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Separation Logic with inductive definitions is a well-known approach for deductive verification of programs that manipulate dynamic data structures. Deciding verification conditions in this context is usually based on user-provided lemmas relating the inductive definitions. We propose a novel approach for generating these lemmas automatically which is based on simple syntactic criteria and deterministic strategies for applying them. Our approach focuses on iterative programs, although it can be applied to recursive programs as well, and specifications that describe not only the shape of the data structures, but also their content or their size. Empirically, we find that our approach is powerful enough to deal with sophisticated benchmarks, e.g., iterative procedures for searching, inserting, or deleting elements in sorted lists, binary search tress, red-black trees, and AVL trees, in a very efficient way.

Introduction

Program verification requires reasoning about complex, unbounded size data structures that may carry data ranging over infinite domains. Examples of such structures are multi-linked lists, nested lists, trees, etc. Programs manipulating such structures perform operations that may modify their shape (due to dynamic creation and destructive updates) as well as the data attached to their elements. An important issue is the design of logic-based frameworks that express assertions about program configurations (at given control points), and then to check automatically the validity of these assertions, for all computations. This leads to the challenging problem of finding relevant compromises between expressiveness, automation, and scalability.

An established approach for scalability is the use of Separation logic (SL) [START_REF] O'hearn | Local reasoning about programs that alter data structures[END_REF][START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF]. Indeed, its support for local reasoning based on the "frame rule" leads to compact proofs, that can be dealt with in an efficient way. However, finding expressive fragments of SL for writing program assertions, that enable efficient automated validation of the verification conditions, remains a major issue. Typically, SL is used in combination with inductive definitions, which provide a natural description of the data structures manipulated by a program.

Moreover, since program proofs themselves are based on induction, using inductive definitions instead of universal quantifiers (like in approaches based on firstorder logic) enables scalable automation, especially for recursive programs which traverse the data structure according to their inductive definition, e.g., [START_REF] Qiu | Natural proofs for structure, data, and separation[END_REF]. Nevertheless, automating the validation of the verification conditions generated for iterative programs, that traverse the data structures using while loops, remains a challenge. The loop invariants use inductive definitions for fragments of data structures, traversed during a partial execution of the loop, and proving the inductiveness of these invariants requires non-trivial lemmas relating (compositions of) such inductive definitions. Most of the existing works require that these lemmas be provided by the user of the verification system, e.g., [START_REF] Chlipala | Mostly-automated verification of low-level programs in computational separation logic[END_REF][START_REF] Nguyen | Enhancing program verification with lemmas[END_REF][START_REF] Qiu | Natural proofs for structure, data, and separation[END_REF] or they use translations of SL to first-order logic to avoid this problem. However, the latter approaches work only for rather limited fragments [START_REF] Piskac | Automating separation logic using SMT[END_REF][START_REF] Piskac | Automating separation logic with trees and data[END_REF]. In general, it is difficult to have lemmas relating complex user-defined inductive predicates that describe not only the shape of the data structures but also their content.

To illustrate this difficulty, consider the simple example of a sorted singly linked list. The following inductive definition describes a sorted list segment from the location E to F , storing a multiset of values M :

lseg(E, M, F ) ::= E = F ∧ M = ∅ ∧ emp (1) 
lseg(E, M, F ) ::= ∃X, v, M1. E → {(next, X), (data, v)} * lseg(X, M1, F )

∧ v ≤ M1 ∧ M = M1 ∪ {v} (2) 
where emp denotes the empty heap, E → {(next, X), (data, v)} states that the pointer field next of E points to X while its field data stores the value v, and * is the separating conjunction. Proving inductive invariants of typical sorting procedures requires such an inductive definition and the following lemma:

∃E2. lseg(E1, M1, E2) * lseg(E2, M2, E3) ∧ M1 ≤ M2 ⇒ ∃M. lseg (E1, M, E3).

The data constraints in these lemmas, e.g., M 1 ≤ M 2 (stating that every element of M 1 is less or equal than all the elements of M 2 ), which become more complex when reasoning for instance about binary search trees, are an important obstacle for trying to synthesize them automatically. Our work is based on a new class of inductive definitions for describing fragments of data structures that (i) supports lemmas without additional data constraints like M 1 ≤ M 2 and (ii) allows to automatically synthesize these lemmas using efficiently checkable, almost syntactic, criteria. For instance, we use a different inductive definition for lseg, which introduces an additional parameter M ′ that provides a "data port" for appending another sorted list segment, just like F does for the shape of the list segment:

lseg(E, M, F, M ′ ) ::= E = F ∧ M = M ′ ∧ emp (3) lseg(E, M, F, M ′ ) ::= ∃X, v, M1. E → {(next, X), (data, v)} * lseg(X, M1, F, M ′ ) ∧ v ≤ M1 ∧ M = M1 ∪ {v} (4) 
The new definition satisfies the following simpler lemma, which avoids the introduction of data constraints:

∃E2, M2. lseg (E1, M1, E2, M2) * lseg(E2, M2, E3, M3) ⇒ lseg(E1, M1, E3, M3). ( 5 
)
Besides such "composition" lemmas (formally defined in Sec. 4), we define (in Sec. 5) other classes of lemmas needed in program proofs and we provide efficient criteria for generating them automatically. Moreover, we propose (in Sec. 6) a proof strategy using such lemmas, based on simple syntactic matchings of spatial atoms (points-to atoms or predicate atoms like lseg) and reductions to SMT solvers for dealing with the data constraints. We show experimentally (in Sec. 7) that this proof strategy is powerful enough to deal with sophisticated benchmarks, e.g., the verification conditions generated from the iterative procedures for searching, inserting, or deleting elements in binary search trees, red-black trees, and AVL trees, in a very efficient way. The appendix contains the proofs of theorems and additional classes of lemmas.

Motivating Example

Fig. 1 lists an iterative implementation of a search procedure for binary search trees (BSTs). The property that E points to the root of a BST storing a multiset of values M is expressed by the following inductively-defined predicate:

bst (E, M ) : The predicate bst(E, M ) is defined by two rules describing empty (eq. ( 6)) and nonempty trees (eq. ( 7)). The body (right-hand side) of each rule is a conjunction of a pure formula, formed of (dis)equalities between location variables (e.g. E = nil) and data constraints (e.g. M = ∅), and a spatial formula describing the structure of the heap. The data constraints in eq. ( 7) define M to be the multiset of values stored in the tree, and state the sortedness property of BSTs. The precondition of search is bst(root, M 0 ), where M 0 is a ghost variable denoting the multiset of values stored in the tree, while its postcondition is bst (root, M 0 ) ∧ (key ∈ M 0 → ret = 1) ∧ (key ∈ M 0 → ret = 0), where ret denotes the return value.

:= E = nil ∧ M = ∅ ∧ emp (6) bst (E, M ) ::= ∃X, Y, M1, M2, v. E → {(left, X), (right, Y ), (data, v)} (7) * bst (X, M1) * bst (Y, M2) ∧ M = {v} ∪ M1 ∪ M2 ∧ M1 < v < M2
The while loop traverses the BST in a top-down manner using the pointer variable t. This variable decomposes the heap into two domain-disjoint subheaps: the tree rooted at t, and the truncated tree rooted at root which contains a "hole" at t. To specify the invariant of this loop, we define another predicate bsthole(E, M 1 , F, M 2 ) describing "truncated" BSTs with one hole F as follows:

bsthole(E, M1, F, M2)

::= E = F ∧ M1 = M2 ∧ emp (8) bsthole(E, M1, F, M2) ::= ∃X, Y, M3, M4, v. E → {(left, X), (right, Y ), (data, v)} * bst (X, M3) * bsthole(Y, M4, F, M2) (9) 
∧ M1 = {v} ∪ M3 ∪ M4 ∧ M3 < v < M4 bsthole(E, M1, F, M2) ::= ∃X, Y, M3, M4, v. E → {(left, X), (right, Y ), (data, v)} * bsthole(X, M3, F, M2) * bst (Y, M4) (10) 
∧ M1 = {v} ∪ M3 ∪ M4 ∧ M3 < v < M4
Intuitively, the parameter M 2 , interpreted as a multiset of values, is used to specify that the structure described by bsthole(E, M 1 , F, M 2 ) could be extended with a BST rooted at F and storing the values in M 2 , to obtain a BST rooted at E and storing the values in M 1 . Thus, the parameter M 1 of bsthole is the union of M 2 with the multiset of values stored in the truncated BST represented by bsthole(E, M 1 , F, M 2 ).

