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Abstract

In this paper, we consider the following question, which stands as a directed analogue of
the well-known 1-2-3 Conjecture: Given any digraph D with no arc −→uv verifying d+(u) =
d−(v) = 1, is it possible to weight the arcs of D with weights among {1, 2, 3} so that, for
every arc −→uv of D, the sum of incident weights out-going from u is different from the sum
of incident weights in-coming to v? We answer positively to this question, and investigate
digraphs for which even the weights among {1, 2} are sufficient. In relation with the so-
called 1-2 Conjecture, we also consider a total version of the problem, which we prove to
be false. Our investigations turn to have interesting relations with open questions related
to the 1-2-3 Conjecture.

1. Introduction

We here focus on vertex-distinguishing weightings, a graph theory notion that attracted
more and more attention in the last decade. Basically, given an undirected graph G,
the goal is to weight some elements of G so that some well-identified vertices of G get
distinguished relatively to some aggregate computed from the weighting. As emphasized
in the previous sentence, the such problems of correctly weighting a graph are hence made
of three main parameters. For any of these variants, the main goal is, given a graph, to
deduce the smallest number of consecutive weights 1, ..., k necessary to obtain a correct
distinguishing weighting.

In this paper, we focus on those such problems where edges (among maybe other
elements) have to be weighted, and the distinguishing aggregate is the sum of weights
incident to the vertices. More formally, given an edge-weighting w of some graph G, for
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every vertex v one may compute1

σw(v) :=
∑

u∈N(v)

w(vu),

that is, the sum of the weights incident to v. In case w is a total-weighting, every vertex
v also has its own weight, which must be involved when computing σw(v), that is

σw(v) := w(v) +
∑

u∈N(v)

w(vu)

in such a situation. In the setting where σw is the distinguishing parameter, three main
notions have been studied in literature:

(1) If edge-weightings are considered and all vertices of G must be distinguished by σ,
the least number of necessary consecutive edge weights is denoted s(G) (and is called
the irregularity strength of G in literature).

(2) If edge-weightings are considered and only the adjacent vertices of G must be distin-
guished, the least number of necessary consecutive weights is denoted χe

Σ(G).

(3) If total-weightings are considered and only the adjacent vertices of G must be distin-
guished, the least number of necessary consecutive weights is denoted χt

Σ(G).

As we only focus on Items (2) and (3) (that is, on sum-colouring edge-weighting and
sum-colouring total-weighting) in this paper, we will below recall some of their associated
backgrounds. For more general details on this wide area (and on the upcoming introductory
details), we refer the interested reader to the recent survey by Seamone on this topic [14].

The parameter χe
Σ is related to the well-known 1-2-3 Conjecture raised by Karoński,

Łuczak and Thomason [10], which reads as follows (where a nice graph refers to a graph
with no component isomorphic to K2).

1-2-3 Conjecture (Karoński, Łuczak, Thomason [10]). For every nice graph G, we have
χe

Σ(G) ≤ 3.

Several constant upper bounds on χe
Σ were given towards the 1-2-3 Conjecture, the best

one of which being due to Kalkowski, Karoński and Pfender, who proved that χe
Σ(G) ≤ 5

whenever G is nice [8]. Concerning the parameter χt
Σ, the following so-called 1-2 Conjec-

ture was raised by Przybyło and Woźniak [13].

1-2 Conjecture (Przybyło, Woźniak [13]). For every graph G, we have χt
Σ(G) ≤ 2.

Towards the 1-2 Conjecture, the best known result so far is due to Kalkowski [7], who
proved that every graph G verifies χt

Σ(G) ≤ 3.

There have been a few attempts for bringing the 1-2-3 and 1-2 Conjectures to directed
graphs, see e.g. [1, 3, 5, 11]. Most of all these different directed versions of the 1-2-3 and
1-2 Conjectures were shown to hold, even under strong additional constraints such as list
requirements. This results from the fact that these versions, though seemingly close to

1In case no ambiguity is possible, we will sometimes voluntarily omit the subscript w (e.g. write σ for
σw) to lighten the notations.
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the 1-2-3 and 1-2 Conjectures in essence, were based on several behaviours that are not
so comparable to the ones we have to deal with when considering the original conjectures.
Notably, the definitions of some of these versions make the use of induction arguments
possible, while such are generally not applicable in the undirected context. This makes us
wonder what should be the directed analogues to the 1-2-3 and 1-2 Conjectures that would
mimic their behaviours and inherent hardness the best, while fitting to the particularities
of the directed context.

