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Hydrodynamic Coefficient Computation for a

Partially Submerged Wave Energy Converter

Sébastien Olaya, Jean-Matthieu Bourgeot, and Mohamed Benbouzid, Senior Member, IEEE

Abstract

This paper deals with the hydrodynamic parameter computation of a wave energy converter that consists of

a cylindrical buoy sliding along a partially submerged platform made up of a plate and a column. The computed

parameters are especially needed for the development of a simple hydrodynamic time-dependant model, based on the

Cummins’ formulation. This model is intended for WEC control purposes. A semi-analytical approach is proposed

for the computation of the hydrodynamic coefficients and the excitation forces. The boundary value problem is solved

by using variable separation and matched eigenfunction expansion methods. Analytical expressions for the velocity

potential are then obtained for each sub-domain. The hydrodynamic coefficients and the excitation force can then

be computed by using these expressions. Numerical results are given for different buoy, column, and plate radiuses

and clearly the bearing surface of the plate has a significant influence on the wave excitation force applied to the

submerged platform.

Index Terms

Wave energy converter, potential theory, eigenfunction expansion, wave-loads, heaving mode, scattering and

radiation problem.

I. INTRODUCTION

This work was motivated by the need to provide a set of hydrodynamic parameters for the development of a

simple hydrodynamic time-dependant model, based on the Cummins’ formulation for a Wave Energy Converter

(WEC) [1], [2]. This time domain model is needed to analyse the WEC behaviour in irregular waves. The WEC

device schematically depicted on Fig. 1 consists of a cylindrical buoy floating on waves and sliding along a partially

submerged platform made up of a plate and a column. Energy resulting from the relative motion between the two

concentric bodies is extracted from the incoming wave by a power take-off (PTO) consisting of a gearbox and an

electric generator. The present paper focuses on determining the excitation forces and hydrodynamic coefficients

(i.e. added mass and radiation damping) in heaving mode and in water of a finite depth. It concludes the work
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Fig. 1. Definition sketch of the wave energy converter.

introduced in [3] in which only part of the problem has been presented. Due to the simplicity of the geometry

and in view of the model purposes (i.e. optimization and control) using a semi-analytical approach is probably the

fastest and most reliable method to evaluate these parameters.

From the literature review, it has been noticed that in [4], Berggren and Johansson (1992) have studied the

radiation problem of a wave energy device consisting of a buoy connected to a submerged plate by an elastomer

hose. The buoy and plate have the same radius. They presented the results for added mass and potential damping

for the two bodies and included cross terms only for the heaving mode. Under the assumption of linear wave theory,

the radiation problem is solved using the matched eigenfunction expansion method. A comparison is made between

their solution and a solution proposed by Yeung (1981) [5] who studied the whole radiation problem of a floating

vertical cylinder following a method similar to that presented by Garrett (1971) in [6] who solves the scattering

problem for a circular dock. In the case of a single cylinder, it is worth noting that a summary of both problems,

i.e. radiation and scattering, can be found in [7] published by Bhatta and Rahman (2003) and for which numerical

computation aspects and results are shown in [8]. Eidsmoen (1995) [9], studied the case where the buoy is rigidly

connected to a submerged vertical tube in which a plate acts as a piston. In addition to the radiation problem, the

author has presented results for the excitation forces obtained through the Haskind’s theorem. In [10], Zheng et al.

(2005) have extended the solution for the radiation problem of a two-body coaxial axisymmetric system by adding

the sway/surge and roll/pitch modes of motion as well as the solution to the scattering of water waves using the

velocity potential. As in [9] authors used Haskind’s relation to check the correctness of their diffraction results and

used the symmetry of the cross terms in the matrices for the added mass and radiation damping coefficients. In term

of theoretical results, Willams et al. (2000) investigated in [11] the case for which the floating cylinder has a side

wall which is porous over a portion of its draught. Fluid flow passing through this wall is assumed to follow Darcy’s

law. As previously mentioned, the buoy and plate radiuses are strictly the same. Wu et al. (2004) investigated in

[12] hydrodynamic properties of a similar WEC where the buoy floating on waves is directly connected to a caisson

fixed on the seabed by a rigid rope. Wave energy is harnessed by a liquid pump in the caisson through the rope.

In this paper the caisson radius is greater than or equal to that of the buoy. In [13], the same authors extended the
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solution to the case where the caisson radius is smaller than that of the buoy. They presented analytical results for

the responding amplitudes and hydrodynamic forces for different radius sizes of the submerged structure and the gap

between them. It is shown that the buoy hydrodynamic behaviour becomes more complex when the caisson radius is

large and only at a relatively low frequency. Also it seems that the resonance period does not vary regardless of the

increase or decrease of the radius ratio and/or the gap. In [14], a similar study was performed by the same authors,

with a two-body moving structure, but their analysis was restricted to the case where the submerged cylinder radius

is larger than or equal to that of the floating one. A set of theoretical hydrodynamic parameters is presented and the

behaviour is found to be similar to that of the previous study. More recently, some hydrodynamic results have been

reported in [15] by Chau and Yeung (2012) and also in [16] by Cochet and Yeung (2012), for the UC Berkeley

wave energy device. The main idea is to extract energy due to the relative heaving motion between two concentric

surface-piercing truncated cylinders. A similar study was first performed by Mavrakos (2004) in [17].

Throughout the literature review, it is worth noting that there are no analytical results for the particular WEC

configuration given in Fig. 1.

II. MATHEMATICAL FORMULATION OF THE PROBLEM

Following the established procedure for this kind of resolution, we divided the whole fluid domain into three or

four sub-domains depending on the plate radius size as indicated in Fig. 1. Considering a cylindrical coordinate

system (r, θ, z) with its origin O located at the intersection of the undisturbed free surface level with cylinder axes

and the z-axis is positive upwards, it follows

• region Ω1 : r ≥ Rx;−h ≤ z ≤ 0

where Rx = max(Rb, Rp)

• region Ω2

– For Rp > Rb : Rb ≤ r ≤ Rp;−e1 ≤ z ≤ 0

– For Rp = Rb : does not exist

– For Rp < Rb : Rp ≤ r ≤ Rb;−h ≤ z ≤ −b

• region Ω3: Rc ≤ r ≤ Rx;−e1 ≤ z ≤ −b

where Rx = min(Rb, Rp)

• region Ω4 : r ≤ Rp;−h ≤ z ≤ −e2

Rb is the radius of the buoy, Rp is the radius of the plate, Rc is the radius of the column and h is the not necessarily

infinite depth of the water. Other geometrical parameters are given in Fig. 1.

Assuming linear wave theory and supposing that the fluid is inviscid, incompressible, and that its motion is

irrotational, the fluid flow can be described, using a complex representation, by the velocity potential

Φ(r, θ, z, t) = Re{φ(r, θ, z)e−iωt} (1)
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where Re{ } denotes the real part of the complex expression, ω is the angular frequency and t is the time dependency.

