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Trip distribution laws are basic for the travel demand characterization needed in transport and
urban planning. Several approaches have been considered in the last years. One of them is the
so-called gravity law, in which the number of trips is assumed to be related to the population at
origin and destination and to decrease with the distance. The mathematical expression of this law
resembles Newton’s law of gravity, which explains its name. Another popular approach is inspired
by the theory of intervening opportunities and it has been concreted into the so-called radiation
models. Individuals are supposed to travel until they find a job opportunity, so the population
and jobs spatial distributions naturally lead to a trip flow network. In this paper, we perform a
thorough comparison between the gravity and the radiation approaches in their ability at estimating
commuting flows. We test the gravity and the radiation laws against empirical trip data at different
scales and coming from different countries. Different versions of the gravity and the radiation laws
are used to estimate the probability that an individual has to commute from one unit to another,
called trip distribution law. Based on these probability distribution the commuting networks are
simulated with different trip distribution models. We show that the gravity law performs better
than the radiation law to estimate the commuting flows, to preserve the structure of the network
and to fit the commuting distance distribution although it fails at predicting commuting flows at
large distances. Finally, we show that both approaches can be used in absence of detailed data for
calibration since the only parameter of both the gravity and the radiation laws depends only on the
scale of the geographic unit.

INTRODUCTION

Everyday, billions of individuals around the world
travel. These movements form a socio-economic com-
plex network, backbone for the transport of people,
goods, money, information or even diseases at differ-
ent spatial scales. The study of such spatial networks
is consequently the subject of an intensive scientific ac-
tivity [1–3]. Some examples include the estimation of
population flows [4–11], transport planning and mod-
eling [1, 2], spatial network analysis [12, 13], study
of urban traffic [12] and modeling of the spreading of
infectious diseases [14–16].

Trip distribution modeling is thus crucial for the
prediction of population movements, but also for an
explanatory purpose, in order to better understand
the mechanisms of human mobility. There are two
major approaches for the estimation of trip distribu-
tion at an aggregate level. The traditional gravity
approach, in analogy with the Newton’s law of grav-
itation, is based on the assumption that the amount
of trips between two locations is related to their pop-
ulations and decays with a function of the distance
[3, 17–20]. This approach has been widely used in
the past few decades to model flows of population [4–
6, 8, 9, 14–16], volume of international trade [21, 22],
traffic in transport networks [23, 24] and phone com-
munications [25]. In contrast to the gravity law, the
Stouffer’s law of intervening opportunities [26] hinges
on the assumption that the number of opportunities
plays a more important role in the location choices
than the distance, particularly in the case of migra-
tion choices. In the same vein, the recently proposed
radiation approach [7, 10, 27, 28] is inspired by a sim-
ple diffusion model where the amount of trips between
two locations depends on their populations and the

number of opportunities between them.

The gravity law and the radiation law have been
compared several times during the last years giving
the superiority to either of the approaches depending
on the study [7, 8, 10, 29, 30]. Two main issues can be
identified in these comparisons. First, the inputs used
to simulate the flows are not always identical. For ex-
ample, in the comparison proposed in [29], the gravity
law tested takes as input the population, whereas the
radiation law is based on the number of jobs. Sec-
ond, in all these studies, the models used to gener-
ate the trips from the radiation and the gravity laws
are not constrained in the same way. The radiation
models are always production constrained, this means
that the number of trips, or at least an estimation of
the number of trips generated by census unit, is pre-
served. The models used to generate the trips with
the gravity laws can be either, unconstrained [29, 30],
only the total number of trips is preserved or dou-
bly constrained [8, 10], both the trips produced and
attracted by a census unit are preserved. To fairly
compare the gravity and the radiation approaches the
same input data must be used and, most importantly,
we need to differentiate the law, gravity or radiation,
and the modeling framework used to generate the trips
from this law. Indeed, both the gravity and the ra-
diation laws can be express as a probability to move
from one place to another, called trip distribution law,
and based on these probability distributions, the total
number of trips can then be simulated using differ-
ent trip distribution models including different level
of constraints.

In this work, we test and compare, in a system-
atic and rigorous way, gravity and radiation laws
against commuting census data coming from six dif-
ferent countries using four different constrained mod-
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<S> = 17.2 km2

E & W

<S> = 148.2 km2, France

<S> = 34.3 km2 

Italy

<S> = 803.2 km2, Mexico

<S> = 62.3 km2, Spain

<S> = 2596.8 km2, USA

Figure 1: Position of the unit’s centroids for the six countries. 〈S〉 represents the average surface of the census
unit (i.e., municipalities, counties or wards).

els to generate the networks: unconstrained model,
single constrained models (production or attraction)
and the well-known doubly constrained model. For
the gravity law, since the form of the distance de-
cay functions may vary from one study to another
[3, 14, 15, 31, 32] both the power and the exponential
forms are tested to model the impact of the distance.
For the radiation law, two versions are considered, the
original free-parameter model [7] and the extended
version proposed in [10]. The simulated networks are
compared with the observed ones on different aspects
showing that, globally, the gravity law with an expo-
nential distance decay function outperforms the other
laws in the estimation of commuting flows, the con-
servation of the commuting network structure and the
fit of the commuting distance distribution even if it
fails at predicting commuting flows at large distances.
Finally, we show that both the gravity laws and the
extended radiation law can be used in absence of de-
tailed data for calibration since their only parameter
depends only on the scale of the geographic census
unit.

