioned in [1], the form of the distance decay
function can change according to the dataset, there-
fore, both the exponential and the power forms are
considered in this study. In both cases, the impor-
tance of the distance in commuting choices is adjusted
with a parameter β with observed data.

Intervening opportunities laws

In the intervening opportunity approach, the prob-
ability of commuting between two units i and j is
proportional to the origin population mi and to the
conditional probability that a commuter living in unit
i with population mi is attracted to unit j with popu-
lation mj , given that there are sij job opportunities in
between. The conditional probability P(1|mi,mj , sij)
needs to be normalized to ensure that all the trips end
in the region of interest.

pij ∝ mi
P(1|mi,mj , sij)∑n
k=1 P(1|mi,mk, sik)

, i 6= j (5)

In the Schneider’s version of the intervening oppor-
tunities approach the conditional probability is given
by

P(1|mi,mj , sij) = e−γsij − e−γ(sij +mj) (6)

where sij is the number of opportunities (approx-
imated by the population in this case) in a circle of
radius dij centered in i (excluding the source and des-
tination). The parameter γ can be seen as a constant
probability of accepting an opportunity destination.
Note that in this version the number of opportunities
mi at the origin is not taken into account.

More recently, [4] reformulated the Stouffer’s inter-
vening opportunities law in terms of radiation and ab-
sorption processes. This model is inspired by a diffu-
sion model where each individual living in an unit i

has a certain probability of being ”absorbed” by an-
other unit j according to the spatial distribution of
opportunities. The original radiation model is free of
parameters and, therefore, it does not require calibra-
tion. The conditional probability P(1|mi,mj , sij) is
expressed as:

P(1|mi,mj , sij) =
mimj

(mi + sij) (mi +mj + sij)
(7)

This conditional probability needs to be normalized
because the probability for an individual living in a
census unit i of being absorbed by another census unit
is not equal to 1 in case of finite system but equal to
1− mi

M where M is the total population [33]. Some re-
cent works have shown that the model fails to describe
human mobility compared to more classic approaches
particularly on a small scale [5, 33, 34]. To circum-
vent these limitations, an extended radiation model
has been proposed by [8]. In this extended version,
the probability P(1|mi,mj , sij) is derived under the
survival analysis framework introducing a parameter
α to control the effect of the number of job opportu-
nities between the source and the destination on the
job selection,

P(1|mi,mj , sij) =
[(mi +mj + sij)

α − (mi + sij)
α

] (mi
α + 1)

[(mi + sij)
α

+ 1] [(mi +mj + sij)
α

+ 1]
(8)

Constrained models

After the description of the probabilistic laws, the
next step is to materialize the people commuting. The
purpose is to generate the commuting network T̃ =
(T̃ij)1≤i,j≤n by drawing at random N trips from the
trip distribution law (pij)1≤i,j≤n respecting different
level of constraints according to the model. We are
going to consider four different types of models:

1. Unconstrained model. The only constraint of
this model is to ensure that the total number of
trips Ñ generated by the model is equal to the
total number of trips N observed in the data.
In this model, the N trips are randomly sample
from the multinomial distribution,
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M
(
N, (pij)1≤i,j≤n

)
(9)

2. Production constrained model. This model en-
sures that the number of trips ”produced” by a
census unit is preserved. For each unit i, Oi trips
are produced from the multinomial distribution,

M

(
Oi,

(
pij∑n
k=1 pik

)
1≤j≤n

)
(10)

3. Attraction constrained model. This model en-
sures that the number of trips ”attracted” by a
unit is preserved. For each census unit j, Dj

trips are attracted from the multinomial distri-
bution,

M

(
Dj ,

(
pij∑n
k=1 pkj

)
1≤i≤n

)
(11)

4. Doubly constrained model. This model, also
called production-attraction constrained model
ensures that both the trips attracted and gen-
erated by a census unit are preserved using two
balancing factors Ki and Kj calibrated with the
Iterative Proportional Fitting procedure [48].
The relation between Ki, Kj , pij and the trip
flows is given by

{
T̃ij = KiKj pij∑n
j=1 T̃ij = Oi,

∑n
i=1 T̃ij = Dj

(12)