In that spirit, we introduce and study new directed analogues of the 1-2-3 and 1-2
Conjectures. Our directed analogue of the 1-2-3 Conjecture is introduced in Section 2,
while our analogue of the 1-2 Conjecture is studied in Section 3. We more precisely show
our directed analogue of the 1-2-3 Conjecture to be equivalent to solved cases of the 1-2-3
Conjecture, hence giving a positive answer to a question addressed by Łuczak [12]. Using
that equivalence, we point out that our directed analogue of the 1-2 Conjecture, though
true in specific contexts, is false in general. Unexpected implications of our investigations
on the 1-2-3 Conjecture are discussed in Section 4.

2. A directed 1-2-3 Conjecture

Let D be a simple digraph, and w be an arc-weighting of D. For every vertex v, one
can compute two sums incident to v, namely

σ−w (v) :=
∑

u∈N−(v)

w(−→uv),

i.e. the incident in-coming sum, and

σ+
w (v) :=

∑
u∈N+(v)

w(−→vu),

i.e. the incident out-going sum. We call w sum-colouring if, for every arc −→uv of D, we have

σ+
w (u) 6= σ−w (v).

The least number of weights in a sum-colouring k-arc-weighting (if any) of D is denoted
χe

Ł(D).
Before starting investigating the parameter χe

Ł, let us, reusing the notions and termi-
nology above, describe the previously introduced directed versions of the 1-2-3 Conjecture
mentioned in Section 1. In [5, 11] was introduced the variant where, for every arc −→uv, we
require the relative sums of u and v, i.e. σ−(u)−σ+(u) and σ−(v)−σ+(v), to be different.
In [1, 3] was studied the variant where every two adjacent vertices must have different out-
sums (or, equivalently, in-sums), that is we require σ+(u) 6= σ+(v) (resp. σ−(u) 6= σ−(v))
for every arc −→uv. The notion of sum-colouring arc-weighting above is hence different in
the sense that, among the three directed variants, it is the only one where the distinction
between two vertices connected by an arc depends on the direction of that arc.

As a very first observation, it is worth mentioning that not all digraphs admit a sum-
colouring arc-weighting. To be convinced of this statement, just consider a digraph D
having an arc −→uv such that d+(u) = d−(v) = 1. Then, no matter what weight x is assigned
to −→uv, clearly we will get σ+(u) = σ−(v) = x; so there is no hope to find a sum-colouring
arc-weighting. However, one can easily convince themselves that if D is nice, in the sense

3



1

2
1

Figure 1: Illustration of the argument why
−→
C2

7 admits no sum-colouring 2-arc-weighting. Having a weight
(here, 1) on some arc (here, the topmost arc) forces two incident arcs to be weighted differently.

that it does not admit this configuration, then D admits a sum-colouring arc-weighting
(just consider sufficiently fast increasing weights).

Experimentations on some nice digraphs suggest that the following conjecture, which
stands as a directed analogue of the 1-2-3 Conjecture, should be true.

Directed 1-2-3 Conjecture. For every nice digraph D, we have χe
Ł(D) ≤ 3.

It is worth mentioning that the value 3 in our conjecture would be best possible as
there exist nice digraphs admitting no sum-colouring 2-arc-weighting. One easy family of
digraphs whose χe

Ł is 3 is squares of odd cycles in which the two underlying cycles are
directed to form two directed cycles (see Figure 1). Assume indeed we use weights 1 and 2
only on such a digraph. Such a digraph is 2-regular and weighting, say, 1 an arc, say, −−→v1v2

forces the weights on the second arc out-going from v1 and the second arc in-coming to
v2 to be different (so that σ+(v1) 6= σ−(v2)). Repeating this argument until all arcs are
weighted following successive deductions, eventually we easily reach a contradiction. So
such a digraph can only be weighted with at least three weights. In upcoming Section 2.2,
we will point out that actually many other such digraphs exist.

This section is organized as follows. We start by giving a direct proof of the Directed
1-2-3 Conjecture in Section 2.1. Our proof relies on an equivalence between the Directed
1-2-3 Conjecture and the 1-2-3 Conjecture for particular undirected graphs. Then we
investigate, in Section 2.2, digraphs D verifying χe

Ł(D) ≤ 2. In particular, we show that
some families of digraphs have this property, and point out that some other do not (hence
providing more examples of nice digraphs needing all weights among {1, 2, 3}).