Also let us define the free surface elevation as

η(r, θ, z, t) = Re{η̃(r, θ, z)e−iωt} (2)

which is related to the velocity potential by the linearised Free Surface Kinematic Boundary Condition (FSKBC)

∂φ

∂z
=

∂η

∂t
, on z = 0 (3)

and the linearised Free Surface Dynamic Boundary Condition (FSDBC)

∂φ

∂t
+ gη = 0, on z = 0 (4)

The spatial part of the velocity potential φ(r, θ, z) has to satisfy the following boundary value problem

• Governing equation

∆φ = 0, in the whole fluid domain (5)

• Free surface boundary condition from (3) and (4)

ω2φ− g
∂φ

∂z

∣

∣

∣

∣

z=0

= 0 (6)

• Seabed boundary condition
∂φ

∂z

∣

∣

∣

∣

z=−h

= 0 (7)

• Body surface boundary condition

∇φ · ~n = ~Uk · ~n, on Sk, k = 1, 2 (8)

where g is the gravity acceleration, ~n the unit normal vector on wet body surfaces Sk directed into the fluid domain,

and ~Uk is the body velocity. k = {1, 2} stands for the buoy and the plate respectively. Finally, the velocity potential

φ must satisfy the conditions which specify that the wave propagates away from the structure. This is given by the

Sommerfeld radiation condition expressed in Ω1 as

lim
r→+∞

√
r(
∂φ

∂r
− ikeφ) = 0 (9)

where ke is the wave number.

Based on the linear water wave theory and according to [1], the velocity potential can be broken down as follows

φ(r, θ, z) = φ0(r, θ, z) + φ7(r, θ, z) +

2
∑

k=1

6
∑

q=1

φk
q (r, θ, z) (10)

where φ0 is the incident waves potential, φ7 is the diffracted potential, and φk
q is the radiated potential due to the

motion of the body k in the direction q, with q = {1, 3, 5} standing respectively for the surge, heave, and pitch

mode of motion.

In the solution procedure, analytical expressions for velocity potentials are obtained using the variable separation

method. Assuming angular independence due to the axisymmetric configuration, velocity potentials are expressed

as infinite series of orthogonal functions into each sub-domain fulfilling all boundary conditions. More details can

be found on mathematical formulations in [1], [18], [19].
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A. Radiated Potential for Each Sub-domain in Heaving Mode

The radiation problem corresponds to the case where the structure is forced to oscillate in the absence of incident

waves. Following a procedure similar to the one presented in [17], we can break down the velocity potential in

each sub-domain, φl,k
q (r, θ, z) as follows

φl,k
q (r, θ, z) =

∞
∑

m=0

−iωζqϕ
l,k
q,m(r, z)cos(mθ) (11)

where l denotes the fluid domain and ζq is the complex amplitude corresponding to the motion mode. In heaving

mode (q = 3) only expressions for m = 0 gave a contribution [7]. We are then looking for solutions that can be

expressed as

ϕl,k
3,0(r, z) = ϕl,k

3,h(r, z) + ϕl,k
3,p(r, z)

where ϕl,k
3,p(r, z) represents a particular solution of the velocity potential in heaving mode that fulfils the inhomoge-

neous boundary conditions and ϕl,k
3,h(r, z) is the homogeneous part of the solution to the boundary value problem.

In region Ω1, the velocity potential can be expressed as

ϕ1,k
3,h(r, z) = Ak

0

H
(1)
0 (ker)

H
(1)
0 (keRx)

Z1
0(z) +

∞
∑

i=1

Ak
i

K0(λir)

K0(λiRx)
Z1
i (z) (12)

where Rx = max(Rb, Rp). A
k
i are the unknown Fourier coefficients, H

(1)
0 () are Hankel functions and K

(1)
0 () are

modified Bessel functions of the second kind.

For convenience, we define λ0 = −ike then the dispersion relation is given in terms of the eigenvalues λi by

ω2 = kegtanh(keh) = −λigtan(λih) (13)

and the depth dependency function Z1
i (z) is

Z1
i (z) = N

−1/2
λi

cos(λi(z + h)) (14)

where

Nλi
=

1

2

[

1 +
sin(2λih)

2λih

]

(15)

for i = 0, 1, · · · ,∞
If region Ω2 is defined, for the velocity potential we have

ϕ2,k
3,h(r, z) =

∞
∑

l=0

[

Bk
l Sl(r) + Ck

l S̃l(r)
]

Z2
l (z) (16)

Expressions for the functions Sl(r), S̃l(r) are defined in Appendix A in terms of modified Bessel functions of the

first and second kind, and Bk
l , Ck

l are the unknown Fourier coefficients. The depth dependency function Z2
l (z) is

defined as

• In the case where Rp > Rb

Z2
l (z) = N−1/2

γl
cos(γl(z + e1)) (17)
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where the dispersion relation is given in terms of eigenvalues γl by

ω2 = kigtanh(kie1) = −γlgtan(γle1) (18)

and

Nγl
=

1

2

[

1 +
sin(2γle1)

2γle1

]

(19)

for l = 0, 1, · · · ,∞
From the body surface condition (8) we have

∂ϕ2,k
3

∂z

∣

∣

∣

∣

∣

z=−e1

= δ2k, for Rb ≤ r ≤ Rp (20)

and then

ϕ2,k
3,p(r, z) = (z +

g

ω2
)δ2k (21)

where δij is the Kronecker’s delta defined as δij = 1 if i = j, and δij = 0 otherwise.

• In the case where Rp < Rb

Z2
l (z) =

{

1, for l = 0

√
2 cos(γl(z + h)), for l ≥ 1

with

γl =
lπ

h− b
(22)

for l = 1, 2, · · · ,∞.

From the body surface condition (8) we have

∂ϕ2,k
3

∂z

∣

∣

∣

∣

∣

z=−b

= δ1k, for Rp ≤ r ≤ Rb (23)

and then

ϕ2,k
3,p(r, z) =

1

2(h− b)

[

(z + h)2 − r2

2

]

δ1k (24)

In region Ω3, the velocity potential can be expressed as

ϕ3,k
3,h(r, z) =

∞
∑

n=0

[

Dk
nTn(r) + Ek

nT̃n(r)
]

Z3
n(z) (25)

Expressions for the functions Tn(r), T̃n(r) are defined in Appendix B in terms of modified Bessel functions of the

first and second kind, and Dk
n, Ek

n are the unknown Fourier coefficients. The depth dependency function Z3
n(z) is

defined as

Z3
n(z) =

{

1, for n = 0

√
2 cos(αn(z + e1)), for n ≥ 1

with

αn =
nπ

e1 − b1
(26)
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for n = 1, 2, · · · ,∞.