MATERIALS AND METHODS

Datasets

In this study, we test the gravity and the radiation
laws against census commuting data of six countries:
England and Wales, France, Italy, Mexico, Spain and
the United States of America (hereafter called E&W,
FRA, ITA, MEX, SPA and USA, respectively) and
two cities: London and Paris (hereafter LON and

PAR, respectively). Each case study is divided into n
census units of different spatial scale: from the Output
Area in London with an average surface of 1.68 km2

to the counties in the United States with an average
surface of 2596.8 km2. Figures 1 and 2 display the
centroids of the census units for the eight case stud-
ies. See the Appendix for a detailed description of the
datasets. For each unit, the statistical offices provide
the following information:

• Tij , the number of trips between the census unit
i and j (i.e. number of individuals living in i and
working in j);

• dij , the great-circle distance between the unit
i and the unit j computed with the Haversine
formula;

• mi, the number of inhabitants in unit i.

In this work we consider only inter-unit flows (i.e.
Tii = 0), mainly because it is not possible to estimate
intra-units flows with the radiation laws. We note
N =

∑n
i,j=1 Tij the total number of commuters, Oi =∑n

j=1 Tij the number of out-commuters (i.e. number
of individuals living in i and working in another census
unit) and Dj =

∑n
i=1 Tij the number of in-commuters

(i.e. number of individuals working in j and living in
another census unit ).

Comparison of trip distribution laws and models

The purpose of the trip distribution models is to
split the total number of trips N in order to generate a
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ParisLondon

<S> = 9.93 km2<S> = 1.68 km2

Figure 2: Position of the units’ centroids around London (left) and Paris (right). The black contours represent
the boundaries of the Greater London Authority (left) and the french département Ile de France (right). 〈S〉 represents
the average unit surface.

trip table T̃ = (T̃ij)1≤i,j≤n of the estimated number of
trips form each census area to every other. Note that
by trip we are referring to commuting travels from
home to work, there is a return trip not considered in
T̃ and N is also equivalent to the number of unique
commuters. The trip distribution depends on, on one
hand, the characteristics of the census units and the
way they are spatially distributed, and, on the other
hand, the level of constraints required by the model.
Therefore, to fairly compare different trip distribution
modeling approaches we have to consider separately
the law used to calculate the probability to observe a
trip between two census units, called trip distribution
law, and the trip distribution model used to generate
the trip allocation from this law.

Gravity and radiation laws

The purpose of this study is to test the capacity of
both the gravity and the radiation approaches to es-
timate the probability pij that out of all the possible
travels in the system we have one between the cen-
sus area i and j. This probability is asymmetric in
i and j as the flows themselves, and, by convention,
the self-loops are excluded of the analysis pii = 0.
This probability is normalized to all possible couples
of origins and destinations,

∑n
i,j=1 pij = 1. Note that

pij does not refer to the conditional probability of a
trip starting in i finishes in j P(1|i, j). There exists a
relation between both of them:

pij = P(i)P(1|i, j) (1)

where P(i) stands for the probability of a trip starting
in i. P(1|i, j) will appear later for the radiation law as
a function of the populations of origin mi, destination
mj and the jobs opportunities between them sij ,
P(1|mi,mj , sij), but the basis of our analysis will be
pij .

Gravity law In the simplest form of the gravity
approach, the probability of commuting between two
units i and j is proportional to the product of the
origin population mi and destination population mj ,
and inversely proportional to the travel cost between
the two units:

pij ∝ mimj f(dij), i 6= j (2)

The travel cost between i and j is usually modeled
with an exponential distance decay function,

f(dij) = e−β dij (3)

or a power distance decay function,

f(dij) = dij
−β (4)

As mentioned in [3], the form of the distance
decay function can change according to the dataset,
therefore, both the exponential and the power forms
are considered in this study. In both cases, the
importance of the distance in commuting choices is
adjusted with a parameter β > 0.

Radiation law The radiation approach, proposed
by [7], is inspired by a diffusion model where each
individual living in an area i has a certain probability
of being ”absorbed” by another area j, which in turn
produces the following trip distribution probability:

pij ∝ mi
P(1|mi,mj , sij)∑n
k=1 P(1|mi,mk, sik)

, i 6= j (5)

This probability is proportional to the origin popu-
lation mi and to P(1|mi,mj , sij), which, as mentioned
above, is the conditional probability that a commuter
living in i with population mi is attracted to j with
population mj , given that there are sij job opportu-
nities in between. sij is the number of opportunities
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(approximated by the population in this case) in a cir-
cle of radius dij centered in i (excluding the source and
destination). This conditional probability needs to be
normalized because the probability for an individual
living in a census unit i of being absorbed by another
census unit is not equal to 1 in case of finite system
but equal to 1− mi

M where M is the total population
[29].