2.1. A proof of the Directed 1-2-3 Conjecture
Let G be a bipartite graph with bipartition A ∪ B. In the following, we say that G is

anti-matchable if G is balanced, i.e. |A| = |B|, and the complement of G admits a perfect
matching joining A and B. Said differently, G is anti-matchable if it is balanced and has a
set of disjoint non-edges between A and B covering all its vertices. Assuming the vertices
in A and B are explicitly ordered, i.e. from first to last, we call G anti-matched if, for
every i ∈ {1, ..., |A|}, the ith vertex of A is not adjacent to the ith vertex of B. Note that a
perfect matching in the complement of G can be directly deduced when G is anti-matched.

We below prove the Directed 1-2-3 Conjecture by essentially proving an equivalence
between this conjecture and the 1-2-3 Conjecture for nice bipartite graphs.
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Theorem 1. The following two problems are equivalent:

(1) The Directed 1-2-3 Conjecture for nice digraphs.

(2) The 1-2-3 Conjecture for nice bipartite graphs.

Proof. (2) ⇒ (1) Let D be a nice digraph. We describe below how to deduce a sum-
colouring 3-arc-weighting w′ of D. Let v1, v2, ..., vn denote the vertices of D following an
arbitrary ordering. Now consider the bipartite graph G(D) with bipartition V + ∪ V −
constructed from D as follows:

• For every vertex vi of D, add a vertex v+
i to V +, as well as a vertex v−i to V −.

• For every arc −−→vivj of D, add the edge v+
i v
−
j to G(D).

Clearly G(D) is nice since otherwise D would not be nice. Furthermore, G(D) is
anti-matched. Assume now we give some edge-weighting w of G(D), and let w′ be the
arc-weighting of D where, for every arc −−→vivj of D, we put w′(−−→vivj) = w(v+

i v
−
j ). Note

that w′ is well-defined since every arc of D is associated with exactly one edge in G(D).
Furthermore, by the way G(D) was constructed and w′ was obtained, for every vertex
vi we have σ+

w′(vi) = σw(v
+
i ) and σ−w′(vi) = σw(v

−
i ). So if w is sum-colouring in G(D),

then in particular w′ is sum-colouring in D. The result then follows immediately since
every nice bipartite graph admits a sum-colouring 3-edge-weighting according to our initial
hypothesis.

(1) ⇒ (2) Let G be a nice bipartite graph with bipartition A ∪ B. In case G is not
balanced or anti-matchable, just add some isolated vertices to A and B until G fulfils these
two properties. Note that this operation preserves niceness of G. Assuming |A| = |B| = n,
relabel the vertices of A and B so that A = {v+

1 , v
+
2 , ..., v

+
n } and B = {v−1 , v

−
2 , ..., v

−
n }, and

every two vertices of the form v+
i and v−i are not adjacent, which is possible since G was

made anti-matchable. So G is now anti-matched.
Now just perform the construction converse to the one described in the proof of (2) ⇒

(1) to get a digraph D(G). More precisely, for every pair {v+
i , v

−
i } of vertices of G, add

a vertex vi to D(G). Now, for every edge v+
i v
−
j of G, add the arc −−→vivj to D(G). Clearly

this operation is valid since i 6= j by the labelling of the vertices of G. Besides, D(G) is
nice since otherwise G would not be nice. It should be now clear that, similarly as in the
previous case, from a sum-colouring 3-arc-weighting of D(G), which exists by the initial
hypothesis, we can just copy the arc weights onto the edges of G to get a sum-colouring
3-edge-weighting of G. This concludes the proof. �

The Directed 1-2-3 Conjecture now follows directly from Theorem 1 since the 1-2-3 Con-
jecture holds for all nice bipartite graphs (as proved by Karoński, Łuczak and Thomason
in [10]).

Theorem 2 (Karoński, Łuczak, Thomason [10]). For every nice bipartite graph G, we
have χe

Σ(G) ≤ 3.

Corollary 3. The Directed 1-2-3 Conjecture is true.

Theorem 1 in particular gives another explanation why the directed squares of odd
cycles mentioned in Section 2 have their value of χe

Ł being 3. Note indeed that for every
such digraph D, the graph G(D) we obtain is a cycle of the form C4k+2, which is known
to be non sum-colouring 2-edge-weightable.
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2.2. Using weights 1 and 2 only
We have seen in the previous section that every nice digraph can be arc-weighted in

a sum-colouring way with weights among {1, 2, 3}. In this section, we study situations
in which all weights among {1, 2, 3} are necessary, and situations where only the weights
among {1, 2} are needed.

