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Abstract

We give in this paper a sufficient condition for the existence of
locked state in finite dimensional Winfree model independently of choice
of natural frequencies and the number of oscillators. The main result
consists to prove the existence of periodic orbit in a torus which is
equivalent to the existence of rotation vectors, the proof in this paper
can be applied to more generalized Winfree model.

Keywords: Winfree model, coupled oscillators, locked-state, synchroniza-
tion, rotation vector

1 Introduction

The simplest synchronization model may be described by the behavior of two
pendulums of equal mass coupled by an horizontal string. One notice that
the two pendulums behave in the same way after some time and begin to
oscillate with the same frequency. When the frequencies of the two oscillators
are identical, they are said to be “locked”. This behavior seems to appears
very often in biological complex systems. We will study a particular model,
called the Winfree model, that may be described by N oscillators coupled
uniformly.
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In 1967 Winfree proposed a mean field model which describes the syn-
chronization of a population of organisms or units that interact simultane-
ously. We assume that the state of each unit is described by a point on a
cycle. We call natural frequency, the frequency of a unit, if it were isolated
from the others. The natural frequencies are supposed to be distributed in-
side an interval [1−γ, 1 +γ] for some constant γ called spectrum width. The
interaction of the rest of the population on each unit is supposed to be inde-
pendent of the unit and controlled by a single parameter called the coupling
strength κ. There exist different states: the locking state where all the units
posses the same frequency, the death state where all the states are frozen
with zero frequency, the incoherence state where each unit oscillates at in-
dependent frequencies. There may also exist mixed states where part of the
oscillators is synchronized and the other part is dead for instance. For small
values of κ, the Winfree model may be reduced to the Kuramoto model. In
both models the interaction of the outside world on each single unit is the
same: we use the word “mean-field” to describe this kind of interaction.

The collective behavior of a population of oscillators has first been studied
by Winfree in [12]: for a fixed coupling and small spectrum width, all the
oscillators synchronize to a unique frequency. Kuramoto [7] extended the
model by passing to the limit when the number of oscillators goes to infinity.

The Winfree model is given by the following differential equation

ẋi = ωi − κ
1

N

N∑
j=1

P (xj)R(xi) (1)

where P and R are two periodic functions, X(t) = (x1(t), . . . , xN (t)) is the
state, and xi(t) is the phase of the i-th oscillator. Althougth xi(t) should
represent a scalar in [0, 2π], we actually consider its unique continuous lift
in R, that we continue to call xi(t). The parameter κ ≥ 0 is the coupling
strength; the vector of natural frequencies Ω := (ω1, . . . , ωN ) satisfy

1− γ ≤ ωi ≤ 1 + γ, ∀i = 1, · · · , N, (2)

where γ ∈ [0, 1[. We actually assume a more particular form of the mean-field
interaction, as in Ariaratnam and Strogatz [1, 2], we assume

ẋi = ωi − κσ(X) sin(xi) where σ(X) =
1

N

N∑
j=1

[1 + cos(xj)]. (3)

Notice that the mean-field interaction σ satisfies σ(X) ∈ [0, 2] for every state
X = (x1, . . . , xN ) ∈ RN .
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Since the vector field is uniformly bounded, the flow Φt(X), X ∈ Rd, is
defined for all time. Because of the presence of the coupling, the instanta-
neous frequency ρi(t) := xi(t)

t may not be equal to ωi. A numerical study
shows that, for large t, depending on (γ, κ), three major cases occur: the
death state where all the oscillators are frozen, the locked state where all
ρi(t) = const 6= 0, and the incoherence state where ρi(t) is strictly increas-
ing in ωi; in addition there are two secondary cases: the partial death state
where some of the oscillators are frozen and the others are incoherent, and
the partial locked state where some are locked and the others are incoherent.
Intermediate cases exist numerically but are more difficult to visualize. Ari-
aratnam and Strogatz [1, 2] have given a precise definition of these transi
tions in the case N → +∞. The partial locking is still not understood very
well. Giannuzzi, Marinazzo, Nardulli, Pellicoro, and Stramaglia [4] have ex-
tended Ariaratnam and Strogatz result by putting a factor in front of the
mean-field σ proportional to some power of the modulus of the average phase
1
N

∑N
k=1 exp(ixk).

