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Directed variations of the 1-2-3 Conjecture

Emma Barmea, Julien Bensmaila

aLIP, UMR 5668 ENS Lyon, CNRS, UCBL, INRIA, Université de Lyon, France

Abstract

In this paper, we consider the following question, which stands as a directed analogue of
the well-known 1-2-3 Conjecture: Given a digraph D with no arc −→uv verifying d+(u) =
d−(v) = 1, is it possible to weight the arcs of D with weights among {1, 2, 3} so that, for
every arc −→uv of D, the sum of incident weights out-going from u is different from the sum of
incident weights in-coming to v? Towards this question, we first verify it for D belonging
to particular classes of digraphs, before then proving its weakening where 3 is replaced by
some absolute constant, namely 17. In the same spirit, we investigate a total version of
the same question inspired by the 1-2 Conjecture, and prove that even less weights are
necessary in this context, namely 10.

1. Introduction

We here focus on vertex-distinguishing weightings, a graph theory notion that attracted
more and more attention in the last decade. Basically, given an undirected graph G,
the goal is to weight some elements of G so that some well-identified vertices of G get
distinguished relatively to some aggregate computed from the weighting. As emphasized in
the previous sentence, the such problems of correctly weighting a graph are hence made of
three main parameters. For any of these variants, the main goal is, given a graph, to deduce
the smallest number of weights necessary to obtain a correct distinguishing weighting.

In this paper, we focus on those such problems where edges are part of the weighted
elements, and the distinguishing aggregate is the sum of weights incident to the vertices.
More formally, given an edge-weighting w of some graph G, for every vertex v one may
compute1

σw(v) :=
∑

u∈N(v)

w(vu),

that is, the sum of the weights incident to v. In case w is a total-weighting, every vertex
v also has its own weight, which must be involved when computing σw(v), that is

σw(v) := w(v) +
∑

u∈N(v)

w(vu)

in such a situation. In the setting where σw is the distinguishing parameter, three main
notions have been studied in literature:

1. If edge-weightings are considered and all vertices of G must be distinguished by σ,
the least number of necessary consecutive edge weights is denoted s(G) (and is called
the irregularity strength of G in literature).

1In case no ambiguity is possible, we will sometimes voluntarily omit the subscript w (e.g. write σ for
σw) to lighten the notations.

Preprint submitted to Elsevier July 12, 2015



2. If edge-weightings are considered and only the adjacent vertices of G must be distin-
guished, the least number of necessary consecutive weights is denoted χe

Σ(G).

3. If total-weightings are considered and only the adjacent vertices of G must be distin-
guished, the least number of necessary consecutive weights is denoted χt

Σ(G).

As we only focus on Items (2) and (3) (that is, on sum-colouring edge-weighting and
sum-colouring total-weighting) in this paper, we will below recall some of their associated
backgrounds. For more general details on this wide area (and on the upcoming introductory
details), we refer the interested reader to the recent survey by Seamone on this topic [10].

The χe
Σ parameter is related to the well-know 1-2-3 Conjecture raised by Karoński,

Łuczak and Thomason [7], which reads as follows (where a nice graph refers to a graph
with no component isomorphic to K2).

1-2-3 Conjecture. For every nice graph G, we have χe
Σ(G) ≤ 3.

Many constant upper bounds on χe
Σ were given towards the 1-2-3 Conjecture, the best

one of which being due to Kalkowski, Karoński and Pfender who proved that χe
Σ(G) ≤ 5

whenever G is nice [5]. Concerning the χt
Σ parameter, the following so-called 1-2 Conjec-

ture was raised by Przybyło and Woźniak [9].

1-2 Conjecture. For every graph G, we have χt
Σ(G) ≤ 2.

Towards the 1-2 Conjecture, the best known result so far is due to Kalkowski [4], who
proved that every graph G verifies χt

Σ(G) ≤ 3.

There have been a few attempts for bringing the 1-2-3 and 1-2 Conjectures to directed
graphs, see e.g. [1, 2, 3, 8]. Most of all these different directed versions of the 1-2-3 and
1-2 Conjectures were shown to hold, even under strong additional constraints such as list
requirements. This results from the fact that these versions, though seemingly close to
the 1-2-3 and 1-2 Conjectures in essence, were based on several behaviours that are not so
comparable to the ones we have to deal with when considering the original conjectures. This
makes us wonder what should be the directed analogues to the 1-2-3 and 1-2 Conjectures
that would mimic their behaviours and inherent hardness the most.

In that spirit, we introduce and study new directed analogues of the 1-2-3 and 1-2 Con-
jectures, which, as desired, seem seemingly harder than the previously considered directed
variants. Our analogue to the 1-2-3 Conjecture is introduce in Section 2, while our ana-
logue to the 1-2 Conjecture is studied in Section 3. We mainly verify these two conjectures
for several classes of digraphs, before proving weakenings of these two conjectures. Our
conclusions and perspectives for future work are gathered in Section 4.

2. A directed 1-2-3 Conjecture

Let D be a simple digraph, and w be an arc-weighting of D. For every vertex v, one
can compute two sums incident to v, namely

σ−w (v) :=
∑

u∈N−(v)

w(−→uv),

i.e. the incident in-coming sum, and

σ+
w (v) :=

∑
u∈N+(v)

w(−→vu),
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Figure 1: Illustration of the argument why
−→
C2

7 admits no sum-colouring 2-arc-weighting. Having a weight
(here, 1) on some arc (here, the top-most arc) forces two incident arcs to be weighted differently.

i.e. the incident out-going sum. We call w sum-colouring if, for every arc −→uv of D, we have

σ+
w (u) 6= σ−w (v).

The least number of weights in a sum-colouring k-arc-weighting (if any) of D is denoted
χe

Σ±(D).
As a very first observation, it is worth mentioning that not all digraphs admit a sum-

colouring arc-weighting. To be convinced of this statement, just consider a digraph D
having an arc −→uv such that d+(u) = d−(v) = 1. Then, in such a situation, no matter what
weight x is assigned to −→uv, clearly we will get σ+(u) = σ−(v) = x – so there is no hope to
find a sum-colouring arc-weighting. However, one can easily convince himself that if D is
nice, in the sense that it does not admit this configuration, then D admits a sum-colouring
arc-weighting (just consider large enough arc weights).

Experimentations on some nice digraphs suggest that the following conjecture, which
stands as a direct directed analogue of the 1-2-3 Conjecture, could be true.

Directed 1-2-3 Conjecture. For every nice digraph D, we have χe
Σ±(D) ≤ 3.

It is worth mentioning that the value 3 in our conjecture would be best possible as
there exist nice digraphs admitting no sum-colouring 2-arc-weighting. One easy family of
digraphs whose χe

Σ± is 3 is squares of odd cycles in which the two underlying cycles are
directed to form two circuits (see Figure 1). Assume indeed we use weights 1 and 2 only
on such a digraph. Such a digraph is 2-regular and weighting, say, 1 an arc, say, −−→v1v2

forces the weights on the second arc out-going from v1 and the second arc in-coming to
v2 to be different (so that σ+(v1) 6= σ−(v2)). Repeating this argument until all arcs are
weighted following successive deductions, eventually we easily reach a contradiction – so
such a digraph can only be weighted with at least three weights. In upcoming Section 2.1,
we will point out that actually many other such digraphs exist.