Bipartite digraphs
Our upcoming arguments and remarks rely on the following alternative proof of the

Directed 1-2-3 Conjecture for nice bipartite digraphs.

Theorem 4. For every nice bipartite digraph D, we have χe
Ł(D) ≤ 3.

Proof. Assume A∪B is a bipartition of V (und(D)), where und(D) denotes the underlying
undirected graph of D. Let D↑↑ and D↓↓ be the subdigraphs of D induced by the arcs
going from, say, A to B, and from B to A, respectively. We note that both D↑↑ and D↓↓
are nice, since otherwise D itself would not be nice. Of course, since D is bipartite, so are
D↑↑ and D↓↓.

Let w be an arc-weighting of D obtained as follows. Consider D↑↑ first. Since und(D↑↑)
is nice and bipartite, it admits a sum-colouring 3-edge-weighting w′ (according to Theo-
rem 2) which we directly transfer to D↑↑ (i.e. if uv and −→uv are corresponding edge and arc
of und(D↑↑) and D↑↑, we give them the same weight, that is w′(uv)). Note that if −→uv is an
arc of D↑↑ then, because σw′(u) 6= σw′(v), and u has in-degree 0 and v has out-degree 0 in
D↑↑, clearly we have σ+

w′(u) 6= σ−w′(v) in D↑↑. So w
′ is sum-colouring in D↑↑. Analogously,

D↓↓ admits such an arc-weighting w′′ as well, according to the same arguments.
To obtain w, it now suffices to directly copy the weights by w′ and w′′ of D↑↑ and D↓↓,

respectively, toD (that is, if−→uv belongs toD↑↑, just set w(−→uv) = w′(−→uv), or w(−→uv) = w′′(−→uv)
otherwise). Then w retains the property of being sum-colouring, since, for every vertex v
in A (resp. B), the in-degree of v in D is exactly its in-degree in D↓↓ (resp. D↑↑), while
the out-degree of v in D is exactly its out-degree in D↑↑ (resp. D↓↓). So if w were not
sum-colouring, then one of w′ and w′′ would not be sum-colouring. �

Following the proof of Theorem 4, we get that, for any nice bipartite digraph D, we
have

χe
Ł(D) = max {χe

Σ(und(D↓↓)), χ
e
Σ(und(D↑↑))} ,

where D↑↑ and D↓↓ have the same meaning as in the proof above. This in particular means
that if one of D↑↑ and D↓↓ has its value of χe

Σ being equal to 3, then χe
Ł(D) = 3. Since

many bipartite graphs have their value of χe
Σ being exactly 3 (refer to [14] for a summary of

all known such families), we get that a wide bunch of nice bipartite digraphs have their χe
Ł

being exactly 3. On the other hand, we get that if a nice bipartite digraph with bipartition
A ∪B is the combination of two nice bipartite graphs G1 and G2 such that:

• χe
Σ(G1) ≤ 2 and χe

Σ(G2) ≤ 2,

• all edges of G1 are directed from, say, A to B, in D, and

• all edges of G2 are directed from B to A in D,

then χe
Ł(D) ≤ 2.

We also note that the proof of Theorem 4 gives something more general. Namely, if a
nice digraph D has a partition V1, ..., Vk of its vertex set such that:

6



1. every Vi is a stable set,

2. all vertices in a given Vi have all of their in-neighbours in a same Vj , and

3. all vertices in a given Vi have all of their out-neighbours in a same Vj ,

then a sum-colouring arc-weighting of D can be obtained by independently edge-weighting
all of its underlying nice bipartite graphs of the form und(D[Vi∪Vj ]) for every i 6= j (some
of which may have no edge). In the next result, we call such a partition of V (D) a circular
vertex-colouring of D.

Corollary 5. For every nice digraph D with a circular vertex-colouring V1, ..., Vk, we have

χe
Ł(D) = max {χe

Σ(und(D[Vi ∪ Vj ])) : i, j ∈ {1, 2, ..., k}} .

From Corollary 5, we can deduce many digraphs that need all weights among {1, 2, 3}
to be weighted, and, conversely, many digraphs for which the weights among {1, 2} suffice.