Using bsthole, we obtain a succinct specification of the loop invariant:

Inv ::= ∃M1. bsthole(root, M0, t, M1) * bst (t, M1) ∧ (key ∈ M0 ⇔ key ∈ M1). ( 11 
)
We illustrate that such inductive definitions are appropriate for automated reasoning, by taking the following branch of the loop: assume(t != NULL); assume(t->data > key); t ′ = t->left (as usual, if statements are transformed into assume statements and primed variables are introduced in assignments). The postcondition of Inv w.r.t. this branch, denoted post (Inv ), is computed as usual by unfolding the bst predicate:

∃M1, Y, v, M2, M3. bsthole(root, M0, t, M1) * t → {(left, t ′ ), (right, Y ), (data, v)} * bst (t ′ , M2) * bst (Y, M3) ∧ M1 = {v} ∪ M2 ∪ M3 ∧ M2 < v < M3 ∧ (key ∈ M0 ⇔ key ∈ M1) ∧ v > key. ( 12 
)
The preservation of Inv by this branch is expressed by the entailment post (Inv ) ⇒ Inv ′ , where Inv ′ is obtained from Inv by replacing t with t ′ . Based on the lemmas, this paper also proposes a deterministic proof strategy for proving the validity of entailments of the form ϕ 1 ⇒ ∃ X.ϕ 2 , where ϕ 1 , ϕ 2 are quantifier-free and X contains only data variables 3 . The strategy comprises two steps: (i) enumerating spatial atoms A from ϕ 2 , and for each of them, carving out a sub-formula ϕ A of ϕ 1 that entails A, where it is required that these subformulas do not share spatial atoms (due to the semantics of separation conjunction), and (ii) proving that the data constraints from ϕ A imply those from ϕ 2 (using SMT solvers). The step (i) may generate constraints on the variables in ϕ A and ϕ 2 that are used in step (ii). If the step (ii) succeeds, then the entailment holds.

For instance, by applying this strategy to the entailment post (Inv ) ⇒ Inv ′ above, we obtain two goals for step (i) which consist in computing two subformulas of post (Inv ) that entail ∃M ′ 1 . bsthole(root, M 0 , t ′ , M ′ 1 ) and respectively, ∃M ′′ 1 . bst(t ′ , M ′′ 1 ). This renaming of existential variables requires adding the equality

M 1 = M ′ 1 = M ′′ 1 to Inv ′ . The second goal, for ∃M ′′ 1 . bst (t ′ , M ′′ 1 )
, is solved easily since this atom almost matches the sub-formula bst(t ′ , M 2 ). This matching generates the constraint M ′′ 1 = M 2 , which provides an instantiation of 3 The existential quantifiers in ϕ1 are removed using skolemization.

the existential variable M ′′ 1 useful in proving the entailment between the data constraints in step (ii).

Computing a sub-formula that entails ∃M ′ 1 . bsthole(root, M 0 , t ′ , M ′ 1 ) requires a non-trivial lemma. Thus, according to the syntactic criteria defined in Sec. 4, the predicate bsthole enjoys the following composition lemma:

∃F, M. bsthole(root, M0, F, M ) * bsthole(F, M, t ′ , M ′ 1 ) (13) 
⇒ bsthole(root, M0, t ′ , M ′ 1 ).

Intuitively, this lemma states that composing two heap structures described by bsthole results in a structure that satisfies the same predicate. The particular relation between the arguments of the predicate atoms in the left-hand side is motivated by the fact that the parameters F and M are supposed to represent "ports" for composing bsthole(root, M 0 , F, M ) with some other similar heap structures. This property of F and M is characterized syntactically by the fact that, roughly, F (resp. M ) occurs only once in the body of each inductive rule of bsthole, and F (resp. M ) occurs only in an equality with root (resp. M 0 ) in the base rule (we are referring to the rules ( 8)- [START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF] with the parameters of bsthole substituted by (root, M 0 , F, M )). Therefore, the first goal reduces to finding a sub-formula of post (Inv ) that implies the premise of [START_REF] Guo | Shape analysis with inductive recursion synthesis[END_REF] where M ′ 1 remains existentially-quantified. Recursively, we apply the same strategy of enumerating spatial atoms and finding sub-formulas that entail them. However, we are relying on the fact that all the existential variables denoting the root locations of spatial atoms in the premise of the lemma, e.g., F in lemma [START_REF] Guo | Shape analysis with inductive recursion synthesis[END_REF], occur as arguments in the only spatial atom of the conclusion whose root location is the same as that of the consequent, i.e., bsthole(root, M 0 , F, M ) in lemma [START_REF] Guo | Shape analysis with inductive recursion synthesis[END_REF]. Therefore, the first sub-goal, ∃F, M. bsthole(root, M 0 , F, M ) matches the atom bsthole(root, M 0 , t, M 1 ), under the constraint F = t∧M = M 1 . This constraint is used in solving the second sub-goal, which now becomes ∃M ′ 1 . bsthole(t, M 1 , t ′ , M ′ 1 ). The second sub-goal is proved by unfolding bsthole twice, using first the rule [START_REF] Cook | Tractable reasoning in a fragment of separation logic[END_REF] and then the rule [START_REF] Chlipala | Mostly-automated verification of low-level programs in computational separation logic[END_REF], and by matching the resulting spatial atoms with those in post (Inv ) one by one. Assuming that the existential variable M 1 from Inv ′ is instantiated with M 2 from post (Inv ) (fact automatically deduced in the first step), the data constraints in post (Inv ) entail those in Inv ′ . This completes the proof of post (Inv ) ⇒ Inv ′ .

Separation Logic with Inductive Definitions

Let LVar be a set of location variables, interpreted as heap locations, and DVar a set of data variables, interpreted as data values stored in the heap, (multi)sets of values, etc. In addition, let Var = LVar ∪ DVar. The domain of heap locations is denoted by L while the domain of data values stored in the heap is generically denoted by D. Let F be a set of pointer fields, interpreted as functions L ⇀ L, and D a set of data fields, interpreted as functions L ⇀ D. The syntax of the Separation Logic fragment considered in this paper is defined in Tab. 1.

Formulas are interpreted over pairs (s, h) formed of a stack s and a heap h. The stack s is a function giving values to a finite set of variables (location 

Π ::= X = Y | X = Y | ∆ | Π ∧ Π pure formulas Σ ::= emp | E → ρ | P (E, F ) | Σ * Σ spatial formulas ϕ ::= Π ∧ Σ | ϕ ∨ ϕ | ∃x. ϕ formulas
or data variables) while the heap h is a function mapping a finite set of pairs (ℓ, pf ), where ℓ is a location and pf is a pointer field, to locations, and a finite set of pairs (ℓ, df ), where df is a data field, to values in D. In addition, h satisfies the condition that for each ℓ ∈ L, if (ℓ, df ) ∈ dom(h) for some df ∈ D, then (ℓ, pf ) ∈ dom(h) for some pf ∈ F . Let dom(h) denote the domain of h, and ldom(h) denote the set of ℓ ∈ L such that (ℓ, pf ) ∈ dom(h) for some pf ∈ F . Formulas are conjunctions between a pure formula Π and a spatial formula Σ. Pure formulas characterize the stack s using (dis)equalities between location variables, e.g., a stack models x = y iff s(x) = s(y), and constraints ∆ over data variables. We let ∆ unspecified, though we assume that they belong to decidable theories, e.g., linear arithmetic or quantifier-free first order theories over multisets of values. The atom emp of spatial formulas holds iff the domain of the heap is empty. The points-to atom E → {(f i , x i )} i∈I specifies that the heap contains exactly one location E, and for all i ∈ I, the field f i of E equals x i , i.e., h(s(E), f i ) = s(x i ). The predicate atom P (E, F ) specifies a heap segment rooted at E and shaped by the predicate P ; the fragment is parameterized by a set P of inductively defined predicates, formally defined hereafter.

Let P ∈ P. An inductive definition of P is a finite set of rules of the form P (E, F ) ::= ∃ Z.Π ∧ Σ, where Z ∈ Var * is a tuple of variables. A rule R is called a base rule if Σ contains no predicate atoms. Otherwise, it is called an inductive rule. A base rule R is called spatial-empty if Σ = emp. Otherwise, it is called a spatial-nonempty base rule. For instance, the predicate bst in Sec. 2 is defined by one spatial-empty base rule and one inductive rule.