This section is organized as follows. First, we give support to the Directed 1-2-3 Con-
jecture by showing, in Section 2.1, that many digraphs verify it. These digraphs range from
acyclic digraphs and digraphs with particular colouring properties. Then, in Section 2.2,
we make a first step towards the Directed 1-2-3 Conjecture by showing that there is a
constant number of weights, namely 17, that suffice to weight all nice digraphs.
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2.1. Support to the Directed 1-2-3 Conjecture
We start by showing that the Directed 1-2-3 Conjecture holds for acyclic digraphs, and

digraphs with particular colouring properties.

Acyclic digraphs
We here consider acyclic digraphs, i.e. digraphs with no directed circuit. More precisely,

we prove that acyclic digraphs agree with the Directed 1-2-3 Conjecture, see upcoming
Theorem 2. Using three weights on nice acyclic digraphs is actually best possible. To
illustrate this, and as going to be explained in the next section, just take any nice bipartite
graph G with χe

Σ(G) = 3 and direct all arcs towards the same part. In doing so, we
obtain an acyclic oriented bipartite graph

−→
G with χe

Σ±(
−→
G) = 3. We however show that,

in particular situations, acyclic digraphs may have their χe
Σ± being at most 2.

Theorem 1. For every nice acyclic tournament
−→
T , we have χe

Σ±(
−→
T ) ≤ 2.

Proof. Since
−→
T is acyclic, it admits a vertex ordering v1, v2, ..., vn such that for all i and

j with i < j, the arc between vi and vj is directed “to the right”, that is towards j. We
produce a 2-arc-weighting w of

−→
T with (perhaps almost) the following properties:

1. For all i ∈ {1, 2, ..., n− 1}, we have σ+
w (vi) odd.

2. For all i ∈ {2, 3, ..., n}, we have σ−w (vi) even.

Assuming w satisfies Properties (1) and (2) above, clearly it is sum-colouring.

The main idea to obtain such a w consists in picking pairs of vertices vi and vj , one
of their common out-neighbours vk, set w(−−→vivj) = w(−−→vjvk) = 1, and set all other arcs
out-going from vi and vj to 2. In doing so, note that Property (1) will be met for vi and
vj , while the parity of σ−w (vk) will remain unchanged.

Assume first n is odd. Starting from v1, consider disjoint pairs of consecutive vertices
until vn−1 is reached (that is, {v1, v2}, then {v3, v4}, and so on). For every such pair
{vi, vi+1}, set w(−−→vivn) = w(−−−−→vi+1vn) = 1. At the end of the process, assign 2 to all non-
weighted arcs. Clearly w directly respects Properties (1) and (2) above, so it is sum-
colouring.

If n is even, then we proceed as follows. We repeat the same procedure as in the
previous case but with the pairs {v1, v2}, {v3, v4}, ..., {vi−3, vi−2} only, and with choosing
the arcs towards vn−1 to be weighted 1. Once the 1’s are attributed, put 2 on all remaining
arcs, including −−−−→vn−1vn. Note that Property (1) is violated by σ+

w (vn−1) only, which is
equal exactly to 2. But since n > 2 (since otherwise

−→
T would not be nice), we have

σ−w (vn) > 2 = σ+
w (vn−1). So w is sum-colouring. �

Modifying the proof of Theorem 1, we now prove that acyclic digraphs all agree with
the Directed 1-2-3 Conjecture.

Theorem 2. For every nice acyclic digraph D, we have χe
Σ±(D) ≤ 3.

Proof. We describe below how to deduce a sum-colouring 3-arc-weighting w of D. The
process to obtain w is somewhat similar to that described in the proof of Theorem 1. Start
from some ordering v1, v2, ..., vn of the vertices of D such that all arcs are directed to the
right. Now iteratively construct one subset X of vertices and one subset F of arcs as
follows. As long as D−X has two vertices vi and vj having a common out-neighbour vk in
the original D, add −−→vivk and −−→vjvk to F , and add vi and vj to X. When the process ends,
clearly the following properties are fulfilled by X and F :
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v1 v2 v3 v4
2

2

�1→ 3

1

0− | 4+ 2− |��1+ → 3+ 0− | 1+ ��4− → 6− | 0+

Figure 2: Illustration of the modification scheme described in the proof of Theorem 2. The original arc-
weighting w is not sum-colouring since σ+

w(v1) = σ−w (v4). This conflict is solved by changing the weight on
−−→v2v4 to 3.

1. Every vertex of X is incident to exactly one forward arc in F .

2. Every vertex of D has an even number of incident in-coming arcs in F .

3. Every two vertices in V (D) \X have no common out-neighbours.

Now start with w assigning 1 to all arcs of F , and 2 to all other arcs of D. By
Property (2), so far σ−w (vi) is even for every vi of D. By Property (1), clearly σ+

w (vi) is
odd for every vi in X. However σ+

w (vi) is even for every vi in V (D) \ X, so if this set is
not empty, then w may not be sum-colouring – but these are the only possible conflicts.

In order to fix these conflicts, we consider the vertices of D in increasing order of their
indexes, and possibly modify w locally (see Figure 2). Assume vi is, according to the
ordering, the first vertex having an out-neighbour vj such that σ+

w (vi) = σ−w (vj). Recall
that vi belongs to V (D) \X, and hence w(−−→vivj) = 2. If vj is the only out-neighbour of vi,
then, because D is nice, vj necessarily has in-neighbours different from vi - so σ−w (vj) >
2 = σ+

w (vi) and there would actually be no problem with −−→vivj . So assume vi has d out-
neighbours u1, u2, ..., ud to the right, one of which is vj . Since Property (1) is violated at
vi, all arcs from vi to these d out-neighbours are weighted 2 by w. Since d ≥ 2, we note
that if −−→vivj is a conflicting arc, meaning that σ+

w (vi) = σ−w (vj), then vj necessarily has
other incident in-coming arcs. Clearly all these arcs are weighted 1 by w since otherwise
Property (3) would be violated. Now just turning one of these weights from 1 to 3 solves
the conflict between vi and vj since only σ−w (vj) is altered. Besides, it should be clear
that none of Properties (1), (2) and (3) can be violated after the modification. Repeating
the same argument for all uj ’s which are in conflict with vi, we eventually fix all conflicts
involving vi.