Acyclic tournaments
We here consider acyclic digraphs, i.e. digraphs with no directed cycles. Using three

weights on nice acyclic digraphs is actually best possible. To illustrate this, just take any
nice bipartite graph G with χe

Σ(G) = 3 and direct all arcs towards the same part. In doing
so, as explained in previous Section 2.2, we obtain an acyclic oriented bipartite graph

−→
G

with χe
Ł(
−→
G) = 3. We can however show that, in particular situations, such as for acyclic

tournaments, acyclic digraphs may have their χe
Ł being at most 2.

Theorem 6. For every nice acyclic tournament
−→
T , we have χe

Ł(
−→
T ) ≤ 2.

Proof. Since
−→
T is acyclic, it admits a vertex ordering v1, v2, ..., vn such that for all i and j

with i < j, the arc between vi and vj is directed “to the right”, that is towards j. Ideally,
we would like to produce a 2-arc-weighting w of

−→
T with the following properties:

(1) For all i ∈ {1, 2, ..., n− 1}, we have σ+
w (vi) odd.

(2) For all i ∈ {2, 3, ..., n}, we have σ−w (vi) even.

Assuming w satisfies Properties (1) and (2) above, clearly it is sum-colouring. Unfortu-
nately, such a w cannot always be obtained but, in that case, we can nevertheless make
sure that w is sum-colouring according to other arguments.

The main idea to obtain such a w consists in picking pairs of vertices vi and vj , and
one of their common out-neighbours vk, then setting w(−−→vivk) = w(−−→vjvk) = 1, and setting
all other arcs out-going from vi and vj to 2. In doing so, note that Property (1) will be
met for vi and vj , while the parity of σ−w (vk) will remain unchanged.

Assume first n is odd. Starting from v1, consider disjoint pairs of consecutive vertices
until vn−1 is reached (that is, {v1, v2}, then {v3, v4}, and so on). For every such pair
{vi, vi+1}, set w(−−→vivn) = w(−−−−→vi+1vn) = 1. At the end of the process, assign 2 to all non-
weighted arcs. Clearly w directly respects Properties (1) and (2) above, so it is sum-
colouring.

If n is even, then we proceed as follows. We repeat the same procedure as in the
previous case but with the pairs {v1, v2}, {v3, v4}, ..., {vn−3, vn−2} only, choosing the arcs
from their members towards vn−1 to be weighted 1. Once the 1’s are attributed, put 2 on
all remaining arcs, including −−−−→vn−1vn. Note that Property (1) is violated by σ+

w (vn−1) only,
which is equal exactly to 2. But since n > 2 (since otherwise

−→
T would not be nice), we

have σ−w (vn) > 2 = σ+
w (vn−1). So w is sum-colouring. �
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3. A directed 1-2 Conjecture

We now investigate how helpful it is to be granted the possibility to locally modify
σ− and σ+ at every vertex of a given digraph. Let us define this formally. Let w be a
total-weighting of some digraph D. For every vertex v of D, we define:

σ−w (v) := w(v) +
∑

u∈N−(v)w(
−→uv) and σ+

w (v) := w(v) +
∑

u∈N+(v)w(
−→vu)

that is, the local weight by w is counted in both σ−w (v) and σ+
w (v) (as if we were weighting

a loop at v). Once more, we call w sum-colouring if σ+
w (u) 6= σ−w (v) for every arc −→uv of D.

This time, it should be clear that all digraphs admit a sum-colouring total-weighting (if D
is not nice, in the sense defined for the arc version, just use vertex weights to “destroy” its
bad configurations). For every digraph D, the chromatic parameter χt

Ł(D), denoting the
least number of consecutive weights in a sum-colouring k-total-weighting of D, is hence
well-defined.

As a consequence of a remark above, we have the following.

Observation 7. For every nice digraph D, we have χt
Ł(D) ≤ χe

Ł(D).

Corollary 3 then implies that χt
Ł(D) ≤ 3 holds for every nice digraph D. It can also be

proved that this inequality holds when D is not nice.

Theorem 8. For every digraph D, we have χt
Ł(D) ≤ 3.