From the body surface condition (8) we have

∂ϕ3,k
3

∂z

∣

∣

∣

∣

∣

z=−b

= δ1k, for Rc ≤ r ≤ Rx (27)

∂ϕ3,k
3

∂z

∣

∣

∣

∣

∣

z=−e1

= δ2k, for Rc ≤ r ≤ Rx (28)

where Rx = min(Rb, Rp).

Then the particular solution is given by

ϕ3,k
3,p(r, z) =

1

2(e1 − b)

[

(z + e1)
2 − r2

2

]

δ1k

− 1

2(e1 − b)

[

(z + b)2 − r2

2

]

δ2k (29)

Finally for region Ω4 we have

ϕ4,k
3,h(r, z) = F k

0 +

∞
∑

j=1

F k
j

I0(βjr)

I0(βjRp)
Z4
j (z) (30)

where I
(1)
0 () are modified Bessel functions of the first kind and F k

j are the unknown Fourier coefficients. The depth

dependency function Z4
j (z) is defined as

Z4
j (z) =

{

1, for j = 0

√
2 cos(βj(z + e2)), for j ≥ 1

with

βj =
jπ

h− e2
(31)

for j = 1, 2, · · · ,∞.

From the body surface condition (8) we have

∂ϕ4,k
3

∂z

∣

∣

∣

∣

∣

z=−e2

= δ2k, for 0 ≤ r ≤ Rp (32)

and then the particular solution is expressed as

ϕ4,k
3,p(r, z) =

1

2(h− e2)

[

(z + h)2 − r2

2

]

δ2k (33)

All the depth dependency functions Z l
τ (z) are constructed in order to form an orthonormal set of eigenfunctions

in the corresponding region l.

< Z l
i(z), Z

l
j(z) > = δij (34)

where δij is the Kronecker delta which has been already defined.
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B. Expression of the Scattering Potential in Each Sub-domain

The scattering potential represents the solution for which the structure is considered fixed in presence of incident

waves [18] and is defined as

φs(r, θ, z) = φ0(r, θ, z) + φ7(r, θ, z) (35)

Considering a linear wave propagating in the positive direction x in water of constant depth h and decribed by a

small amplitude A at frequency ω, incident potential φ0 can be defined as

φ0(r, θ, z) = B

∞
∑

m=0

ǫmimJm(ker)Z
1
0 (z)cos(mθ) (36)

where ǫm is the Neuman symbol defined as ǫm = 1 for m = 0 and ǫm = 2 otherwise, Jm() are Bessel functions

of the first kind and i is the complex number. The coefficient B is defined by

B = −iA
g

ω

1

Z1
0 (0)

(37)

Following the same approach as for the radiation problem, we are looking for unknown functions expressed as

φl
s(r, θ, z) =

∞
∑

m=0

ϕl
s,m(r, z)cos(mθ) (38)

where only expressions for m = 0 contribute in the vertical direction. From the gradient condition (8) at all body

surfaces we have [1]
∂ϕs

∂n
= 0 (39)

It then follows that the scattering velocity potential in region Ω1 can be expressed as

ϕ1
s,0(r, z) = BJ0(ker)Z

1
0 (z) +A0

0

H
(1)
0 (ker)

H
(1)
0 (keRx)

Z1
0 (z)

+

∞
∑

i=1

A0
i

K0(λir)

K0(λiRx)
Z1
i (z) (40)

where Rx = max(Rb, Rp).

One can note that the expression given above has the same form as expression (12) obtained for the radiation

problem. For the purpose of the analytical resolution procedure purpose, let us introduce the notation k = 0, which

means that none of the body is moving. Using notations given for the radiation problem we can write

ϕ1
s,0(r, z) = ϕ1,0

3,h(r, z) + ϕ1,0
3,p(r, z) (41)

where we define

ϕ1,0
3,h(r, z) = A0

0

H
(1)
0 (ker)

H
(1)
0 (keRx)

Z1
0(z) +

∞
∑

i=1

A0
i

K0(λir)

K0(λiRx)
Z1
i (z)

ϕ1,0
3,p(r, z) = BJ0(ker)Z

1
0 (z)

For others regions, unknown functions have the same forms as those developed for the homogeneous part of the

radiation problem, that is

ϕl
s,0(r, z) = ϕl,0

3,h(r, z) (42)
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for l > 1.

It remains to determine the unknown Fourier coefficients Ak
i , Bk

l , Ck
l , Dk

n, Ek
n, and F k

j in the infinite series of

orthogonal functions using the matching eigenfunction expansion method. The coefficients can be determined by

applying conditions of pressure and normal velocity continuity at the different imaginary interfaces (i.e. at r = Rb

and r = Rp) as well as the body surface boundary condition (8) at the body vertical walls.

III. SOLUTION TO THE BOUNDARY VALUE PROBLEM

A. Determination of the unknown coefficients for Rp = Rb

In the case where the buoy radius and plate radius are equal, i.e. Rp = Rb, the requirement for pressure and

normal velocity continuity has to be fulfilled at the vertical imaginary interface r = Rb, as well as the boundary

conditions on the body vertical surfaces. In heaving mode, the latter are expressed as

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

= 0 , for − e2 ≤ z ≤ −e1 (43)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

= 0 , for − b ≤ z ≤ 0 (44)

∂ϕ3,k
3

∂r

∣

∣

∣

∣

∣

r=Rc

= 0 , for − e1 ≤ z ≤ −b (45)

for k = 0, 1 and 2.

At the imaginary interface r = Rb, velocity potential continuity conditions are

• for −e1 ≤ z ≤ −b

ϕ1,k
3 (Rb, z) = ϕ3,k

3 (Rb, z) (46)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

=
∂ϕ3,k

3

∂r

∣

∣

∣

∣

∣

r=Rb

(47)

• for −h ≤ z ≤ −e2

ϕ1,k
3 (Rb, z) = ϕ4,k

3 (Rb, z) (48)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

=
∂ϕ4,k

3

∂r

∣

∣

∣

∣

∣

r=Rb

(49)

Due to the orthogonal properties of the function Z4
j (z) valid for −h ≤ z ≤ −e2, it follows that

F k
j =

1

h− e2

∫

−e2

−h

ϕ4,k
3,h(Rb, z)Z

4
j (z)dz −Qk

j3 +Ok
j3 (50)

where

Qk
j3 =











0, for k = 0

1

h− e2

∫

−e2

−h

ϕ4,k
3,p(Rb, z)Z

4
j (z)dz, for k = 1, 2
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Ok
j3 =











1

h− e2

∫

−e2

−h

ϕ1,0
3,p(Rb, z)Z

4
j (z)dz, for k = 0

0, for k = 1, 2

By applying continuity condition (48), Fourier coefficients F k
j that describe velocity potential in Ω4 can be expressed

in terms of coefficients Ak
i as follows

F k
j =

∞
∑

i=0

Ak
i Lji −

(

Qk
j3 −Ok

j3

)

(51)

with

Lji =
1

h− e2

∫

−e2

−h

Z4
j (z)Z

1
i (z)dz (52)