Unlike the unconstrained and single constrained
models, the doubly constrained model is a de-
terministic model. Therefore, the simulated net-
work T̃ is a fully connected network in which the
flows are real numbers instead of integers. This
can be problematic since we want to study the
capacity of both the gravity and the radiation
approaches to preserve the topological structure
of the original network. To bypass this limi-
tation N trips are randomly sample from the
multinomial distribution,

M

N,( T̃ij∑n
k,l=1 T̃kl

)
1≤i,j≤n

 (13)

Goodness-of-fit measures

Common part of commuters We calibrate the pa-
rameters β, γ and α using the common part of com-
muters (CPC) introduced in [3, 5]:

CPC(T, T̃ ) =
2
∑n
i,j=1min(Tij , T̃ij)∑n

i,j=1 Tij +
∑n
i,j=1 T̃ij

(14)

This indicator is based on the Sørensen index [49].
It varies from 0, when no agreement is found, to 1,
when the two networks are identical. In our case, the
total number of commuters N is preserved, therefore
the Equation (14) can be simplified to

CPC(T, T̃ ) = 1− 1

2

∑n
i,j=1 |Tij − T̃ij |

N
(15)

which represents the percentage of good prediction
as defined in [50].

In order to assess the robustness of the results re-
garding the choice of goodness-of-fit measures, we also
test the results obtained with the normalized root
mean square error,

NRMSE(T, T̃ ) =

∑n
i,j=1(Tij − T̃ij)2∑n

i,j=1 Tij
(16)

and the information gain statistic,

I(T, T̃ ) =

n∑
i,j=1

Tij
N
ln

(
Tij

T̃ij

)
(17)

Common part of links The ability of the models to
recover the topological structure of the original net-
work can be assessed with the common part of links
(CPL) defined as

CPL(T, T̃ ) =
2
∑n
i,j=1 1Tij>0 · 1T̃ij>0∑n

i,j=1 1Tij>0 +
∑n
i,j=1 1T̃ij>0

(18)

where 1X is equal to one if the condition X is ful-
filled and zero otherwise. The common part of links
measures the proportion of links in common between
the simulated and the observed networks (i.e. links

such as Tij > 0 and T̃ij > 0). It is null if there is no
link in common and one if both networks are topolog-
ically equivalent.

Common part of commuters according to the dis-
tance In order to measure the similarity between
the observed commuting distance distribution and the
ones simulated with the models, we introduce the
common part of commuters according to the distance
(CPCd). Let us consider Nk the number of individu-
als having a commuting distance in the bin between
2k − 2 and 2k kms. The CPCd is equal to the CPC
based on Nk instead of Tij

CPCd(T, T̃ ) =

∑∞
k=1min(Nk, Ñk)

N
(19)



6

Unconstrained Model

0.2 0.4 0.6 0.8

PAR
LON
USA
SPA
MEX

ITA
FRA

E&W

Common part of commuters

Production Constrained Model

0.2 0.4 0.6 0.8

Attraction Constrained Model

0.2 0.4 0.6 0.8

PAR
LON
USA
SPA
MEX

ITA
FRA

E&W

Common part of commuters

Doubly Constrained Model

0.2 0.4 0.6 0.8

NGrav (exp)
NGrav (pow)
Grav (exp)
Grav (pow)
Schneider
Rad (ext)
Rad

Figure 3. Common part of commuters according to the unconstrained models, the gravity and intervening opportunities
laws for the eight case studies. The circles represent the normalized gravity law with the exponential distance decay function
(the circles with a cross inside represent the original version); The squares represent the normalized gravity law with the power
distance decay function (the squares with a cross inside represent the original version); The point down triangles represent
the Schneider’s intervening opportunities law; The green diamonds represent the extended radiation law; The purple triangles
represent the original radiation law. Error bars represent the minimum and the maximum values observed in the 100 realizations
but in most cases they are too close to the average to be seen.

