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This paper presents a three-dimensional (3-D) analytical model for axial-flux eddy-current couplings and brakes, leading to closed-

form expressions for the torque and the axial force. The proposed model is valid under steady-state condition (constant speed 

operation). It takes into account the reaction field due to induced currents in the moving conducting part. In order to simplify the 

analysis, we adopt the assumption of linearization at the mean radius, the problem is then solved in 3-D Cartesian coordinates 

(curvature effects are neglected). The solution is obtained by solving the Maxwell equations with a magnetic scalar potential 

formulation in the non conductive regions (magnets, air-gap), and a magnetic field strength formulation in the conductive region 

(copper). Magnetic field distribution, axial force, and torque computed with the 3-D analytical model are compared with those 

obtained from 3-D finite elements simulations and experimental results. 

 
Index Terms— Analytical model, Eddy-current, Moving conductor, Three-dimensional model, Torque.  

 

NOMENCLATURE 

R1 Inner radius of the magnets. 

R2 Outer radius of the magnets. 

Rm Mean radius of the magnets (Rm = (R1+R2)/2). 

R0 Inner radius of the copper.  

R3 Outer radius of the copper.  

L Radial length of the magnets (L = R2 - R1). 

H Radial length of the copper (H = R3 - R0). 

a Thickness of the back-iron (magnets side). 

b Magnets thickness. 

c Air-gap thickness. 

d Copper  thickness. 

e Thickness of the back-iron (copper side) 

α Permanent magnets (PMs) pole-arc to pole-pitch ratio 

p Pole-pairs number. 

Br Remanence of the PMs. 

 Conductivity of the conducting plate (copper). 

τ Pole pitch (τ = Rmπ/p). 

I. INTRODUCTION 

DDY current couplings can be used in many industrial 

applications such as blowers, conveyors or pumps . They 

can transmit a torque between a motor and a driven load 

without any physical contact. Compared to traditional 

mechanical couplings, they offer substantial advantages such 

as reduce maintenance, soft starting, vibrations limitation, 

natural protection against overload, and great tolerance to 

shaft misalignment [1]-[7].  

Fig. 1 shows the axial-flux eddy-current coupling under 

consideration. It consists of two facing discs, one equipped 

with rare-earth PMs of alternating polarity, glued on a soft-

magnetic yoke (the PMs are magnetized in the axial direction). 

The other disc is equipped with a conducting plate (generally 

copper) fixed on iron. The torque-speed curve of such devices 

is related to the induced currents in the conducting plate. The 

value and the distribution of these currents depend on the slip 

speed  between the two discs ( = 1 - 2). The 

consequence of this is the Joule losses, which are inherent to 

the operation of this type of magnetic coupling. The efficiency 

of such device is given by  = 1 – s, where s is the slip (s = 

/1). In normal operation, the slip is relatively small and can 

range from 2 to 5 percent [6], [7]. 

 

 
 

 

Fig. 1.  Permanent-magnet axial-flux eddy-current coupling with its 

geometrical parameters. 
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Analysis and design of eddy-current couplings and brakes 

can be achieved with analytical or numerical methods. 

Numerical approaches, such as finite-element method [8]-[13], 

give accurate results considering geometric details and 

nonlinearity of magnetic materials. However, they are 

computation time consuming and poorly flexible for the first 

step of design procedure especially when a 3-D analysis is 

required, as it is for the studied device. Analytical approaches 

are based on some assumptions such as simplified geometries 

and linear magnetic behavior. However, they present the main 

advantage to be quick in term of computational time. They are 

well suited to investigate rapidly the influence of the design 

parameters and during optimization procedure. 

 Analytical models for eddy-current couplings and brakes 

are usually based on 2-D approximations (i.e. mean radius 

model and infinite depth) [14]-[21]. The induced currents in 

the moving conducting plate are computed by solving the 2-D 

diffusion equation. The 3-D edge effects, which cannot be 

neglected for such devices, are usually taken into account by 

using an effective correction factor [22]. The method of 

images can also be used in order to take into account the finite 

boundaries of the conducting plate and the predictions are 

greatly improved [23]-[24]. Recently, a 3-D analytical model 

has been developed to compute the torque for a magnetic rotor 

moving above a conducting plate [25] by using the second-

order vector potential approach [26]. Overall, most of the 3-D 

magnetic field problems that have been recently solved by an 

analytical way are most often dedicated to the magnetostatic 

case [27]-[30], and very little attention is given to 3-D eddy-

current problems with moving conductors.  

In this paper, we propose a fully 3-D analytical model to 

predict the induced currents distribution in axial-flux eddy 

current couplings and brakes. The proposed model is valid 

under steady-state condition (constant slip speed). It takes into 

account the reaction field due to induced currents in the 

moving conducting plate. The solution is obtained by solving 

the Maxwell equations in 3-D Cartesian coordinates by the 

separation of variables method (curvature effects are 

neglected). By using the Maxwell stress tensor, new closed-

form expressions for the torque and the axial force are given. 