Using the same procedure for interval −e1 ≤ z ≤ −b, orthogonal properties of the function Z3
n(z) lead to coefficients

Dk
n

Dk
n =

1

e1 − b

∫

−b

−e1

ϕ3,k
3,h(Rb, z)Z

3
n(z)dz − P k

n3 +Ok
n3 (53)

where

P k
n3 =











0, for k = 0

1

e1 − b

∫

−b

−e1

ϕ3,k
3,p(Rb, z)Z

3
n(z)dz, for k = 1, 2

Ok
n3 =











1

e1 − b

∫

−b

−e1

ϕ1,k
3,p(Rb, z)Z

3
n(z)dz, for k = 0

0, for k = 1, 2

By applying continuity condition (46), Fourier coefficients Dk
n that describe velocity potential in Ω3 can be expressed

in terms of coefficients Ak
i as follows

Dk
n =

∞
∑

i=0

Ak
iMni −

(

P k
n3 −Ok

n3

)

(54)

with

Mni =
1

e1 − b

∫

−b

−e1

Z3
n(z)Z

1
i (z)dz (55)

By multiplying both sides of equations (43), (44), (47) and (49) by Z1
τ (z)/h (for τ = 0, 1, · · · , i, · · · ), integrating

over the corresponding interval of validity and adding resulting expressions, we obtain a complete set of equations.

Replacing coefficients F k
j and Dk

n by their respective definitions (51) and (54) we obtain

hk
τ =

∞
∑

i=0

dτiA
k
i +

∞
∑

n=0

dτnE
k
n (56)
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with

h0
τ = B



Υ0δ0τ − J0(keRb)





h− e2
h

∞
∑

j=0

ΓjLj0Ljτ

+
e1 − b

h

∞
∑

n=0

T ′

n(Rb)Mn0Mnτ

])

(57)

h1
τ =

Rb

2h
M0τ +

e1 − b

h

∞
∑

n=0

T ′

n(Rb)P
1
n3Mnτ (58)

h2
τ =

Rb

2h
(L0τ −M0τ ) +

h− e2
h

∞
∑

j=0

ΓjQ
2
j3Ljτ

+
e1 − b

h

∞
∑

n=0

T ′

n(Rb)P
2
n3Mnτ (59)

dτi = ∆iδiτ +
h− e2

h

∞
∑

j=0

ΓjLjiLjτ

+
e1 − b

h

∞
∑

n=0

T ′

n(Rb)MniMnτ (60)

dτn =
e1 − b

h

∞
∑

n=0

T̃ ′

n(Rb)Mnτ (61)

where we define

Γ0 = 0 Γj = βj
I1(βjRb)

I0(βjRb)
(62)

∆0 = ke
H

(1)
1 (keRb)

H
(1)
0 (keRb)

∆i = λi
K1(λiRb)

K0(λiRb)
(63)

for i, j ≥ 1 and

Υ0 = −keJ1(keRb) (64)

Finally, multiplying the body surface condition (45), expressed on the column, by Z3
ν (z)/(e1 − b) (for ν =

0, 1, · · · , n, · · · ), integrating with respect to z, i.e. −e1 ≤ z ≤ −b, and using the definition of Dk
n, we obtain

the last set of equations at the vertical boundary r = Rc.

hk
ν =

∞
∑

i=0

dνiA
k
i +

∞
∑

n=0

dνnE
k
n (65)

where

h0
ν = −BJ0(keRc)

∞
∑

n=0

T ′

n(Rc)Mn0δnν (66)

h1
ν =

∞
∑

n=0

T ′

n(Rc)P
1
n3δnν +

Rc

2(e1 − b)
δ0ν (67)

h2
ν =

∞
∑

n=0

T ′

n(Rc)P
2
n3δnν − Rc

2(e1 − b)
δ0ν (68)
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dνi =

∞
∑

n=0

T ′

n(Rc)Mniδnν (69)

dνn = T̃ ′

n(Rc)δnν (70)

In order to find a solution to unknown Fourier coefficients Ak
i and Ek

n, we have to truncate the infinite series to the

first N terms. By introducing matrix notation, the unknown coefficients can be determined, solving simultaneously

the two sets of equations (56) and (65) which can be expressed by the following linear system










dτi dτn

dνi dνn





















Ak
i1

Ek
n1











=











hk
τ1

hk
ν1











(71)

Note that the matrix on the left hand side of (71) does not depend on the boundary value conditions of the BVP.

The matrix term values would only change if we modify the geometrical configuration. This can be an advantage

in terms of reducing the numerical computation time. Finally, the remaining Fourier coefficients F k
j and Dk

n can

be computed respectively from equations (51) and (54).

B. Determination of the unknown coefficients for Rp > Rb

In the case where the plate radius is greater than the buoy radius, i.e. Rp > Rb, the requirement for pressure and

normal velocity continuity has to be fulfilled at the two vertical imaginary interfaces r = Rp and r = Rb, as well

as the boundary value conditions on the body vertical surfaces. In heaving mode the latter are expressed as

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

= 0 , for − e2 ≤ z ≤ −e1 (72)

∂ϕ2,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

= 0 , for − b ≤ z ≤ 0 (73)

∂ϕ3,k
3

∂r

∣

∣

∣

∣

∣

r=Rc

= 0 , for − e1 ≤ z ≤ −b (74)

Specifying velocity potential continuity conditions at the imaginary interface r = Rp we have

• for −h ≤ z ≤ −e2

ϕ1,k
3 (Rp, z) = ϕ4,k

3 (Rp, z) (75)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

=
∂ϕ4,k

3

∂r

∣

∣

∣

∣

∣

r=Rp

(76)

• for −e1 ≤ z ≤ 0
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ϕ1,k
3 (Rp, z) = ϕ2,k

3 (Rp, z) (77)

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

=
∂ϕ2,k

3

∂r

∣

∣

∣

∣

∣

r=Rp

(78)

Using the orthogonal properties of the trigonometric function Z4
j (z) valid for −h ≤ z ≤ −e2, it follows that for

r = Rp

F k
j =

1

h− e2

∫

−e2

−h

ϕ4,k
3,p(Rp, z)Z

4
j (z)dz −Qk

j3 +Ok
j3 (79)

where

Qk
j3 =











0, for k = 0

1

h− e2

∫

−e2

−h

ϕ4,k
3,p(Rp, z)Z

4
j (z)dz, for k = 1, 2

Ok
j3 =











1

h− e2

∫

−e2

−h

ϕ1,0
3,p(Rp, z)Z

4
j (z)dz, for k = 0

0, for k = 1, 2

From the normal velocity continuity condition (75) we can expressed F k
j as

F k
j =

∞
∑

i=0

Ak
i Lji − (Qk

j3 −Ok
j3) (80)

with

Lji =
1

h− e2

∫

−e2

−h

Z4
j (z)Z

1
i (z)dz (81)

In a similar way, by using orthogonal characteristics of the set Z2
l (z) valid in −e1 ≤ z ≤ 0 and from (77), we can

express Bk
l as

Bk
l =

∞
∑

i=0

KliA
k
i − (Rk

l3 −Ok
l3) (82)

with

Kli =
1

e1

∫ 0

−e1

Z2
l (z)Z

1
i (z)dz (83)

and

Rk
l3 =











0, for k = 0

1

e1

∫ 0

−e1

ϕ2,k
3,p(Rp, z)Z

2
l (z)dz, for k = 1, 2

Ok
l3 =











1

e1

∫ 0

−e1

ϕ1,0
3,p(Rp, z)Z

2
l (z)dz, for k = 0

0, for k = 1, 2

By multiplying both sides of equations (76), (72) and (78) by Z1
τ (z)/h (for τ = 0, 1, · · · , i, · · · ), integrating

over the corresponding domain of validity and adding resulting expressions, a complete set of equations is formed.