Nevertheless the fact that the instantaneous frequency ρi(t) admits a
limit, in other words that the rotation vector exists, has never been addressed
(except of course in the death state). Our main result is a partial result in
that direction in the locked state when κ ∈ ]0, κ∗[ and γ ≈ 0 where κ∗ is
the locking bifurcation critical parameter for the Winfree model γ = 0 and
N = 1 defined by

κ∗ := max{κ > 0 : 1− κ(1 + cosx) sinx > 0, ∀x ∈ R}. (4)

Main result 1. We consider the Winfree model given by (3) and satisfying
the frequency condition (2). Then, there exists a open set U in the space of
parameters (γ, κ) ∈ [0, 1] × [0, 1], independent of N , whose closure contains
{0} × [0, κ∗] such that for every parameter (γ, κ) ∈ U , for every N ≥ 1 and
every choice of natural frequencies (ωi)

N
i=1 satisfying condition (2),

1. There exists an open set CNγ,κ invariant by the flow Φt, of the form,

CNγ,κ :=
{
X = (xi)

N
i=1 ∈ RN : max

i,j
|xj − xi| < ∆γ,κ

( 1

N

N∑
i=1

xi

)}
where ∆γ,κ : R→]0, 1[ is a 2π-periodic smooth function independent of
N .

2. There exists a constant rotation number ργ,κ > 0, and an initial con-
dition X∗ ∈ CNγ,κ such that,

Φt
i(X∗) = ργ,κt+ ΨN

i,γ,κ(t), ∀i = 1, . . . , N, ∀t ≥ 0,
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where ΨN
i,γ,κ : R+ → R are C∞ and 2π

ργ,κ
-periodic functions uniformly

bounded with respect to N .

In particular, the set of parameters U corresponds to the weak locked state:
whatever the initial condition X(0) ∈ CNγ,κ, the dispersion |xi(t) − xj(t)| is
uniformly bounded in t; for some initial condition X∗(0), the instantaneous
frequency ρi(t) := xi(t)

t converges to a scalar ργ,κ > 0 independently of the
oscillator xi.

It is common to study the Winfree model together with the Kuramoto
model [7] which is obtained by passing to the limit ε → 0 in the Winfree
model parametrize with ωi := 1 + εω̄i, κ := εκ̄, and xi(t) := t + εx̄i(t). A
first order approximation gives

˙̄xi = ω̄i −
κ

N

N∑
j=1

H(x̄j − x̄i), H(x̄) :=
1

2π

∫ 2π

0
P (x̄+ θ)R(θ) dθ. (5)

Kuramoto model is thus seen as an approximation of the Winfree model for
small γ and κ. Although our open set of parameters is also close to the
origin, we do not take any limit κ → 0 and our result is valid for every N .
The recent researches on the Winfree model may be found in Louca and
Attay in [8], in Pazó and Montbrió in [10], or in Ha, Park and Ryoo in [5].
To be close to the physical and biological terminology, we define the locking
state, as follows

Definition 2. We call rotation number of the i-th oscillator xi(t) the fol-
lowing limit, if it exists,

ρi := lim
t→∞

xi(t)

t
.

We call rotation vector of the system (3), the vector of rotation numbers of
all oscillators, if they all exist.

Definition 3 (Weak Locking). Two oscillators xi(t) and xj(t) of the system
(3) are said to be weakly locked if there exists a constant M > 0 such that

|xi(t)− xj(t)| ≤M, ∀t ≥ 0

Definition 4 (Locking). Two oscillators xi(t) and xj(t) of the system (3)
are said to be locked if they are weakly locked and their rotation numbers
exist and are positive.

Notice that if two oscillators xi(t) and xj(t) are weakly locked and one
of them has a rotation number ρi, then ρj exists and ρj = ρi.
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2 Reduction of the Winfree model

We want to show in this section that the Winfree model 3 can be analyzed
by a linear differential equation. We note, throughout this paper, for any
function h : R→ R and any constant c ∈ R, the linear vector field L[c, h](z, t)
defined for every function z : R→ R and every t ≥ 0 as follow

L[c, h](z, t) = c− h(t)z.

We denote by L[c](z, t), the particular linear vector field L[c, h](z, t) where

h(t) =
κC(t)

1− κS(t)

and
C(t) := [1 + cos(t)] cos(t), S(t) := [1 + cos(t)] sin(t).

We recall that κ is the coupling strength of the Winfree model (3). Let us
introduce for any vector Y = (y1, . . . , yN ) ∈ RN , the dispersion of δi,j(Y ),
the global dispersion δ(Y ) and the mean of Y

δi,j(Y ) := yi − yj , δ(Y ) := max
i,j
|δi,j(Y )| and µ(Y ) :=

1

N

N∑
j=1

yj .