We consider a class of restricted inductive definitions that are expressive enough to deal with intricate data structures (see Sec. 7) while also enabling efficient proof strategies for establishing the validity of the verification conditions (see Sec. 6). For each rule R : P (E, F ) ::= ∃ Z.Π ∧ Σ in the definition of a predicate P (E, F ) ∈ P, we assume that:

-If R is inductive, then Σ = Σ 1 * Σ 2 and the following conditions hold:

• the root atoms: Σ 1 contains only points-to atoms and a unique points-to atom starting from E, denoted as E → ρ. Also, all the location variables from Z occur in Σ 1 . Σ 1 is called the root of R and denoted by root(R). • connectedness: the Gaifman graph of Σ 1 , denoted by G Σ1 , is a connected DAG (directed acyclic graph) with the root E, that is, every vertex is reachable from E, • predicate atoms: Σ 2 contains only atoms of the form Q(Z, Z ′ ), and for each such atom, Z is a vertex in G Σ1 without outgoing arcs.

-If R is a spatial-nonempty base rule, then Σ contains exactly one points-to atom E → ρ, for some ρ. The classic acyclic list segment definition [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] satisfies these constraints as well as the first rule below; the second rule below falsifies the "root atoms" constraint:

lsegeven(E, F ) ::= ∃X, Y. E → (next, X) * X → (next, Y ) * lsegeven(Y, F ) lsegb(E, F ) ::= ∃X. lsegb(E, X) * X → (next, F ).
Since we disallow the use of negations on top of the spatial atoms, the semantics of the predicates in P is defined as usual as a least fixed-point. The class of inductive definitions defined above is in general undecidable, since with data fields, inductive definitions can be used to simulate two-counter machines.

A variable substitution η is a mapping from a finite subset of Var to the set of terms over the respective domains. For instance, if X ∈ LVar and v, v 1 ∈ DVar be integer variables then the mapping η = {X → nil, v → v 1 + 5} is a variable substitution. We denote by free(ψ) the set of free variables of a formula ψ.

Composition Lemmas

As we have seen in the motivating example, the predicate bsthole(E, M 1 , F, M 2 ) satisfies the property that composing two heap structures described by this predicate results in a heap structure satisfying the same predicate. We call this property a composition lemma. We define simple and uniform syntactic criteria which, if they are satisfied by a predicate, then the composition lemma holds.

The main idea is to divide the parameters of inductively defined predicates into three categories: The source parameters α = (E, C), the hole parameters β = (F, H), and the static parameters ξ ∈ Var * , where E, F ∈ LVar are called the source and resp., the hole location parameter, and C, H ∈ DVar are called the cumulative and resp., the hole data parameter 4 .

Let P be a set of inductively defined predicates and P ∈ P with the parameters ( α, β, ξ ). Then P is said to be syntactically compositional if the inductive definition of P contains exactly one base rule, and at least one inductive rule, and the rules of P are of one of the following forms:

-Base rule: P ( α, β, ξ ) :

:= α 1 = β 1 ∧ α 2 = β 2 ∧ emp.
Note that here the points-to atoms are disallowed. -Inductive rule: P ( α, β, ξ ) ::= ∃ Z. Π ∧ Σ, with (a) Σ Σ 1 * Σ 2 * P ( γ, β, ξ ), (b) Σ 1 contains only and at least one points-to atoms, (c) Σ 2 contains only and possibly none predicate atoms, (d) γ ⊆ Z, and (d) the variables in β do not occur elsewhere in Π ∧Σ, i.e., not in Π, or Σ 1 , or Σ 2 , or γ. Note that the inductive rule also satisfies the constraints "root atom" and "connectedness" introduced in Sec. 3. In addition, Σ 2 may contain P atoms. One may easily check that both the predicate lseg(E, M, F, M ′ ) in eq. ( 3)-( 4) and the predicate bsthole(E, M 1 , F, M 2 ) in eq. ( 8)-( 10) are syntactically compositional, while the predicate lseg(E, M, F ) in eq. ( 1)-( 2) is not.

A predicate P ∈ P with the parameters ( α, β, ξ ) is said to be semantically compositional if the entailment ∃ β. P ( α, β, ξ ) * P ( β, γ, ξ ) ⇒ P ( α, γ, ξ ) holds.

Theorem 1. Let P be a set of inductively defined predicates. If P ∈ P is syntactically compositional, then P is semantically compositional.

The proof of Thm. 1 is done (see [START_REF] Enea | On automated lemma generation for separation logic with inductive definitions[END_REF]) by induction on the size of the domain of the heap structures. Suppose (s, h) |= P ( α, β, ξ ) * P ( β, γ, ξ ), then either s( α) = s( β) or s( α) = s( β). If the former situation occurs, then (s, h) |= P ( α, γ, ξ ) follows immediately. Otherwise, the predicate P ( α, β, ξ ) is unfolded by using some inductive rule of P , and the induction hypothesis can be applied to a subheap of smaller size. Then (s, h) |= P ( α, γ, ξ ) can be deduced by utilizing the property that the hole parameters occur only once in each inductive rule of P .

Remark 1. The syntactically compositional predicates are rather general in the sense that they allow nestings of predicates, branchings (e.g. trees), as well as data and size constraints. Therefore, composition lemmas can be obtained for complex data structures like nested lists, AVL trees, red-black trees, and so on. In addition, although lemmas have been widely used in the literature, we are not aware of any work that uses the composition lemmas as simple and elegant as those introduced above, when data and size constraints are included.

Derived Lemmas

Theorem 1 provides a mean to obtain lemmas for one single syntactically compositional predicate. In the following, based on the syntactic compositionality, we demonstrate how to derive additional lemmas describing relationships between different predicates (proofs are detailed in [START_REF] Enea | On automated lemma generation for separation logic with inductive definitions[END_REF]). We identify three categories of derived lemmas: "completion" lemmas, "stronger" lemmas, and "staticparameter contraction" lemmas. Based on our experiences in the experiments (cf. Sec. 7) and the examples from the literature, we believe that the composition lemmas as well as the derived ones are natural, essential, and general enough for the verification of programs manipulating dynamic data structures. For instance, the "composition" lemmas and "completion" lemmas are widely used in our experiments, the "stronger" lemmas are used to check the verification conditions for rebalancing AVL trees and red-black trees. While "static parameter contraction" lemmas are not used in our experiments, they could also be useful, e.g., for the verification of programs manipulating lists with tail pointers.

The "completion" lemmas

We first consider the "completion" lemmas which describe relationships between incomplete data structures (e.g., binary search trees with one hole) and complete data structures (e.g., binary search trees). For example, the following lemma is valid for the predicates bsthole and bst:

∃F, M2. bsthole(E, M1, F, M2) * bst (F, M2) ⇒ bst (E, M1).
Notice that the rules defining bst (E, M ) can be obtained from those of bsthole(E 1 , M 1 , F, M 2 ) by applying the variable substitution η = {F → nil, M 2 → ∅} (modulo the variable renaming M 1 by M ). This observation is essential to establish the "completion lemma" and it is generalized to arbitrary syntactically compositional predicates as follows.

Let P ∈ P be a syntactically compositional predicate with the parameters ( α, β, ξ ), and P ′ ∈ P a predicate with the parameters ( α, ξ ). Then P ′ is a completion of P with respect to a pair of constants c = c 1 c 2 , if the rules of P ′ are obtained from the rules of P by applying the variable substitution η =

{β 1 → c 1 , β 2 → c 2 }. More precisely, -let α 1 = β 1 ∧ α 2 = β 2 ∧
emp be the base rule of P , then P ′ contains only one base rule, that is,

α 1 = c 1 ∧ α 2 = c 2 ∧ emp,
the set of inductive rules of P ′ is obtained from those of P as follows: Let P ( α, β, ξ ) ::= ∃ Z. Π ∧ Σ 1 * Σ 2 * P ( γ, β, ξ ) be an inductive rule of P , then

P ′ ( α, ξ ) ::= ∃ Z. Π ∧ Σ 1 * Σ 2 * P ′ ( γ, ξ ) is an inductive rule of P ′ (Recall that β does not occur in Π, Σ 1 , Σ 2 , γ).
Theorem 2. Let P ( α, β, ξ ) ∈ P be a syntactically compositional predicate, and P ′ ( α, ξ ) ∈ P. If P ′ is a completion of P with respect to c, then P ′ ( α, ξ ) ⇔ P ( α, c, ξ ) and ∃ β. P ( α, β, ξ ) * P ′ ( β, ξ ) ⇒ P ′ ( α, ξ ) hold.