Replacing coefficients F k
j and Bk

l by their respective definitions (80) and (82), we obtain

hk
τ =

∞
∑

i=0

dτiA
k
i +

∞
∑

l=0

dτlC
k
l (84)

July 16, 2014 DRAFT



IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 14

where

h0
τ = B



Υ0δ0τ − J0(keRp)





h− e2
h

∞
∑

j=0

ΓjLj0Ljτ

+
e1
h

∞
∑

l=0

S′

l(Rp)Kl0Klτ

])

(85)

h1
τ = 0 (86)

h2
τ =

Rp

2h
L0τ +

h− e2
h

∞
∑

j=0

ΓjQ
2
j3Ljτ

+
e1
h

∞
∑

l=0

S′

l(Rp)R
2
l3Klτ (87)

dτi = ∆iδiτ +
h− e2

h

∞
∑

j=0

ΓjLjiLjτ +
e1
h

∞
∑

l=0

S′

l(Rp)KliKlτ (88)

dτl =
e1
h

[

S̃′

l(Rp)Klτ

]

(89)

The same procedure as the one used above is applied at the imaginary interfaces r = Rb. From the normal velocity

continuity condition (90)

ϕ2,k
3 (Rb, z) = ϕ3,k

3 (Rb, z) (90)

the Fourier coefficients Dk
n can be expressed as

Dk
n =

∞
∑

l=0

MnlC
k
l − (P k

n3 −Rk
n3) (91)

where

Mnl =
1

e1 − b

∫

−b

−e1

Z3
n(z)Z

2
l (z)dz (92)

and

P k
n3 =

1

e1 − b

∫

−b

−e1

ϕ3,k
3,p(Rb, z)Z

3
n(z)dz (93)

Rk
n3 =

1

e1 − b

∫

−b

−e1

ϕ2,k
3,p(Rb, z)Z

3
n(z)dz (94)

for k = 1, 2 and 0 otherwise.

The pressure continuity condition

∂ϕ2,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

=
∂ϕ3,k

3

∂r

∣

∣

∣

∣

∣

r=Rb

(95)

as well as the body surface boundary condition (73) on the buoy have to be fulfilled. Multiplying both sides of

these two conditions by Z2
ν (z)/e1 (for ν = 0, 1, · · · , l, · · · ), integrating over the corresponding interval and adding

resulting expressions, a complete set of equations is formed.

hk
ν =

∞
∑

i=0

dνiA
k
i +

∞
∑

l=0

dνlC
k
l +

∞
∑

n=0

dνnE
k
n (96)
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where

h0
ν = BJ0(keRp)

∞
∑

l=0

S′

l(Rb)Kl0δlν (97)

h1
ν =

∞
∑

n=0

T ′

n(Rb)P
1
n3δnν +

Rb

2e1
M0ν (98)

h2
ν = −

∞
∑

l=0

S′

l(Rb)R
2
l3δlν

+

∞
∑

n=0

T ′

n(Rb)(P
2
n3 − S2

n3)δnν − Rb

2e1
M0ν (99)

dνi = −
∞
∑

l=0

S′

l(Rb)Kliδlν (100)

dνl = − S′

l(Rb)δlν +
e1 − b

e1

∞
∑

n=0

T ′

n(Rb)MnlMnν (101)

dνn =
e1 − b

e1

[

T̃ ′

n(Rb)Mnν

]

(102)

Finally, multiplying the body surface condition (74), expressed on the column, by Z3
σ(z)/(e1−b) (for σ = 0, 1, · · · , n, · · · )

and integrating with respect to z, i.e. −e1 ≤ z ≤ −b, the last set of equations at the imaginary interface r = Rc is

obtained

hk
σ =

∞
∑

l=0

dσlC
k
l +

∞
∑

n=0

dσnE
k
n (103)

where

h0
σ = 0 (104)

h1
σ =

∞
∑

n=0

T ′

n(Rc)P
1
n3δnσ +

Rc

2(e1 − b)
δ0σ (105)

h2
σ =

∞
∑

n=0

T ′

n(Rc)P
2
n3δnσ − Rc

2(e1 − b)
δ0σ (106)

dσl =

∞
∑

n=0

T ′

n(Rc)Mnlδnσ (107)

dσn = T̃ ′

n(Rc)δnσ (108)

In order to find a solution to unknown Fourier coefficients Ak
i , Ck

l , and Ek
n we have to truncate the infinite series to

the first N terms. The unknown coefficients can be determined by solving the linear system (109) and the remaining

coefficients Bk
l , Dk

n, and F k
j can be obtained respectively from their expressions (82), (91), and (80).























dτi dτl 0

dνi dνl dνn

0 dσl dσn













































Ak
i1

Ck
l1

Ek
n1























=























hk
τ1

hk
ν1

hk
σ1























(109)
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C. Determination of the unknown coefficients for Rp < Rb

In the case where the plate radius is smaller than the buoy radius, i.e. Rp < Rb, the requirement for pressure

and normal velocity continuity has to be fulfilled at the two vertical imaginary interfaces r = Rp and r = Rb, as

well as the boundary conditions on the body vertical surfaces. In heaving mode the latter are expressed as

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

= 0 , for − b ≤ z ≤ 0 (110)

∂ϕ2,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

= 0 , for − e2 ≤ z ≤ −e1 (111)

∂ϕ3,k
3

∂r

∣

∣

∣

∣

∣

r=Rc

= 0 , for − e1 ≤ z ≤ −b (112)

Specifying the normal velocity continuity condition at the imaginary interface r = Rb, we have