RESULTS

In this section, we compare the five laws: gravity
with an exponential or a power distance decay func-
tion, the Schneider’s intervening opportunities law
and the original and the extended radiation laws.
We test these laws against empirical data coming
from eight different case studies using four constrained
models to estimate the flows. For each constrained
model, the parameters β, γ and α are calibrated so as
to maximize the CPC. Since the models are stochas-
tic, we consider an average CPC value measured over
100 replications of the trip distribution. Similarly, all
the goodness-of-fit measures are obtained by calcu-
lating the average measured over 100 network repli-
cations. It is important to note that the networks
generated with the constrained models are very sta-
ble, the stochasticity of the models does not affect
the statistical properties of the network. Therefore,
the goodness-of-fit measures does not vary much with
the different realizations of the multinomial sampling.
For example, within the 100 network instances for all
models and case studies, the CPC varies, at most, by

0.09% around the average.

Estimation of commuting flows

Figure 3 displays the common part of commuters
obtained with the different laws and models for the
eight case studies. Globally, the gravity laws give
better results than the intervening opportunities laws.
For the gravity laws, the results improve with the ex-
ponential rather than with the power distance decay
function. For the intervening opportunities laws, the
extended radiation law outperforms the original one
and achieves slightly better results than the Schneider
law. In the top left panel, we observe the results for
the unconstrained model. In this case, the extended
radiation law and the Schneider law give better results
than the gravity ones for most case studies. However,
these better performances are due to the normaliza-
tion factor used in Equation 5. Indeed, this normal-
ization implies that the probability of having a trip
originating in a census unit i is proportional to the
population of i, which is not necessarily the case for
the gravity laws. If we use the same type of normaliza-
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Figure 4. Performance of the unconstrained model (UM), the production constrained model (PCM), the attraction
constrained model (ACM) and the doubly constrained model (DCM) according to the gravity and the intervening
opportunities laws (a)-(c) and a uniform distribution (d). (a) Average CPC. (b) Average CPL. (c) Average CPCd. The
red circles represent the normalized gravity law with the exponential distance decay function; The blue squares represent the
normalized gravity law with the power distance decay function; The point down triangles represent the Schneider’s intervening
opportunities law; The green diamonds represent the extended radiation law; The purple triangles represent the original
radiation law. The grey point down triangles represent the uniform distribution, form dark to light grey, the CPC, the CPL
and the CPCd.

tion for the gravity trip distribution law pij (Equation
20), we observe that the ”normalized” gravity laws
give better results than the intervening opportunities
laws. In the following, we will refer to the normalized
version when mentioning the gravity law.

pij ∝ mi
mjf(dij)∑n
k=1mkf(dik)

, i 6= j (20)

To compare the constrained models performances,
we plot in Figure 4a the CPC obtained with the
four models according to the laws averaged over the
eight case studies. As expected, more constrained the
model is, higher the CPC becomes. Unconstrained
models are able to reproduce on average around 45%
of the observed commuting network against 65% for
the doubly constrained model. It is interesting to note
that, the attraction constrained model gives better re-
sults than the production constrained model. This can
be explained by the fact that the job demand is easier
to estimate than the job offer, which can be related

to extra economic questions. This is in agreement
with the results obtained with a uniform distribution
(pij ∝ 1) plotted in Figure 3d.

Although the results obtained with the normal-
ized root mean square error and the information gain
statistic are very similar to the ones obtained with the
CPC, it is worth noting that globally the extended ra-
diation law gives smaller normalized root mean square
error values than the normalized gravity laws with
the unconstrained model (see Table 2 for more details
about the laws exhibiting the best performances).

Structure of the commuting network

We consider next the capacity of the gravity and the
intervening opportunities laws to recover the struc-
ture of the empirical commuting networks. Figure
4b shows the average common part of links obtained
with the different laws and models. We observe that
the gravity law with an exponential distance decay
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function outperforms the other laws when the uncon-
strained and the single constrained models are used
to generate the flows. However, when the doubly con-
strained models is considered, very similar results are
obtained except for the Schneider law and the orig-
inal version of the radiation law. In any case, the
common part of links never exceed 0.55, this can be
explained by the fact that, globally, the different laws
fail at reproducing the number of links. Indeed, as it
can be seen in Figure 5, which displays the ratio be-
tween the number of links generated with the models
and the observed ones, the radiation law and the ex-
ponential gravity law tend to underestimate the num-
ber of links whereas the extended radiation law and
the power gravity law overestimate it. The flows net-
works generated with the Schneider law have globally
a number of links closer to the observed values than
the networks generated with the other laws.