The "stronger" lemmas

We illustrate this class of lemmas on the example of binary search trees. Let natbsth(E, M 1 , F, M 2 ) be the predicate defined by the same rules as bsthole(E, M 1 , F, M 2 ) (i.e., eq. ( 8)-( 10)), except that M 3 ≥ 0 (M 3 is an existential variable) is added to the body of each inductive rule (i.e., eq. ( 9) and ( 10)). Then we say that natbsth is stronger than bsthole, since for each rule R ′ of natbsth, there is a rule R of bsthole, such that the body of R ′ entails the body of R. This "stronger" relation guarantees that the following lemmas hold:

natbsth (E, M1, F, M2) ⇒ bsthole(E, M1, F, M2) ∃E2, M2. natbsth (E1, M1, E2, M2) * bsthole(E2, M2, E3, M3) ⇒ bsthole(E1, M1, E3, M3).
In general, for two syntactically compositional predicates P, P ′ ∈ P with the same set of parameters ( α, β, ξ ), P ′ is said to be stronger than P if for each inductive rule P ′ ( α, β, ξ ) ::= ∃ Z. Π ′ ∧ Σ 1 * Σ 2 * P ′ ( γ, β, ξ ), there is an inductive rule P ( α, β, ξ ) ::= ∃ Z. Π ∧ Σ 1 * Σ 2 * P ( γ, β, ξ ) such that Π ′ ⇒ Π holds. The following result is a consequence of Thm. 1.

Theorem 3. Let P ( α, β, ξ ), P ′ ( α, β, ξ ) ∈ P be two syntactically compositional predicates. If P ′ is stronger than P , then the entailments P ′ ( α, β, ξ ) ⇒ P ( α, β, ξ ) and ∃ β. P ′ ( α, β, ξ ) * P ( β, γ, ξ ) ⇒ P ( α, γ, ξ ) hold.

The "stronger" relation defined above requires that the spatial formulas in the inductive rules of P and P ′ are the same. This constraint can be relaxed by only requiring that the body of each inductive rule of P ′ is stronger than a formula obtained by unfolding an inductive rule of P for a bounded number of times. This relaxed constraint allows generating additional lemmas, e.g., the lemmas relating the predicates for list segments of even length and list segments.

The "static-parameter contraction" lemmas

Let tailbsth(E, M 1 , F, M 2 ) (resp. stabsth(E, M 1 , F, M 2 , B)) be the predicate defined by the same rules as bsthole(E, M 1 , F, M 2 ), with the modification that the points-to atom in each inductive rule is replaced by E → {(left, X), (right, Y ), (tail, F ), (data, v)} (resp. E → {(left, X), (right, Y ), (tail, B), (data, v)}). Intuitively, tailbsth (resp. stabsth) is obtained from bsthole by adding a tail pointer to F (resp. B). Then tailbsth is not syntactically compositional since F occurs in the points-to atoms of the inductive rules. On the other hand, stabsth is syntactically compositional.

From the above description, it is easy to observe that the inductive definition of tailbsth(E, M 1 , F, M 2 ) can be obtained from that of stabsth(E, M 1 , F, M 2 , B) by replacing B with F . Then the lemma tailbsth(E, M 1 , F, M 2 ) ⇔ stabsth(E, M 1 , F, M 2 , F ) holds. From this, we further deduce the lemma

∃E2, M2. stabsth (E1, M1, E2, M2, E3) * tailbsth(E2, M2, E3, M3) ⇒ tailbsth(E1, M1, E3, M3).
We call the aforementioned replacement of B by F in the inductive definition of stabsth as the "static-parameter contraction". This idea can be generalized to arbitrary syntactically compositional predicates as follows.

Let P ∈ P be a syntactically compositional predicate with the parameters ( α, β, ξ ), P ′ ∈ P be an inductive predicate with the parameters ( α, β, ξ ′ ), ξ = ξ 1 . . . ξ k , and ξ ′ = ξ ′ 1 . . . ξ ′ l . Then P ′ is called a static-parameter contraction of P if the rules of P ′ are obtained from those of P by a variable substitution η s.t. dom(η) = ξ, for each i : 1 ≤ i ≤ k, either η(ξ i ) = ξ i , or η(ξ i ) = β j for some j = 1, 2 satisfying that ξ i and β j have the same data type, and ξ ′ is the tuple obtained from η( ξ ) by removing the β j 's. The substitution η is called the contraction function.

Theorem 4. Let P ( α, β, ξ ) ∈ P be a syntactically compositional predicate and P ′ ( α, β, ξ ′ ) ∈ P be an inductive predicate. If P ′ is a static-parameter contraction of P with the contraction function η, then P ′ ( α, β, ξ ′ ) ⇔ P ( α, β, η( ξ )) and ∃ β. P ( α, β, η( ξ )) * P ′ ( β, γ, ξ ′ ) ⇒ P ′ ( α, γ, ξ ′ ) hold. Remark 2. The lemmas presented in the last two sections are incomplete in the sense that they may not cover all the lemmas for a given set of inductive predicates. Although various extensions of the lemmas are possible, generating all the possible lemmas can be quite complex in general. Thm. 3 in [START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF] shows that generating all the lemmas is at least EXPTIME-hard, even for a fragment restricted to shape properties, without any data or size constraint.

A Proof Strategy Based on Lemmas

We introduce a proof strategy based on lemmas for proving entailments ϕ 1 ⇒ ∃ X.ϕ 2 , where ϕ 1 , ϕ 2 are quantifier-free, and X ∈ DVar * . The proof strategy treats uniformly the inductive rules defining predicates and the lemmas defined in Sec. 4-5. Therefore, we call lemma also an inductive rule. W.l.o.g. we assume that

(Match1) Σ1 = θ(Σ2) η = θ| X Π1 ∧ EQ(η) |= EQ(θ| free(∃ X.Σ 2 ) ) Π1 ∧ Σ1 |= SUB η ∃ X. Σ2 (Match2) Π1 ∧ Σ1 |= SUB η ∃ X. Σ2 Π1 ∧ Σ1 |=η ∃ X. Σ2 (Lemma) Π1 ∧ Σ1 |= SUB η 1 ∃ Z ′ . root(L) Π1 ∧ Σ ′ 1 |=η 2 ∃ Z ′′ . η1(Π ∧ Σ) Π1 ∧ Σ1 * Σ ′ 1 |= η| X ∃ X. A -L ::= ∃ Z. Π ∧ root(L) * Σ ⇒ A is a lemma, -Z ′ = ( X ∪ Z) ∩ free(root(L)), Z ′′ = ( X ∪ Z) ∩ free(η1(Π ∧ Σ)), -η = ext Π (η1 ∪ η2) is the extension of η1 ∪ η2 with Π s.t. dom(η) = X ∪ Z. (Slice) Π1 ∧ Σ1 |=η 1 ∃ Z ′ .A Π1 ∧ Σ2 |=η 2 ∃ Z ′′ .Σ Π1 ∧ EQ(η) |= Π2 Π1 ∧ Σ1 * Σ2 |=η ∃ X. Π2 ∧ A * Σ -Z ′ = X ∩ free(A), Z ′′ = X ∩ free(Σ), -η = ext Π 2 (η1 ∪ η2) is the extension of η1 ∪ η2 with Π2 s.t. dom(η) = X.
Fig. 2. The proof rules for checking the entailment ϕ1 ⇒ ∃ X. ϕ2 ϕ 1 is quantifier-free (the existential variables can be skolemized). In addition, we assume that only data variables are quantified in the right-hand side 5 . W.l.o.g., we assume that every variable in X occurs in at most one spatial atom of ϕ 2 (multiple occurrences of the same variable can be removed by introducing fresh variables and new equalities in the pure part). Also, we assume that ϕ 1 and ϕ 2 are of the form Π ∧ Σ. In the general case, our proof strategy checks that for every disjunct ϕ

′ 1 of ϕ 1 , there is a disjunct ϕ ′ 2 of ϕ 2 s.t. ϕ ′ 1 ⇒ ∃ X.ϕ ′ 2 .
We present the proof strategy as a set of rules in Fig. 2. For a variable substitution η and a set X ⊆ Var, we denote by η| X the restriction of η to X . In addition, EQ(η) is the conjunction of the equalities X = t for every X and t such that η(X) = t. Given two formulas ϕ 1 and ϕ 2 , a substitution η with dom(η) = X, the judgement ϕ 1 |= η ∃ X.ϕ 2 denotes that the entailment ϕ 1 ⇒ η(ϕ 2 ) is valid. Therefore, η provides an instantiation for the quantified variables X which witnesses the validity.