Recall that X(t) denote the solution of the system (3). The mean µ(X) and
the dispersion δi,j(X) of the Winfree model (3) satisfy the non-autonomous
differential equation

d

dt
µ(X) = µ(Ω)− κσ(X)

1

N

N∑
j=1

sin(xj), (6)

d

dt
δi,j(X) = δi,j(Ω)− 2κσ(X) cos

xi + xj
2

sin
δi,j(X)

2
. (7)

Equation (7) is a non-autonomous Riccati equation which is difficult to solve
since the non-constant coefficient is unknown. We use the comparison prin-
ciple of solutions of differential equations to bound from above the dispersion
function δi,j(X).

Proposition 5. Let be t∗ > 0 and D ∈ ]0, 1], and consider the Winfree model
given by (3). For every parameter (γ, κ) ∈ ]0, 1[×]0, 1[ , for every N ∈ N∗

and for every choice of natural frequencies (ωi)
N
i=1 satisfying the conditions
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(2), suppose that δ(X(t)) < D on [0, t∗], then for every 1 ≤ i, j ≤ N and
t ∈ [0, t∗] :

δ̇i,j(X) < L[c, h](δi,j(X), t) (8)

where c = 2γ + 4κD2 and h(t) = κC(µ(X(t))).

Proof. Let be D ∈ ]0, 1[ and assume δ(X(t)) < D on [0, t∗], then for every
1 ≤ i, j ≤ N and t ∈ [0, t∗],

|xi − µ(X)| = | 1
N

N∑
j=1

δi,j(X)| ≤ 1

N

N∑
j=1

|δi,j(X)| ≤ δ(X) < D.

By the mean value theorem applied twice we have for every 1 ≤ i, j, k ≤ N∣∣∣(1 + cos(xk)) cos
(xi + xj

2

)
− [1 + cos(µ(X))] cos(µ(X))

∣∣∣ ≤ 3D,

which implies for every 1 ≤ i, j ≤ N∣∣∣σ(X) cos
(xi + xj

2

)
− [1 + cos(µ(X))] cos(µ(X))

∣∣∣ ≤ 3D.

We substitute in (7) using | sin δi,j(X)
2 | ≤ δ(X)

2 < D
2 and δi,j(Ω) ≤ 2γ. We

obtain for all t ∈ [0, t∗] and for all 1 ≤ i, j ≤ N ,

δ̇i,j(X) < 2γ + 3κD2 − 2κ[1 + cos(µ(X))] cos(µ(X)) sin
(δi,j(X)

2

)
.

We now use the fact that | sin(z)−z| ≤ 1
2z

2 for all z ∈ [0, 12 ] to obtain finally

δ̇i,j(X) < 2γ + 4κD2 − κ[1 + cos(µ(X))] cos(µ(X))δi,j(X), (9)

for every t ∈ [0, t∗] and every 1 ≤ i, j ≤ N .

Our goal in the following is to show that for some parameters (γ, κ,D)
the dispersion curve satisfies |δi,j(X(t))| < D for every t ≥ 0. Our strategy
consists in making the change of variable s = µ(X(t)) in equation (8) and
find a super-solution of a new linear equation with periodic coefficients. We
will need the following lemma.
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Lemma 6. Consider a linear scalar differential equation :

ż(s) = L[α, β](z, s) (10)

where α ∈ R∗+ is a constant and β(s) : R → R is a continuous 2π-periodic
function satisfying∫ 2π

0
β(ζ)dζ ≥ β1 > 0 and −

∫ t

s
β(ζ)dζ ≤ β0, ∀ 0 ≤ s ≤ t ≤ 2π (11)

for some constant β0, β1. Then equation (10) admits a C1, 2π-periodic,
positive solution z(s), such that

max
s∈[0,2π]

z(s) ≤ α2π
exp (β0)

1− exp (−β1)

Proof. Since β(s) is 2π-periodic, by uniqueness of solutions of differential
equations, a solution of (10) satisfying z(0) = z(2π) is periodic z(s) = z(2π+
s) for all s ∈ R. The general solution y(s) of (10) of initial condition y(0) is
given by

y(s) = exp
(
−
∫ s

0
β(ζ)dζ

)
y(0) + α

∫ s

0
exp

(
−
∫ s

t
β(ζ)dζ

)
dt. (12)

For a solution z(s) of (10) to be 2π-periodic and strictly positive, it is suffi-
cient to solve

z(0) = z(2π) = exp
(
−
∫ 2π

0
β(ζ)dζ

)
z(0) + α

∫ 2π

0
exp

(
−
∫ 2π

t
β(ζ)dζ

)
dt

Since
∫ 2π
0 β(ζ)dζ ≥ β1 > 0, we finally obtain

z(s) = α

∫ 2π+s
s exp

(
−
∫ 2π+s
t β(ζ)dζ

)
dt

1− exp
(
−
∫ 2π
0 β(ζ)dζ

)
and maxs∈[0,2π] z(s) ≤ α2π exp(β0)

1−exp(−β1) .