The important thing to point out is that locally modifying w in this way cannot mess up
with vertices which were considered before vi. If this were the case, rephrased differently,
this would mean that we e.g. locally modify, say, w(−−→vi′vj) to 3, making σ−w (vj) rise by 2,
but there is an arc −−→vkvj with k < i for which σ+

w (vk) is now equal to σ−w (vj). But this
is impossible, since it would mean that vi, vk ∈ V (D) \ X, and vi and vk have vj has a
common out-neighbour, which would violate Property (3). Another important thing to
keep in mind is that, by the described procedure, only the incident forward arcs may have
their weight risen by 2. This implies that a situation where we cannot add 2 to some arc
weight because it was already set to 3 before cannot occur. So the modification procedure
is always applicable and, hence repeating it, we can make sure that w is sum-colouring. �

Digraphs with particular colouring properties
During previous investigations on related edge-weighting notions, it was often noted

that starting from a particular vertex-partition is a good starting point in order to get
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a distinguishing edge-weighting. In particular, having a proper vertex-colouring V1, ..., Vk
of some graph G, that is a partition of V (G) into stable sets, is quite convenient, as it
defines classes of vertices which can be assigned the same distinguishing aggregate when
designing a particular edge-weighting. So knowing that G is k-colourable, i.e. admits a
proper k-vertex-colouring, is a good hint to deduce an edge-weighting. It then appears
natural to wonder how this strategy applies in our context.

Unfortunately things appear to be fairly less handleable for sum-colouring arc-weighting
of digraphs, mainly because it seems generally hard to guarantee both the incident in-
coming and out-going sums of some vertex to have some specific values. But this can
however be done in some contexts.

We start off by considering bipartite digraphs, i.e. those digraphs whose underlying
graph is 2-colourable. We first need to recall the following result, due to Karoński, Łuczak
and Thomason [7].

Theorem 3. For every nice bipartite graph G, we have χe
Σ(G) ≤ 3.

We now prove our result on bipartite digraphs.

Theorem 4. For every nice bipartite digraph D, we have χe
Σ±(D) ≤ 3.

Proof. Assume A∪B is the bipartition of V (und(D)), where und(D) denotes the underlying
undirected graph of D. Let D↑↑ and D↓↓ be the subdigraphs of D induced the arcs going
from, say, A to B, and from B to A, respectively. We note that both D↑↑ and D↓↓ are nice,
since otherwise D itself would not be nice. So both D↑↑ and D↓↓ admit a sum-colouring
arc-weighting. Of course, since D is bipartite, so are D↑↑ and D↓↓.

Let w be an arc-weighting of D obtained as follows. Consider D↑↑ first. Since und(D↑↑)
is bipartite, it admits a sum-colouring 3-edge-weighting w′ (according to Theorem 3) which
we directly report to D↑↑ (i.e. if uv and −→uv are corresponding edge and arc of und(D↑↑)
and D↑↑, we give them the same weight, that is w′(uv)). Note that if −→uv is an arc of D↑↑
then, because σw′(u) 6= σw′(v), and u has in-degree 0 and v has out-degree 0 in D↑↑, clearly
we have σ+

w′(u) 6= σ−w′(v) in D↑↑. So w′ is sum-colouring in D↑↑. Analogously, D↓↓ admits
such an arc-weighting w′′ as well, according to the same arguments.

To obtain w, it now suffices to directly report the weights by w′ and w′′ of D↑↑ and D↓↓,
respectively, toD (that is, if−→uv belongs toD↑↑, just set w(−→uv) = w′(−→uv), or w(−→uv) = w′′(−→uv)
otherwise). Then w retains its property of being sum-colouring, since, for every vertex v
in A (resp. B), the in-degree of v in D is exactly its in-degree in D↓↓ (resp. D↑↑), while
the out-degree of v in D is exactly its out-degree in D↑↑ (resp. D↓↓). So if w were not
sum-colouring, then one of w′ and w′′ would not be sum-colouring. �

Following the proof of Theorem 4, we get that, for some nice bipartite digraph D, we
have

χe
Σ±(D) = max {χe

Σ(und(D↓↓)), χ
e
Σ(und(D↑↑))} ,

where D↑↑ and D↓↓ have the same meaning as in the previous proof. This in particular
means that if one of D↑↑ and D↓↓ has its value of χe

Σ being equal to 3, then χe
Σ±(D) = 3.

Since many bipartite graphs have their value of χe
Σ being exactly 3 (refer to [10] for a

summary of all known such families), we get that a wide bunch of nice bipartite digraphs
have their χe

Σ± being exactly 3.
We note also that the proof of Theorem 4 gives something more general. Namely, if a

nice digraph D has a partition V1, ..., Vk of its vertex set such that:

1. every Vi is a stable set,
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2. all vertices in some Vi have all of their in-neighbours in a same Vj , and

3. all vertices in some Vi have all of their out-neighbours in a same Vj ,

then a sum-colouring 3-arc-weighting ofD can be obtained by independently edge-weighting
all of its underlying nice bipartite graphs of the form und(D[Vi∪Vj ]) for every i 6= j (some
of which may have no edge). In what follows, we call such a partition of V (D) a circu-
lar vertex-colouring of D, and, from the existence of such a vertex-colouring, we call D
circular. Then we can formally state the following.

Corollary 1. For every nice circular digraph D, we have χe
Σ±(D) ≤ 3.

When having a proper vertex-colouring V1, ..., Vk of und(D), we note that, in between
two different parts Vi and Vj , the arcs can be in any direction. Furthermore, every two
parts Vi and Vj must be joined by arcs since contracting the Vi’s in und(D) should result
in a complete graph. Mainly for these reasons, extending Theorem 4 to digraphs whose
underlying graph is not 2-colourable does not seem to be a viable direction.

So that the range of considered digraphs is more important, one may, instead of starting
from some proper vertex-colouring of the underlying graph of some digraph D, rather
consider an oriented colouring of D, that is a proper vertex-colouring V1, ..., Vk in which
all arcs in between two distinct parts Vi and Vj are towards the same direction. The
least number of colours in an oriented vertex-colouring of D is denoted by χo(D), and is
sometimes called the oriented chromatic number2 of D. Note that digraphs with digons
do not admit oriented vertex-colouring – so, from now on, we will focus on oriented graphs
only.

It was proved in [7] that the 1-2-3 Conjecture holds for 3-colourable graphs. In our
context, a plausible equivalent statement could hence be to prove that the Directed 1-
2-3 Conjecture holds for oriented graphs whose oriented chromatic number is at most 3.
Theorem 4 and Corollary 1 are already almost sufficient to prove such a claim – we just
additionally need the following result.

Lemma 1. Let
−→
G be a nice oriented graph admitting a proper vertex-colouring V1, V2, V3

such that all arcs incident to V1 are directed away from V1, while all arcs incident to V3

are directed towards V3. Then χe
Σ±(
−→
G) ≤ 3.

Proof. Such digraphs are clearly acyclic, so the result follows from Theorem 2. �

We can now prove our result on oriented graphs with oriented chromatic number at
most 3.

Theorem 5. For every nice oriented graph
−→
G verifying χo(

−→
G) ≤ 3, we have χe

Σ±(
−→
G) ≤ 3.