The rules Match1 and Match2 consider a particular case of |= η , denoted using the superscript SUB, where the spatial atoms of ϕ 2 are syntactically matched 6 to the spatial atoms of ϕ 1 modulo a variable substitution θ. The substitution of the existential variables is recorded in η, while the substitution of the free variables generates a set of equalities that must be implied by Π 1 ∧ EQ(η). For example, let

Π 1 ∧ Σ 1 ::= w = w ′ ∧ E → {(f, Y ), (d 1 , v), (d 2 , w)}, and ∃ X. Σ 2 ::= ∃X, v ′ . E → {(f, X), (d 1 , v ′ ), (d 2 , w ′ )}, where d 1 and d 2 are data fields. If θ = {X → Y, v ′ → v, w ′ → w}, then Σ 1 = θ(Σ 2
). The substitution of the free variable w ′ from the right-hand side is sound since the equality w = w ′ occurs in the left-hand side. Therefore,

Π 1 ∧ Σ 1 |= SUB θ| {X,v ′ } ∃X, v ′ . Σ 2 holds.
The rule Lemma applies a lemma L ::= ∃ Z. Π ∧ root(L) * Σ ⇒ A. It consists in proving that ϕ 1 implies the LHS of the lemma where the variables in X are existentially quantified, i.e., ∃ X∃ Z. Π ∧ root(L) * Σ. Notice that Z may contain existential location variables. Finding suitable instantiations for these variables relies on the assumption that root (L) in the LHS of L is either a unique predicate atom or a separating conjunction of points-to atoms rooted at E (the first parameter of A) and root (L) includes all the location variables in Z. This assumption holds for all the inductive rules defining predicates in our fragment (a consequence of the root and connectedness constraints) and for all the lemmas defined in Sec. 4-5. The proof that ϕ 1 implies ∃ X∃ Z. Π ∧ root(L) * Σ is split into two sub-goals (i) proving that a sub-formula of ϕ 1 implies ∃ X∃ Z. root(L) and (ii) proving that a sub-formula of ϕ 1 implies ∃ X∃ Z. Π ∧ Σ. The sub-goal (i) relies on syntactic matching using the rule Match1, which results in a quantifier instantiation η 1 . The substitution η 1 is used to instantiate existential variables in ∃ X∃ Z. Π ∧ Σ. Notice that according to the aforementioned assumption, the location variables in Z are not free in η 1 (Π ∧ Σ). Let η 2 be the quantifier instantiation obtained from the second sub-goal. The quantifier instantiation η is defined as the extension of η 1 ∪ η 2 to the domain X ∪ Z by utilizing the pure constraints Π from the lemma7 . This extension is necessary since some existentially quantified variables may only occur in Π, but not in root(L) nor in Σ, so they are not covered by

η 1 ∪ η 2 . For instance, if Π contains a conjunct M = M 1 ∪ M 2 such that M 1 ∈ dom(η 1 ), M 2 ∈ dom(η 2 ), and M ∈ dom(η 1 ∪ η 2 ), then η 1 ∪ η 2 is extended to η where η(M ) = η 1 (M 1 ) ∪ η 2 (M 2 ).
The rule Slice chooses a spatial atom A in the RHS and generates two sub-goals: (i) one that matches A (using the rules Match2 and Lemma) with a spatial sub-formula of the LHS (Σ 1 ) and (ii) another that checks that the remaining spatial part of the RHS is implied by the remaining part of the LHS. The quantifier instantiations η 1 and η 2 obtained from the two sub-goals are used to check that the pure constraints in the RHS are implied by the ones in LHS. Note that in the rule Slice, it is possible that Σ 2 = Σ = emp.

The rules in Fig. 2 are applied in the order given in the figure. Note that they focus on disjoint cases w.r.t. the syntax of the RHS. The choice of the atom A in Slice is done arbitrary, since it does not affect the efficiency of proving validity.

We apply the above proof strategy to the entailment ϕ 1 ⇒ ∃M. ϕ 2 where:

ϕ1 ::= x1 = nil ∧ x2 = nil ∧ v1 < v2 ∧ x1 → {(next, x2), (data, v1)} * x2 → {(next, nil), (data, v2)} ϕ2 ::= lseg (x1, M, nil, ∅) ∧ v2 ∈ M,
and lseg has been defined in Sec. 1 (eq. ( 3)-( 4)). The entailment is valid because it states that two cells linked by next and storing ordered data values form a sorted list segment. The RHS ϕ 2 contains a single spatial atom and a pure part so the rule Slice is applied and it generates the sub-goal ϕ 1 |= η ∃M. lseg(x 1 , M, nil, ∅) for which the syntactic matching (rule Match1) can not be applied. Instead, we apply the rule Lemma using as lemma the inductive rule of lseg, i.e., eq. ( 4) (page II). We obtain the RHS ∃M,

X, M 1 , v. x 1 → {(next, X), (data, v)} * lseg(X, M 1 , nil, ∅) ∧ M = {v} ∪ M 1 ∧ v ≤ M 1 , where x 1 → {(next, X), (data, v)} is the root. The rule Match1 is applied with Π 1 ∧ Σ 1 ::= x 1 = nil ∧ x 2 = nil ∧ v 1 < v 2 ∧ x 1 → {(next, x 2 ), (data, v 1 )} and it returns the substitution η 1 = {X → x 2 , v → v 1 }. The second sub-goal is Π 1 ∧ Σ 2 |= η2 ∃M, M 1 .ψ ′ where Π 1 ∧ Σ 2 ::= x 1 = nil ∧ x 2 = nil ∧ v 1 < v 2 ∧ x 2 → {(next, nil), (data, v 2 )} and ψ ′ ::= M = {v 1 }∪M 1 ∧v 1 ≤ M 1 ∧lseg(x 2 , M 1 , nil, ∅).
For this sub-goal, we apply the rule Slice, which generates a sub-goal where the rule Lemma is applied first, using the same lemma, then the rule Slice is applied again, and finally the rule Lemma is applied with a lemma corresponding to the base rule of lseg, i.e., eq. ( 3) (page II). This generates a quantifier instantiation

η 2 = {M → {v 1 , v 2 }, M 1 → {v 2 }}. Then, η 1 ∪ η 2 is extended with the constraints from the pure part of the lemma, i.e., M = {v} ∪ M 1 ∧ v 1 ≤ M 1 . Since M ∈ dom(η 1 ∪ η 2 )
, this extension has no effect. Finally, the rule Slice checks that Π 1 ∧ EQ(η| {M} ) |= Π 2 holds, where EQ(η| {M} ) :

:= M = {v 1 , v 2 } and Π 2 ::= v 2 ∈ M .
The last entailment holds, so the proof of validity is done.

The following theorem states the correctness of the proof rules. Moreover, since we assume a finite set of lemmas, and every application of a lemma L removes at least one spatial atom from ϕ 1 (the atoms matched to root (L)), the termination of the applications of the rule Lemma is guaranteed.

Theorem 5. Let ϕ 1 and ∃ X.ϕ 2 be two formulas such that X contains only data variables. If ϕ 1 |= η ∃ X.ϕ 2 for some η, then ϕ 1 ⇒ ∃ X.ϕ 2 .

Experimental results

We have extended the tool spen [START_REF] Spen | [END_REF] with the proof strategy proposed in this paper. The entailments are written in an extension of the SMTLIB format used in the competition SL-COMP'14 for separation logic solvers. It provides as output SAT, UNSAT or UNKNOWN, and a diagnosis for all these cases.

The solver starts with a normalization step, based on the boolean abstractions described in [START_REF] Enea | Compositional entailment checking for a fragment of separation logic[END_REF], which saturates the input formulas with (dis)equalities between location variables implied by the semantics of separating conjunction. The entailments of data constraints are translated into satisfiability problems in the theory of integers with uninterpreted functions, discharged using an SMT solver dealing with this theory.

We have experimented the proposed approach on two sets of benchmarks8 : RDBI: verification conditions for proving the correctness of iterative procedures (delete, insert, search) over recursive data structures storing integer data: sorted lists, binary search trees (BST), AVL trees, and red black trees (RBT). SL-COMP'14: problems in the SL-COMP'14 benchmark, without data constraints, where the inductive definitions are syntactically compositional.