Recall that κ∗ is the locking bifurcation parameter for the Winfree model
γ = 0 and N = 1 defined by

κ∗ := max{κ > 0 : 1− κS(x) > 0, ∀x ∈ R}.

We find the numerical value κ∗ = [supx∈[0,2π] S(x)]−1 = [S(π3 )]−1 = 4
3
√
3
.
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Proposition 7. Let be t∗ > 0 and D ∈ ]0, 1[. Consider the Winfree model
given by (3). For every parameter γ ∈ ]0, 1[ , for every N ∈ N∗ and for
every choice of natural frequencies (ωi)

N
i=1 satisfying condition (2), suppose

that δ(X(t)) < D on [0, t∗], then there exists κγ,D ∈ ]0, κ∗[ such that for every
κ ∈ [0, κγ,D] the function t→ µ(X(t)) is strictly increasing and in particular
a diffeomorphism from [0, t∗] onto [µ(X(0)), µ(X(t∗))]. More precisely,

d

dt
µ(X(t)) ≥ 1− γ − κ

κ∗
(3Dκ∗ + 1) > 0 where κγ,D = κ∗

1− γ
3Dκ∗ + 1

.

Proof. By the Mean value theorem and by same arguments as in the proof
of proposition (5), we find that for every 1 ≤ i, j ≤ N and t ∈ [0, t∗]

|(1 + cos(xj))) sin(xi)− (1 + cos(µ(X))) sin(µ(X))| < 3D,

which implies∣∣∣σ(X)
1

N

N∑
i=1

sin(xi)− (1 + cos(µ(X))) sin(µ(X))
∣∣∣ < 3D. (13)

We substitute in equation (6) and since 1
N

∑N
j=1 ωj > 1− γ we find

d

dt
µ(X) ≥ 1− γ − 3κD − κ(1 + cos(µ(X))) sin(µ(X))

In order to obtain µ(X) strictly increasing on [0, t∗] it’s sufficient to choose
κ so that 1− γ − 3κD− κ(1 + cos(z)) sin(z) > 0, ∀z ∈ [0, 2π]. As γ < 1 and
maxz∈[0,2π](1 + cos(z)) sin(z) = 1

κ∗
then it’s sufficient that

d

dt
µ(X) ≥ 1− γ − κ

κ∗
(3Dκ∗ + 1) > 0.

Let be κγ,D = κ∗
1−γ

3Dκ∗+1 .

Under the hypothesis of proposition 7 above, note s0 := µ(X(0)) and
s∗ := µ(X(t∗)) and consider the change of variable s = µ(X(t)). We will use
later the notation µX(t) := µ(X(t)). More precisely, let

τX :

{
[s0, s∗] → [0, t∗]
s 7→ τX(s)

(14)

be the inverse function of µX , and define

x∗i (s) = xi ◦ τX(s), X∗(s) = X ◦ τX(s).

With respect to the new variable s, equation (8) becomes:
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Corollary 8. Let be t∗ > 0 and D ∈ ]0, 1[, and consider the Winfree model
given by (3). For every parameter γ ∈ ]0, 1[ , κ ∈ ]0, κγ,D[, (where κγ,D is
given by proposition 7), for every N ∈ N∗ and for every choice of natural
frequencies (ωi)

N
i=1 satisfying condition (2), suppose δ(X(t)) < D on [0, t∗],

then for every 1 ≤ i, j ≤ N , the sub-differential equation (8) admits the
following (strict) sub-differential equation

d

ds
δi,j(X

∗(s)) < L[α(γ, κ,D)](δi,j(X
∗(s), s), ∀s ∈ [s0, s∗], (15)

where α(γ, κ,D) = 2κ∗

[γ + 3κD

κ∗ − κ
γ + κD + 2κD2

1− γ − κ
κ∗

(3Dκ∗ + 1)
+
γ + 2κD2

κ∗ − κ

]
.