In order to show the accuracy of the proposed model, the 

results are compared with those obtained from 3-D finite-

element simulations and experimental results. 

II. MODELING ASSUMPTIONS 

As shown in Fig. 1, axial-flux eddy-current coupling is an 

inherent 3-D geometry from the modeling point of view. 

Indeed, the edge effects in the radial direction have a great 

importance on the torque-speed curve prediction and cannot 

be neglected [19]-[20]. As the axial-flux coupling presents a 

cylindrical geometry, the natural way to solve this problem is 

to use a cylindrical coordinate system (r, θ, z).  However, this 

choice leads to complex partial differential equations to solve, 

where the magnetic field components are connected to each 

other. In addition, special functions (Bessel functions) arise in 

the solution (radial dependence of the magnetic field) when 

solving this problem in cylindrical coordinates [27]. 

 
 

Fig. 2.  3-D representation of the equivalent linear eddy-current coupling. 

 

It has been shown in [28] that the curvature effects in axial-

flux actuators is generally a second order phenomenon and can 

be neglected without important errors. Therefore, the 3-D 

cylindrical topology of Fig. 1 can be reduced to a 3-D linear 

topology by using the mean radius (Rm) assumption. As shown 

in Fig. 2, the axial-flux eddy-current coupling is made 

equivalent to a linear eddy-current coupling where the x-

coordinate represents the circumferential direction, the y-

coordinate the radial direction, and the z-coordinate the axial 

direction. The system is extended to infinity in both direction 

along the x-axis and presents a periodicity of two pole pitch 

(2τ). The depth of the conducting plate and of the soft-

magnetic yokes is H = R3 - R0. The depth of the magnets is L = 

R2 - R1 with L < H. In [6] and [7], it has been shown that the 

performances of eddy-current couplings and brakes are greatly 

improved if H ≃ L + τ. With this condition, the induced 

currents in the circumferential direction (which do not 

contribute to the torque) are mainly located outside the useful 

path which corresponds to the magnet depth (see Fig. 8).  

The velocity of the conducting plate v (m/s) is given by (1) 

where ex is the unit vector in the x-direction. 

 

 xV xv e  with x mV R  (1) 

 

For simplification of the analysis, we adopt the following 

assumptions: 
 

- The soft-magnetic yokes are considered with infinite 

magnetic permeability and zero conductivity. 

-  We consider only the steady state operation, i.e. constant 

slip speed. 

- The conducting plate has a constant conductivity. 

- The magnets have relative recoil permeability 1r  

(rare-earth PMs). 
 

Based on the above assumptions, we neglect the induced 

currents in the secondary back iron (which moves with the 

copper), and therefore the additional braking torque. It was 

shown in [20] that this additional torque is small compared to 

the one due to the copper plate. Moreover, if the copper 

thickness d is well-designed (optimum value can be reach for 

the copper thickness [3], [6], [7]), induced currents in the iron 

part will be limited. 
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III. 3-D ANALYTICAL MODEL 

Sectional views of the linear eddy-current coupling in 

planes (x-z) and (y-z) are shown in Fig. 3 and Fig. 4, 

respectively. As shown in Fig. 4, the magnets are positioned 

symmetrically about y = 0 (if not, the problem can also be 

solved). The whole domain of the field problem is divided into 

three rectangular regions: the PMs region (region I), the air-

gap region (region II) and the copper region (region III). In the 

proposed analysis, the edge effects are still taken into account 

thanks to the 3-D resolution in Cartesian coordinates (x, y, z). 

A. Boundary Conditions 

In order to solve this three-dimensional boundary value 

problem, we have to define boundary conditions in the x and 

y-directions. Interface conditions in the z-direction will then be 

used to calculate the unknown coefficients which appear in the 

general solutions for each region.  

Due to alternate polarity of the PMs and since the eddy-

currents reflect the poles structure of the exciting field, the 

magnetic problem presents an odd periodic boundary 

condition in the x-direction. The studied domain is then 

limited by -τ/2 ≤ x ≤ τ/2, as shown in Fig. 3, and for each 

region i the magnetic field boundary condition is given by 

 

( 2, , ) ( 2, , )  i iy z y z   H H with   , ,i I II III  (2) 

 

where iH  is the magnetic field strength in region i. As we 

consider the soft-magnetic yokes with infinite permeability 

(Fig. 3), the tangential components of the magnetic field 

strength are zero at z = 0 and z = zt  

 

0  at   0  I z  zH e     (3) 

0  at   III tz z  zH e  with   tz b c d    (4) 

 

This limits the number of region where the magnetic field has 

to be determined (the magnetic field strength is null in the iron 

parts). This hypothesis can be regarded as accurate because 

the thicknesses a and e of the back-iron (see Fig. 1 and Fig. 2) 

must be determined to avoid magnetic saturation [6]. 