Tab. 2 provides the experiment results 9 for RDBI. The column #VC gives the number of verification conditions considered for each procedure. The column Lemma provides statistics about the lemma applications as follows: #b and #r are the number of the applications of the lemmas corresponding to base resp. inductive rules, #c and #d are the number of the applications of the composition resp. derived lemmas, and #p is the number of predicates matched syntactically, without applying lemmas. Column ⇒ D gives the number of entailments between data constraints generated by spen. Column Time-spen gives the "system" time spent by spen on all verification conditions of a function10 excepting the time taken to solve the data constraints by the SMT solver, which is given in the column Time-SMT.

Tab. 3 provides a comparison of our approach (column spen) with the decision procedure in [START_REF] Enea | Compositional entailment checking for a fragment of separation logic[END_REF] (column spen-TA) on the same set of benchmarks from SL-COMP'14. The times of the two decision procedures are almost the same, which demonstrates that our approach, as an extension of that in [START_REF] Enea | Compositional entailment checking for a fragment of separation logic[END_REF], is robust.

Related work

There have been many works on the verification of programs manipulating mutable data structures in general and the use of separation logic, e.g., [1-5, 7-11, 13-17, 21, 23, 26]. In the following, we discuss those which are closer to our approach.

The prover SLEEK [START_REF] Chin | Automated verification of shape, size and bag properties via user-defined predicates in separation logic[END_REF][START_REF] Nguyen | Enhancing program verification with lemmas[END_REF] provides proof strategies for proving entailments of SL formulas. These strategies are also based on lemmas, relating inductive definitions, but differently from our approach, these lemmas are supposed to be given by the user (SLEEK can prove the correctness of the lemmas once they are provided). Our approach is able to discover and synthesize the lemmas systematically, efficiently, and automatically.

The natural proof approach DRYAD [START_REF] Pek | Natural proofs for data structure manipulation in C using separation logic[END_REF][START_REF] Qiu | Natural proofs for structure, data, and separation[END_REF] can prove automatically the correctness of programs against the specifications given by separation logic formulas with inductive definitions. Nevertheless, the lemmas are still supposed to be provided by the users in DRYAD, while our approach can generate the lemmas automatically. Moreover, DRYAD does not provide an independent solver to decide the entailment of separation logic formulas, which makes difficult to compare the performance of our tool with that of DRYAD. In addition, the inductive definitions used in our paper enable succinct lemmas, far less complex than those used in DRYAD, which include complex constraints on data variables and the magic wand.

The method of cyclic proofs introduced by [START_REF] Brotherston | Automated cyclic entailment proofs in separation logic[END_REF] and extended recently in [START_REF] Chu | Automating proofs of data-structure properties in imperative programs[END_REF] proves the entailment of two SL formulas by using induction on the paths of proof trees. They are not generating the lemma, but the method is able to (soundly) check intricate lemma given by the user, even ones which are out of the scope of our method, e.g., lemmas concerning the predicate RList which is defined by unfolding the list segments from the end, instead of the beginning. The cyclic proofs method can be seen like a dynamic lemma generation using complex reasoning on proof trees, while our method generates lemma statically by simple checks on the inductive definitions. We think that our lemma generator could be used in the cyclic proof method to cut proof trees.

The tool SLIDE [START_REF] Iosif | The tree width of separation logic with recursive definitions[END_REF][START_REF] Iosif | Deciding entailments in inductive separation logic with tree automata[END_REF] provides decision procedures for fragments of SL based on reductions to the language inclusion problem of tree automata. Their fragments contain no data or size constraints. In addition, the EXPTIME lower bound complexity is an important obstacle for scalability. Our previous work [START_REF] Enea | Compositional entailment checking for a fragment of separation logic[END_REF] introduces a decision procedure based on reductions to the membership problem of tree automata which however is not capable of dealing with data constraints. The tool GRASShopper [START_REF] Piskac | Automating separation logic with trees and data[END_REF] is based on translations of SL fragments to first-order logic with reachability predicates, and the use of SMT solvers to deal with the latter. The advantage is the integration with other SMT theories to reason about data. However, this approach considers a limited class of inductive definitions (for linked lists and trees) and is incapable of dealing with the size or multiset constraints, thus unable to reason about AVL or red-black trees.

The truncation point approach [START_REF] Guo | Shape analysis with inductive recursion synthesis[END_REF] provides a method to specify and verify programs based on separation logic with inductive definitions that may specify truncated data structures with multiple holes, but it cannot deal with data constraints. Our approach can also be extended to cover such inductive definitions.

We proposed a novel approach for automating program proofs based on Separation Logic with inductive definitions. This approach consists of (1) efficiently checkable syntactic criteria for recognizing inductive definitions that satisfy crucial lemmas in such proofs and (2) a novel proof strategy for applying these lemmas. The proof strategy relies on syntactic matching of spatial atoms and on SMT solvers for checking data constraints. We have implemented this approach in our solver spen and applied it successfully to a representative set of examples, coming from iterative procedures for binary search trees or lists.

In the future, we plan to investigate extensions to more general inductive definitions by investigating ideas from [START_REF] Chu | Automating proofs of data-structure properties in imperative programs[END_REF][START_REF] Qiu | Natural proofs for structure, data, and separation[END_REF] to extend our proof strategy. From a practical point of view, apart from improving the implementation of our proof strategy, we plan to integrate it into the program analysis framework Celia [START_REF] Celia | [END_REF].

The argument for the second claim goes as follows: From the fact that P ′ ( β, γ, ξ ′ ) ⇔ P ( β, γ, η( ξ )), we deduce that ∃ β. P ( α, β, η( ξ )) * P ′ ( β, γ, ξ ′ ) ⇒ P ( α, β, η( ξ )) * P ( β, γ, η( ξ )).

From Theorem 1, we know that P ( α, β, η( ξ )) * P ( β, γ, η( ξ )) ⇒ P ( α, γ, η( ξ )).

Then the second claim follows from the fact P ( α, γ, η( ξ )) ⇔ P ′ ( α, γ, ξ ′ ).

⊓ ⊔

C Extensions of the lemmas

In this section, we discuss how the the basic idea of syntactical compositionality can be extended in various ways.

C.1 Multiple location and data parameters

At first, we would like to emphasize that although we restrict our discussions on compositional predicates P ( α, β, ξ) to the special case that α (resp. β) contain only two parameters: one location parameter, and one data parameter. But all the results about the lemmas can be generalized smoothly to the situation that α and β contain multiple location and data parameters.

C.2 Pseudo-composition lemmas

We then consider syntactically pseudo-compositional predicates. We still use the binary search trees to illustrate the idea. Suppose neqbsthole is the predicate defined by the same rules as bsthole, with the modification that E = F is added to the body of each inductive rule. Then neqbsthole is not syntactically compositional anymore and the composition lemma

∃E 2 , M 2 . neqbsthole(E 1 , M 1 , E 2 , M 2 ) * neqbsthole(E 2 , M 2 , E 3 , M 3 ) ⇒ neqbsthole(E 1 , M 1 , E 3 , M 3 )
does not hold. This is explained as follows: Suppose h = h 1 * h 2 (where h = h 1 * h 2 denotes that h 1 and h 2 are domain disjoint and h is the union of h 1 and h 2 ), (s,

h 1 ) |= neqbsthole(E 1 , M 1 , E 2 , M 2 ) and (s, h 2 ) |= neqbsthole(E 2 , M 2 , E 3 , M 3 
), in addition, both ldom(h 1 ) and ldom(h 2 ) are nonempty. Then from the inductive definition of neqbsthole, we deduce that s(E 1 ) = s(E 2 ) and s(E 2 ) = s(E 3 ). On the other hand, (s, h) |= bsthole1(E 1 , M 1 , E 3 , M 3 ) requires that s(E 1 ) = s(E 3 ), which cannot be inferred from s(E 1 ) = s(E 2 ) and s(E 2 ) = s(E 3 ) in general. Nevertheless, the entailment

∃E 2 , M 2 . neqbsthole(E 1 , M 1 , E 2 , M 2 ) * neqbsthole(E 2 , M 2 , E 3 , M 3 ) * E 3 → ((lef t, X), (right, Y ), (data, v)) ⇒ neqbsthole(E 1 , M 1 , E 3 , M 3 ) * E 3 → ((lef t, X), (right, Y ), (data, v))
holds since the information E 1 = E 3 can be inferred from the fact that E 3 is allocated and separated from E 1 . Therefore, intuitively, in this situation, the composition lemma can be applied under the condition that we already know that E 1 = E 3 . We call this as pseudo-compositionality. Our decision procedure can be generalized to apply the pseudo-composition lemmas when proving the entailment of two formulas.

