Bogdan Chornomaz 
  
Keywords: Bogdan Chornomaz, Counting extremal lattices, 2015, hal-01175633v2 COUNTING EXTREMAL LATTICES

come    

Counting extremal lattices.

Introduction

Extremal lattices arise in formal concept analysis in investigating concept lattices which are "large", that is, exponential in size with regards to the set of objects(attributes); or, restating it in terms of lattice theory, lattices that are exponential with regards to the number of join-irreducible elements.

An easy example of such lattice would be B(n), a boolean lattice on n atoms, which has n join-irreducible elements and is of size 2 n . Obviously, any lattice containing B(m) as a sublattice, with m compatible to n, would also be large. On the other hand, this is the only reason for a lattice to exhibit an exponential blowup, as the following bound holds Theorem 1.1. For a lattice L with n join-irreducible elements not containing an embedding of B(k) holds

( †) |L| ≤ k-1 i=0 n i .
In [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF], which is an extended version of [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF], it is shown that a lattice L does not contain B(k) if and only if the set family {J(x) | x ∈ L}, where J(x) is a set of join-irreducible elements bellow x, has Vapnik-Chervonekis (VC) dimension less than k. Theorem 1.1 is then known as Sauer-Shelah theorem [START_REF] Sauer | On the density of families of sets[END_REF], [5].

By analogy, we call the bound ( †) the Sauer-Shelah bound. This bound is precise and is reached on the class of extremal lattices. All bound, sharpness and characterization of extremal lattices are shown in the paper of Albano and Chornomaz [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF].

In this paper we make a deeper research into structure of extremal lattices and give an exact formula for the number of non-isomorphic extremal lattices with VC dimension at most 2.

All lattices considered in the paper are finite. The structure of the paper is as follows. In Section 2 we give basic definitions and properties regarding extremal lattices. In Section 3 we consider simple decompositions of extremal lattices. In Section 4 we introduce root decompositions, which play a central part in constructing an iterative formula. In Section 5 we briefly outline shortcomings of root decomposition, which prevent from constructing iterative formulas for extremal lattices with VC dimension greater than 2. In Section 6 we study connection between automorphisms of extremal lattices and of root decompositions. Finally, in Section 7 we come up with a formula for the number of lattices.

Definitions and recollections

For a lattice L and an element x ∈ L we denote the set of join-irreducible elements of L by J(L) and thee set of join-irreducible elements below x by J(x). Also we use commonly used notation for semi-intervals

(x] := {y | y ≤ x}, [x) := {y | y ≥ x}.
We say that a lattice L is B(k)-free if there is no order embedding of B(k) into L. Note that this is not equivalent to not having lattice embedding of B(k). For example, the lattice in Figure 1 below, which is B(4) with doubled element in the middle, contains B(4) as an order embedding, but not as a lattice embedding.

a b c d Figure 1
Alternative definition, which has more lattice-theoretic scent, is that a lattice L is B(k)-free if it does not contain a sublattice congruent to B(k). As we will not use this definition, we leave it without a proof.

We say that a lattice L is (n, k)-free if L is a B(k)-free lattice with n joinirreducible elements.

We say that a set X ⊆ J(L) is a representation of an element x if X = x. X is a minimal representation if no proper subset of X joins to x. Obviously, any element in L has some minimal representation, which might not be unique, and no two distinct elements can have a common minimal representation.

Let us denote the right-hand side of ( †) bound by f (n, k), that is

f (n, k) := k-1 i=0 n i .
The following crucial observation about (n, k)-free lattices is a weakened form of Lemma 2 in [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF].

Proposition 2.1. In an (n, k)-free lattice the size of every minimal representation of every element is at most k -1.

As there are no more that f (n, k) ways of choosing minimal representation of size at most k -1, the bound ( †) follows.

We call a lattice L (n, k)-extremal if it is (n, k)-free and it reaches Sauer-Shelah bound, that is, it has f (n, k) elements. Note that when dealing with (n, k)-free and (n, k)-extremal lattices we assume n ≥ 1 and k ≥ 2.

Summing up what we have said about minimal generators, we have the following easy but important property. Proposition 2.2. In an (n, k)-free lattice every element has unique minimal representation of size at most k -1; conversely, every set of join-irreducible elements of size at most k -1 is a minimal representation for some element.