Proof. Let be t∗ > 0, D ∈ ]0, 1[. Suppose that δ(X(t)) < D on [0, t∗]
and κ ∈ ]0, κγ,D[. Thanks to proposition 7, the function µX(t) is strictly
increasing and in particular is a diffeomorphism from [0, t∗] to [s0, s∗]. We
get

d

ds
δi,j(X

∗(s))
d

dt
µX(t) =

d

dt
δi,j(X(t)) (16)

which is equivalent to

d

ds
δi,j(X

∗)(1− κS(s)) = − d

ds
δi,j(X

∗)[µ̇X(t)− (1− κS(s))] +
d

dt
δi,j(X).

We first find an upper bound of | ddsδi,j(X
∗(s))[µ̇X(t)− (1− κS(s))]|.

On the one hand, by proposition 7, µ̇X(t) > 1 − γ − κ
κ∗

(3Dκ∗ + 1) and
by equation (16)∣∣∣ d

ds
δi,j(X

∗(s))
∣∣∣(1− γ − κ

κ∗
(3Dκ∗ + 1)) ≤

∣∣∣ d
dt
δi,j(X(t))

∣∣∣.
Since |δi,j(X(t))| < D on [0, t∗], by proposition 5 and equation (9), we get
| ddtδi,j(X(t))| < 2(γ + 2κD2 + κD), and∣∣∣ d

ds
δi,j(X

∗(s))
∣∣∣ < 2

(γ + 2κD2 + κD)

1− γ − κ
κ∗

(3Dκ∗ + 1)
. (17)

On the other hand, from equation (13) of the proof of proposition (7),

µ̇X(t) = µ(Ω)− κσ(X)
1

N

N∑
i=1

sin(xi),

∣∣∣σ(X)
1

N

N∑
i=1

sin(xi)− (1 + cos(µX)) sin(µX)
∣∣∣ ≤ 3D,

|µ̇X(t)− (1− κS(s))| ≤ γ + 3κD, ∀t ∈ [0, t∗],
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which implies

d

ds
δi,j(X

∗)(1− κS(s)) < 2(γ + 3κD)
(γ + 2κD2 + κD)

1− γ − κ
κ∗

(3Dκ∗ + 1)
+
d

dt
δi,j(X).

We next find an upper bound of the second expression d
dtδi,j(X). Since

1− κS(s) > 1− κ
κ∗
, thanks to equation (8) of proposition 5, we have

d

ds
δi,j(X

∗) < 2κ∗
(γ + 3κD)(γ + 2κD2 + κD)

(κ∗ − κ)(1− γ − κ
κ∗

(3Dκ∗ + 1))
+ 2κ∗

γ + 2κD2

κ∗ − κ

− κC(s)

1− κS(s)
δi,j(X).

Let be α(γ, κ,D) = 2κ∗

[ (γ + 3κD)(γ + 2κD2 + κD)

(κ∗ − κ)(1− γ − κ
κ∗

(3Dκ∗ + 1))
+
γ + 2κD2

κ∗ − κ

]
. We

finally obtain

d

ds
δi,j(X

∗) < α(γ, κ,D)− κC(s)

1− κS(s)
δi,j(X

∗)

= L[α(γ, κ,D)](δi,j(X
∗), s).

3 The dispersion curve

By the definition of α(γ, κ,D) given in corollary 8 and based on lemma 6,
we discuss in this section the solution of the linear scalar periodic differential
equation d

dsz(s) = L[α(γ, κ,D)](z, s), we show it admits a 2π-periodic and
C∞ scalar solution on R that we note ∆γ,κ,D.This solution will play the role
of a upper positive function of the solution of equation (15). We first begin
by the following lemma.

Lemma 9. For all D ∈ ]0, 1[ and (γ, κ) ∈ ]0, 1[×]0, κγ,D[ the linear scalar
differential equation

d

ds
z(s) = L[α(γ, κ,D)]z(s) (18)

admits a positive solution denoted ∆γ,κ,D(s), 2π-periodic and C∞ on R.

Proof. Recall that for all D ∈ ]0, 1[ and for all (γ, κ) ∈ ]0, 1[×]0, κγ,D[ the
constant α(γ, κ,D) is defined and positive, moreover 1 − κS(ζ) > 0. To be
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able to use lemma (6), we need to estimate the integral from below∫ 2π

0

κC(ζ)

1− κS(ζ)
dζ = − ln

[1− κS(2π)

1− κS(0)

]
+

∫ 2π

0

κ sin2(ζ)

1− κS(ζ)
dζ

=

∫ 2π

0

κ sin2(ζ)

1− κS(ζ)
dζ

≥ min
t∈[0,2π]

κ

1− κS(t)

∫ 2π

0
sin2(ζ)dζ =

πκ

1 + κ
κ∗

.

Then lemma (6) implies that the linear periodic equation (18) admits a 2π-
periodic solution ∆γ,κ,D(s), C∞ and positive.