C.3 Data structures with parent pointers

Next, we show how our ideas can be generalized to the data structures with parent pointers, e.g. doubly linked lists or trees with parent pointers. We use binary search trees with parent pointers to illustrate the idea. We can define the predicates prtbst(E, P r, M ) and prtbsthole(E, P r 1 , M 1 , F, P r 2 , M 2 ) to describe respectively binary search trees with parent pointers and binary search trees with parent pointers and one hole. The intuition of E, F are still the source and the hole, while P r and P r 1 (resp. P r 2 ) are the parent of E (resp. F ) (the definition of prtbst is omitted here).

prtbsthole(E, P r 1 , M 1 , F, P r 2 , M Then the predicate prtbsthole enjoys the composition lemma ∃E 2 , P r 2 , M 2 . prtbsthole(E 1 , P r 1 , M 1 , E 2 , P r 2 , M 2 ) * prtbsthole(E 2 , P r 2 , M 2 , E 3 , P r 3 , M 3 ) ⇒ prtbsthole(E 1 , P r 1 , M 1 , E 3 , P r 3 , M 3 ).

C.4 Points-to atom in base rules

Finally, we discuss the constraint that the base rule of a syntactically compositional predicate has an empty spatial atom. We use the predicates lsegeven and lsegodd to illustrate the idea. The definition of lsegodd(E, F ) can be obtained from that of lsegeven(E, F ) by replacing the base rule with the rule lsegodd(E, F ) ::= E → (next, F ). The only difference between the inductive definition of lsegeven and and that of lsegodd is that lsegeven has an empty base rule, while lsegodd does not. From this, we deduce that lsegodd(E, F ) ⇔ ∃X. E → {(next, X)} * lsegeven(X, F ).

This idea can be generalized to arbitrary syntactically compositional predicates.

D Full example of Sec. 6

We provide here the full details of the example considered in Section 6.

Consider the following entailment which states that two cells linked by the next pointer field, and storing ordered data values, form a sorted list segment: where lseg has been defined in Sec. 1 (eq. ( 3)-( 4)).

For convenience, let The first application of the rule Slice. Since the right-hand side contains a single spatial atom, the rule Slice generates a sub-goal Π 1 ∧Σ 1 |= η ∃M. Σ 2 . For the sub-goal, the syntactic matching (rule Match1) cannot be applied. Instead, we apply the rule Lemma using a lemma L that corresponds to the inductive rule of lseg, i.e., eq. ( 4) (page II):

Π 1 ::= x 1 = nil ∧ x 2 = nil ∧ v 1 < v 2 , Σ 1 ::= x 1 → {(next,
L ::= ∃X, M 1 , v. 

  2 ) ::= E = F ∧ emp ∧ P r 1 = P r 2 ∧ M 1 = M 2 prtbsthole(E, P r 1 , M 1 , F, P r 2 , M 2 ) ::= ∃X, Y, M 3 , M 4 , v. E → {(lef t, X), (right, Y ), (parent, P r 1 ), (data, v)} * prtbst(X, E, M 3 ) * prtbsthole(Y, E, M 4 , F, P r 2 , M 2 ) ∧ M 1 = {v} ∪ M 3 ∪ M 4 ∧ M 3 < v < M 4prtbsthole(E, P r 1 , M 1 , F, P r 2 , M 2 ) ::= ∃X, Y, M 3 , M 4 , v. E → {(lef t, X), (right, Y ), (parent, P r 1 ), (data, v)} * prtbsthole(X, E, M 3 , F, P r 2 , M 2 ) * prtbst(Y, E, M 4 )∧ M 1 = {v} ∪ M 3 ∪ M 4 ∧ M 3 < v < M 4

  lsegeven(E, F ) ::= E = F ∧ emp, lsegeven(E, F ) ::= ∃X, Y. E → (next, X) * X → (next, Y ) * lsegeven(Y, F ).

  ϕ1 ::= x1 = nil ∧ x2 = nil ∧ v1 < v2 ∧ x1 → {(next, x2), (data, v1)} * x2 → {(next, nil), (data, v2)} ϕ2 ::= ∃M. lseg(x1, M, nil, ∅) ∧ v2 ∈ M,

x 2 )

 2 , (data, v 1 )} * x 2 → {(next, nil), (data, v 2 )}, Π 2 ::= v 2 ∈ M, Σ 2 ::= lseg(x 1 , M, nil, ∅).

  x 1 → {(next, X), (data, v)} * lseg(X, M 1 , nil, ∅)∧ M = {v} ∪ M 1 ∧ v ≤ M 1 ⇒ lseg(x 1 , M, nil, ∅).For convenience, letΠ ::= M = {v} ∪ M 1 ∧ v ≤ M 1 , Σ ::= x 1 → {(next, X), (data, v)} * lseg(X, M 1 , nil, ∅).The first application of the rule Lemma. Since root(L)::= x 1 → {(next, X), (data, v)}, the rule Lemma generates a sub-goal Π 1 ∧ Σ ′ 1 |= SUB η1 ∃X, v. root(L), where Σ ′ 1 ::= x 1 → {(next, x 2 ), (data, v 1 )}. Then the rule Match1 is applied, resulting in a quantifier instantiation η 1 = {X → x 2 , v → v 1 }. Note that, since EQ(η 1 | free(∃X,v.root(L)) ) ::= true, the entailment Π 1 ∧ EQ(η 1 | {X,v} ) |= EQ(η 1 | free(∃X,v.root(L))) holds. The variable substitution η 1 is used to instantiate the existentially quantified variables in the remaining part of the lemma, that is, Π ∧ lseg(X, M 1 , nil, ∅), resulting into the formulaη 1 (Π ∧ lseg(X, M 1 , nil, ∅)) ::= M = {v 1 } ∪ M 1 ∧ v 1 ≤ M 1 ∧ lseg(x 2 , M 1 , nil, ∅).

Table 1 .

 1 The syntax of the Separation Logic fragment X, Y, E ∈ LVar location variables ρ ⊆ (F × LVar) ∪ (D × DVar)

F ∈ Var * vector of variables P ∈ P predicates

x ∈ Var variable ∆ formula over data variables

Table 2 .

 2 Experimental results on benchmark RDBI

	Data structure	Procedure	#VC	Lemma	⇒ D	Time (s)
				(#b, #r, #p, #c, #d)		spen	SMT
	sorted lists	search	4	(1, 3, 3, 1, 3)	5	1.108	0.10
		insert	8	(4, 6, 3, 1, 2)	7	2.902	0.15
		delete	4	(2, 2, 4, 1, 1)	6	1.108	0.10
	BST	search	4	(2, 3, 6, 2, 2)	6	1.191	0.15
		insert	14	(15, 18, 27, 4, 6)	19	3.911	0.55
		delete	25	(13, 19, 82, 8, 5)	23	8.412	0.58
	AVL	search	4	(2, 3, 6, 2, 2)	6	1.573	0.15
		insert	22	(18, 28, 74, 6, 8)	66	6.393	1.33
	RBT	search	4	(2, 3, 6, 2, 2)	6	1.171	0.15
		insert	21	(27, 45, 101, 7, 10)	80	6.962	2.53

Table 3 .

 3 Experimental results on benchmark SL-COMP'14 

	Data structure	#VC	Lemma	Time-spen(s)
			(#b, #r, #p, #c, #d)	spen	spen-TA
	Nested linked lists	16	(17,47,14,8,0)	4.428	4.382
	Skip lists 2 levels	4	(11,16,1,1,0)	1.629	1.636
	Skip lists 3 levels	10	(16,32,29,17,0)	3.858	3.485

For simplicity, we assume that α and β consist of exactly one location parameter and one data parameter.

We believe that this restriction is reasonable for the verification conditions appearing in practice and all the benchmarks in our experiments are of this form.

In this case, the right-hand side contains no pure constraints.

The extension depends on the pure constraints Π and could be quite complex in general. In the experiments of Sec. 7, we use the extension obtained by the propagation of equalities in Π.

http://www.liafa.univ-paris-diderot.fr/spen/benchmarks.html

The evaluations used a 2.53 GHz Intel processor with 2 GB, running Linux on VBox.

spen does not implement a batch mode, each entailment is dealt separately, including the generation of lemma. The SMT solver is called on the files generated by spen.

⋆ Zhilin Wu is supported by the NSFC projects (No. 61100062, 61272135, and 61472474), and the visiting researcher program of China Scholarship Council. This work was supported by the ANR project Vecolib (ANR-14-CE28-0018).

A Proofs in Sec. 4

Theorem 1. Suppose that P is a set of inductively defined predicates. If P ∈ P is syntactically compositional, then P is semantically compositional.