The original radiation model is free of parameters
and, therefore, it does not require calibration. The
conditional probability P(1|mi,mj , sij) is expressed as

P(1|mi,mj , sij) =
mimj

(mi + sij) (mi +mj + sij)
(6)

However, some recent works have shown that the
model fails to describe human mobility compared to
more classic approaches particularly on a small scale
[8, 29, 30, 33]. To circumvent these limitations, an ex-
tended radiation model have been proposed by [10]. In
this extended version, the probability P(1|mi,mj , sij)
is derived under the survival analysis framework in-
troducing a parameter α to adjust the effect of the
scale,

P(1|mi,mj , sij) =
[(mi +mj + sij)

α − (mi + sij)
α

] (mi
α + 1)

[(mi + sij)
α

+ 1] [(mi +mj + sij)
α

+ 1]
(7)

Constrained models

After the description of the probabilistic laws, the
next step is to materialize the people commuting. The
purpose is to generate the commuting network T̃ =
(T̃ij)1≤i,j≤n by drawing at random N trips from the
trip distribution law (pij)1≤i,j≤n respecting different
level of constraints according to the model. We are
going to consider four different types of models:

1. Unconstrained model. The only constraint of
this model is to ensure that the total number of
trips Ñ generated by the model is equal to the
total number of trips N observed in the data.
In this model, the N trips are randomly sample
from the multinomial distribution

M
(
N, (pij)1≤i,j≤n

)
(8)

2. Production constrained model. This model en-
sures that the number of trips ”produced” by a
census unit is preserved. For each unit i, Oi trips
are produced from the multinomial distribution

M

(
Oi,

(
pij∑n
k=1 pik

)
1≤j≤n

)
(9)

3. Attraction constrained model. This model en-
sures that the number of trips ”attracted” by a
unit is preserved. For each census unit j, Dj

trips are attracted from the multinomial distri-
bution

M

(
Dj ,

(
pij∑n
k=1 pkj

)
1≤i≤n

)
(10)

4. Doubly constrained model. This model, also
called production-attraction constrained model
ensures that both the trips attracted and gen-
erated by a census unit are preserved using two
balancing factors Ki and Kj calibrated with the
Iterative Proportional Fitting procedure [34].
The relation between Ki, Kj , pij and the trip
flows is given by

T̃ij = KiKj pij (11)

Unlike the unconstrained and single constrained
models, the doubly constrained model is a de-
terministic model. Therefore, the simulated net-
work T̃ is a fully connected network in which the
flows are real numbers instead of integers. This
can be problematic since we want to study the
capacity of both the gravity and the radiation
approaches to preserve the topological structure
of the original network. To bypass this limi-
tation N trips are randomly sample from the
multinomial distribution

M

N,( T̃ij∑n
k,l=1 T̃kl

)
1≤i,j≤n

 (12)

Goodness-of-fit measures

Common part of commuters We calibrate the pa-
rameters β and α using the common part of com-
muters (CPC) introduced in [6, 8]:

CPC(T, T̃ ) =
2
∑n
i,j=1min(Tij , T̃ij)∑n

i,j=1 Tij +
∑n
i,j=1 T̃ij

(13)

This indicator is based on the Sørensen index [35].
It varies from 0, when no agreement is found, to 1,
when the two networks are identical. In our case, the
total number of commuters N is preserved, therefore
the Equation (13) can be simplify to

CPC(T, T̃ ) = 1− 1

2

∑n
i,j=1 |Tij − T̃ij |

N
(14)
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which represents the percentage of good prediction as
defined in [36].

In order to assess the robustness of the results re-
garding the choice of goodness-of-fit measures, we also
test the results obtained with the normalized root
mean square error

NRMSE(T, T̃ ) =

∑n
i,j=1(Tij − T̃ij)2∑n

i,j=1 Tij
(15)

and the information gain statistic

I(T, T̃ ) =

n∑
i,j=1

Tij
N
ln

(
Tij

T̃ij

)
(16)

I(T, T̃ ) is zero if T and T̃ are equal and grows as
the difference between them increases.

Common part of links The ability of the models to
recover the topological structure of the original net-
work can be assessed with the common part of links
(CPL) defined as

CPL(T, T̃ ) =
2
∑n
i,j=1 1Tij>0 · 1T̃ij>0∑n

i,j=1 1Tij>0 +
∑n
i,j=1 1T̃ij>0

(17)

where 1X is equal to one if the condition X is
fulfilled and zero otherwise. The common part of
links measures the proportion of links in common
between the simulated and the observed networks
(i.e. links such as Tij > 0 and T̃ij > 0). It is null if
there is no link in common and one if both networks
are topologically equivalent.