Our goal is to choose γ and κ so that there exists D ∈ ]0, 1[ such that
the corresponding function ∆γ,κ,D is bounded from above by D as we show
for example in figure 1b. The following lemma gives a sufficient condition of
existence of such a function.

Lemma 10. There exits an open set U of parameter (γ, κ) whose closure
contains {0} × [0, κ∗], defined in the following way

U := {(γ, κ) ∈ ]0, 1[×]0, κ∗[ : 0 < γ < κD2(κ)}

where D(κ) = L∗(1− κ
κ∗

)2 and L∗ := 1
280 exp(−π

4
κ∗

1−κ∗ −
π
2κ∗), such that

max
s∈[0,2π]

∆γ,κ,D(κ)(s) < D(κ).

Definition 11. We call dispersion curve the periodic function

∆γ,κ := ∆γ,κ,D(κ).

Proof of the lemma 10. Part1. We first estimate the constants β0 and β1 in
lemma 6 for the periodic function h(s) = κC(s)/(1 − κS(s)). We already
proved in lemma 9∫ 2π

0

κC(ζ)

1− κS(ζ)
dζ ≥ πκ

1 + κ
κ∗

≥ π

2
κ := β1.

Moreover C(s) = (1 + cos(s)) cos(s) is non negative for s ∈ [0, π2 ] ∪ [3π2 , 2π].
By discarding negative terms we have for every 0 ≤ s ≤ t ≤ 2π

−
∫ t

s

κC(ζ)

1− κS(ζ)
dζ ≤

∫ min(t,3π/2)

max(s,π/2)

κ(−C(ζ))

1− κS(ζ)
dζ ≤

∫ 3π/2

π/2

κ(−C(ζ))

1− κS(ζ)
dζ.



12

Using maxs∈[π/2,3π/2](−C(s)) ≤ 1
4 and mins∈[π/2,3π/2](1−κS(s)) ≥ 1−κ, we

have for every 0 ≤ s ≤ t ≤ 2π

−
∫ t

s

κC(ζ)

1− κS(ζ)
dζ ≤ π

4

κ

1− κ
≤ π

4

κ∗
1− κ∗

:= β0.

Part 2. We show that maxs∈[0,2π] ∆γ,κ,D(s) < D is implied by

γ + 3κD

1− κ
κ∗

γ + κD + 2κD2

1− γ − κ
κ∗

(3Dκ∗ + 1)
+
γ + 2κD2

1− κ
κ∗

< L(κ∗)κD (19)

where L(κ∗) = 1
8 exp(−π

4
κ∗

1−κ∗ −
π
2κ∗). Indeed, it is implied by

max
s∈[0,2π]

∆γ,κ,D(s) ≤ α(γ, κ,D)2π
exp (β0)

1− exp (−β1)
< D, (20)

which is implied by equation (19) using the estimate

1− exp(−β1) = 1− exp(−π
2
κ) =

π

2
κ exp(−ζ) ≥ π

2
κ exp(−π

2
κ∗).

Part3. We now chose (γ, κ,D) as in lemma 10 : κ ∈ ]0, κ∗[, D = D(κ)
and γ ∈ ]0, κD2[. We show that the inequality (19) is satisfied. We have

γ < κD2 < κD, γ + 3κD < 4κD <
1

2
(1− κ

κ∗
),

γ + κD + 2κD2 < 4κD, γ + 2κD2 < 3κD2,

1− γ − κ

κ∗
(3Dκ∗ + 1) =

(
1− κ

κ∗

)
− (γ + 3κD) >

1

2

(
1− κ

κ∗

)
.

The first term of the left hand side of (19) is bounded from above by

4κD

1− κ
κ∗

8κD

1− κ
κ∗

<
32κD2

(1− κ
κ∗

)2
.

The second term of the left hand side is bounded from above by

3κD2

1− κ
κ∗

<
3κD2

(1− κ
κ∗

)2
.