For an element x of an extremal lattice we denote its minimal representation by G(x). A restatement of Proposition 4 in [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF] gives another important property of extremal lattices. Theorem 44 of [START_REF] Ganter | Formal Concept Analysis: Mathematical Foundations[END_REF] gives a broader scope of that property. Proposition 2.3. Every extremal lattice L is meet-distributive, that is, for any x, y ∈ L, |J(y) -J(x)| = 1 whenever x ≺ y. Proposition 2.4. For k ≥ 3 any (n, k)-extremal lattice is atomic.

For a poset L and its subposet K we define doubling of

K in L, denoted L[K],
as a poset with elements L ∪ • K, where • K is a disjoint copy of K, and order

≤ = ≤ ∪{(x, • y) ∈ L × • K | x ≤ y} ∪ {( • x, • y) ∈ • K × • K | x ≤ y}.
The following is Proposition 5 in [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF]. Theorem 2.6. For any n ≥ 1 and k ≥ 3

(1) An (n, 2)-extremal lattice is a chain of length n;

(2) An order-embedding of (n, k -1)-extremal lattice into an (n, k)-extremal lattice is also a (1, ∧)-embedding;

(3) For (n, k)-extremal lattice L and (n, k-1)-extremal lattice K order-embedded into L, L[K] is an (n + 1, k)-extremal lattice. Theorem 2.7. For (n, k)-extremal lattice L, n ≥ 2, k ≤ 3 and for any a ∈ G(1 L ), K := [a) is an (n -1, k -1)-extremal lattice, L := L -[a) is an (n -1, k)-extremal
lattice, and the mapping φ :

K → L , φ(x) = J(x) -{a} ,
defines an order-embedding of K into L .

Finally, Corollary 1 of [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF] establishes that the notion of an extremal lattice is not degenerate.

Proposition 2.8. For any n ≥ 1 and k ≥ 2 there exists an (n, k)-extremal lattice.

Basic decompositions

In order t utilize the decomposition in Theorem 2.7, we develop a notation for it. For an (n, k)-extremal lattice L and a ∈ G(1 L ) we denote an (n -1, k)-extremal lattice L -[a) by L a and an embedding of (n -1, k -1)-extremal lattice [a) into L a by L ↑ a . We call the tuple (L a , L ↑ a ) a decomposition of L by a. Proposition 3.1. For an (n, k)-extremal lattice L and an element a ∈ G(1) the lattice L a can be represented as

L a = (a ],
where (a ] is a unique coatom of L not above a, a = (J(L) -{a }).

For a ∈ G(1 L ) and b ∈ G(1 La ) we denote by L ab the lattice (L a ) b . We refrain from developing in a similar fashion the notion of decomposition of higher order.

Note that in its present form decompositions do not address the task of counting isomorphism classes of extremal lattices, as non-isomorphic decompositions (although we have not yet defined this notion formally) can lead to the same lattice, as shown in Figure 2 below. Let us make several observations on general structure of extremal lattices. We start with noticing that in an (n, k)-extremal lattice all elements with minimal representation strictly smaller than k -1 are situated rather trivially.

Lemma 3.2. For an element x of an (n, k)-extremal lattice if G(x) < k -1 then G(x) = J(x).
Proof. Suppose on the opposite that G(x) J(x), that is, there is a ∈ J(x)-G(x). We denote by H the set G(x) ∪ {a} and observe that H = G(x) = x. However |H| ≤ k -1 and by Proposition 2.2 H is a minimal representation for some element of L, that is, H = G(x), a contradiction.

It follows from Proposition 2.3 that an (n, k)-extremal lattice L has height n. Now, Lemma 3.2 implies the following statement. 

∈ G(1 L ) • if n ≤ k -1 then G(1 La ) = G(1 L ) -{a}; • if n > k -1 then there is b ∈ J(L) -G(1 L ) such that G(1 La ) = G(1 L ) - {a} + {b}. Proof. If n = k -1 then L is B(n)
and the claim is obvious. Now let us suppose that n > k -1. We split this into three cases.

If k = 2 then, as stated in Theorem 2.6, L is a chain of length n, and 1 La is a unique coatom with

G(1 L ) = 1 L , G(1 La ) = 1 La if n > 1 and G(1 La ) = ∅ if n = 1, which proves the claim. If k ≥ 4 then from Proposition 2.4 and Proposition 2.3 it follows that J(L ↑ a ) = J(L) -{a}. We denote L ↑ a by K and G K (1 K ) by H. Note that H has k -2 elements. Now, a ∨ L H = L {x ∨ a | x ∈ H} = L { • x | x ∈ H} = K H • = • 1 K = 1 L .
As the set H + {a} has k -1 elements and lie in J(L), from Proposition 2.2 it follows that G(1 L ) = H + {a}.