Common part of commuters according to the dis-
tance In order to measure the similarity between
the observed commuting distance distribution and the
ones simulated with the models, we introduce the
common part of commuters according to the distance
(CPCd). Let us consider Nk the number of individu-
als having a commuting distance in the bin between
2k − 2 and 2k kms. The CPCd is equal to the CPC
based on Nk instead of Tij

CPCd(T, T̃ ) =

∑∞
k=1min(Nk, Ñk)

N
(18)

RESULTS

In this section, we compare the four laws: grav-
ity with an exponential or a power distance decay
function, and the original and the extended radia-
tion laws. We test these laws against empirical data
coming from eight different case studies using four
constrained models to estimate the flows. For each

constrained model, the parameters β and α are cal-
ibrated so as to maximize the CPC. Since the mod-
els are stochastic, we consider an average CPC value
measured over 100 replications of the trip distribu-
tion. Similarly, all the goodness-of-fit measures are
obtained by calculating the average measured over 100
network replications. It is important to note that the
networks generated with the constrained models are
very stable, the stochasticity of the models does not
affect the statistical properties of the network. There-
fore, the goodness-of-fit measures does not vary much
with the different realizations of the multinomial sam-
pling. For example, within the 100 network instances
for all models and case studies, the CPC varies, at
most, by 0.09% around the average.

Estimation of commuting flows

Figure 3 displays the common part of commuters
obtained with the different laws and models for the
eight case studies. Globally, the gravity laws give bet-
ter results than the radiation laws. For the gravity
laws, the results improve with the exponential rather
than with the power distance decay function. For
the radiation laws, the extended version outperforms
the original one. In the top left panel, we observe
the results for the unconstrained model. In this case,
the radiation laws give better results than the gravity
for most case studies. However, these better perfor-
mances are due to the normalization factor used in
Equation 5. Indeed, this normalization implies that
the probability of having a trip originating in a cen-
sus unit i is proportional to the population of i, which
is not necessarily the case for the gravity laws. If we
use the same type of normalization for the gravity pij :

pij ∝ mi
mjf(dij)∑n
k=1mkf(dik)

, i 6= j (19)

we observe that the ”normalized” gravity laws give
better results than the radiation (dark red circles and
blue squares in the top left panel of Figure 3).

To compare the constrained models performances,
we plot in Figure 4a the CPC obtained with the
four models according to the laws averaged over the
eight case studies. As expected, more constrained the
model is, higher the CPC becomes. Unconstrained
models are able to reproduce on average around 50%
of the observed commuting network against 70% for
the doubly constrained model. It is interesting to note
that, the attraction constrained model gives better re-
sults than the production constrained model. This can
be explains by the fact that the job demand is easier
to estimate than the job offer, which can be related
to extra economic questions. This is in agreement
with the results obtained with a uniform distribution
(pij ∝ 1) plotted in Figure 3d.

The results obtained with the normalized root mean
square error, the information gain statistic and the
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Unconstrained Model

0.2 0.4 0.6 0.8

PAR
LON
USA
SPA
MEX

ITA
FRA

E&W

Common part of commuters

Production Constrained Model

0.2 0.4 0.6 0.8

Attraction Constrained Model

0.2 0.4 0.6 0.8

PAR
LON
USA
SPA
MEX

ITA
FRA

E&W

Common part of commuters

Doubly Constrained Model

0.2 0.4 0.6 0.8

Grav (exp)
Grav (pow)
Rad (ext)
Rad
NGrav (exp)
NGrav (pow)

Figure 3: Common part of commuters according to the unconstrained models, the gravity and radiation
laws for the eight case studies. The circles represent the gravity law with the exponential distance decay function
(in red the original version and in dark red the normalized one); The squares represent the gravity law with the power
distance decay function (in cyan the original version and in blue the normalized one); The green diamonds represent the
extended radiation law; The purple triangles represent the original radiation law. Error bars represent the minimum and
the maximum values observed in the 100 realizations but in most cases they are too close to the average to be seen.

average common part of in- and out-commuters are
available in Appendix (Figures S1-S4). Although the
results obtained with these goodness-of-fit measures
are very similar to the ones obtained with the CPC,
one question to note is that, except in England &
Wales and in London, the radiation laws give smaller
normalized root mean square error values than the
gravity and normalized gravity laws with the uncon-
strained model.

Structure of the commuting network

We consider next the capacity of the gravity and the
radiation laws to recover the structure of the empir-
ical commuting networks. Figure 4b shows the aver-
age common part of links obtained with the different
laws and models (the CPL according to the uncon-
strained models, the gravity and radiation laws for
the eight case studies are available in Figure S5 in

the Appendix). We observe that the gravity law with
an exponential distance decay function outperforms
the other laws when the unconstrained and the sin-
gle constrained models are used to generate the flows.
However, when the doubly constrained models is used,
very similar results are obtained except for the orig-
inal version of the radiation law. In any case, the
common part of links never exceed 0.55, this can be
explained by the fact that, globally, the different laws
fail at reproducing the number of links (as well as the
average degree of the commuting networks).