Proof. Let D′ be the digraph obtained from D by adding a loop at every vertex, and let
G(D′) be the bipartite graph constructed from D′ as described in the proof of Theorem 1.
Note that, by construction, every loop −−→vivi of D′ becomes an edge v+

i v
−
i in G(D′). Since

G(D′) is clearly nice, it admits a sum-colouring 3-edge-weighting according to Theorem 2.
Now just transfer the edge weights from G(D′) to D′ as described in the proof of Theorem 1
to obtain a 3-arc-weighting of D′ which is sum-colouring (unless σ+(vi) = σ−(vi) for some
vertex vi, but this is not a problem). To now get a sum-colouring 3-total-weighting of D,
just transfer the arc weights from D′ to D, with the exception that the weight of every
loop −−→vivi in D′ becomes the weight of vi in D. �

Since the possibility of locally modifying both σ− and σ+ is very handy, one could
conjecture that the following, which is a direct analogue of the 1-2 Conjecture, should be
true.

Directed 1-2 Conjecture. For every digraph D, we have χt
Ł(D) ≤ 2.

This section is organized as follows. We first show, in Section 3.1, that the Directed
1-2 Conjecture, as currently stated, is actually false. So we propose, in the same section,
a refined conjecture. We then prove in Section 3.2 that both versions of the Directed 1-2
Conjecture are true in some contexts.

3.1. Counterexamples to the Directed 1-2 Conjecture
As seen in the proof of Theorem 1, there is an equivalence between edge-weighting nice

bipartite graphs and arc-weighting nice digraphs in a sum-colouring way. Some kind of
similar relation can also be pointed out for our definition of sum-colouring total-weighting.

Let us introduce some more terminology. Given a digraphD, the balanced anti-matched
bipartite graph G(D) obtained from D as described in the first part of the proof of Theo-
rem 1 is called the bipartite anti-matched-representation of D. Conversely, assuming G is

8
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Figure 2: A digraph D (left), the same digraph D′ with a loop at every vertex (middle), and the bipartite
matched-representation G(D) of D (right). From a sum-colouring edge-weighting of G(D), one can deduce
a sum-colouring arc-weighting of D′, from which is deduced a sum-colouring total-weighting of D.

an anti-matched bipartite graph, we call the digraph D(G), as obtained in the second part
of the proof of Theorem 1, the directed representation of G.

As seen in the proof of Theorem 8, note that, in the bipartite representation G(D) of
a digraph D, having an edge v+

i v
−
i in G(D) corresponds, in D, to an arc from vi to itself.

Furthermore, as within an arc-weighting, in D, a loop at vi contributes to both σ−(vi)
and σ+(vi), then weighting the edge v+

i v
−
i in G(D) can actually be seen as attributing the

personal weight to vi in the corresponding total-weighting of D. So an edge-weighting of
G(D) under the assumption that G(D) is matched, i.e. its two partite sets can be ordered
so that we have a perfect matching joining its every pair of ith vertices, is quite similar to
a total-weighting of D (basically, for every vertex vi, the weight of vi in D is represented by
the weight on v+

i v
−
i in G(D)). Adding edges joining the first vertices, the second vertices,

and so on, of the bipartite anti-matched representation of D, we obtain a bipartite graph
which we call the bipartite matched-representation of D (see Figure 2 for an illustration).
Assuming G is a matched bipartite graph with bipartition {a1, a2, ..., an} ∪ {b1, b2, ..., bn},
we call every edge aibi a matched edge of G.

There is an important point one should be careful with. By the remarks above, the
following is true.

Observation 9. Let D be a digraph, and G(D) be the bipartite matched-representation of
D. Then, we have χt

Ł(D) ≤ χe
Σ(G(D)).

However, the converse of Observation 9 is not true, in the sense that a sum-colouring total-
weighting of D does not necessarily yield a sum-colouring edge-weighting of G(D). This
comes from the fact that, for every matched edge v+

i v
−
i of G(D), we require σ(v+

i ) 6= σ(v−i ),
while the equivalent requirement in D would be to have σ+(vi) 6= σ−(vi), which we do not
impose.

Due to this remark, if we have a matched bipartite graph G which is not sum-colouring
2-edge-weightable, then we cannot directly deduce that D(G) is not sum-colouring 2-total-
weightable. We can nevertheless obtain non sum-colouring 2-total-weightable digraphs via
the following observation.

Observation 10. Let D be a non-nice digraph having a directed cycle −−−−−−−→v1v2...vkv1 such that
all arcs −−→v1v2,

−−→v2v3, ...,
−−→vkv1 are bad, i.e. we have d+(vi) = d−(vi+1) = 1 for every such arc

−−−→vivi+1. If k is odd, then χt
Ł(D) > 2.
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Observation 10 notably shows that χt
Ł(D) > 2 whenever D is a directed odd cycle.