By adding the two estimates, inequality (19) is satisfied since

35κD2

(1− κ
κ∗

)2
= L(κ∗)κD.
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By an explicit resolution of equation (20) we find a curve that define a larger
domain of parameters U that we described in figure 1a.

a b

c d

Figure 1: (a) we show the open set U of parameters (γ, κ), for which the
Winfree model presents a locked state, this domain is calculated by solving
explicitly equation (20). (b) shows for (γ = 0.0002610, κ = 0.1) ∈ U the
2π-periodic function ∆γ,κ on the period [0, 2π] which is bounded by the
dispersion constant D = 0.0329804. (c) shows the phase dispersion δ(X(t))
for the solution X(t) of the Winfree model with a uniform distribution of
natural frequencies (γ = 0.0002610, κ = 0.1) ∈ U and N = 100; the initial
condition of X(t) satisfies X(0) = (0, .., 0) ∈ Cγ,κ. The phase dispersion is
bounded from above by the dispersion curve ∆γ,κ(µX(t)) and the constant
D = 0.0329804. (d) shows the phase dispersion δ(X(t)) for the solution
X(t) of the Winfree model with binomial distribution B(99, 0.8) of natural
frequencies and with identical parameters as in figure 1a.
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4 Weak Locking

We are now able to prove the existence of a Φt-invariant open set C in RN

as we show in figure 1c and 1d. This set has the shape of a cylinder of
bounded and convex base. We recall that U denotes the set of parameters
(γ, κ) defined in lemma 10.

Proposition 12. For every parameter (γ, κ) ∈ U , for every N ∈ N∗ and
for every choice of natural frequencies (ωi)

N
i=1 satisfying condition (2), let

∆γ,κ be the dispersion curve defined in 11, and define

CNγ,κ :=
{
X = (xi)

N
i=1 ∈ RN : max

i,j
|xj − xi| < ∆γ,κ

( 1

N

N∑
i=1

xi

)}
.

Then CNγ,κ is invariant by the flow Φt. In particular the oscillators xi(t) are
weakly locked altogether.

Proof of proposition 12 . From lemmas 9 and 6, we have

d

ds
∆γ,κ(s) = L[α(γ, κ,D(κ))](∆γ,κ(s), s) and max

s∈R
∆γ,κ(s) < D(κ).

Let be X(0) ∈ CNγ,κ and

t∗ := sup{t ≥ 0 : ∀ 0 < t′ < t, δ(X(t′)) < ∆γ,κ(µX(t′))}.

The proposition is proved if we show t∗ = +∞. Using the change of variable
s = µX(t), corollary 8 implies, for every s ∈ [s0, s∗], s0 = µX(0) and s∗ =
µX(t∗),

d

ds
δi,j(X

∗(s)) < L[α(γ, κ,D(κ))](δi,j(X
∗(s)), s)).

Assume by contradiction that t∗ < +∞. Then there exist 1 ≤ i0, j0 ≤ N
such that δi0,j0(X∗(s∗)) = ∆γ,κ(s∗),

d

ds
δi0,j0(X∗(s∗)) < L[α(γ, κ,D(κ))](δi0,j0(X∗(s∗)), s∗)

= L[α(γ, κ,D(κ))](∆γ,k(s∗), s∗) =
d

ds
∆γ,κ(s∗).

There exists s < s∗ close enough to s∗ such that δi0,j0(X∗(s)) > ∆γ,κ(s) or
in other words there exists t < t∗ close enough to t∗ such that δi0,j0(X(t)) >
∆γ,κ(µX(t)). We have obtained a contradiction.
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5 Locking

We show in this section there exists a solution X(t) = (x1(t), . . . , xN (t)) of
the system (3) with some initial condition in CNγ,κ such that any two com-
ponents xi(t) and xj(t) are locked, or more precisely, there exists a common
rotation number ργ,κ > 0 such that xi(t) = ργ,κt + ΨN

i,γ,κ(t), ∀i = 1, · · · , N
where ΨN

i,γ,κ(t) are periodic function of period 2π/ργ,κ. Our strategy con-
sists in constructing, by fixing the mean of X(0), a compact and convex
transverse section Σγ,κ to the closure C̄Nγ,κ, and a continuous Poincaré map
Pγ,κ : Σγ,κ → Σγ,κ by waiting the first time the mean of X(t) return to 0.
We then use Brouwer fixed point theorem to prove the existence of a fixed
point of Pγ,κ.

Lemma 13. Let be (γ, κ) ∈ U where U is defined in lemma 10. Define

Σγ,κ = {X ∈ CNγ,κ : µ(X) = 0}.

Then there exist a C∞ map (the Poincaré map) Pγ,κ : Σγ,κ → Σγ,κ and a
C∞ function (the return map) θγ,κ : Σγ,κ → R+ such that

Φθ(X)(X) = Pγ,κ(X) + 2π1, 1 = (1, · · · , 1) ∈ RN ,
2π

1 + γ + 2κ
< θ(X) <

2π

1− γ − κ
κ∗
− 3κD(κ)

.