Proof. If χo(
−→
G) = 2, then the result follows from Theorem 4 since und(

−→
G) is hence bipar-

tite. If χo(
−→
G) = 3, then

−→
G admits an oriented 3-vertex-colouring V1, V2, V3, which is either

circular, or as described in the statement of Lemma 1. In these cases, the result follows
from Corollary 1 and Lemma 1, respectively. �

2Refer to [11] for a comprehensive survey on this parameter.
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2.2. One first step towards the Directed 1-2-3 Conjecture
In this section, we prove a first constant upper bound on χe

Σ± holding for all nice
digraphs. Namely, we prove that χe

Σ±(D) ≤ 17 for every nice digraph D. Our proof of
this statement is inspired from a weighting algorithm originally designed by Kalkowski [4],
from which are due the best known general upper bound on the irregularity strength of
graphs [6], on χe

Σ [5], and on χt
Σ [4].

The main ideas behind Kalkowski’s algorithm are the following, assuming an undirected
graph G is weighted and the distinguishing aggregate is σ. We start from all edges of G
being weighted in a particular way fulfilling some properties described below. The vertices
of G are then processed linearly from first to last following some ordering v1, ..., vn, with
never reconsidering an already treated vertex. Whenever a new vertex vi is considered
during the algorithm’s course, a set Φ(vi) of somewhat safe possible sums is assigned to vi,
meaning possible values as σ(vi) for which there cannot be any conflict with the previously
treated vertices (basically because Φ(vi) ∩ Φ(vj) = ∅ for every vj neighbouring vi with
j < i). So basically, in order to obtain a sum-colouring edge-weighting of G, the only
things the algorithm needs to ensure is, when dealing with vi:

1. at every moment of the algorithm, we have σ(vj) ∈ Φ(vj) for every j < i, and

2. Φ(vi) can be defined without spoiling Condition (1) nor the next algorithm’s steps.

Modifying the main lines of Kalkowski’s ideas, we prove the following result.

Theorem 6. For every nice digraph D, we have χe
Σ±(D) ≤ 17.

Proof. We may assume that D is connected. Let v1, v2, ..., vn denote the vertices of D
following an arbitrary ordering. This ordering yields a characterization of the vertices of
D into four types. First, we say that a vertex vi is a −source (resp. +source) if vi has a
forward in- (resp. out-) neighbour, namely if there is a j > i such that −−→vjvi (resp. −−→vivj)
is an arc. In case vi is not a −source (resp. +source), we call vi a −sink (resp. +sink),
meaning vi does not have any such forward neighbour. According to these definitions,
every vi is either a −source or a −sink, and either a +source or a +sink.

In order to deduce a sum-colouring 17-arc-weighting w of D, following Kalkowski’s
ideas, we will process the vertices linearly, i.e. from v1 to vn. Whenever considering a
−source (resp. +source) vertex vi, we will associate one couple Φ−(vi) = {φ−(vi), φ

−(vi)+
6} (resp. Φ+(vi) = {φ+(vi), φ

+(vi) + 6}) to vi such that Φ−(vi) ∩ Φ+(vj) = ∅ (resp.
Φ+(vi) ∩ Φ−(vj) = ∅) for every j < i such that −−→vjvi (resp. −−→vivj) is a backward arc.
Furthermore, we will locally modify w to make sure that σ−w (vi) ∈ Φ−(vi) (resp. σ+

w (vi) ∈
Φ+(vi)) at any moment of the algorithm for every −source (resp. +source) vi. Note that
if these conditions are met once the algorithm is finished, then the only possible conflicts
making w not sum-colouring involve −sinks and +sinks. At the end of the proof, we will
explain how to handle these vertices without spoiling w.

Start from w assigning 9 to all arcs of D. We then have σ−(v1) = 9d−(v1) and σ+(v1) =
9d+(v1). So that the weighting algorithm can run the next steps, unless d−(v1) = 0 or
d+(v1) = 0, respectively, we set φ−(v1) = 9d−(v1) and φ+(v1) = 9d+(v1), as well as
Φ−(v1) = {φ−(v1), φ−(v1) + 6} and Φ+(v1) = {φ+(v1), φ+(v1) + 6}. Note that if v1 is a
−sink (resp. +sink) then it has in-degree (resp. out-degree) 0 and its value of σ−w (resp.
σ+
w ) cannot cause any trouble later.
Now that these initial values have been fixed, we can describe the general behaviour of

the algorithm. Prior to that, let us formally state the properties we want the algorithm to
preserve at any step, assuming we are considering vertex vk with k ≥ 2:
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vi v`
��12→ 6

6

�9→ 3

9

36+ | 42+ 39+ | 45+ 27+ | 33+ 18− | 24− undef. | undef.

↑ ��↑ ↑ ↑ ��↑ ↑

Figure 3: Illustration of the first part of the proof of Theorem 6. Valid moves are performed around vi so
that Φ−(vi) does not intersect the incident already defined Φ+’s, and this with keeping all σ+’s in their
corresponding Φ+.

1. For all i < k, if vi is a −source (resp. +source), then σ−w (vi) ∈ Φ−(vi) (resp.
σ+
w (vi) ∈ Φ+(vi)).

2. For all i > k, the possible arcs joining vk and vi are weighted 9 (whatever their
direction is).

3. For all i < k, the possible arcs joining vi and vk have weight among {6, 9, 12}. Besides,
if any of these arcs, say, −−→vkvi (resp. −−→vivk) is weighted 6, then σ−w (vi) = φ−(vi) (resp.
σ+
w (vi) = φ+(vi)). Conversely, if −−→vkvi (resp. −−→vivk) is weighted 12, then σ−w (vi) =
φ−(vi) + 6 (resp. σ+

w (vi) = φ+(vi) + 6).

4. Every arc is weighted with a weight among {3, 6, 9, 12, 15}.

Property (3) in particular implies that, when considering vertex vk and one of its backward
neighbours, say vi, there are two possibilities concerning the weight on the arc between
vk and vi that will not spoil Property (1), namely leave this weight unchanged, or either
subtract or add 6 to it. Property (2) just means that when starting considering vk, all
weights on its incident forward arcs are neutral, meaning that we can freely either subtract
or add something to it, that is with remaining in {1, 2, ..., 17}. The only reason why we
impose Property (4) is that we want all φ(vi)’s (and so all (φ(vi) + 6)’s) to be multiple of 3
once the algorithm is finished – this will then be useful to deal with −sinks and +sinks.

Assume we are dealing with vertex vk with k ≥ 2 and that, so far, all of Properties (1)
to (4) are met. We describe the algorithm’s behaviour on the incident arcs in-coming to
vk only – but the incident out-going arcs have to be independently treated similarly. First,
if vk is a −sink, then we skip this vertex and consider vk+1. Clearly, this does not alter
the four properties above. Now suppose vk is a −source. For every arc −−→vivk with i < k, we
note that vi is a +source, meaning that either subtracting or adding 6 to w(−−→vivk) makes
σ+
w (vi) stay in Φ+(vi), and is hence a “valid move”. Assuming vk has d such backward

in-neighbours, this means that, untouching or performing valid moves on the d incident
backward in-coming arc weights, we can generate d+ 1 possible values as σ−w (vk) (this can
easily be proved by induction on d). Furthermore, since vk is a −source, by definition it
has at least one forward in-neighbour. Suppose v` with ` > k is the such in-neighbour with
the lowest index. Since ` > k, vertex v` has not been treated yet, so w(−−→v`vk) = 9. Note
that by also allowing to subtract or add 3 to this weight, the range of possible values as
σ−w (vk) rises to 2d+ 3 – again, this can be proved through an easy induction argument. In
what follows, we consider this weight modification as a valid move as well.