We also need to fix boundary conditions in the y-direction 

to solve this 3-D problem. As shown in Fig. 4, the studied 

domain is then truncated by artificial boundaries such as          

-H/2 ≤ y ≤ H/2. To solve the problem, we impose perfect 

magnetic boundary condition at y = ± H/2. This leads to 

homogeneous Dirichlet boundary conditions for the x and z 

components of the magnetic field strength 

 

0  at   / 2i y H   yH e  with   , ,i I II III  (5) 

  

Of course, this artificial boundary condition will have an 

impact on the accuracy of the magnetic field determination 

and therefore on the torque prediction, compared to the 

original unbounded problem. However this impact will be 

limited if H > L, which corresponds to a well-designed eddy-

current coupling [6], [7]. This will be discussed in section V. 

 
 

Fig. 3.  Sectional view of the linear eddy-current coupling in the (x-z) plane 

for one pole pitch and its boundary conditions. 

 

 
 

Fig. 4.  Sectional view of the linear eddy-current coupling in the (y-z) plane 

and its boundary conditions at y = ±H/2. 

 

B. General Solution in the Non Conductive Regions 

(Region I and II) 

The magnetic field in region I and II (PMs and air-gap) 

satisfies the basic equations of magnetostatic  

 

0i B  0i H  (i = I or II) (6) 

 

where iB is the magnetic flux density in region i. From (6), 

the magnetic field strength can be written in terms of a 

magnetic scalar potential i , which is defined as 

 

i i  H   (i = I or II) (7) 

 

Rare earth PMs (NdFeB or SmCo) present a linear second 

quadrant characteristic such as 

 

0 0i r i i   B H M   0i    for   i=IIM  (8) 

 

where μ0 is the permeability of air, μr is the relative recoil 

permeability (μr = 1), and iM  is the residual magnetization 

vector. Equations (6), (7) and (8) are combined to give  

 
2

ii   M    (9) 
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Since the PMs are axially magnetized, the residual 

magnetization has only one component dependent on x and y 

and can be written as 

 

( , )   i zM x y zM e   (10) 

 

The magnetization is independent on the z-direction, the 

Poisson equation (9) is then reduced to Laplace’s equation in 

both zones (i = I) and (i = II). Partial differentials equation 

(PDE) to solve in regions I and II is written as follows in 

Cartesian coordinates 

 
2 2 2

2 2 2
0i i i

x y z

     
  

  
   with   ,i I II     (11) 

 

From (2) and (5), the boundary conditions for the PMs and 

air-gap regions in terms of magnetic scalar potential are given 

by 

( 2, , ) ( 2, , )

( , / 2, ) ( , / 2, ) 0

i i

i i

y z y z

x H z x H z

    

   
      (12) 

 

General solution of (11), which satisfies the boundary 

conditions (12), is obtained by using the method of separation 

of variables. The general solution is the same for both region 

(i = I, II). These solutions can be written in complex form as 

 

1 1

( , , ) ( )cos
jk x

II

n k

x y z z n y e
H







 

 

   
    

   
  (13) 

1 1

( , , ) ( )cos
jk x

IIII

n k

x y z z n y e
H







 

 

   
    

   
  (14) 

with  

( )

( )

nk nk

nk nk

z z
I nk nk

z z
II nknk

z A e B e

z C e D e

 

 









 

 
  (15) 

and 

2 2

=nk

n k

H

 




   
   

   
   (16) 

 

where n and k are odd integers, denotes the real part of a 

complex number and 1j   . The complex coefficients nkA , 

nkB , nkC  and nkD  will be determined by using the interface 

conditions in the z-direction. 

Fig. 5 shows the magnetization distribution Mz(x,y) along 

the x and y-direction. The magnetization distribution may be 

expressed in the form of a double Fourier series expansion 

(eigenfunctions of the previous boundary value problem) as 

follows  

1 1

( , ) cos
jk x

z nk

n k

M x y M n y e
H






 

 

   
   

   
  (17) 

with 

 
 

Fig. 5.  Magnetization distribution along the x- and y-direction. 

 
2 2

2 2

4
( , )cos cos  

H

nk z

H

M M x y k x n y dxdy
H H





 

 
 

   
    

      

(18) 

From (18) and using the magnetization distribution given in 

Fig. 5, we obtain 

 

2
0

16
sin sin

2 2

r
nk

B L
M k n

Hnk

 


 

   
    

   
  (19) 

 

where Br is the remanent flux density. 