ϕ1,k
3 (Rb, z) = ϕ2,k

3 (Rb, z) (113)

for −h ≤ z ≤ −b and unknown Fourier coefficients Bk
l that describe velocity potential in sub-domain Ω2 can then

be expressed as

Bk
l =

∞
∑

i=0

KliA
k
i − (Rk

l3 −Ok
l3) (114)

where

Kli =
1

h− b

∫

−b

−h

Z2
l (z)Z

1
i (z)dz (115)

and

Rk
l3 =











0, for k = 0

1

h− b

∫

−b

−h

ϕ2,k
3,p(Rb, z)Z

2
l (z)dz, for k = 1, 2

Ok
l3 =











1

h− b

∫

−b

−h

ϕ1,0
3,p(Rb, z)Z

2
l (z)dz, for k = 0

0, for k = 1, 2

From gradient condition (110) and applying the pressure continuity condition

∂ϕ1,k
3

∂r

∣

∣

∣

∣

∣

r=Rb

=
∂ϕ2,k

3

∂r

∣

∣

∣

∣

∣

r=Rb

(116)

a complete set of equations is formed by multiplying both sides of these last conditions by Z1
τ (z)/h (for τ = 0, 1, · · · , i, · · · );

following a similar procedure as described above. Using expressions (114) for coefficients Bk
l , we obtain

hk
τ =

∞
∑

i=0

dτiA
k
i +

∞
∑

l=0

dτlC
k
l (117)
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for which we define

h0
τ = B

[

Υ0δ0τ − J0(keRb)
h− b

h

∞
∑

l=0

S′

l(Rb)Kl0Klτ

]

(118)

h1
τ =

Rb

2h
K0τ +

h− b

h

∞
∑

l=0

S′

l(Rb)R
1
l3Klτ (119)

h2
τ = 0 (120)

dτi = ∆iδiτ +
h− b

h

∞
∑

l=0

S′

l(Rb)KliKlτ (121)

dτl =
h− b

h

[

S̃′

l(Rb)Klτ

]

(122)

At the imaginary interface r = Rp, for continuity conditions we have

• for −h ≤ z ≤ −e2

ϕ2,k
3 (Rp, z) = ϕ4,k

3 (Rp, z) (123)

∂ϕ2,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

=
∂ϕ4,k

3

∂r

∣

∣

∣

∣

∣

r=Rp

(124)

• for −e1 ≤ z ≤ −b

ϕ2,k
3 (Rp, z) = ϕ3,k

3 (Rp, z) (125)

∂ϕ2,k
3

∂r

∣

∣

∣

∣

∣

r=Rp

=
∂ϕ3,k

3

∂r

∣

∣

∣

∣

∣

r=Rp

(126)

From condition (123) we can express F k
j as

F k
j =

∞
∑

l=0

Ck
l Ljl −

(

Qk
j3 −Rk

j3

)

(127)

where

Ljl =
1

h− e2

∫

−e2

−h

Z4
j (z)Z

2
l (z)dz (128)

and

Qk
j3 =

1

h− e2

∫

−e2

−h

ϕ4,k
3,p(Rp, z)Z

4
j (z)dz (129)

Rk
j3 =

1

h− e2

∫

−e2

−h

ϕ2,k
3,p(Rp, z)Z

4
j (z)dz (130)

for k = 1, 2 and 0 otherwise.

From condition (125) we can express Dk
n as

Dk
n =

∞
∑

l=0

MnlC
k
l − (P k

n3 −Rk
n3) (131)
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with

Mnl =
1

e1 − b

∫

−b

−e1

Z3
n(z)Z

2
l (z)dz (132)

and

P k
n3 =

1

e1 − b

∫

−b

−e1

ϕ3,k
3,p(Rp, z)Z

3
n(z)dz (133)

Rk
n3 =

1

e1 − b

∫

−b

−e1

ϕ2,k
3,p(Rp, z)Z

3
n(z)dz (134)

By multiplying both sides of equations (124), (111), and (126) by Z1
ν (z)/(h−b) (for ν = 0, 1, · · · , l, · · · ), integrating

over the corresponding interval of validity and adding resulting expressions, a complete set of equations is obtained.

Replacing coefficients Bk
l , F k

j , and Dk
n by their respective definitions (114), (127), and (131) we obtain

hk
ν =

∞
∑

i=0

dνiA
k
i +

∞
∑

l=0

dνlC
k
l +

∞
∑

n=0

dνnE
k
n (135)

where

h0
ν = BJ0(keRb)

∞
∑

l=0

S′

l(Rp)Kl0δlν (136)

h1
ν =

Rp

2(h− b)
(M0ν − δ0ν)−

∞
∑

l=0

S′

l(Rp)R
1
l3δlν

+
e1 − b

h− b

∞
∑

n=0

T ′

n(Rp)
(

P 1
n3 −R1

n3

)

Mnν

− h− e2
h− b

∞
∑

j=0

ΓjR
1
j3Ljν (137)

h2
ν =

Rp

2(h− b)
(L0ν −M0ν) +

h− e2
h− b

∞
∑

j=0

ΓjQ
2
j3Ljν

+
e1 − b

h− b

∞
∑

n=0

T ′

n(Rp)P
2
n3Mnν (138)

dνi = −
∞
∑

l=0

S′

l(Rp)Kliδlν (139)

dνl = − S̃′

l(Rp)δlν +
h− e2
h− b

∞
∑

j=0

ΓjLjlLjν

+
e1 − b

h− b

∞
∑

n=0

T ′

n(Rp)MnlMnν (140)

dνn =
e1 − b

h− b

[

T̃ ′

n(Rp)Mnν

]

(141)

Finally, multiplying the body surface condition (112), expressed on the column, by Z3
σ(z)/(e1 − b) (for σ =

0, 1, · · · , n, · · · ) and integrating with respect to z, i.e. −e1 ≤ z ≤ −b, we obtain the last set of equations at the

imaginary interface r = Rc.

hk
σ =

∞
∑

l=0

dσlC
k
l +

∞
∑

n=0

dσnE
k
n (142)

July 16, 2014 DRAFT



IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 19

where

h0
σ = 0 (143)

h1
σ =

∞
∑

n=0

T ′

n(Rc)
(

P 1
n3 − S1

n3

)

δnσ +
Rc

2(e1 − b)
δ0σ (144)

h2
σ =

∞
∑

n=0

T ′

n(Rc)P
2
n3δnσ − Rc

2(e1 − b)
δ0σ (145)

dσl =

∞
∑

n=0

T ′

n(Rc)Mnlδnσ (146)

dσn = T̃ ′

n(Rc)δnσ (147)

Using matrix notation, the unknown Fourier coefficients Ak
i , Ck

l , and Ek
n can be determined by solving the following

linear system.






















dτi dτl 0

dνi dνl dνn

0 dσl dσn













































Ak
i1

Ck
l1

Ek
n1























=























hk
τ1

hk
ν1

hk
σ1























(148)

The remaining coefficients Bk
l , Dk

n, and F k
j can be obtained respectively from their expressions (114), (131), and

(127).