Commuting distance distribution

Another important feature to study is the commut-
ing distance distribution. Figure 4c shows the average
common part of commuters according to the distance
obtained with the different models and laws. The re-
sults obtained with the exponential gravity law are
slightly better than the ones obtained with the other
laws. However, the results are globally good, and ex-
cept the original radiation law, the gravity and inter-
vening opportunities laws are able to reproduce more
than 80% of the commuting distances.

To go further, we plot in Figure 6 the observed
and the simulated commuting distance distributions
obtained with the production constrained model in
France and United States. We can clearly see that the
exponential gravity law is better for estimating com-
muting distances which are below a certain thresh-
old equal to 50 km in France and 150 km in United
States. After this threshold, it fails at estimating the
commuting flows as it is the case for the Schneider’s

intervening opportunities law. On the contrary, the
radiation laws and the gravity law with a power dis-
tance decay function are able to estimate commuting
flows at large distances. However, we have to keep in
mind that the proportion of commuters traveling such
long distances are less than 6% in France and 5% in
United States. Besides, one can legitimately wonder
whether these long travels are repeated twice per day
or if they may be an artifact of the way in which the
census information is collected.

Robustness against changes in the inputs

In Equations 2 and 5, the population is used as
input instead of the outflows Oi and the inflows Dj ,
which are usually preferred since they are a more faith-
ful reflection of the job demand and offer. The job
demand and offer are considered to be related to the
population but the proportion is rarely direct (it needs
to be adjusted with an exponent) and according to the
case study, the fit can be bad. In order to assess the
robustness of the results to changes in the input data,
we consider the results obtained with the gravity law
(Equation 21) and the general intervening opportuni-
ties law (Equation 22) based on the in and out flows.
In the case of the intervening opportunities laws, sij
is the number of in-commuters in a circle of radius dij
centered in i (excluding the source and destination)
and the role of the populations in the gravity law is
taken by Oi and Dj . To be more specific, the gravity
law becomes:

pij ∝ Oi
Djf(dij)∑n
k=1Dkf(dik)

, i 6= j (21)

while the intervening opportunities law can be writ-
ten as

pij ∝ Oi
P(1|Di, Dj , sij)∑n
k=1 P(1|Di, Dk, sik)

, i 6= j (22)
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Figure 7 displays the average CPC, CPL and CPCd
obtained with the four models according to the laws
averaged over the eight case studies. As it can be
seen on these plots the results observed in Figure 4
are quite stable to changes in the input data.

Parameter calibration in the absence of detailed
data

An important issue with the estimation of commut-
ing flows is the calibration of the parameters. Indeed,
how to calibrate the parameters β, γ and α in the ab-
sence of detailed data? This problem has already been
tackled in previous studies [5, 8, 15]. In [5], the au-
thors have shown that, in the case of the exponential
form of the gravity law, the value of β can be directly
inferred from the average census unit surface with the
relationship β = 0.3 < S >−0.18. Similarly, [8] pro-
posed to estimate the value of α in the extended radi-
ation law with the average spatial scale l =

√
< S >

using the functional relationship α = 0.0085 l1.33.
In Figure 8, we plot the calibrated value of β, γ and

α obtained with the laws based on the population as
a function of the average census unit surface < S >
for the four constrained models. Figure 8a shows the

relationship obtained with the gravity law with an ex-
ponential distance decay function. We observe that
the coefficients of the relationship are the same than
the ones obtained in [5]. This is not surprising since
three datasets out of the six used here coincide. In
this case, the value of β decreases with larger spatial
scales. This can be explained by the fact that β in the
exponential form of the gravity law is inversely pro-
portional to the average commuting distance and such
distance increases with the average unit surface since
the shorter distance trips are excluded (Figure 9b).
Figure 8b displays the same relationship for the power
form of the gravity law, in this case the value of β in-
creases with the scale to fit the tail of the commuting
distance distribution. In fact, we observe in the data
that, globally, the steepness of the curve (measured
with the Pearson’s Kurtosis) increases with the scale
(Figure 9c). Figure 8c shows the results obtained with
the parameter γ of the Schneider intervening oppor-
tunities law. The value of γ seems to decrease slightly
with the scale but the existence of a relationship be-
tween the two variables is not significant. Finally, we
plot in Figure 8d the relationship between the param-
eter α of the extended radiation law and the average
unit surface, the exponent obtained is similar to the
one reported in [8]. In the extended version of the ra-
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measure of Kurtosis as a function of the average unit surface.