 

C. General Solution in the Conductive Region (Region III) 

The magnetic field in region III (copper) satisfies the quasi-

static approximation of Maxwell equations  

 

0III III III

III
III

          

             
t

   


  



H J B

B
E

 


  (20) 

where IIIE  is the electric field strength and IIIJ  the induced 

current density in region III. Ohm’s law for moving conductor 

with reference to the stationary frame, which is fixed to the 

magnets disc, is expressed as 

 

 III III III  J E v B   (21) 

 

where v  is given by (1). Here, we consider only steady-state 

condition i.e. moving media with a constant speed. Moreover, 

the geometry of the moving part is invariant along the speed 

direction and the magnetic source is static (the reference frame 

is fixed to the PMs disc), so we can write [31] 
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0III

t






B
   (22) 

 

Therefore, the whole physical phenomena are time 

independent, and the eddy-current problem reduces to a 

magnetostatic problem. The problem in region III is solved by 

using a H - formulation (not any simplification is obtained by 

using a potential formulation for this 3D problem). From (20), 

(21) and (22), we obtain a second order differential equation 

 

 2
0III III   H v H    (23) 

 

Written in Cartesian coordinates, (23) can be split into three 

partial differentials equations 

 
2 2 2

02 2 2

2 2 2

02 2 2

2 2 2

02 2 2

   
  

  

   
  

  

   
  

  

xIII xIII xIII xIII
x

yIII yIII yIII yIII
x

zIII zIII zIII zIII
x

H H H H
V

xx y z

H H H H
V

xx y z

H H H H
V

xx y z







 (24) 

 

where Vx is the velocity of the conducting plate along the x-

direction. By using the method of separation of variables with 

the boundary conditions (2) and (5), the general solution for 

the x and z components of the magnetic field strength can be 

written as 

 

1 1

1 1

( , , ) ( )cos

( , , ) ( )cos

 

 

 

 

   
   

   

   
   

   





jk x

xIIIxIII

n k

jk x

zIIIzIII

n k

H x y z H z n y e
H

H x y z H z n y e
H

















  (25) 

 

with  

( )

( )





 

 

nk nk

nk nk

z z
xIII nk nk

z z
zIII nknk

H z E e F e

H z G e H e

 

 
  (26) 

 

and 

2 2

0=
   

    
   

nk x

n k k
j V

H

  
 

 
 (27) 

 

Furthermore, we know that 0III H , which gives the 

following relation to compute H yIII  from HxIII  and HzIII  

 

( , , )
  

   
  

xIII zIII
yIII

H H
H x y z dy

x z
  (28) 

 

By using (25), (26) and (28), we obtain 

 

1 1

( , , ) ( )sin

 

 

   
   

   


jk x

yIIIyIII

n k

H x y z H z n y e
H






   (29) 

 

with 

 

( )
( ) ( )

 
   

 

zIII
yIII xIII

H k d H z
H z j H z

n dz



 
 (30) 

 

The unknown coefficients nkE  to nkH  in (26) will be 

solved by using the field continuity between regions II and III 

and the boundary condition (4). 

D. Interface Conditions 

As shown in (15) and (26), we have eight unknown 

coefficients to determine. This means that we need eight 

independent linear equations. Three equations are obtained by 

considering (3) and (4)  

 

( , ,0) 0

( , , ) 0

( , , )
0










I

xIII t

zIII t

x y

H x y z

H x y z

z



   (31) 

 

The normal component of the magnetic flux density and the 

tangential component of the magnetic field strength are 

continuous between region I and II (at z = b) and between 

regions II and III (z = b + c). Knowing that all regions have 

the same magnetic permeability (µr = 1), we obtain five 

independent linear equations including one with the source 

term Mz(x,y) 

 

( , , ) ( , , )

( , , ) ( , , )
( , )

( , , )
( , , )

( , , )
( , , )

( , , )
( , , )

I II

I II
z

II
xIII

II
yIII

II
zIII

x y b x y b

x y b x y b
M x y

z z

x y b c
H x y b c

x

x y b c
H x y b c

y

x y b c
H x y b c

z

 

 









 
 

 

 
  



 
  



 
  



  (32) 

 

By using the eight independent linear equations given 

above, all the unknown constants can be obtained. 

Developments are given in the appendix. After a lot of 

calculations, (15), (26) and (30) can be rewritten as follows 

where the unknown coefficients have been replaced by their 

expressions  

 

 

     

( ) sinh

( ) sinh sinh

nk
I nk

nk

nk
II nk nk

nk

M
z r z

M
z z b r z

 


  




  

 (33) 
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and 

 

  

  

  

( ) sinh

( ) sinh

( ) cosh

nk
xIII nk t

nk
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yIII nk t
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nk
zIII nk nk t
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Mk
H z j q z z

Mn
H z q z z

H

M
H z q z z




 






 


  

 

  

  (34) 

 

where Mnk is given by (19), r  and q  are given in the appendix 

(A.3). The magnetic field in all regions is now fully defined. It 

is therefore possible to compute the induced currents in the 

moving conducting plate. 