Indeed, as it can be seen in Figure 5, which dis-
plays the ratio between the number of links generated
with the models and the observed ones, the radiation
law and the gravity law with the exponential distance
decay function tend to underestimate the number of
links whereas the two other laws overestimate it. The
same results are found with the average degree (see
Figure S6 in Appendix for more details).
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Figure 4: Performance of the unconstrained model (NC), the production constrained model (PCM), the
attraction constrained model (ACM) and the doubly constrained model (DCM) according to the gravity
and the radiation laws (a)-(c) and a uniform distribution (d). (a) Average CPC. (b) Average CPL. (c) Average
CPCd. The red circles represent the normalized gravity law with the exponential distance decay function; The cyan
squares represent the normalized gravity law with the power distance decay function; The green diamonds represent the
extended radiation law; The purple triangles represent the original radiation law. The point down triangles represent
the uniform distribution, form dark to light grey, the CPC, the CPL and the CPCd

Commuting distance distribution

Another important feature to study is the commut-
ing distance distribution. Figure 4c shows the aver-
age common part of commuters according to the dis-
tance obtained with the different models and laws (the
CPCd for the eight case studies are available in Fig-
ure S7 in the Appendix). Here again, the best results
are obtained with the gravity law with the exponen-
tial distance decay function. Although, the results are
globally good, and, except the original radiation law,
the gravity and radiation laws are able to reproduce
more than 80% of the commuting distances.

To go further, we plot in Figure 6 the observed
and the simulated commuting distance distributions
obtained with the production constrained model in
France and United States. We can clearly see that

the gravity law with an exponential distance decay
function is better for estimating commuting distances
which are below a certain threshold equal to 50 km
in France and 150 km in United States. After this
threshold, the gravity law with an exponential dis-
tance decay function fails at estimating the commut-
ing flows. On the contrary, the radiation laws and the
gravity law with a power distance decay function are
able to estimate commuting flows at large distances.
However, we have to keep in mind that the propor-
tion of commuters traveling such long distances are
less than 6% in France and 5% in United States. Be-
sides, one can legitimately wonder whether these long
travels are repeated twice per day or if they may be
an artifact of the way in which the census information
is collected.

In addition to inter-census units trip networks, we
have also consider within-city mobility. In order to
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Figure 5: Ratio between the simulated and the observed number of links according to the unconstrained
models, the gravity and radiation laws for the eight case studies. The circles represent the gravity law with
the exponential distance decay function (in red the original version and in dark red the normalized one); The squares
represent the gravity law with the power distance decay function (in cyan the original version and in blue the normalized
one); The green diamonds represent the extended radiation law; The purple triangles represent the original radiation
law. Error bars represent the minimum and the maximum but in most cases they are too close to the average to be seen.

study the ability of both approaches at predicting
intra-city trips, we use Twitter data to extract a com-
muting networks between grid cells of 1 km2 in the
metropolitan area of Madrid. The results obtained
are consistent with those shown here for the census
(see Figure S8 in Appendix for more details).

Gravity and radiation laws based on the number
of out- and in-commuters

In Equations 2 and 5, the population is used instead
of the number of out-commuters Oi and the number
of in-commuters Dj , which are usually preferred since
they are a more faithful reflection of the job demand
and offer. The job demand and offer are considered
to be related to the population but the proportion
is rarely direct (it needs to be adjusted with an ex-
ponent) and according to the case study, the fit can

be bad (see Figures S9-S10 in Appendix for more de-
tails). In order to assess the robustness of the results
to changes in the input data, we consider the results
obtained with the gravity law (Equation 20) and the
radiation law (Equation 21) based on the number of
out- and in-commuters. In the radiation case, sij is
the number of in-commuters in a circle of radius dij
centered in i (excluding the source and destination)
and the role of the populations in the gravity law is
taken by Oi and Dj . To be more specific, the gravity
law becomes:

pij ∝ Oi
Djf(dij)∑n
k=1Dkf(dik)

, i 6= j (20)

while the radiation law can be written as

pij ∝ Oi
P(1|Di, Dj , sij)∑n
k=1 P(1|Di, Dk, sik)

, i 6= j (21)
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Figure 6: Commuting distance distribution observed in the data and simulated with the production
constrained model. (a) France and (b) United States. The red circles represent the gravity law with the exponential
distance decay function; The cyan squares represent the gravity law with the power distance decay function; The green
diamonds represent the extended radiation law; The purple triangles represent the original radiation law. The black
stars represent the census data.

Figure 7 displays the average CPC, CPL and CPCd
obtained with the four models according to the laws
averaged over the eight case studies (results per case
studies are available in Figures S11-S13 in Appendix).
As it can be seen on these plots the results observed
in Figure 4 are quite stable to changes in the input
data.