Now the conclusion is that, performing only valid modifications on the incident in-
coming weights at vk, we can fix Φ−(vk) = {φ−(vk), φ−(vk) + 6} so that:

9



1. Φ−(vk) ∩ Φ+(vi) = ∅ for every i < k such that −−→vivk is an arc,

2. σ−w (vk) ∈ Φ−(vk), and

3. if w(−−→v`vk) = 6 (resp. 12), then σ−w (vk) = φ−(vk) (resp. φ−(vk) + 6).

Figure 3 depicts an example of how to perform valid moves in a particular situation. It
should be clear that all of Properties (1) to (4) are fulfilled from the point of view of
the vertices succeeding vk. So the algorithm can go on, and all vertices are eventually
successfully treated.

We now have to handle −sinks (and +sinks) to make sure that their value of σ−w (resp.
σ+
w ) is not equal to the value of σ+

w (resp. σ−w ) of some of their in-neighbours (resp. out-
neighbours). We here describe how to deal with −sinks, but +sinks can be treated in a very
same fashion. The tricky part here is that several −sinks can have common in-neighbours,
so locally modifying w to fix the possible conflicts has to be done at one shot. The main
argument we are going to use is that, so far, all non-sink vertices have their value of σ−w
and σ+

w being multiple of 3 according to Property (4). This essentially implies that, for
any, say, +source vi, we can safely modify w so that σ+

w (vi) increases by 1 or 2 since the
resulting values have not been assigned to sources so far. If all σ+

w ’s increase by at most 2,
and there is no conflicting involving sinks, we will eventually make w being sum-colouring.

In the sequel, we will make use of the following result on sum-colouring edge-weighting
of bipartite graphs.

Lemma 2. Every nice bipartite graph G = (A,B) admits a sum-colouring edge-weighting
w such that

1. w assigns weights among {−2,−1, 0, 1, 2},

2. σw(a) ≡ 2 (mod 3) for every a ∈ A,

3. σw(b) ≡ 0, 1 (mod 3) for every b ∈ B,

4. σw(a) ∈ {0, 1, 2} for every a ∈ A.

Proof. We may assume G is connected. Let us set A := {a1, a2, ..., ax}, where we assume
d(ax) ≥ 2. We start from w assigning 0 to all edges of G. We first modify w so that
Property (2) holds for every a ∈ {a1, a2, ..., ax−1}. Consider every such a consecutively. If
already σw(a) ≡ 2 (mod 3), then we skip this vertex. Otherwise, consider an (a, ax)-path
P in G, which exists since G is connected. Let k ∈ {0, 1} be the value for which σw(a) ≡ k
(mod 3). Note that, by adding 2 − k, then 1 + k, then 2 − k, etc. to the weights on the
successive edges of P starting from the one incident to a, only the remainder modulo 3 of
σw(a) and σw(ax) get modified. Furthermore, in doing so we obtain σw(a) ≡ 2 (mod 3)
as required, while we have no control on σw(ax). Hence repeating this argument for every
a ∈ {a1, a2, ..., ax−1}, we eventually get all of these vertices meeting Property (2). Note also
that the edge weights may not belong to {−2,−1, 0, 1, 2} after this step (so Property (1)
may not hold), but we will handle this later. Last, we also have σw(b) ≡ 0 (mod 3) for
every b ∈ B.

Now, in case σw(ax) ≡ 0 (mod 3), we choose two edges incident to ax, say axb1 and
axb2, and add 1 to both w(axb1) and w(axb2). In doing so, we get σw(ax) ≡ 2 (mod 3) as
desired. Furthermore, we have σw(b1), σw(b2) ≡ 1 (mod 3). So far, clearly Properties (2)
and (3) are met. A similar conclusion can be obtained if σw(ax) ≡ 1 (mod 3) (but with
using, say, axb1 only).
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We now have to make Properties (1) and (4) hold without spoiling the other two
properties. So that Property (1) holds, we consider every edge ab of G. Assuming k is
the remainder of w(ab) modulo 3, note that by just replacing w(ab) by k, we do not spoil
Property (2) because of a, nor Property (3) because of b. Repeating this procedure for
every edge, we eventually make w fulfil Property (1). To now make Property (4) hold,
we consider any vertex a whose σw is out of {0, 1, 2}. Since all edges incident to a are
weighted with weights among {0, 1, 2} and σw(a) > 2, there is some edge ab incident
to a with weight 1 or 2. Note that by subtracting 3 to w(ab), we cannot spoil any of
Properties (1) to (3), while we make σw(a) decrease by 3. Repeating this argument as long
as necessary, we eventually make a fulfil Property (4). Since this can be repeated for every
a ∈ A, we eventually get all a’s satisfying Property (4) – and this without spoiling the
other properties. �

Back to the proof of Theorem 6, we now consider “equivalent” −sinks (with respect to
the explanations above) and handle them simultaneously. So the procedure below has to
be performed successively for all equivalent −sinks.

We first make the notion of equivalent −sinks clear. Consider a −sink vk. The −sinks
of D we consider equivalent to vk are those among

S := {vk} ∪ {vi ∈ V (D) : vi is a −sink, and vi and vk have a common in-neighbour}.

From S, one can deduce the set N of vertices forbidding values as σ−w ’s of the −sinks in S.
Namely

N := {vi ∈ V (D) : vi has an out-neighbour in S}.

We note in particular that it may be the case that S ∩ N 6= ∅, since two −sinks vi and
vj with, say, i < j may be adjacent (but then we know that the arc joining vi and vj is
directed from vi to vj – vi would not be a −sink otherwise).