It is not so surprising that directed odd cycles are counterexamples to the Directed 1-2
Conjecture, as, since they are not nice, the vertex weights are really necessary here. This
makes us wonder whether the following refined conjecture is true.

Refined Directed 1-2 Conjecture. For every nice digraph D, we have χt
Ł(D) ≤ 2.

Towards that refined conjecture, recall that already Theorem 8 implies that we have
χt

Ł(D) ≤ 3 for every nice digraph D. Using Observation 9, we can also confirm the Refined
Directed 1-2-3 Conjecture for digraphs D whose bipartite matched-representation G(D)
verifies χe

Σ(G(D)) ≤ 2. Many nice bipartite graphs are known to have this property,
see [14], one of the most interesting results for our purpose being the following.

Theorem 11 (Chang, Lu, Wu, Yu [6]). Let G be a nice connected bipartite graph with
bipartition A ∪B. If at least one of |A| and |B| is even, then χe

Σ(G) ≤ 2.

We say that a digraph is connected if its underlying undirected graph is connected.

Corollary 12. Every connected digraph with even order agrees with the Refined Directed
1-2 Conjecture.

Proof. Let D be a connected digraph with even order, and let G(D) be the bipartite
matched-representation of D. Since D has even order, both parts of G(D) are of even size.
Besides, G(D) is necessarily nice since otherwise, as G(D) is matched, it would mean that
D has isolated vertices. So that we can apply Theorem 11 directly on G(D) and get our
conclusion, we just have to make sure that G(D) is connected.

Since D is connected, for every two vertices u and v, there exists a path P from u to
v in und(D). We need to prove that there is a path from u+ (or u−, but this is equivalent
as u+u− is an edge of G(D)) to v+ (or v−, for the same reason) in G(D). Assuming u′

is the vertex succeeding u in P , we actually just need to prove that u+ or u− is adjacent
to u′+ or u′− in G(D). But this is necessarily the case: since uu′ is an edge of und(D),
either the arc

−→
uu′ or

−→
u′u belongs to D. So u+u′− is an edge of G(D) in the first situation,

while u′+u− is an edge in the second situation. Repeating this argument for every two
subsequent vertices of P , we get that G(D) indeed has the claimed path.

Since the arguments above apply whatever u and v are, we get that G(D) is connected.
So G(D) admits a sum-colouring 2-edge-weighting according to Theorem 11, which we can
directly turn into a sum-colouring 2-total-weighting of D. �

As going to be discussed in concluding Section 4, proving the counterpart of Corollary 12
for connected digraphs with odd order does not seem as easy. This problem is in particular
connected to other problems concerning nice bipartite graphs and the 1-2-3 Conjecture.

3.2. Digraphs verifying the (Refined) Directed 1-2 Conjecture
In this section, we prove that some classes of digraphs agree with the (Refined) Directed

1-2 Conjecture. We in particular consider acyclic digraphs, and bipartite digraphs.

Theorem 13. For every acyclic digraph D, we have χt
Ł(D) ≤ 2.

Proof. Start by mimicking the beginning (i.e. the pairing part) of the proof of Theorem 6
as long as possible to get a 2-arc-weighting w of D such that all σ−w (vi)’s are even and some
σ+
w (vi)’s (but maybe not all) are odd. Put w(vi) = 2 for every vertex vi of D. From now

on we will use notation w to deal with the resulting 2-total-weighting. In case there is no
arc −−→vivj such that σ+

w (vi) = σ−w (vj), we are done. Otherwise, there are some such arcs −−→vivj

10



such that σ+
w (vi) = σ−w (vj) with σ+

w (vi) being even while it should be odd. From the point
of view of −−→vivj , we call vi bad, while we call vj good. Note that all sinks are necessarily
good for all arcs.

To fix the conflicts, we prove that, starting from the rightmost conflicting arc (i.e. the
one −−→vivj with vi having the largest index), we can make vi good by considering another arc
−−→vkvi and possibly making vk bad. This means that we can basically “push” the conflicts
towards the left, i.e. towards the sources, which we can handle easily (since we do not care
about their value of σ−w ).

Consider a conflicting arc −−→vivj . By definition, we have:

• σ−w (vj) even and σ+
w (vj) odd or null (good), and

• σ−w (vi) even and σ+
w (vi) even (bad).

If vi is a source, then we can solve the problem by just switching w(vi), i.e. set this weight
to 3−w(vi). Now, if vi is not a source, then there is an arc −−→vkvi with k < i. Then by just
switching the weight w(vi), as well as the weight w(−−→vkvi), note that vi becomes good.