E. Eddy-Currents Expressions 

The induced currents in the conducting plate are obtained 

from the Ampere Law 

 

III III J H    (35) 

 

By substituting (25), (29), (34) in (35), we obtain the three 

components of the induced current density 

 

1 1

1 1
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xIIIxIII
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H

J x y z J z n y e
H

J x y z













 

 

 

 

   
   

   

   
   

   









      (36) 

 

with 

 

  

  

( ) cosh

( ) cosh

nk nk
xIII nk nk t

nk nk

nk nk
yIII nk nk t

nk nk

n
J z M q z z

H

k
J z j M q z z

 


 

 


  

 
   

 

 
   

 

      (37) 

 

With the adopted assumptions, we can note that the induced 

currents flow only in x-y planes (laminar eddy currents). As 

expected, we can observe that the y-component of the induced 

current is null at y = ± H/2. 

IV. TORQUE AND AXIAL-FORCE EXPRESSIONS 

A. Electromagnetic Torque 

The electromagnetic torque is obtained using the Maxwell 

stress tensor. A rectangular surface of dimensions 2τ and H, 

placed at z b  in the air-gap region is taken as the integration 

surface (z = b gives the simplest expression for the magnetic 

field in the air-gap, i.e. (33)). The electromagnetic torque Te 

can then be expressed as follows 

 

   
/2

0

/2

, , , ,  

H

e m xII zII

H

T pR H x y b H x y b dxdy







 

    (38) 

 

where HxII and HzII can be derived from (14) and (33), 

knowing that II II  H  . From (38), we obtain a closed-

form expression for the torque which depends directly on the 

physical and geometrical parameters 

 

 
2

2
0

1 1

1
sinh

2

nk
e nk

nkn k

M
T p H jk r b  



 

 

  
  

  
  (39) 

 

where n and k are odd integers, and r  is given in the 

appendix. 

B. Axial-Force 

Axial magnetic force is an important parameter for the 

design of an axial magnetic coupling. This force must be 

known because it affects directly the rotor structure and 

bearings. For eddy-current couplings, the axial force can be 

attractive or repulsive and depends of the slip speed [14]. By 

using the Maxwell stress tensor with the same integration 

surface as previously used for the torque calculation, the axial 

force expression is given by 

 

     
/2 2 2 2

0

/2

, , , , , ,

2

H

zII xII yII
z

H

H x y b H x y b H x y b
F p dxdy







 

 
  

  (40) 

By substituting HxII, HyII, and HzII in (40), we obtain a 

closed-form expression for the axial force 

 

    *2 2
0

1 1

1
1 cosh

4
z nk nk

n k

F p H M r r r b  
 

 

     (41) 

 

where 
*

r  is the complex conjugate of r  which is given in the 

appendix. 

V. COMPARISON WITH 3-D FINITE ELEMENT SIMULATIONS 

In order to show the effectiveness of the proposed 3-D 

analytical model, the results are compared with those obtained 

from 3-D finite-element model (FEM). The finite-element 

simulations (COMSOL Multiphysics® with A-φ formulation) 

are conducted by considering the reaction field due to the 

motional induced currents and the actual geometry of the 

coupling (i.e. cylindrical structure as shown in Fig. 1). The 

mesh in the different regions has been refined until convergent 

results are obtained. The air surrounding the magnetic 

coupling is considered in the FEM simulation (infinite box 

surround the system). As the soft-magnetic yoke thickness (a 

and e in Fig. 1) are designed to avoid magnetic saturation, we 

consider a relative permeability μr = 1000 for the 

ferromagnetic parts. This value is a good approximation for 

AISI-1010 (low carbon steel) that has been used for the 
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experimental validation. Low carbon steel such as AISI-1010 

presents a high permeability in the linear region (relative 

permeability greater than 1000 for B < 1.5T) and a high level 

of saturation (Bs ≃ 1.8T).  

 

 

 
(a) 

 

 
(b) 

 

Fig. 6.  Flux density distribution along the x-direction in the middle of the 

airgap (z = b+c/2) at y = 0 for c = 3 mm. (a) 0 rpm. (b) 1000 rpm. 

 

 
TABLE I 

PARAMETERS OF THE STUDIED EDDY-CURRENT COUPLING 

Symbol Quantity value 

R1 Inner radius of the magnets 30 mm 

R2 

R0 

R3 

a 

b 
c 

d 

e 
α 

Outer radius of the magnets 

Inner radius of the conducting plate 
Outer radius of the conducting plate 

Thickness of the back-iron (magnets side) 

Magnets thickness 
Air-gap length 

Conducting plate thickness 

Thickness of the back-iron (copper side) 
PMs pole-arc to pole-pitch ratio 

60 mm 

15 mm 
75 mm 

10 mm 

10 mm 
variable 

5 mm 

8 mm 
0.9 

p Pole-pairs number 5 

Br Remanence of the permanent magnets (NdFeB) 1.25 T 

 Conductivity of the conducting plate (copper) 57 MS/m 

N Number of harmonic terms in the x-direction 10 

K Number of harmonic terms in the y-direction 10 

 