Parameter calibration in the absence of detailed
data

An important issue with the estimation of commut-
ing flows is the model or law calibration. Indeed, how
to calibrate the parameters β and α in the absence of
detailed data? This problem has already been tackled
in previous studies [8, 10, 15]. In [8], the authors have
shown that, in the case of the exponential form of the
gravity law, the value of β can be directly inferred
from the average census unit surface with the rela-
tionship β = 0.3 < S >−0.18. Similarly, [10] proposed
to estimate the value of α in the extended radiation
law with the average spatial scale l =

√
< S > using

the functional relationship α = 0.0085 l1.33.
In Figure 8a, 8b and 8c, we plot the calibrated value

of β and α as a function of the average census unit sur-
face < S > for the four constrained models. Figure
8a shows the relationship obtained with the gravity
law with an exponential distance decay function. We
observe that the coefficients of the relationship are the
same than the one obtained in [8]. This is not surpris-
ing since three datasets out of the six used here coin-
cide. In this case, the value of β decreases with larger
spatial scales. This can be explained by the fact that
β in the exponential form of the gravity law is propor-
tional to the inverse of the characteristic distance and

such distance increases with the average unit surface
since the shorter distance trips are excluded (Figure
S13b in Appendix). Figure 8b displays the same rela-
tionship for the power form of the gravity law, in this
case the value of β increases with the scale to fit the
tail of the distribution. Larger (negative) exponents
imply a faster decay of the power-law correcting fac-
tor. In fact, we observe in the data that, globally, the
absolute value of the slope of the tail increases with
the scale (Figure S13c in Appendix). Finally, we plot
in Figure 8c the relationship between α and the aver-
age unit surface, the exponent obtained is similar to
the one reported in [10].

As in [8], it is possible to assess the quality of the
parameter estimation by measuring its impact on the
CPC. For each law, model and case study, we have
measured the relative error between the CPC obtained
with the calibrated value of the parameter and the
CPC obtained with the simulated one. The results
are presented in Figure 8c. The relative errors are
globally small and vary at most by 4% of the original
CPC values for the gravity laws and 10% for the ex-
tended radiation law. This means that the parameter
value can be directly inferred from the scale, and thus,
commuting networks at different scales can be gener-
ated without requiring detailed data for calibration.

DISCUSSION

In summary, we have compared different versions
of the gravity and the radiation laws. These two ap-
proaches have already been compared in the past but
using different inputs, number of parameters and/or
type of constraints. For this reason, the aim of this
work has been to bring some light into the discus-
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diamonds represent the extended radiation law; The purple triangles represent the original radiation law.
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sion by systematically comparing the radiation and
the gravity laws taking care of dissociating the proba-
bilistic laws and the constrained models used to gen-
erate the trip networks. We show that, globally, the
gravity approach outperforms the radiation laws to es-
timate the commuting flows but also to preserve the
commuting network structure and to fit of the com-
muting distance distribution. More particularly the
gravity law with the exponential distance decay func-
tion give better results than the other laws even if
it fails at estimating commuting flows at large dis-
tances. The reason for this is that most of the travels
are short-range, which are better capture by the grav-
ity law with exponential decay in the distance. The
large distance commuting trips are few and probably
associated with weekly rather than daily commuting.
To handle these different types of mobility, it may be
necessary to investigate further the nature of the trips
and to consider even mixed models for different dis-
placement lengths. The superiority of the gravity law
is very robust to the choice of goodness-of-fit measure
and to the change of input. Regarding a more prac-
tical issue which is the calibration of the parameters
without detailed data, we show that the parameter
values can be estimated with the average unit area.
This allows for a direct estimation of the commuting
flows even in the absence of detailed data for calibra-
tion.

The objective of this work has been to establish the

basis for a fair and systematic comparison separating
probabilistic laws and different degrees of constraint
trip generation models. The use of these models in
contexts such as urban and infrastructure planning,
where large investments are at stake, imposes the need
for the selection of the aptest model before taking de-
cisions based on its results.

The software package to generate spatial net-
works using the approach described in the pa-
per can be downloaded from https://github.com/
MaximeLenormand/RadGrav.
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APPENDIX

Datasets

• The England & Wales dataset comes from the 2001 Census in England and Wales made available by the
Office for National Statistics (data available online at https://www.nomisweb.co.uk/query/construct/
summary.asp?mode=construct&version=0&dataset=124).

• The French dataset was measured for the 1999 French Census by the French Statistical Institute (data
available upon request at http://www.cmh.ens.fr/greco/adisp_eng.php).

• The Italian’s commuting network was extracted from the 2001 Italian Census by the National Institute
for Statistics (data available upon request at http://www.istat.it/it/archivio/139381).

• Data on commuting trips between Mexican’s municipalities in 2011 are based on a microdata sample
coming from the Mexican National Institute for Statistics (data available online at http://www3.inegi.
org.mx/sistemas/microdatos/default2010.aspx).

• The Spanish dataset comes from the 2001 Spanish Census made available by the Spanish National Statistics
Institute (data available upon request at http://www.ine.es/en/censo2001/index_en.html).