By just repeating this argument until only sources of D are bad, we eventually can
solve all conflicts and make w sum-colouring. �

Theorem 14. For every bipartite digraph D, we have χt
Ł(D) ≤ 2.

Proof. Let A ∪B denote the bipartition of D. Start with assigning weight 2 to all arcs of
D so that σ− and σ+ are even for all vertices. Now assign weight 1 on all vertices of A,
and assign weight 2 on all vertices in B. The result is that,

• for every a ∈ A, both σ−(a) and σ+(a) are odd, and

• for every b ∈ B, both σ−(b) and σ+(b) are even.

It then follows that, for every arc −→uv of D, the parities of σ+(u) and σ−(v) are different,
so the two values are different. �

4. Conclusion

In this paper, we have introduced new directed analogues of the 1-2 and 1-2-3 Con-
jectures. Although the Directed 1-2-3 Conjecture admits an easy proof, the unexpected
equivalence between the Directed 1-2-3 (and 1-2) Conjecture and the 1-2-3 Conjecture we
have exhibited in Theorem 1 is of interest. This is mainly because the status of the 1-2-3
Conjecture for nice bipartite graphs is not entirely understood. Indeed, apart from com-
pletely proving the 1-2-3 Conjecture, perhaps the most important open question related to
the 1-2-3 Conjecture is the existence of an easy characterization of nice bipartite graphs G
verifying χe

Σ(G) ≤ 2.

Question 15. Which nice bipartite graphs G verify χe
Σ(G) ≤ 2?

As summarized in [14], only a few classes of nice bipartite graphs G having χe
Σ(G) = 3

are known at the moment; so studying the Directed 1-2-3 and 1-2 Conjectures may be
a new way to attack Question 15. In particular, let us mention the following potential
directions for future work.

11



1. When checking what is the value of χe
Σ(G) for a nice bipartite graph G, one may

equivalently check the value of χe
Ł(D(G)) of a directed representation D(G) of G. For

that purpose, we recall that G should be anti-matched, and hence balanced. In case
G is not balanced, we can get an equivalent nice balanced bipartite graph by adding
isolated vertices to G. However, if G is already balanced, we note that the number of
vertices of D(G) will be |V (G)|/2 (while the size is preserved). So considering D(G)
may be simpler in some situations.

2. If we have χe
Ł(D) = 3 for some nice digraph D, by Theorem 1 we get an equivalent

nice bipartite graph G(D) verifying χe
Σ(G(D)) = 3. More generally, if we could prove

that it is NP-complete to decide whether χe
Ł(D) ≤ 2 for a given nice digraph D, then

we would prove that no easy characterization answering Question 15 exists. This is
of interest as the complexity of deciding whether χe

Σ(G) ≤ 2 is still unknown under
the restriction that G is a given nice bipartite graph.

3. Towards the Refined Directed 1-2-3 Conjecture, if we could prove that some nice
digraph D refute it, then we would get another example of nice bipartite graph G(D)
not in the class mentioned in Question 15. Such a graph would more likely be a
new graph not mentioned in the summary [14], as it can be easily checked that all
such known graphs, when matched (i.e. have their vertices ordered as explained in
Section 3.1), form a representation of digraphs which are not nice.

4. Conversely, to prove the counterpart of Corollary 12 for connected digraphs with odd
order, it would be sufficient to prove that we have χe

Σ(G) ≤ 2 for every nice matched
bipartite graph G. Actually it would be sufficient to prove that this result holds if
we allow the two ends of every matched edge to have the same value of σ.

5. During previous investigations, it was noted that, in particular contexts, finding a
correct weighting of some graph is similar to finding a decomposition into irregular
subgraphs. This was notably considered in [2], where the authors study decomposi-
tions into locally irregular subgraphs, i.e. graphs with no adjacent vertices with the
same degree, which are related to sum-colouring edge-weightings in regular graphs.
This approach was further considered in [4], where, in the context of another directed
variant of the 1-2-3 Conjecture, the authors consider decompositions of digraphs into
locally irregular subgraphs (for some definition of irregularity in digraphs). We could
consider this question as well in the context of our current investigations. Namely,
one could define a locally irregular digraph as a digraph in which, for every arc −→uv, we
have d+(u) 6= d−(v), and then study decompositions of digraphs into locally irregular
subdigraphs.
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