Another observation is that

1 La = 1 K ≥ K G La (1 La ) ≥ La G La (1 La ) = 1 La .
Thus, G La (1 La ) is a representation of 1 K in K, and consequently it contains the unique minimal representation H of 1 K in K as a subset. Proposition 3.3 implies that G La (1 La ) has k -1 element and consequently

G La (1 La ) = H + {b}, for some b in J(L a ) -H. Finally we may observe that L a = (1 La ] L and thus G La (1 La ) = G L (1 La ). Con- sequently G L (1 La ) = G La (1 La ) = H + {b} = G L (1 L ) -{a} + {b}.
At least let us consider the case when k = 3 and n > k -1. As earlier, we denote L ↑ a by K. Note that now K is a chain in L a and consequently J(K) does not lie in J(L).

Let us denote the minimal representation G(1 L ) by {a, b} and the coatoms of 1 L by a := 1 La and b := 1 L b . Notice that a ≥ b and b ≥ a. Also notice that (J(L) -{a, b}) = a ∧ b . Thus, every representation of a in L a contains b and consequently its minimal representation G(a ) also contains it. So G(a ) = {b, c} for some c ∈ J(L) -{a} and we get

G L (1 La ) = G La (b ) = {b, c} = G L (1 L ) -{a} + {c}.
The last case is illustrated in Figure 3 Let A := (a 1 , . . . , a l ) be a sequence without repetitions of elements of G(1 L ) for some (n, k)-extremal lattice L. Then Lemma 3.4 justifies notation L A to denote an (n -l, k)-extremal lattice obtained by consequent decomposition of L by a 1 , a 2 and so on. We claim that in fact the order of {a i } does not matter. Lemma 3.5. Let L be an (n, k)-extremal lattice, A := (a 1 , . . . , a l ) a sequence without repetition from G L (1) and σ a permutation on (1, . . . , l). Let B be a sequence defined as B := a σ(1) , a σ(2) , . . . , a σ(l) .

Then L A = L B .
Proof. By Proposition 3.1 we get L ai = (a i ] where a i = (J(L)-{a 1 }). Repeating this l times we get L A = (a] where a = (J(L) -{a 1 , . . . , a l }). Obviously, the construction of a does not depend on the order of {a i }, which proves our claim.

We emphasize the fact that in Lemma 3.5 L A and L B are not just isomorphic, but coincide as embeddings into L. Lemma 3.5 justifies notation L A for a set A ⊆ G(1 L ).

We end this section with several easy statements about extremal lattices. Proof. From Proposition 2.3 it follows that there is a chain (x m , . . . , x n ) in L with |J(x i )| = i, x m = x and x n = 1. We observe that x i is a coatom in (x i+1 ]. The claim is than follows by downward induction from x n to x m using Proposition 3.1.

Proposition 3.8. In (n, k)-extremal lattice an element of height m has exactly min(m, k -1) lower neighbors.

Proof. This is a straightforward application of Proposition 3.3, Proposition 3.6 and Proposition 3.7.

Root decompositions

Below we define root, root element and root decomposition of an (n, k)-extremal lattice. We stress that when dealing with these notions we would imply that k ≥ 3 and n ≥ k -1, without explicitly saying it each time. Note that by Property 2.4, k ≥ 3 implies that the lattice is atomic.

For an (n, k)-extremal lattice L we define the root of L, denoted R(L), as an embedding L G(1) , and the root element of L, denoted r(L), as 1 R(L) . Note that R(L) is an (n -k + 1, k)-extremal lattice.

An easy corollaries of Lemma 3.5 are the following properties.

Proposition 4.1. For an extremal lattice the root element is a meet of the coatoms of this lattice.

Proposition 4.2. For an (n, k)-extremal lattice L holds G(1) = J(L) -J(r(L)).

For the following definition of root decomposition we fix some order on J(L). Let a 1 , . . . , a k-1 be elements of G(1) enumerated in this order. Let L i denote an embedding L G(1)-{ai} . Then L ii = R(L) and thus R(L), L ↑

ii is a decomposition of L i .

We call k-tuple RD(L) := (R(L), P 1 (L), . . . , P k-1 (L)), where P i stands for L ↑ ii , a root decomposition of L.