• Data on commuting trips between United States counties in 2000 comes from the United State Census Bu-
reau (data available online at https://www.census.gov/population/www/cen2000/commuting/index.
html).

Table SI: Presentation of the datasets

Case study Number of units Number of links
Number of
Commuters

England & Wales 8,846 wards 1,269,396 18,374,407
France 3,645 cantons 462,838 12,193,058
Italy 7,319 municipalities 419,556 8,973,671
Mexico 2,456 municipalities 60,049 603,688
Spain 7,950 municipalities 261,084 5,102,359
United State 3,108 counties 161,522 34,097,929
London 4,664 Output Areas 750,943 4,373,442
Paris 3,185 municipalities 277,252 3,789,487

https://www.nomisweb.co.uk/query/construct/summary.asp?mode=construct&version=0&dataset=124
https://www.nomisweb.co.uk/query/construct/summary.asp?mode=construct&version=0&dataset=124
http://www.cmh.ens.fr/greco/adisp_eng.php
http://www.istat.it/it/archivio/139381
http://www3.inegi.org.mx/sistemas/microdatos/default2010.aspx
http://www3.inegi.org.mx/sistemas/microdatos/default2010.aspx
http://www.ine.es/en/censo2001/index_en.html
https://www.census.gov/population/www/cen2000/commuting/index.html
https://www.census.gov/population/www/cen2000/commuting/index.html
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Normalized root mean square error

The normalized root mean square error weights large errors more heavily than small ones.

NRMSE(T, T̃ ) =

∑n
i,j=1(Tij − T̃ij)2∑n

i,j=1 Tij
(22)
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Figure S1: Normalized root mean square error according to the unconstrained models, the gravity and
radiation laws for the eight case studies. The circles represent the gravity law with the exponential distance decay
function (in red the original version and in dark red the normalized one); The squares represent the gravity law with
the power distance decay function (in cyan the original version and in blue the normalized one); The green diamonds
represent the extended radiation law; The purple triangles represent the original radiation law. Error bars represent the
minimum and the maximum but in most cases they are too close to the average to be seen.
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Information gain statistic

This statistic measures the difference between two probability distributions, thus, lower values indicate more
accurate goodness of fit.

I(T, T̃ ) =

n∑
i,j=1

Tij
N
ln

(
Tij

T̃ij

)
(23)
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Figure S2: Information gain statistic according to the unconstrained models, the gravity and radiation
laws for the eight case studies. The circles represent the gravity law with the exponential distance decay function
(in red the original version and in dark red the normalized one); The squares represent the gravity law with the power
distance decay function (in cyan the original version and in blue the normalized one); The green diamonds represent the
extended radiation law; The purple triangles represent the original radiation law. Error bars represent the minimum and
the maximum but in most cases they are too close to the average to be seen.
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Average common part of out- and in-commuters

To better understand how the CPC is distributed at a more granular level, it is possible to compute the
CPC by unit with the common part of out-commuters (Equation 24) and the common part of in-commuters
(Equation 25) that we can average over the n units.

CPCi =
2
∑n
j=1min(Tij , T̃ij)

Oi + Õi
(24)

CPCj =
2
∑n
i=1min(Tij , T̃ij)

Dj + D̃j

(25)
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Figure S3: Average common part of out-commuters according to the unconstrained models, the gravity
and radiation laws for the eight case studies. The circles represent the gravity law with the exponential distance
decay function (in red the original version and in dark red the normalized one); The squares represent the gravity law
with the power distance decay function (in cyan the original version and in blue the normalized one); The green diamonds
represent the extended radiation law; The purple triangles represent the original radiation law. Error bars represent the
minimum and the maximum but in most cases they are too close to the average to be seen.
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Unconstrained Model
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Figure S4: Average common part of in-commuters according to the unconstrained models, the gravity
and radiation laws for the eight case studies. The circles represent the gravity law with the exponential distance
decay function (in red the original version and in dark red the normalized one); The squares represent the gravity law
with the power distance decay function (in cyan the original version and in blue the normalized one); The green diamonds
represent the extended radiation law; The purple triangles represent the original radiation law. Error bars represent the
minimum and the maximum but in most cases they are too close to the average to be seen.
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Common part of links

CPL(T, T̃ ) =
2
∑n
i,j=1 1Tij>0 · 1T̃ij>0∑n

i,j=1 1Tij>0 +
∑n
i,j=1 1T̃ij>0

(26)
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Figure S5: Common part of links according to the unconstrained models, the gravity and radiation laws
for the eight case studies. The circles represent the gravity law with the exponential distance decay function (in red
the original version and in dark red the normalized one); The squares represent the gravity law with the power distance
decay function (in cyan the original version and in blue the normalized one); The green diamonds represent the extended
radiation law; The purple triangles represent the original radiation law. Error bars represent the minimum and the
maximum but in most cases they are too close to the average to be seen.
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Ratio between the simulated and the observed average degree
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Figure S6: Ratio between the simulated and the observed average degree. The circles represent the gravity
law with the exponential distance decay function (in red the original version and in dark red the normalized one); The
squares represent the gravity law with the power distance decay function (in cyan the original version and in blue the
normalized one); The green diamonds represent the extended radiation law; The purple triangles represent the original
radiation law. Error bars represent the minimum and the maximum but in most cases they are too close to the average
to be seen.
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Common part of commuters according to the distance