Proof. Suppose P is syntactically compositional and has parameters ( α, β, ξ ).

It is sufficient to prove the following claim.

For each pair (s, h), if (s, h) |= P ( α 1 , α 2 , ξ ′ ) * P ( α 2 , α 3 , ξ ′ ), then (s, h) |= P ( α 1 , α 3 , ξ ′ ).

We prove the claim by induction on the size of ldom(h). Suppose for each i : 1

, where E i and v i are respectively location and data variables.

Since (s, h) |= P ( α 1 , α 2 , ξ ′ ) * P ( α 2 , α 3 , ξ ′ ), there are h 1 , h 2 such that h = h 1 * h 2 , (s, h 1 ) |= P ( α 1 , α 2 , ξ ′ ), and (s, h 2 ) |= P ( α 2 , α 3 , ξ ′ ).

If (s, h 1 ) |= 2 i=1 α 1,i = α 2,i ∧ emp, then ldom(h 1 ) = ∅, and h 2 = h. From this, we deduce that (s, h) |= P ( α 1 , α 3 , ξ ′ ).

Otherwise, there are a recursive rule of P , say P ( α, β, ξ ) ::= ∃ X. Π ∧ Σ 1 * Σ 2 * P ( γ, β, ξ ), and an extension of s, say s ′ , such that (s

γ by replacing α, β, ξ with α 1 , α 2 , ξ ′ respectively. From this, we deduce that there are

From the induction hypothesis, we deduce that (s

From the fact that no variables from β occur in Π, Σ 1 , Σ 2 , or γ, we know that

B Proofs in Sec. 5

Theorem 2. Let P ∈ P be a syntactically compositional predicate with the parameters ( α, β, ξ), and P ′ ∈ P with the parameters ( α, ξ ). If P ′ is a completion of P with respect to c, then P ′ ( α, ξ ) ⇔ P ( α, c, ξ ) and ∃ β. P ( α, β, ξ ) * P ′ ( β, ξ ) ⇒ P ′ ( α, ξ ) hold.

Proof. The fact P ′ ( α, ξ) ⇔ P ( α, c, ξ) can be proved easily by an induction on the size of the domain of the heap structures. The argument for ∃ β. P ( α, β, ξ) * P ′ ( β, ξ) ⇒ P ′ ( α, ξ) goes as follows: Suppose (s, h) |= P ( α, β, ξ) * P ′ ( β, ξ). Then there are h 1 , h 2 such that h = h 1 * h 2 , (s, h 1 ) |= P ( α, β, ξ), and (s, h 2 ) |= P ′ ( β, ξ). From the fact that P ′ ( β, ξ) ⇔ P ( β, c, ξ), we know that (s, h 2 ) |= P ( β, c, ξ). Therefore, (s, h) |= P ( α, β, ξ) * P ( β, c, ξ). From Theorem 1, we deduce that (s, h) |= P ( α, c, ξ). From the fact P ( α, c, ξ) ⇔ P ′ ( α, ξ), we conclude that (s, h) |= P ′ ( α, ξ).

⊓ ⊔ Theorem 3. Let P, P ′ ∈ P be two syntactically compositional inductively defined predicates with the same set of parameters ( α, β, ξ ). If P ′ is stronger than P , then the entailment P ′ ( α, β, ξ ) ⇒ P ( α, β, ξ ) and ∃ β. P ′ ( α, β, ξ ) * P ( β, γ, ξ ) ⇒ P ( α, γ, ξ ) hold.

Proof. We first show that P ′ ( α, β, ξ ) ⇒ P ( α, β, ξ ). By induction on the size of ldom(h), we prove the following fact: For each (s, h), if (s, h)

α i = β i ∧ emp, since P ′ and P have the same base rule, we deduce that (s, h) |= P ( α, β, ξ ).

Otherwise, there are a recursive rule of P ′ , say

and (s ′ , h 3 ) |= P ′ ( γ, β, ξ ). From the induction hypothesis, we deduce that (s ′ , h 3 ) |= P ( γ, β, ξ ). Moreover, from the assumption, we know that there is a recursive rule of P of the form P ( α, β, ξ ) ::= ∃ X. Π ∧ Σ 1 * Σ 2 * P ( γ, β, ξ ), such that Π ′ ⇒ Π holds. Then it follows that (s ′ , h 1 * h 2 * h 3 ) |= Π ∧Σ 1 * Σ 2 * P ( γ, β, ξ ). We then deduce that (s, h) |= ∃ X. Π ∧Σ 1 * Σ 2 * P ( γ, β, ξ ). From this, we conclude that (s, h) |= P ( α, β, ξ ).

We then prove the second claim of the theorem. From the argument above, we know that P ′ ( α, β, ξ ) ⇒ P ( α, β, ξ ) holds. Then P ′ ( α, β, ξ ) * P ( β, γ, ξ ) ⇒ P ( α, β, ξ ) * P ( β, γ, ξ ) holds. In addition, from Theorem 1, we know that P ( α, β, ξ ) * P ( β, γ, ξ ) ⇒ P ( α, γ, ξ ) holds. Therefore,we conclude that P ′ ( α, β, ξ ) * P ( β, γ, ξ ) ⇒ P ( α, γ, ξ ).

⊓ ⊔ Theorem 4. Let P ∈ P be a syntactically compositional predicate with the parameters ( α, β, ξ ) and P ′ ∈ P be an inductive predicate with the parameters ( α, β, ξ ′ ). If P ′ is a static-parameter contraction of P with the contraction function η, then P ′ ( α, β, ξ ′ ) ⇔ P ( α, β, η( ξ )) and ∃ β. P ( α, β, η( ξ )) * P ′ ( β, γ, ξ ′ ) ⇒ P ′ ( α, γ, ξ ′ ) hold.

Proof. The first claim can be proved by induction on the size of the domain of the heap structures.

Then, the rule Lemma generates another sub-goal

The second application of the rule Slice. For the sub-goal

, the rule Slice is applied again. Since there is a single spatial atom in the RHS, the rule Slice generates a sub-goal

The second application of the rule Lemma. For the sub-goal

, the rule Lemma is applied again, using the lemma L ′ (still corresponding to the inductive rule of lseg),

For convenience, let

) holds. The variable substitution η ′ 1 is used to instantiate the existentially quantified variables in the remaining part of the lemma, that is, Π ′ ∧ lseg(X ′ , M ′ 1 , nil, ∅), resulting into the formula

Then, the rule Lemma generates another sub-goal

The third application of the rule Slice. For the sub-goal

since there is only one spatial atom lseg(nil, M ′ 1 , nil, ∅) in the RHS, the rule Slice generates a subgoal

, for which the rule Lemma is applied, with a lemma L ′′ corresponding to the base rule of lseg, i.e., eq. ( 3) (page II),

The third application of the rule Lemma. Since root(L ′′ ) ::= emp, the rule Lemma generates a sub-goal

Then the rule Match1 is applied, resulting in a quantifier instantiation η ′′ 1 = ∅. Note that, since EQ(η ′′ 1 | free(root(L ′′ )) ) ::= true, the entailment

) holds. The substitution η ′′ 1 is used to instantiate the existential variables in the remaining part of the lemma, that is, nil = nil ∧ M ′ 1 = ∅, resulting into the same formula. Then the rule Lemma generates a sub-goal

The third application of the rule Slice (continued). The variable substitution η ′ 3 is extended with

Thus the sub-goal holds. The second application of the rule Lemma (continued). The variable substitution η ′ 1 ∪ η ′ 2 should be extended with Π ′ ::

2 ), the extension makes no effect. Then

The second application of the rule Slice (continued). The variable substitution η 3 is extended with The first application of the rule Lemma (continued). The variable substitution η 1 ∪ η 2 should be extended with Π ::= M = {v} ∪ M 1 ∧ v ≤ M 1 . Since M ∈ dom(η 1 ∪η 2 ), this extension makes no effect. Then η is obtained from η 1 ∪η 2 by restricting to {M }. So η = {M → {v 1 } ∪ {v 2 } ∪ ∅}.

The first application of the rule Slice (continued). The variable substitution η is extended with Π 2 ::= v 2 ∈ M , and still getting η. Finally, Slice generates the sub-goal Π 1 ∧ EQ(η) |= Π 2 . Since EQ(η) ::= M = {v 1 } ∪ {v 2 } ∪ ∅, the entailment EQ(η) |= Π 2 holds. Therefore, the sub-goal Π 1 ∧EQ(η) |= Π 2 holds as well.