Note that the order of P i matters, and that is why we needed to fix an order on J(L). However below we are going to define isomorphisms of decompositions, in a way that different orders of the same extremal lattice would lead to different but isomorphic decompositions.

We call a k-tuple (R, P 1 , . . . , P k-1 ), where R is an (n, k)-extremal lattice and P i are embeddings of (n, k -1)-extremal lattices into R, an (n, k)-decomposition. Thus, the root decomposition R is a mapping from (n + k -1, k)-extremal lattices to (n, k)-decompositions.

We define isomorphism between (n, k)-decompositions (R, P 1 , . . . , P k-1 ) and (R , P 1 , . . . , P k-1 ) as a tuple (φ, σ) for an isomorphism φ : R → R and a permutation σ on (1, . . . , k) such that φ P σ(i) = P i , for all i. (n, k)-decompositions for which there is an isomorphism, are called isomorphic. Proposition 4.3.

• isomorphism of (n, k)-decompositions is an equivalence relation, thus the name "isomorphism" is justified; • root decompositions of isomorphic (n, k)-extremal lattices are isomorphic. An essential point is that for (n, 3)-extremal lattices isomorphism of root decomposition also implies isomorphism of lattices themselves. Lemma 4.5. (n, 3)-extremal lattices are isomorphic if and only if their root decompositions are.

Proof. With Proposition 4.3 providing the "if" part, we only need to prove the "only if".

Here we adopt "proof by picture" approach. Notice that for an (n + 3 -1, 3)extremal lattice L and its root decomposition R(L) = (R, P 1 , P 2 ), L can be reconstructed from R(L) by doubling P 1 in R. To make next step and reconstruct L by R[P 1 ] and P 2 we must extend P 2 to a maximal chain in R[P 1 ], but there is exactly one way of doing so, namely by adding 1 R[P1] on top of P 2 . Then L = R[P 1 ][P 2 ], where P 2 is extended P 2 .

The fact that this procedure is unequivocal proves the isomorphism of thus reconstructed extremal lattices.

This argument is illustrated in Figure 4 below. 

P 1 P 2 R 5 1 2 3 4 P 2 R[P 1 ] 5 1 2 3 4 6 R[P 1 ][P 2 ]
Figure 4. Reconstruction of an (6, 3)-extremal lattice by its root decomposition.

As we see, to count isomorphism classes of (n, 3)-extremal lattices we can count nonisomorphic (n -2, 3)-extremal decompositions, and indeed that is what we will do further. But can we adopt the same approach for larger k? 5. Why this does not work for (n, 4)-extremal lattices and higher.

For k > 3 counting non-isomorphic (n -k + 1, k)-decompositions certainly provides a lower bound for the number of non-isomorphic (n, k)-extremal lattice, as due to Proposition 4.3 isomorphic lattices yield isomorphic decompositions. The opposite does not hold even for k = 4, as different lattices may produce same decomposition, as shown in Figure 5 below.

Here we present only the initial step of the reconstruction, as resulting lattices are large and thus their diagrams are not very informative. It can be seen that there are two ways to extend each of P 1 and P 2 to (4, 3)-extremal embedding in R[P 1 ], which we denote by P 2 [P 1 ] and P 3 [P 1 ]. Thus, we get four ways to extend embeddings on the first step, and another choice of two possible extensions on the next step, resulting in eight possible ways of reconstructing L. Some of these reconstruction will be isomorphic, some will not. We also note, although without proving it, that the number of possible extensions of P i during the doubling of P j equals the number of ways to chose a maximal chain, that is (n, 2)-extremal embedding, in P i ∩ P j . Thus the degree of nondeterminism in choice may also vary depending on relative position of P i .

Automorphisms of extremal lattices.

We define an automorphism of (n, k)-decomposition (R, P 1 , . . . , P k-1 ) as an automorphism φ : R → R and a permutation σ on (1, . . . , k -1) such that φ(R σ(i) ) = R i , for all i. That is, as expected, an automorphism of a decomposition is an isomorphism of this decomposition to itself. Trivially, each decomposition has a trivial identity automorphism and all automorphisms of a decomposition form a group.

We recall that the notion of root decomposition of (n, k)-extremal lattice L involved a fixed order on J(L). As Proposition 4.3 infers, this order is nonessential in order to distinguish isomorphism classes of extremal lattices and their decompositions. However in order to work with automorphisms we need to pay this order a close look.