diation law, the parameter α controls the effect of the
number of job opportunities between home and work
on the job selection. In particular, for a given number
of job opportunities, higher the value of α, higher the
probability of not accepting a job among these oppor-
tunities. This implies that α is directly proportional
to the average commuting distance and, by extension,
to the average unit surface (Figure 9b). As mentioned
in [8], the value of α is also influenced by the hetero-
geneity of the distribution of opportunities. As it can
be seen in Figure 8d, the three case studies present-
ing the largest deviation from the regression line are
also the most heterogeneous ones (Paris, Spain and
Italy which have the second, fourth and fifth smallest
average unit surface, respectively).

As in [5], it is possible to assess the quality of the
parameter estimation by measuring its impact on the
CPC. The idea is to measure for each law, model and
case study, the difference between the CPC obtained
with the calibrated value of the parameter and the
CPC obtained with the estimated one. The parame-
ter value is estimated with the regression model ob-
tained with the laws based on the population and the

difference between the original CPC and the “esti-
mated” one is measured with the absolute percentage
error (i.e. absolute error as a percent of the origi-
nal CPC value). In order to assess the robustness of
the estimation in changes in the input we have also
measured the CPC percentage error obtained with an
estimation of the parameters for the laws based on the
in/out flows. Note that in this case the parameters’
estimation come also from regression models obtained
with the laws based on the population. The results
are presented in Figure 10. The CPC percentage er-
rors obtained with the gravity laws are globally small
and robust to the change of inputs. They vary at most
by 4% of the original CPC values for the exponential
form and 10% for the power form. Similar results are
obtained for the extended radiation law where the ma-
jority of the errors are below 10% and vary at most
by 22% of the original CPC values. This means that
for these laws the parameter value can be directly in-
ferred from the scale, and thus, commuting networks
at different scales can be generated without requiring
detailed data for calibration. The situation is differ-
ent for the Schneider’s intervening opportunities law
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very sensible to change in inputs. For the law based
on the population, the errors obtained for the CPC
are reasonable, the majority of them are below 10%.
However when we try to estimate the value of γ for
the law based on in/out flows with a regression model
obtained with the law based on the population the
CPC percentage error increases dramatically, mean-
ing that the value of γ is highly dependent on the
variable uses as a surrogate measure of the number of
“real” opportunities.

DISCUSSION

In summary, we have compared different versions
of the gravity and the intervening opportunities laws.
These two approaches have already been compared
in the past but using different inputs, number of pa-
rameters and/or type of constraints. For this reason,
the aim of this work has been to bring some light
into the discussion by systematically comparing the
intervening opportunities and the gravity laws taking
care of dissociating the probabilistic laws and the con-
strained models used to generate the trip networks.
We have shown that, globally, the gravity approach
outperforms the intervening opportunities approach
to estimate the commuting flows but also to preserve
the commuting network structure and to fit of the
commuting distance distribution. More particularly
the gravity law with the exponential distance decay
function give better results than the other laws even

if it fails at estimating commuting flows at large dis-
tances. The reason for this is that most of the travels
are short-range, which are better capture by the grav-
ity law with exponential decay in the distance. The
large distance commuting trips are few and probably
associated with weekly rather than daily commuting.
To handle these different types of mobility, it may be
necessary to investigate further the nature of the trips
and to consider even mixed models for different dis-
placement lengths. The superiority of the gravity law
is very robust to the choice of goodness-of-fit measure
and to the change of input. Regarding a more prac-
tical issue which is the calibration of the parameters
without detailed data, we shown that the parameter
values can be estimated with the average unit surface.
We also demonstrated that, except for the Schneider’s
intervening opportunities law, this estimation is ro-
bust to changes in input data. This allows for a direct
estimation of the commuting flows even in the absence
of detailed data for calibration.