IV. EXCITATION FORCES AND HYDRODYNAMIC COEFFICIENTS

Once the scattering and/or radiation problems are solved, which means that we determined the unknown Fourier

coefficients for the orthogonal series, the velocity potential is known in the whole fluid domain. Waves exciting

forces and/or hydrodynamic coefficients can then be determined by integrating the hydrodynamic pressure, given

by the Bernoulli equation, over the wet surface of the body under consideration. Based on the linear wave theory,

the pressure is given by

p(r, θ, z, t) = −ρ
∂Φ

∂t
= iωρφ(r, θ, z)e−iωt (149)

A. Added Mass and Radiation Damping Coefficients

When the structure is moving, a radiation force acts on it and can be expressed as

F k,i
q,j (ω) = iωρ

∫∫

Si

φk
q (r, θ, z)njdS (150)

where F k,i
q,j (ω) is the complex representation of the radiation force acting on the body i in the direction j due to

the motion of the body k in the direction q (here q = 3). It is conventional to break down this radiation force into

two components: one proportional to the acceleration of body and the other proportional to his velocity as follows

F k,i
q,j (ω) = −ω2ζq

[

µk,i
q,j +

i

ω
λk,i
q,j

]

(151)
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where hydrodynamic coefficients µk,i
q,j and λk,i

q,j are referenced in the literature as the added mass and the radiation

or potential damping, respectively. Finally, using expression (11) in heaving mode we obtain

µk,i
3,3 +

i

ω
λk,i
3,3 = 2πρ

L
∑

l=1

[∫

Si

φl,k
3 (r, z)n3rdr

]

(152)

B. Wave Excitation Forces in z Direction

When the structure is considered as fixed in the presence of an incident wave, an excitation force acts on the

bodies. Using a complex representation, excitation forces in the vertical direction can be expressed in terms of

scattering potential, see (35), as

fk
z (ω) = iωρ

∫∫

Sk

φs(r, θ, z)n3dS (153)

where k indicates which body is under consideration and n3 is the component of the generalised normal vector in

z direction. The Haskind’s relation is another approach for evaluating wave excitation forces [20], [21], [19]. They

can be evaluated either at the wet body surface Sk by (154)

fk
z (ω) = iωρ

∫∫

Sk

(

φ0
∂φ3

∂n
− φ3

∂φ0

∂n

)

dS (154)

or at the control surface S∞ by (155).

fk
z (ω) = −iωρ lim

r→∞

2π
∫

0

0
∫

−h

[

φ0

∂ϕ1,k
3,0

∂r
− ϕ1,k

3,0

∂φ0

∂r

]

rdzdθ (155)

where we take, as control surface S∞, a vertical cylinder about the z axis of large radius r, as recommended in

[21].

The main advantage of these two relations is that we only need to know solutions for the incident and radiated

potential. However, as already mentioned in [12], evaluating expressions obtained by (154) is complicated since

potentials have to be integrated on the whole of the wet structure. Therefore, the use of the far-field behaviour of

the radiation solution given by (155), which simplifies the analysis is used here. After integral evaluation, we find

that the wave excitation force for the heaving mode is (see [15] for details)

fk
z (ω) =

−4iρgh
√

Nλ0
Ak

0

cosh(keh)H
(1)
0 (keRx)

(156)

V. NUMERICAL RESULTS AND DISCUSSION

A specific code based on the above formulation has been developed in order to solve problems (71) , (109) and

(148). To carry out numerical computations, the infinite series in the expressions of the radiated and scattering

potentials have to be truncated to a finite number of terms. According to the literature [4], [5], [12], it seems that

considering only the first 30 terms shows good truncation characteristics. We have therefore chosen N = 30 for

potential expressions in all sub-domains.

In order to validate the analytical expressions obtained for velocity potentials, several checks are performed

on numerical results and then different case studies have to be considered. In Table I, we have summarised
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geometrical configurations for each case study where α and β are two variable parameters defined as α ∈
[

8 2 1 .75 .65 .51
]

and β ∈
[

.5 .35 .25 .15
]

. They represent respectively the submerged plate to

buoy radius ratio and the column to buoy radius ratio and they are used to cover all the test scenarios. Geometrical

parameters for case studies no.1 and no.3 are taken respectively from models developed by Wu et al. [14] and Chau

and Yeung [15]. For all numerical computations, we have used h = 1. For the scattering problem, solutions have

been obtained based on the assumption of a unit amplitude incident wave, A = 1.

TABLE I

GEOMETRICAL PARAMETERS FOR NUMERICAL COMPUTATION

Case No. b/h Rb/h e1/h e2/h Rp/Rb Rc/Rb

1 0.1 0.2 0.25 0.35 α 10−3

2 0.1 0.2 0.25 0.35 α 0.5

3 0.25 1 0.4 0.5 α 0.5

4 0.25 1 0.4 0.5 α β

A. Vertical boundary condition matching

We first look at the matching of the velocity potential and its first derivative in the radial direction along the

imaginary interfaces between sub-domains. In Fig. 2, results are presented for the structure depicted in Section I

for the case study No.3, where the plate radius is smaller than that of the buoy, α = .75, and where the buoy is

moving and the platform is fixed. Excellent matching is achieved on velocity potential using the above numerical

truncation. However, for gradient visualisation purposes, we have used more terms in expressions to reduce the

oscillations due to Bessel functions (N = 80 for regions Ω1, Ω2, and N = 40 for regions Ω3, Ω4). The well-known

singularity should be noted in Fig. 2 (b), at the corner due to the discontinuous boundary condition (see [18] for

more details). Also looking at external domain curves, we can notice that the gradient conditions (110) and (111)

are met.

B. Wave excitation force comparison - velocity potential vs Haskind’s relation method

A comparison is made between the two approaches presented in Section IV to evaluate the excitation forces. The

first approach is based on the solution of the scattering problem and given by equation (153) and the other one is

based on the Haskind’s relation (156). Fig. 3, shows numerical results for case study No.2 with α =
[

2 1 .51
]

.

Excitation forces are non-dimensionalised dividing them by hydrostatic stiffness i.e. ρgπ(R2
b −R2

c) for the buoy,

and ρgπR2
c for the submerged platform. Evidently, the two approaches obtain very well matched results, which

implies that the correctness of the scattering potential seems to be confirmed.

C. Asymptotic behaviour comparison with existing models

Also one could use asymptotic behaviours of the presented model to compare results with existing models found in

the literature, which indirectly verify the proposed expressions for potentials. Figures 4 to 9 show numerical results
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Fig. 2. Matching of the velocity potential (a) and its first derivative (b) and (c) for case study No.3, α = .75, at the imaginary interface

r = Rb and r = Rp for ke = 1.

for hydrodynamic parameters when the column radius tends towards zero, case study No.1 for α =
[

8 2 1
]

.