We note that automorphisms of (n, k)-extremal lattice L form a subgroup in the group of permutations on the set (1, . . . , n) of join-irreducible elements of L.

For an automorphism α of L by RD α (L) we denote root decomposition of L with order α on J(L).

We claim that automorphisms of L and isomorphisms of G(L) are in one-to-one correspondence.

Lemma 6.1. Automorphism group of an (n, k)-extremal lattice is a subgroup of automorphism group of its root decomposition.

Proof. Let L be an (n, k)-extremal lattice, k ≥ 3, n ≥ k, and F a fixed order on J(L). We denote the automorphism group of L by A and identify each automorphism of L with a permutation of J(L). Thus, A ≤ Sym(J(L)).

Obviously, any isomorphism α ∈ A maps coatoms to coatoms, thus by Proposition 4.1, α(r(L)) = R(L). We recall that by Proposition 4.2, J(L)-J(r(L)) = G(1). Thus, α can be represented as a tuple of permutations

α = (φ α , σ α ) ∈ Sym J(r(L)) ⊗ Sym G(1)) .
Note that φ α defines an isomorphism of R(L) and σ α is a permutation of k -1 elements of G(1).

Let us define δ : G(1) → (1, . . . , k -1) as a function that maps a join-irreducible element to its number in G(1) with regards to F . We argue that φ α [P δ(a) ] = P δσ(a) , for every α ∈ A and a ∈ G(1). Indeed, P δ(a) = π a L ↑ a , where a = G(1) -{a}, L ↑ a = (r(L) ∨ a] -(r(L)] and π a : L ↑ a → R(L) is a projection mapping defined as π a (x) = x ∧ r(L) = (J(x) -{a}) .

Thus

J(α • π a (x)) = α [J(x) -{a}] = α [J(x)] -{σ α (a)} = J(α(x)) -{σ α (a)} = J(π σα(a) • α(x)), implying α • π a = π σα(a)
• α, and we get

P δσ(a) = π σ(a) (r(L) ∨ σ α (a)] -(r(L)] = π σ(a) • α (r(L) ∨ a] -(r(L)] = α • π a (r(L) ∨ a] -(r(L)] = α P δ(a) = φ α P δ(a) .
Thus, the mapping α → (φ α , δ • σ -1 α ) establishes the desired embedding. This argument is illustrated in Figure 6 below. The embedding, provided by Lemma 6.1 may in general be proper. For example the automorphism group of decomposition on Figure 5 if Sym(3), while some lattices reconstructed from it may have no nontrivial automorphisms. However for (n, 3)-extremal lattice this embedding turns into isomorphism. Lemma 6.2. Automorphism group of an (n, 3)-extremal lattice is isomorphic to automorphism group of its root decomposition.

Proof. As in the proof of Lemma 4.5 the claim follows from the possibility of unique reconstruction of L by R(L) when L is (n, 3)-extremal. Proof. We recall that isomorphism group A of (n, 3)-decomposition D is a subgroup of Sym(n)⊗Sym [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF], where Sym(n) defines an isomorphism of R and Sym(2) a permutation in order of chains P 1 and P 2 . We claim that there is no two automorphisms (φ 1 , σ) and (φ 2 , σ), φ 1 = φ 2 , which would immediately imply the claim of the lemma. Indeed, if there are two such automorphisms, then (ϕ = φ -1 1 • φ 2 , id) is a nontrivial automorphism of D. in this case ϕ leaves all elements of P 1 in their places. However for any j ∈ J(R) there is exactly one pair of elements x and y in P 1 such that J(y) = J(x) + {j}, implying ϕ(j) = j. But this means that all join-irreducible elements of R, and consequently all elements of L, are fixed under ϕ, thus ϕ = id, a contradiction.

Note that the statement of Lemma 6.3 cannot be trivially extended to larger k, as automorphism group of an (n, k)-decomposition may not lie in Sym(k). For example, the (3, 4)-decomposition on Figure 7 has automorphism group Sym(2) ⊗ Sym(3). As a corollary of Lemma 6.2 and Lemma 6.3 we get the following statement.

Proposition 6.4. Automorphism group of an (n, 3)-extremal lattice is a subgroup of Sym(2).