Although more research is needed to investigate the
link between mobility, distances and intervening op-
portunities for other types of movements such as mi-
grations, tourism or freight distribution, the distance
seems to play a more important role than the number
of intervening opportunities in work location choices.
More specifically, the superiority of the gravity ap-
proach seems to be due to its flexibility, and, what
was considered as a weakness by [4], the lack of theo-
retical guidance to choose the distance-decay function,
emerges as a strength. Indeed, people do not choose
their place of work as they choose their new place of
residence, therefore, having the possibility of adjust-
ing the effect of the distance in the decision process is
clearly an advantage which does not apply to the in-
tervening opportunities approach in its present form.

The objective of this work has been to establish the
basis for a fair and systematic comparison separating
probabilistic laws and different degrees of constraint
trip generation models. Our results emphasize the
importance of identifying and separating the different
processes involved in the estimation of flows between
locations for the comparison of spatial interaction
models. Indeed, the use of these models in con-
texts such as urban and infrastructure planning,
where large investments are at stake, imposes the
need for the selection of the aptest model before
taking decisions based on its results. The software
package to generate spatial networks using the
approach described in the paper can be downloaded
from https://github.com/maximelenormand/
Trip-distribution-laws-and-models.
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Table 2. Law exhibiting the best performances according to the inputs, case studies, constrained models and goodness-
of-fit measures.

Inputs Case study Model CPC CPL CPCd NRMSE I
Population E&W UM NGrav (exp) NGrav (exp) IO NGrav (exp) IO
Population FRA UM NGrav (exp) NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp)
Population ITA UM NGrav (exp) NGrav (exp) IO Rad (ext) NGrav (exp)
Population MEX UM NGrav (pow) NGrav (exp) Rad Rad (ext) NGrav (exp)
Population SPA UM NGrav (pow) NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp)
Population USA UM NGrav (exp) NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp)
Population LON UM NGrav (exp) IO NGrav (pow) NGrav (exp) NGrav (exp)
Population PAR UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (pow) NGrav (exp)
Population E&W PCM NGrav (exp) NGrav (exp) IO NGrav (exp) IO
Population FRA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
Population ITA PCM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
Population MEX PCM NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp)
Population SPA PCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
Population USA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
Population LON PCM NGrav (exp) IO NGrav (pow) NGrav (exp) NGrav (exp)
Population PAR PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
Population E&W ACM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
Population FRA ACM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
Population ITA ACM NGrav (exp) NGrav (exp) IO NGrav (pow) NGrav (exp)
Population MEX ACM NGrav (exp) NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp)
Population SPA ACM NGrav (exp) NGrav (pow) NGrav (pow) NGrav (exp) NGrav (exp)
Population USA ACM NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp) NGrav (exp)
Population LON ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
Population PAR ACM NGrav (exp) NGrav (exp) NGrav (pow) IO NGrav (exp)
Population E&W DCM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
Population FRA DCM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
Population ITA DCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
Population MEX DCM NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp) NGrav (exp)
Population SPA DCM NGrav (pow) NGrav (pow) NGrav (pow) NGrav (exp) NGrav (exp)
Population USA DCM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
Population LON DCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
Population PAR DCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows E&W UM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
In/out flows FRA UM NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA UM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
In/out flows MEX UM NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp)
In/out flows SPA UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows USA UM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows PAR UM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows E&W PCM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
In/out flows FRA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA PCM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
In/out flows MEX PCM NGrav (exp) NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp)
In/out flows SPA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows USA PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows PAR PCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows E&W ACM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
In/out flows FRA ACM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA ACM NGrav (exp) NGrav (exp) IO NGrav (pow) NGrav (exp)
In/out flows MEX ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows SPA ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows USA ACM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON ACM NGrav (exp) Rad (ext) IO NGrav (exp) NGrav (exp)
In/out flows PAR ACM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows E&W DCM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
In/out flows FRA DCM NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows ITA DCM NGrav (exp) NGrav (exp) IO NGrav (exp) NGrav (exp)
In/out flows MEX DCM NGrav (exp) NGrav (pow) Rad (ext) NGrav (exp) NGrav (exp)
In/out flows SPA DCM NGrav (pow) NGrav (pow) NGrav (pow) NGrav (exp) NGrav (exp)
In/out flows USA DCM NGrav (exp) Rad (ext) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows LON DCM NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp) NGrav (exp)
In/out flows PAR DCM NGrav (exp) NGrav (exp) NGrav (pow) NGrav (exp) NGrav (exp)
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