The geometrical parameters of the studied magnetic 

coupling are given in Table I. With these parameters and 

considering c = 3 mm, we obtain a torque of about 10 Nm for 

a slip speed of 150 rpm [6]. The radial length of the copper is 

chosen to be H = 60 mm, which corresponds to 30 mm 

additional length compare to the active length of the magnets 

(15 mm on each side) i.e. H = 2L. It has been shown in [6], [7] 

that the performances of eddy-current couplings are greatly 

improved if H ≃ L + τ, which gives H ≃ 2L for the studied 

coupling. The analytical results given in the next 

developments have been computed with a finite number of 

harmonic terms N and K as indicated in Table I. 

A. Flux Density Distribution in the Air-Gap 

Fig. 6 shows the flux density distribution along the x-

direction (circumferential direction) at z = b + c/2 (middle of 

the air-gap), y = 0 (mean radius) for two values of the angular 

speed: 0 rpm and 1000 rpm. The air-gap is fixed at c = 3 mm. 

Good agreements can be observed between the 3-D analytical 

results and the 3-D FEM simulations. It can be seen that ByII 

presents a slight variation around zero with the 3-D FEM 

simulations, whereas it is null with the analytical model. This 

difference is due to the curvature effects which are not taken 

into account in the analytical modeling. Fig. 6(b) clearly 

shows that the reaction field due to the induced currents in the 

copper disc tends to distort the flux density for 1000 rpm. 

Fig. 7 shows the flux density distribution along the y-

direction (radial direction) at z = b + c/2 and x = 0. Once 

again, the agreement between analytical and numerical results 

is good. We can observe that BxII is no longer equal to zero as 

the slip speed increases. This result is well predicted by the 

analytical model. As expected, a reduction in the magnitude of 

BzII occurs as a result of the reaction field. Furthermore, Fig. 

7(b) shows that the analytical value of ByII is slightly different 

over the edges of the copper (r = 15 mm and r = 75 mm) 

compared to 3-D FEM. This is due to the artificial boundary 

condition (5) used to solve this 3-D problem. Indeed, (5) 

imposes that BxIII = BzIII = 0 at y = ± H/2 but ByIII ≠ 0 (only 

dByIII/dy = 0 is imposed at y = ± H/2 with the proposed 

analytical model because 0 IIIB ). This is the main 

drawback of the analytical model compared to the real 

geometry (unbounded in the radial direction). 

B. Current Density Distribution 

Fig. 8 shows the eddy-current distribution (showed as 

arrows) in the middle of the copper (z = b + c + d/2) obtained 

with 3-D FEM for a slip speed of 1000 rpm. It can be seen that 

the induced currents flow along closed paths (loops) inside the 

copper disc. From Fig. 8, one can observe that the induced 

currents in the circumferential direction (these currents do not 

contribute to the torque) are mainly situated outside the useful 

area corresponding to the magnet’s active length (L = R2 – R1). 

We will show in the next subsection that this additional copper 

length has a significant effect on the torque value.  
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(a) 

 
(b) 

 

Fig. 7.  Flux density distribution along the y-direction in the air-gap (z = 

b+c/2) at x = 0 for c = 3 mm. (a) 0 rpm. (b) 1000 rpm. 

 

Fig. 9 compares the eddy-current density distribution along 

the x-direction at y = L/2 (outer edge of the magnet, i.e. r = R2 

as shown in Fig. 8) obtained with 3-D FEM and with the 

proposed analytical formulas (36) and (37), for a slip speed of 

1000 rpm. The results obtained with the 3-D FEM confirm 

that the z component of the current density (JzIII) is null, as 

provided by the analytical model (36).  As shown in Fig. 9, 

JxIII and JyIII are well predicted by the 3-D analytical model in 

terms of amplitudes and waveforms. Fig. 10 shows the eddy-

current distribution (y component) along the y-direction (radial 

direction) at x = 0 (θ = 0, see Fig. 8). Fig. 10 clearly shows the 

ability of the proposed model to predict the induced currents 

distribution in the y-direction. The small difference between 

the analytical result and the 3D FEM simulation is due to the 

curvature effects. 

Based on these preliminary results and knowing that the    

3-D FEM simulations take into account the actual geometry of 

the coupling, it can be stated that the assumption of 

linearization at the mean radius used in the 3-D analytical 

model can be considered as valid for the studied coupling. It is 

worth noting that the curvature effects will be low if L/τ ≃ 1 

(for the studied coupling, we have L/τ = 1.06 for p = 5). 

Discussions about it will be developed in subsection D.  

 
 

 

Fig. 8. Eddy-current density distribution in the middle of the copper at 1000 

rpm obtained by 3-D FEM (showed as arrows). 