7. Actual counting.

Theorem 7.1. Let C(n) Sym(2) and C(n) id denote the number of non-isomorphic (n, 3)-extremal lattices with automorphism group Sym(2) and {id} correspondingly, and C(n) denote the total number of non-isomorphic (n, 3)-extremal lattices. Then

(i) C(n) = C(n) Sym(2) + C(n) id ; (ii) C Sym(2) (1) = C id (2) = 0 and C id (1) = C Sym(2) (2) = 1; (iii) for n ≥ 3 the following recursive formula for C Sym(2) (n) and C id (n) holds C Sym(2) (n) C id (n) = 2 n-3 2 n-3 2 n-4 2 n-4 -1 2 n-4 2 n-3 -1 C Sym(2) (n -2) C id (n -2)
Proof. Cases (i) and (ii) are obvious, and to prove (iii) we use Lemma 4.5 and count the number of non-isomorphic (n -2, 3)-decompositions, while using Lemma 6.2 to keep track of isomorphism groups of corresponding lattices. For a fixed (m, 3)-extremal lattice R there are exactly 2 m-1 ways to embed a maximal chain, as by Proposition 3.8 we have two ways to pick an element of height l for l ≥ 2. Thus, in total there are 2 2(m-1) different decompositions, but some of them may be isomorphic.

We deal with this as follows, we say that there is a space D of 2 2(m-1) root decompositions on which in the obvious way acts group A = Aut(R) ⊗ σ(2). Decompositions are isomorphic exactly when they lie in the same orbit, so we need to count the number of orbits |D/A|. Notice also that for a decomposition We split the argument into two cases. First, let Aut(R) = Sym(2), that is, there is a nontrivial automorphism α of R. Also let us denote the nontrivial permutation of (1, 2) by σ. Then |A| = 4 and • there are 2 m-1 ways to pick decomposition fixed by (id, σ), namely we pick P 1 arbitrary and put P 2 = P 1 ; • there are 2 m-1 ways to pick decomposition fixed by (α, σ), namely we pick P 1 arbitrary and put P 2 := α(P 1 ); • there are no decompositions fixed by (α, id), as well as by both (id, σ) and (α, σ), because P 1 = α(P 1 ) fo any nontrivial α.

Decompositions in first two paragraphs correspond to orbits with 2 elements and have nontrivial automorphism, and there are 2 m-1 + 2 m-1 /2 = 2 m-1 of these orbits; all others have orbits of size 4 and no nontrivial automorphism, the number of orbits is 2 2m-2 -2 m-1 -2 m-1 /4 = 2 m-2 2 m-2 -1 . Secondly, let Aut(R) = {id}. As in the previous case, we denote the nontrivial permutation of (1, 2) by σ. Then |A| = 2 and

• there are 2 m-1 ways to pick decomposition fixed by (id, σ), namely we pick P 1 arbitrary and put P 2 = P 1 .

These decompositions correspond to orbits with 1 element and have nontrivial automorphism, there number of orbits is 2 m-1 ; all others have orbits of size 2 and no nontrivial automorphism, the number of orbits is 2 2m-2 -2 m-1 /2 = 2 m-2 2 m-1 -1 . Observing that for n ≥ 3 any (n, 3)-extremal lattice is defined by (n -2, 3)-decomposition finishes the proof. Figures 8 and9 illustrate how all possible isomorphism classes of (2, 3) and (3, 3)-decompositions look. Numbers in circles below each decomposition denote the size of the corresponding orbit. In both cases automorphism group of the underlying lattice is Sym [START_REF] Albano | Why concept lattices are large: Extremal theory for the number of minimal generators and formal concepts[END_REF]. It is unpractical to make similar illustration for the case when Aut(R) is {id}, as minimal nontrivial (n, 2)-extremal lattice satisfying this condition has 5 atoms and gives rise to 136 non-isomorphic decompositions. 
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 137 Figure 7. The (3, 4)-decomposition with automorphism group Sym(2) ⊗ Sym(3).

  d with orbit O(d) holds, O(d) = |G|/ |Aut(g)|, so Aut(G) = {id} if and only if |O(d)| = |G|.

2 2 Figure 8 .

 228 Figure 8. Two possible non-isomorphic (2, 3)-decompositions.

Table 1 .

 1 Table 7 below presents the actual values for C Sym(2) , C id and C for small n. Number of non-isomorphic (n, 3)-extremal lattices.

	n C Sym(2)	C id	C
	1	0	1	1
	2	1	0	1
	3	1	0	1
	4	2	0	2
	5	4	2	6
	6	16	24	40
	7	96	464	560
	8	1280	15744	17024
	9	35840	1030656 1066496
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