First assume |N | = |S| = 1, and let N = {vi} and S = {vj}. Since D is nice, necessarily
there exists vk 6= vj such that −−→vivk. It then follows that

σ+
w (vi) ≥ w(−−→vivj) + w(−−→vivk) > w(−−→vivj) = σ−w (vj),

so there cannot be any conflict involving the ends of the arc −−→vivj . Now assume |S| = 1 and
|N | > 1, let S = {vj}, and let vi1 and vi2 be two distinct vertices in N . As a modification of
w, just add 1 to both w(−−→vi1vj) and w(−−→vi2vj). In doing so, we now have σ+

w (vi1), σ+
w (vi2) ≡ 1

(mod 3), while σ−w (vj) ≡ 2 (mod 3) – so all in-neighbours of vj have their σ+
w having

remainder 0 or 1 modulo 3, hence different from σ−w (vj). Furthermore, all of the +sources
in-neighbouring vj have had their σ+

w risen by at most 2, as required.
We now use Lemma 2 to deal with the general case. Consider the nice undirected

bipartite graph Gvi = (A,B) obtained as follows. Every vertex in S \ N is added to B
directly, while every vertex of N \S is added to A directly. Now, for every vertex vi ∈ N∩S,
we want to model both of the facts that vi neighbours a −sink and is a −sink itself. To
that end, we add one vertex vAi to A, and one vertex vBi to B. The edges of Gvi are then
added in the obvious way, namely, for every arc −−→vivj with vi ∈ N and vj ∈ S, we add
vivj to Gvi (where maybe vi and vj are actually vAi and vBi , respectively, depending on
the context). According to Lemma 2 (applied with G = Gvi), there exists a sum-colouring
{−2,−1, 0, 1, 2}-edge-weighting w′ of Gvi with the properties described in the statement of
Lemma 2. Now just reverberate the weights by w′ to the weights by w on the corresponding
arcs (namely, for every arc −−→vivj of D corresponding to an arc uv present in G, add w′(uv)
to w(−−→vivj)).
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After having applied the above procedure for all equivalent −sinks and +sinks, the
conclusions are the following:

• For every −source vi, we have

σ−w (vi) ∈ {φ−(vi), φ
−(vi) + 1, φ−(vi) + 2, φ−(vi) + 6, φ−(vi) + 6 + 1, φ−(vi) + 6 + 2},

while we have

σ+
w (vi) ∈ {φ+(vi), φ

+(vi) + 1, φ+(vi) + 2, φ+(vi) + 6, φ+(vi) + 6 + 1, φ+(vi) + 6 + 2}

for every +source vi. Since Φ+(vi) ∩ Φ−(vj) = ∅ whenever −−→vivj is an arc with
i < j, and vi being a +source and vj being a −source, at the end we still have
σ+
w (vi) 6= σ−w (vj).

• It cannot be the case that some +source vj appears in two considered Gvi ’s. Indeed,
if vi and v′i are two −sinks both having vj as an in-neighbour, then actually Gvi and
Gv′i

could be merged. This means that a +source vertex can have its value of σ+
w

being augmented by 0, 1 or 2 at most once. This is important for the previous item.

• If −−→vivj with i < j is an arc such that vi is a +source and vj is a −sink, then
σ+
w (vi) 6= σ−w (vj) since these two values have distinct remainders modulo 3 (due to

how w′ was obtained). The same argument applies when vi is also a −sink.

According to these arguments (or analogous ones), it should be clear that we end up with
w being sum-colouring. We note that, since a weight of w can be augmented or reduced
by at most 2 in the last step of the procedure, the minimum weight used by w is 1 while
its maximum weight is 17. This completes the proof. �

3. A directed 1-2 Conjecture

We now investigate how helpful it would be to be granted the possibility to locally
modify σ− and σ+ at every vertex of a given digraph. Let us define this problem formally.
Let w be a total-weighting of some digraph D. For every vertex v of D, we define:

σ−w (v) := w(v) +
∑

u∈N−(v)w(−→uv) and σ+
w (v) := w(v) +

∑
u∈N+(v)w(−→vu)

that is, the local weight by w is counted in both σ−w (v) and σ+
w (v) (as if we were weighting

a loop at v). Once more, we call w sum-colouring if σ+
w (vi) 6= σ−w (vj) for every arc −−→vivj of

D. This time, it should be clear that all digraphs admit a sum-colouring total-weighting
(if D is not nice, just use vertex weights to “destroy” its bad configurations). For every
digraph D, the chromatic parameter χt

Σ±(D), denoting the least number of weights in a
sum-colouring k-total-weighting of D, is hence well defined.

As a consequence of some remark above, we have the following.

Observation 1. For every nice digraph D, we have χt
Σ±(D) ≤ χe

Σ±(D).

This in particular implies that some of our results from previous Section 2 directly give
upper bounds on χt

Σ±(D) when D belongs to some families of nice digraphs. Overall, we
do believe that the possibility of locally modifying both σ− and σ+ is very handy. For this
reason, we conjecture that the following, which is a direct analogue to the 1-2 Conjecture,
should be true.
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Directed 1-2 Conjecture. For every digraph D, we have χt
Σ±(D) ≤ 2.

As a support for this Directed 1-2 Conjecture, let us briefly show that it holds for some
of the classes of digraphs considered in Section 2 for which χe

Σ± can even reach 3.

Proposition 1. For every acyclic digraph D, we have χt
Σ±(D) ≤ 2.

Proof. Start by mimicking the beginning of the proof of Theorem 2 to get a 2-arc-weighting
w of D such that all σ−w (vi)’s are even and some σ+

w (vi)’s (but maybe not all) are odd.
Put w(vi) = 2 for every vertex vi of D. From now on we will use notation w to deal with
the 2-total-weighting. In case there is no arc −−→vivj such that σ+

w (vi) = σ−w (vj), we are done.
Otherwise, there are some such arcs −−→vivj such that σ+

w (vi) = σ−w (vj) with σ+
w (vi) being

even while it should be odd. From the point of view of −−→vivj , we call vi bad, while we call
vj good. Note that all sinks are good from the beginning.

To fix the conflicts, we prove that, starting from the rightmost conflicting arc (i.e. the
one −−→vivj with vi having the largest index), we can make vi good by considering another arc
−−→vkvi and possibly making vk bad. This means that we can basically “push” the conflicts
towards the left, i.e. towards the sources, which we can handle easily (since we do not care
about their value of σ−w ).

Consider a conflicting arc −−→vivj . By definition, we have:

• σ−w (vj) even and σ+
w (vj) odd or null (good), and

• σ−w (vi) even and σ+
w (vi) even (bad).

If vi is a source, then we can solve the problem by just switching w(vi), i.e. set this weight
to 3−w(vi). Now, if vi is not a source, then there is an arc −−→vkvi with k < i. Then by just
switching the weight w(vi), as well as the weight w(−−→vkvi), note that vi becomes good.

By just repeating this argument until only sources of D are bad, we eventually can
solve all conflicts and make w sum-colouring. �

Proposition 2. For every bipartite digraph D, we have χt
Σ±(D) ≤ 2.

Proof. Let A,B denote the bipartition of D. Start with assigning weight 2 to all arcs of D
so that σ− and σ+ are even for all vertices. Now assign weight 1 on all vertices of A, and
assign weight 2 on all vertices in B. The result is that,

• for every a ∈ A, both σ−(a) and σ+(a) are odd, and

• for every b ∈ B, both σ−(b) and σ+(b) are even.

It then follows that, for every arc −→uv of D, the parities of σ+(u) and σ−(v) are different –
so the two values are different. �

We now prove our main result that, in the context of sum-colouring total-weighting,
we do not need to use up to 17 weights as indicated by Theorem 6. Here, we prove that 10
weights suffice.