This configuration is similar to the model presented by Wu et al. in [14] (not shown). Same coefficients as those

given in [14] have been used to non-dimensionnalise excitation forces in Fig. 4 and hydrodynamics coefficients

in Figures 5 to 8, and excellent correlation is found. Also parameters are shown for the case where the radius of

the column is half of the radius of the buoy that corresponds to case study No.2. Looking at the added mass and

radiation damping, we note that only the amplitude of the coefficients changes with the increase and decrease of the

wet body surface but not the behaviour. If we look at the excitation forces on the buoy, the presence of the column

does not seem to have an effect on it. However, we notice that for the platform, the behaviour is totally different

at low frequency and we can observe a rebound which varies with the radius of the plate except for relatively big

sizes. It seems that a radius ratio between the plate and column exists for which the column no longer influences the

behaviour of the wave excitation force on the platform. In addition, a last check is performed on the correctness of
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Fig. 3. Dimensionless vertical forces, (a) on buoy (b) on platform, for case study No.2.

numerical results, using the symmetry of the off-diagonal elements in the matrices for the added mass and radiation

damping coefficients as illustrated in Fig. 9.
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Fig. 4. Dimensionless vertical forces, (a) on buoy (b) on platform.
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Fig. 5. Dimensionless added mass (a) and radiation damping (b) for the buoy.
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Fig. 6. Dimensionless added mass (a) and radiation damping (b) for the platform.

Figures 10 to 11 show numerical results for hydrodynamic parameters when plate radius tends toward column

radius (case study No.3 for α = .51) for two different water depths h = 1 and h = 5. This configuration is

similar to the model presented by Chau and Yeung in [15]. The same coefficients as above have been used to
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Fig. 7. Dimensionless added mass (a) and radiation damping (b) for the buoy due to the platform motion.
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Fig. 8. Dimensionless added mass (a) and radiation damping (b) for the platform due to the buoy motion.
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Fig. 9. Non-diagonal elements in the matrices for the added mass (a) and radiation damping (b) coefficients divide by 2

3
ρgπR3

p for case

study No.2.

non-dimensionnalised excitation forces. For hydrodynamic coefficients, we divided by factor ρπR2
b for the buoy

and by factor ρπR2
c for the platform. Here again figures show very good correlation between our model and the

literature. Looking at the excitation forces on the platform, Fig. 10 (b), one can notice that the behaviour is not as

previously described. It seems that a radius ratio between the plate and column exists for which the plate radius is

not big enough for the rebound to be observed. Fig. 12 shows variation of the excitation force on the platform for

different column and plate radiuses. Also we compare results with the case of a heaving single cylinder (dash-dotted

lines) presented by Battha and Rahman in [7] with the same geometrical parameters as the column. When the radius

ratio between plate and column is relatively small and the bearing surface of the plate is not big enough, it can be

noted that the platform behaves in a similar way as a single cylinder. As already mentioned, for a relatively large

plate radius compared to that of the column, it is found that the platform mainly behaves as the plate without the

column. Between these two extremes, we have a rebound phenomenon for which properties such as amplitude and

peak amplitude frequency vary with bearing surface.

VI. CONCLUSION

Based on the potential theory, a semi-analytical method has been presented in order to solve the radiation and

scattering problems which provides hydrodynamic parameters in heaving mode for a specific wave energy converter.

These parameters are particularly needed for designers to analyse the WEC dynamics in irregular waves. A specific

code has been developed based on the mathematical formulations presented in this paper. For validation purposes,

several numerical simulations have been carried out for different buoy, column, and plate radiuses. The obtained
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Fig. 10. Dimensionless vertical forces on the buoy (a), on the platform (b).
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Fig. 11. Dimensionless added mass (a) and radiation damping (b) for the buoy.
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Fig. 12. Dimensionless vertical forces on the platform for differents column and plate radius.

results have been compared to well-known and available models in the literature. These results clearly confirm the

appropriateness of the proposed semi-analytical approach. Finally, a set of theoretical results for the wave excitation

forces, added mass and radiation damping have been presented for different submerged plate to buoy radius ratio

as well as column to buoy radius ratio. These results have obviously shown that excitation forces applied on the

submerged platform have a remarkable behaviour that depends on the plate bearing surface for a given column

radius. Regarding the available literature, this behaviour is the first reported for that kind of structure and future

investigations will be carried out on the studied structure for wave energy extraction.
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APPENDIX A

EXPRESSION FOR Sl(r), S̃l(r)

• In the case where Rb < Rp

for l = 0

S0 =
H

(1)
0 (kir)H

(2)
0 (kiRb)−H

(1)
0 (kiRb)H

(2)
0 (kir)

H
(1)
0 (kiRp)H

(2)
0 (kiRb)−H

(1)
0 (kiRb)H

(2)
0 (kiRp)

S̃0 =
H

(1)
0 (kiRp)H

(2)
0 (kir)−H

(1)
0 (kir)H

(2)
0 (kiRp)

H
(1)
0 (kiRp)H

(2)
0 (kiRb)−H

(1)
0 (kiRb)H

(2)
0 (kiRp)

for l ≥ 1

Sl =
I0(γlr)K0(γlRb)− I0(γlRb)K0(γlr)

I0(γlRp)K0(γlRb)− I0(γlRb)K0(γlRp)

S̃l =
I0(γlRp)K0(γlr)− I0(γlr)Km(γlRp)

I0(γlRp)K0(γlRb)− I0(γlRb)K0(γlRp)

• In the case where Rb > Rp

for l = 0

S0 =
ln(r/Rp)

ln(Rb/Rp)
S̃00 =

ln(Rb/r)

ln(Rb/Rp)

for l ≥ 1

Sl =
I0(γlr)K0(γlRp)− I0(γlRp)K0(γlr)

I0(γlRb)K0(γlRp)− I0(γlRp)K0(γlRb)

S̃l =
I0(γlRb)K0(γlr)− I0(γlr)K0(γlRb)

I0(γlRb)K0(γlRp)− I0(γlRp)K0(γlRb)

APPENDIX B

EXPRESSION FOR Tn(r), T̃n(r)

for n = 0

T0 =
ln(r/Rc)

ln(Rx/Rc)
T̃0 =

ln(Rx/r)

ln(Rx/Rc)

for n ≥ 1

Tn =
I0(γlr)K0(γlRc)− I0(γlRc)K0(γlr)

I0(γlRx)K0(γlRc)− I0(γlRc)K0(γlRx)

T̃n =
I0(γlRx)K0(γlr) − I0(γlr)K0(γlRx)

I0(γlRx)K0(γlRc)− I0(γlRc)K0(γlRx)

where Rx = min(Rb, Rp).
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d’Ingénieurs de Brest, Brest, France. His current research interests are control and diagnosis of non-linear systems and

shape memory actuators control.

Mohamed El Hachemi Benbouzid Mohamed El Hachemi Benbouzid (S92-M95-SM98) was born in Batna, Algeria,

in 1968. He received his B.Sc. degree in electrical engineering from the University of Batna, Batna, Algeria, in

1990, his M.Sc. and Ph.D. degrees in electrical and computer engineering from the National Polytechnic Institute of

Grenoble, Grenoble, France, in 1991 and 1994, respectively, and the Habilitation à Diriger des Recherches degree
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