 

 

 
 

Fig. 9.  Eddy-current density distribution along the x-direction in the middle of 

the copper z = b+c+d/2 at y = L/2 (r = R2) for c = 3 mm (1000 rpm).  

 

 

 
 

Fig. 10.  Eddy-current density distribution (JyIII) along the y-direction in the 

middle of the copper z = b+c+d/2 at x= 0 (θ = 0) for c = 3 mm (1000 rpm).  
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C. Torque and Axial Force 

The torque versus slip speed for the studied coupling (Table 

I) is given in Fig. 11. Three values of the air-gap have been 

considered (c = 3 mm, c = 5 mm, and c = 7 mm). As expected, 

the peak torque decreases when the air-gap increases. For the 

studied coupling, the peak torque corresponds to a slip speed 

of around 1000 rpm for all the air-gap values. It is worth 

noting that the computation time needed to compute the 

torque-speed characteristic given in Fig. 11 is more than 3 

hours with the 3-D FEM (30 points) whereas this 

characteristic is immediately obtained (below 50 ms) by using 

the analytical formula (39), with the first 10 odd harmonic 

terms in the x and y-direction.  

Fig. 12 shows the axial force acting on one side of the 

coupling. For low speed values (below 600 rpm), the attractive 

force between magnets and the opposite soft-magnetic yoke is 

dominant. Then, as the speed increases, the induced currents 

in the copper disc produce a repulsive force that becomes 

dominant for large speed values [14]. As shown in Fig. 11 and 

Fig. 12, the torque and the axial force are well predicted by the 

proposed analytical formulas. 

 

 
 

Fig. 11. Torque versus slip speed for three values of the air-gap length           

(c = 3mm, c = 5mm, and c = 7mm). 

 
 

 

 

 

Fig. 12. Axial force versus slip speed for three values of the air-gap length    

(c = 3 mm, c = 5 mm, and c = 7 mm). 

D. Influence of Geometrical Parameters  

In order to show the limits of the proposed torque formula 

(39), we have varied some important geometrical parameters 

(pole-pairs number, ratio of the radial copper length to the 

radial magnet length i.e. H/L). The other geometrical 

parameters are those given in Table I. Here we consider an air-

gap of 3 mm and a slip speed of 300 rpm.  

Torque versus the pole-pairs number (with H/L = 2) is given 

in Fig. 13. Errors between analytical and numerical results are 

never greater than 15% and occur for large value of the pole-

pairs number. This is mainly due to the curvature effects 

which are more significant when the number of pole-pairs 

increases (the other parameters are the ones given in Table I). 

For a given air gap, the error introduced by the linearization 

assumption depends on the radial excursion of the magnets L 

and on the pole pitch at the mean radius τ [28]. If L/τ ≃ 1, the 

curvature effects are not significant and the mean radius 

hypothesis can be considered as correct. For the studied 

problem, L/τ ≃ 1 corresponds to p = 4-5 and we can observe in 

Fig. 13 that the torque is well predicted under this condition. 

For p = 10, we obtain L/τ = 2.12 (curvature effects are much 

significant in this case) which leads to an error of around 15% 

(Fig. 13). It can be seen in Fig. 13 that an optimum value 

exists for the pole-pairs number (p = 4). This optimum value is 

well predicted by using the torque formula (39). 

Fig. 14 shows the torque versus the ratio H/L. The torque 

increases rapidly at first and then becomes almost constant for 

H/L ≥ 2. An improvement of about 50% is obtained on the 

torque value in adopting H/L = 2 instead of H/L = 1. 

Furthermore, one can note a significant error (greater than 

30%) on the torque prediction when H/L = 1. This is due to the 

artificial boundary condition (5) used in the analytical model 

compared to the unbounded problem solved with 3-D FEM. 

This is the main drawback of the proposed 3D analytical 

model. The torque formula (39) should be handled with care 

when H/L ≃ 1. However, the influence of this artificial 

boundary condition on the torque prediction will be limited if 

H > L, that corresponds to a well-designed eddy-current 

coupling where H ≃ L + τ [7]. 

 

 
 

Fig. 13 Torque versus number of pole pairs at 300 rpm for c = 3 mm. 
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VI. COMPARISON WITH MEASUREMENT 

For the experimental validation, we have manufactured a 

prototype as shown in Fig. 15. The eddy-current coupling is 

made with 10 sector type NdFeB magnets (grade N40) glued 

on the soft-magnetic yoke, the other face is made with a 

copper plate screwed on the back-iron (AISI-1010 carbon 

steel), as respectively shown in Fig. 15(a) and Fig. 15(b). Fig. 

15(c) shows the prototype placed on the test bench. The 

geometrical parameters are those given in Table I. 