Theorem 7. For every digraph D, we have χt
Σ±(D) ≤ 10.

Proof. We reuse some of the terminology from the proof of Theorem 6 throughout. As-
suming some ordering v1, v2, ..., vn of the vertices of D is fixed, we additionally say that
some vertex vi is a weak sink (or weak source) if it is either both a −sink and a +source, or
both a +sink and a −source. We conversely call vi a strong sink if it is both a −sink and
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a +sink. Similarly, we say that vi is a strong source if it is both a −source and +source.
Note in particular that two strong sinks cannot be adjacent.

Our upcoming arguments rely on the existence of a particular ordering v1, v2, ..., vn for
every digraph D, that is proved to exist in the following lemma.

Lemma 3. Every digraph D admits an ordering v1, v2, ..., vn of its vertices into three blocks
A = {v1, v2, ..., va}, B = {va+1, va+2, ..., vb}, C = {vb+1, vb+2, ..., vn} of consecutive vertices
such that all vertices of A are strong sources, all vertices of B are weak sinks in which two
sinks of a same type (i.e. −sinks or +sinks) are not adjacent, and all vertices of C are
strong sinks.

Proof. Note that moving a vertex vi to the right cannot create new sinks different from vi
– actually the only bad thing that can happen is that vi was, say, a −sink but moving it
to the right makes it become a +sink. This apart, the set of cannot grow when performing
rightward moves. Furthermore, it should be clear that, at any moment, moving vertices in
B at the end of A or at the beginning of C cannot spoil the main property of the strong
sources in A and the strong sinks in C.

Start from A = C = ∅ and B = {v1, v2, ..., vn}. As long as B contains vertices being
strong sources, consider the one vi with the lowest index (regarding its location in B) and
just move vi at the end of A. Recall that, when performing such a move, strong sources in
A are preserved. According to this argument, at the end of this first step all vertices in A
are strong sources, while all vertices in B are weak or strong sinks (but their status may
change later).

If, at any moment of the upcoming arguments, moving some vertex of B to A or to
C creates some new strong sources or strong sinks in B, then again we can safely move
them to A or C (provided we start with the ones with the lowest or largest, respectively,
index with respect to B). Next step is moving all strong sinks of B at the beginning of C.
Once this cannot be performed further, the conditions of the statement are reached, unless
B has, say, two −sinks vi and vj being adjacent with i < j (following the ordering with
regards to B). Necessarily the arc joining vi and vj is from vi to vj (otherwise vi would
not be a −sink). Then move vi just on the right of vj (with staying in B). This makes
vj becomes a −source, so the local conflict is solved. Since we moved vi to the right, the
overall situation in B can only get better, unless vj was the only forward neighbour of vi,
in which case vi becomes a +sink and vi was already adjacent to a backward +sink. But
in such a situation, we note that vi actually becomes a strong sink, and can hence freely
moved at the beginning of C, solving the conflict. Repeating these moving arguments,
eventually A, B and C meet the claimed properties. �

We now describe how to prove Theorem 7. Let first v1, v2, ..., vn be an ordering of the
vertices of D as described in the statement of Lemma 3 (we will in particular reuse the
notation A, B and C). Using the very first algorithm described in the first part of the
proof of Theorem 6 (i.e. everything done before treating the −sinks and +sinks) but with
initially setting all vertex weights to 4 and using arc weights among {2, 4, 6, 8, 10} (instead
of {3, 6, 9, 12, 15}), we can obtain a 10-total-weighting w of D with the following properties:

1. All σ−w ’s and σ+
w ’s are even.

2. To every−source (resp. +source) vi is associated some couple Φ−(vi) = {φ−(vi), φ
−(vi)+

4} (resp. Φ+(vi) = {φ+(vi), φ
+(vi) + 4}) such that σ−w (vi) ∈ Φ−(vi) (resp. σ+

w (vi) ∈
Φ+(vi)).
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3. For every arc −−→vivj such that vi is a +source and vj is a −source, we have Φ+(vj) ∩
Φ−(vj) = ∅ (so σ+

w (vi) 6= σ−w (vj)).

4. All backward arcs incident to −sinks or +sinks are assigned weights among {4, 6, 8}.

The main problem now is that we have to make sure that sinks’ values of σ−w and σ+
w

do not create any problem, which seems hard to ensure by just manipulating arc weights.
So we will now adjust the vertex weights to make sure that no conflict remains.

For the sake of clarity, we will first explain what final properties we would like w to
meet, and then why these would make w sum-colouring. Then we will describe how to
modify w so that all these properties are met.

The properties we desire are the following.

A. For every vertex a ∈ A, we have σ−w (a) ∈ Φ−(a) and σ+
w (a) ∈ Φ+(a), both these

values being even. Since vertices in A are strong sources, recall that they all have
their own Φ− and Φ+ defined, according to Property (2).

B. For every vertex b ∈ B, if b is a −sink and a +source, we have σ−w (b) odd, and
σ+
w (b) ≡ 1, 3 (mod 6) with σ+

w (b) ∈ {φ+(b) + 1, φ+(b) + 4 + 1}. Conversely, if b is a
+sink and a −source, we have σ+

w (b) odd, and σ−w (b) ≡ 1, 3 (mod 6) with σ−w (b) ∈
{φ−(b) + 1, φ−(b) + 4 + 1}.

C. For every vertex c ∈ C, we have both σ−w (c) and σ+
w (c) having remainder 5 modulo 6.

Assuming w meets all of Properties (A), (B) and (C), it has to be sum-colouring.
Indeed, assume −−→vivj is an arc of D. First, if both vi and vj belong to A, then σ+

w (vi) and
σ−w (vj) are different according to Properties (3) and (A). Now, since all vertices of B and
C have their values of σ−w and σ+

w being odd (while vertices in A have these values being
even), clearly no conflict can involve a vertex in A and a vertex in B or C.

We now focus on the cases where vi belongs to B. First consider the cases where vj also
belongs to B. If i < j, then vi is a +source and hence a −sink. According to the ordering
v1, v2, ..., vn (recall the statement of Lemma 3) it cannot be the case that vi is adjacent
to another −sink in B, so vj is a −source. Then σ+

w (vi) and σ−w (vj) are distinguished
according to Properties (3) and (B). Now, if j < i, it means that vj is a −source and
a +sink, and the previous arguments apply in an obvious way. Now, if one of vi and vj
belongs to B while the second one belongs to C, then the two parameters of interest are
different since they have different residues modulo 6, recall Properties (B) and (C). Finally,
since any two vertices of C cannot be adjacent, there are no parameters to be distinguished
there. So, according to all of these arguments, w is sum-colouring as soon as it satisfies
Properties (A), (B) and (C).

We finally describe how to modify w so that all of these properties hold. We recall
that, so far, we have w(vi) = 4 for every vertex vi. Note that Property (A) is already met
according to Property (1), so nothing more needs to be done for vertices in A.