CPCd(T, T̃ ) =

∑∞
k=1min(Nk, Ñk)

N
(27)
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Figure S7: Common part of commuters according to the distance according to the unconstrained models,
the gravity and radiation laws for the eight case studies. The circles represent the gravity law with the exponential
distance decay function (in red the original version and in dark red the normalized one); The squares represent the gravity
law with the power distance decay function (in cyan the original version and in blue the normalized one); The green
diamonds represent the extended radiation law; The purple triangles represent the original radiation law. Error bars
represent the minimum and the maximum but in most cases they are too close to the average to be seen.
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Flows of commuters in Madrid

The metropolitan area of Madrid contains a population of 5, 512, 495 inhabitants (2009) within an area of
1, 935 km2. The metropolitan areas is divided into a regular grid of square cells of lateral size 1 km. The dataset
comprehends geolocated tweets of 50, 272 in Madrid in the time period going from September 2012 to December
2013. These users were selected because it was detected from the general data streaming with the Twitter API
that they have emitted at least a geolocated tweet from one of the two cities. Later, as a way to increase the
quality of our database, a specific search over their most recent tweets was carried out [37]. The identification
of the OD commuting matrices using Twitter is the one explained in [38]. We first filter out the Twitter users
for whom we do not enough information to extract the place of work and residence (less than 100 tweets on
weekdays in all the dataset). Then, the users’ home and work are identified as the cell most frequently visited
on weekdays by each user between 8 pm and 7 am (home) and between 9 am and 5 pm (work).
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Figure S8: Common part of commuters according to the unconstrained models, the gravity and radiation
laws. The circles represent the gravity law with the exponential distance decay function (in red the original version and
in dark red the normalized one); The squares represent the gravity law with the power distance decay function (in cyan
the original version and in blue the normalized one); The green diamonds represent the extended radiation law; The
purple triangles represent the original radiation law. Error bars represent the minimum and the maximum but in most
cases they are too close to the average to be seen.
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Figure S9: Number of out-commuters Oi (left) and in-commuters Di (right) as a function of the number
of inhabitants for each of the eight case studies. From the top to the bottom: England and Wales, France, Italy,
Mexico, Spain and United States. The red line represents the regression line.
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Figure S10: Number of out-commuters Oi (left) and in-commuters Di (right) as a function of the number
of inhabitants for each of the London (top) and Paris (bottom). The red line represents the regression line.
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Unconstrained Model
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Figure S11: Common part of commuters according to the unconstrained models, the gravity and radiation
laws for the eight case studies. The circles represent the gravity law with the exponential distance decay function
(in red the original version and in dark red the normalized one); The squares represent the gravity law with the power
distance decay function (in cyan the original version and in blue the normalized one); The green diamonds represent the
extended radiation law; The purple triangles represent the original radiation law. Error bars represent the minimum and
the maximum but in most cases they are too close to the average to be seen.
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Unconstrained Model
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Figure S12: Common part of links according to the unconstrained models, the gravity and radiation
laws for the eight case studies. The circles represent the gravity law with the exponential distance decay function
(in red the original version and in dark red the normalized one); The squares represent the gravity law with the power
distance decay function (in cyan the original version and in blue the normalized one); The green diamonds represent the
extended radiation law; The purple triangles represent the original radiation law. Error bars represent the minimum and
the maximum but in most cases they are too close to the average to be seen.



26

Unconstrained Model
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Figure S13: Common part of commuters according to the distance according to the unconstrained models,
the gravity and radiation laws for the eight case studies. The circles represent the gravity law with the exponential
distance decay function (in red the original version and in dark red the normalized one); The squares represent the gravity
law with the power distance decay function (in cyan the original version and in blue the normalized one); The green
diamonds represent the extended radiation law; The purple triangles represent the original radiation law. Error bars
represent the minimum and the maximum but in most cases they are too close to the average to be seen.
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Figure S14: Observed commuting distance distributions. (a) Commuting distance distribution according to the
case study. (b) Average commuting distance as a function of the average unit surface. (c) Slope of the tail according to
the average unit surface.
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Figure S15: Parameter value as a function of the average unit surface. (a) Gravity laws with an exponential
distance decay function. (b) Gravity laws with a power distance decay function. (c) Extended radiation law. (d) Boxplots
of the relative error between the CPC obtained with a calibrated value of the parameters and the CPC obtained with
values estimated with the regression models. The boxplot is composed of the first decile, the lower hinge, the median,
the upper hinge and the last decile.
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