Proof. Let be X ∈ CNγ,κ such that µ(X) = 0. Let be µX(t) := µ(Φt(X)) and
τX be the inverse function of µX as it has been defined in (14). Thanks to
proposition 7, we obtain

1− γ − κ

κ∗
− 3κD(κ) < µ̇X(t) < 1 + γ + 2κ.

Define θ(X) := τX(2π). Then
∫ τX(2π)
0 µ̇X(t)dt = 2π implies the second

estimate of the lemma. Define Pγ,κ(X) := Φθ(X)(X)− 2π1. Then

µ(Pγ,κ(X)) = µX(θ(X))− 2π = µX ◦ τX(2π))− 2π = 0,

δ(Pγ,κ(X)) = δ(Φθ(X)(X)) < ∆γ,κ(2π) = ∆γ,κ(0).

We have shown that Pγ,κ is a map from Σγ,kappa into itself.

Corollary 14. The Poincaré map Pγ,κ defined in lemma 13 admits a fixed
point X∗ ∈ Σγ,κ.
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Proof. Σ̄γ,κ is compact and convex; Pγ,κ : Σ̄γ,κ → Σ̄γ,κ is continuous. By
Brouwer fixed point theorem, Pγ,κ admits a fixed point in X∗ ∈ Σ̄γ,κ.
We claim that X∗ 6∈ ∂Σ̄γ,κ. Suppose by contradiction X∗ ∈ ∂Σ̄γ,κ, then
there would exist 1 ≤ i0, j0 ≤ N , such that δi0,j0(X∗) = ∆γ,κ(0); as in
the proof of proposition 12, there would exists t0 > 0 small enough such
that δi0,j0(X(t)) < ∆γ,κ(µ(X(t))) for every 0 < t < t0; by repeating this
argument for every 1 ≤ i1, j1 ≤ N satisfying the equality δi1,j1(X(t)) =
∆γ,κ(µ(X(t))), we would obtain δ(X(t′)) < ∆γ,κ(µ(X(t′))) for some t′ > 0.
But proposition 12 would imply δ(X(t)) < ∆γ,κ(µ(X(t))) for every t > t′:
which is the contradiction with the fact that δ(Φθ(X∗)(X∗)) = ∆γ,κ(2π) =
∆γ,κ(0) and µ(Φθ(X∗)(X∗)) = 2π.

The following theorem is a consequence of the previous corollary, it states
that if (γ, k) ∈ U , the rotation vector of Φt(X∗) = (Φt

1(X∗), . . . ,Φ
t
N (X∗))

exists and is positive.

Theorem 15. For any (γ, κ) ∈ U , there exists a constant rotation number
ργ,κ > 0 and an initial condition X∗ ∈ CNγ,κ such that,

Φt
i(X∗) = ργ,κt+ ΨN

i,γ,κ(t), ∀i = 1, . . . , N, ∀t ≥ 0,

where ΨN
i,γ,κ : R+ → R is 2π

ργ,κ
-periodic, C∞ and uniformly bounded with

respect to N .

Proof. Corollary 14 implies the existence of a point X∗ ∈ CNγ,κ and a time
θ∗ > 0 such that

Φθ∗(X∗) = X∗ + 2π1.

By the uniqueness property of the solutions of an ordinary differential equa-
tion, we have

Φθ∗+t(X∗) = Φt(X∗) + 2π1, ∀t ≥ 0.

Define

ΨN
γ,κ(s) := Φs(X∗)−

2πs

θ∗
1 = (ΨN

1,γ,κ(s), · · · ,ΨN
N,γ,κ(s)), ∀s ≥ 0.

We show that ΨN
γ,κ is periodic of period θ∗. We have

ΨN
γ,κ(s+ θ∗) = Φs+θ∗(X∗)− 2π

s+ θ∗
θ∗

1

= Φs(X∗) + 2π1− 2π
s+ θ∗
θ∗

1 = ΨN
γ,κ(s).

Moreover the return time θ∗ is uniformly bounded from above as in lemma
13.
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6 Conclusion

We found a particular initial condition with a periodic trajectory in a N -
dimensional torus. The phase dispersion between any two oscillators is
bounded by a 2π-periodic function, in particular the oscillators possess a
common rotation number of the form ργ,κ = 2π

θ∗ where θ∗ is the time needed
for the mean (or barycenter) of the oscillators to execute a complete revolu-
tion. We will investigate in the future the two following questions. Question
1: does there exist a set of parameters similar to the one described in the
main result 1 for which the Winfree model is stable for an open set of initial
conditions ? Question 2: is it possible to pass to the limit N → +∞ and
obtain the stability of the continuous system ?
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