 The magnetic coupling is placed between two electrical 

motors (DC motors of 3kW, 3000 rpm). For the experimental 

tests, one shaft is locked (copper side), and the other shaft can 

rotate (magnets side).  The eddy-current coupling then acts as 

a brake for the DC machine. The speed is measured with an 

encoder, and is controlled by changing the voltage applied to 

the armature of the DC motor. The torque is obtained from the 

armature current measurement (the torque constant of the DC 

motor is 1,35Nm/A). 

For the experimental verification, the air-gap is fixed to c = 7 

mm. With this air-gap value, Fig. 11 shows that the maximal 

torque is around 10 Nm that corresponds to the nominal torque 

value of the DC machine in used. 

 

A. Air-gap Flux Density Measurement  

The air-gap flux density is measured by a Gaussmeter based 

on Hall effect. The output of the Gaussmeter has a BNC-

connector which can be linked to a data acquisition system.  

The flux density along the x-direction (circumferential 

direction) has been measured for 0 rpm and 800 rpm. The Hall 

probe has been placed in the middle of the air-gap and at the 

mean radius. The results are given in Fig. 16 and Fig. 17 (only 

BxII has been measured for 800 rpm). Very good agreements 

are found between experimental results and the analytical 

predictions. The distortion and phase shift for the air-gap flux 

density BzII is clearly shown by comparing Fig. 16 and Fig. 17. 

These are due to the induced current reaction field at 800 rpm. 

 

 

 

 

Fig. 14 Torque versus the ratio H/L at 300 rpm for c = 3 mm. 

 

       

 
 

Fig. 15. Eddy-current coupling prototype: (a) PMs side with p = 5, (b) copper 

side, (c) magnetic coupling placed on the test bench 

 

 
 

Fig. 16. Measured and computed magnetic flux density along the x-direction 

(middle of the air-gap, at the mean radius) at 0 rpm for c = 7 mm.  

 

 
Fig. 17. Measured and computed axial flux density along the x-direction 

(middle of the air-gap, at the mean radius) at 800 rpm for c = 7 mm.  
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Fig. 18. Measured and computed flux density along a radial line in the middle 

of the air-gap at a center line of a pole for c = 7 mm. 

  

We have also measured the radial dependence of the axial 

flux density at a center line of a pole (for 0 rpm). The results 

are shown in Fig. 18. We can observe that the axial flux 

density shows large variations along the radial expanse of the 

copper disc. The slight discrepancy between the 3D analytical 

model and experimental tests is due to the curvature effects 

which are not taken into account in the analytical model (the 

flux density is no longer symmetrical about r = 45 mm with 3-

D FEM). The little jump in the flux density that can be 

observed in Fig. 18 (around r = 45 mm) is probably due to a 

measurement error. 

B. Torque versus Slip Speed 

Fig. 19 shows a comparison between the analytically 

predicted torque-slip characteristic and the measured data. For 

the analytical determination, we have considered a constant 

copper conductivity  = 57MS/m, which corresponds to a 

working temperature of around 35°C. During the tests, the 

surface temperature of the copper was measured by using a K-

type thermocouple and the temperature was limited to 35°C. 

For large slip speed values, the torque measurement must be 

done very quickly because the copper temperature increases 

rapidly, which affects the torque value.  

 

 
 

Fig. 19. Torque versus slip speed for c = 7 mm. 

Fig. 19 shows that the experimental data are very close to 

the analytical predictions. Deviations are not greater than 5% 

throughout the slip speed, which confirms the validity of the 

proposed model with its assumptions. 

VII. CONCLUSION 

In this paper, a 3-D analytical model has been developed to 

predict flux density distribution, induced currents, torque and 

axial force for axial-flux permanent magnets eddy current 

couplings and brakes under steady state condition. To solve 

this three dimensional boundary value problem, a magnetic 

scalar potential formulation has been used in the non 

conductive regions (magnets, air-gap), and a magnetic field 

strength formulation has been adopted in the conductive 

region (copper). The torque and the axial force formulas have 

been obtained from the Maxwell stress tensor method. 

Comparisons with 3-D FEM simulations on the one hand 

and experimental tests on the other hand have shown the 

ability of the torque formula in the determination of the 

coupling performances if H > L. It is shown that the proposed 

model is very accurate (the error is less than 5% for the 

torque-speed characteristic whatever the slip value) and very 

fast in terms of computation time. The determination of the 

torque-speed characteristic is obtained in few tens of 

millisecond whereas it takes several hours with 3-D FEM. The 

proposed model offers a new powerful tool in the design and 

optimization process of eddy-current couplings or brakes. 

APPENDIX 

From (31), we obtain three equations for the unknown 

coefficients 

2
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From (32), we obtain five equations for the unknown 

coefficients 
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Expressions of r  and q  which appear in (33), (34), (37), (39) 

and (41) are given by 
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with 
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
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    (A.4) 

 

where αnk and γnk are given by (16) and (27), respectively. 
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