We now focus on vertices in C. First of all, for every vertex vi ∈ C, we would like
to locally modify the weights on the arcs incident to vi so that σ−w (vi) and σ+

w (vi) (which
are even so far) have the same even residue modulo 6. In case vi has, say, no incident
in-coming arcs, then vi has in-degree 0 so we do not care about the value of σ−w (vi) and
we can immediately jump to the conclusion. So vi has both an incident in-coming arc
−−→vjvi and an incident out-going arc −−→vivk, where j, k < i and vj and vk are respectively
+source and −source. As described in the proof of Theorem 6, recall that, according to
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Property (4), either subtracting 4 or adding 4 to either of the weights on these arcs is a
valid move (in particular, this cannot break Property (A), which already holds). Assume
then σ+

w (vi) ≡ r (mod 6), where r ∈ {0, 2, 4}. If r′ = σ−w (vi) (mod 6) is equal to r, we
are done. Otherwise, one can perform the valid move on the arc −−→vjvi, hence subtracting or
adding 4 to σ−w (vi), reaching another residue r′′ different from r′. If r′′ = r, we are done.
Otherwise, by performing the valid move on −−→vivk, we will necessarily reach either of r′ and
r′′, meaning that there is a way to perform valid moves on −−→vjvi and/or −−→vivk so that σ−w (vi)
and σ+

w (vi) have the same even residue modulo 6. To now make make Property (C) hold,
we just have to modify the weight on vi so that σ−w (vi) and σ+

w (vi) both have residue 5
modulo 6. To that end, just set w(vi) to 3, 1 or 5 when the original remainder of σ−w (vi)
and σ+

w (vi) is 0, 2 or 4, respectively.
We finally make Property (B) hold to complete the proof. Note first that, for every

vertex vi of B, changing w(vi) to an odd weight will make the condition on σ−w (vi) (resp.
σ+
w (vi)) hold whenever vi is a −sink (resp. +sink). So, provided we eventually attribute

an odd weight to vi, we just have to focus on the second part of the condition. Assume
vi is a −source without loss of generality. So far its value of σ−w (vi) hence belongs to
{φ−(vi), φ

−(vi) + 4}. We just go through a straight case distinction:

• Assume first φ−(vi) ≡ 0 (mod 6) and φ−(vi) + 4 ≡ 4 (mod 6). If σ−w (vi) = φ−(vi),
we can just add 1 (i.e. assign 5) to w(vi) so that σ−w (vi) ≡ 1 (mod 6). On the second
hand, if σ−w (vi) = φ−(vi) + 4, we can just subtract 3 (i.e. assign 1) to w(vi) so that
σ−w (vi) ≡ 1 (mod 6).

• Suppose now φ−(vi) ≡ 2 (mod 6) and φ−(vi) + 4 ≡ 0 (mod 6). First, if σ−w (vi) =
φ−(vi), we can add 1 (i.e. assign 5) to w(vi) in order to get σ−w (vi) ≡ 3 (mod 6).
Second, if σ−w (vi) = φ−(vi) + 4, we can just add 1 (i.e. assign 5) to w(vi) so that
σ−w (vi) ≡ 1 (mod 6).

• Finally suppose φ−(vi) ≡ 4 (mod 6) and φ−(vi) + 4 ≡ 2 (mod 6). On the one hand,
if σ−w (vi) = φ−(vi), add 5 (i.e. assign 9) to w(vi) so that σ−w (vi) ≡ 3 (mod 6). On
the other hand, if σ−w (vi) = φ−(vi) + 4, just add 1 (i.e. assign 5) to w(vi) so that
σ−w (vi) ≡ 3 (mod 6).

�

4. Conclusion

In this paper, we have introduced a new directed analogue of the 1-2-3 Conjecture,
which seemingly catches the inherent difficulty behind the original conjecture. We have
supported our Directed 1-2-3 Conjecture by showing it to hold in many contexts (namely
for nice acyclic digraphs, and nice digraphs with particular colouring properties), before
eventually proving a weakening of the conjecture where 3 is replaced with 17. We eventually
studied the consequences on the problem to be allowed to locally modify the incident in-
coming and out-going sums (in the spirit of the 1-2 Conjecture), and proved that less
weights, namely 10, suffice in this setting.

The main direction for future work would naturally be to step towards the Directed
1-2-3 and 1-2 Conjectures by proving better constant upper bounds on the number of
necessary weights. This apart, it would be interesting to check whether the Directed 1-2-3
(or 1-2) Conjecture holds in more classes of digraphs. As appealing cases, we could raise
the following questions, which have commonly been considered when dealing with related
notions.
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Question 1. Does the Directed 1-2-3 Conjecture hold for nice digraphs whose underlying
graph has bounded maximum degree d? Is it true for d ≤ 3?

Question 2. Does the Directed 1-2-3 Conjecture hold for nice digraphs with large minimum
in- and out-degree?

Since there exist digraphs whose value of χe
Σ± is equal to 3, one another interesting

question could be to wonder whether only a few digraphs need the three edge weights. This
could read as follows.

Question 3. Is there an easy characterization of digraphs whose value of χe
Σ± is at most

2?

References

[1] O. Baudon, J. Bensmail, J. Przybyło, M. Woźniak. On the 1-2 Conjecture in digraphs.
In preparation.

[2] O. Baudon, J. Bensmail, É. Sopena. An oriented version of the 1-2-3 Conjecture.
Discussiones Mathematicae Graph Theory, 35(1):141-156, 2015.

[3] M. Borowiecki, J. Grytczuk, M. Pilśniak. Coloring chip configurations on graphs and
digraphs. Information Processing Letters, 112:1-4, 2012.

[4] M. Kalkowski. A note on 1,2-Conjecture. Electronic Journal of Combinatorics, in press,
2015.

[5] M. Kalkowski, M. Karoński, F. Pfender. Vertex-coloring edge-weightings: towards the
1-2-3 Conjecture. Journal of Combinatorial Theory, Series B, 100:347-349, 2010.

[6] M. Kalkowski, M. Karoński, F. Pfender. A new upper bound for the irregularity
strength of graphs. SIAM Journal of Discrete Mathematics, 25(3):1319-1321, 2011.

[7] M. Karoński, T. Łuczak, A. Thomason. Edge weights and vertex colours. Journal of
Combinatorial Theory, Series B, 91:151–157, 2004.

[8] M. Khatirinejad, R. Naserasr, M. Newman, B. Seamone, B. Stevens. Digraphs are
2-weight choosable. Electronic Journal of Combinatorics, 18:1, 2011.

[9] J. Przybyło, M. Woźniak. On a 1,2 Conjecture. Discrete Mathematics and Theoretical
Computer Science, 12(1):101-108, 2010.

[10] B. Seamone. The 1-2-3 Conjecture and related problems: a survey. Technical report,
available online at http://arxiv.org/abs/1211.5122, 2012.

[11] É. Sopena. Homomorphisms and colourings of oriented graphs: An updated survey.
To appear in Discrete Mathematics, available online at http://dx.doi.org/10.1016/
j.disc.2015.03.018, 2015.

17


