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EXPONENTIAL FUNCTIONALS OF SPECTRALLY ONE-SIDED LÉVY
PROCESSES CONDITIONED TO STAY POSITIVE

GRÉGOIRE VÉCHAMBRE

Abstract. We study the properties of the exponential functional
∫ +∞

0
e
−X↑(t)

dt where X
↑

is a spectrally one-sided Lévy process conditioned to stay positive. In particular, we study
finiteness, self-decomposability, existence of finite exponential moments, asymptotic tail at 0

and smoothness of the density.

1. Introduction

We consider a spectrally negative Lévy process V which is not the opposite of a subordinator.
We denote its Laplace exponent by ΨV :

∀t, λ ≥ 0, E
[

eλV (t)
]

= etΨV (λ).

In the case where V drifts to −∞, it is well known that its Laplace exponent admits a non trivial
zero that we denote here by κ, κ := inf{λ > 0, ΨV (λ) = 0}. If V does not drift to −∞, then
0 is the only zero of ΨV so we put κ := 0 in this case. We denote by (Q, γ, ν) the generating
triplet of V so ΨV can be expressed as

ΨV (λ) =
Q

2
λ2 − γλ+

∫ 0

−∞
(eλx − 1− λx1|x|<1)ν(dx). (1.1)

In the end of the paper, we also consider Z, a spectrally positive Lévy process drifting to +∞.

We are interested in the basic exponential functionals of V and Z conditioned to stay positive,

I(V ↑) :=

∫ +∞

0
e−V ↑(t)dt and I(Z↑) :=

∫ +∞

0
e−Z↑(t)dt.

For both we study finiteness, exponential moments and the asymptotic tail at 0. For I(V ↑), we
also get self-decomposability, more precise estimates on the asymptotic tail at 0 and a condition
for smoothness of the density.

Our first motivation is to extend to spectrally one-sided Lévy processes conditioned to stay
positive the general study of the exponential functionals of Lévy processes. Those functionals
have been widely studied because of their importance in probability theory. For example they are
fundamental to the study of diffusions in random environments and appear in many applications
such as mathematical finance, see [4] for a survey on those functionals and their applications. For
a general Lévy process, equivalent conditions for the finiteness of the exponential functional are
given in [4], the asymptotic tail at +∞ of the functional is studied in [10], the absolute continuity
is proved in [9] and properties of the density (such as regularity) are studied in [11] under some
hypothesis on the jumps of the Lévy process and in [12]. In this paper we also obtain, as a
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by-product of our approach, some results on the exponential functionals of spectrally one-sided
Lévy processes.

Our second motivation is the possibility to apply our results to the study of diffusions in a
spectrally negative Lévy environment. Such processes, introduced by Brox [6] when the envi-
ronment is given by a brownian motion have been specifically studied for the spectrally negative
Lévy case by Singh [15]. In [2], they prove that the supremum of local time L∗

X of a diffusion in a
drifted brownian environment converges in law and they express the limit law in term of a subor-
dinator and an exponential functional of the environment conditioned to stay positive. In order
to generalize their result to a diffusion in a spectrally negative Lévy environment, knowledge on
the exponential functionals involved is needed. These are precisely exponential functionals of the
environment (which is spectrally negative) and its dual (which is spectrally positive) conditioned
to stay positive.

Finally, we have hints that the almost sure asymptotic behavior of L∗
X , for a diffusion in the

spectrally negative Lévy environment V , is crucially linked to the right and left tails of the
distribution of I(V ↑). This is why we study these tails here and give for the left tail a precise
asymptotic estimate when it is possible, in particular, when ΨV (λ) ∼ cλα, for some constant c
and α ∈]1, 2]. For the right tail, we are only interested in the existence of some finite exponential
moments. The application of the present work to diffusions in random environment is a work in
preparation by the author [17], [16].

For A a process and S a borelian set, we denote

τ(A,S) := inf {t ≥ 0, A(t) ∈ S} , R(A,S) := sup {t ≥ 0, A(t) ∈ S} .

We shall only write τ(A, x) (respectively R(A, x)) instead of τ(A, {x}) (respectively R(A, {x}))
and τ(A, x+) instead of τ(A, [x,+∞[). For example, since V ↑ has no positive jumps, we see that
it reaches each positive level continuously : ∀x > 0, τ(V ↑, x+) = τ(V ↑, x) and since moreover
V ↑ converges to +∞ we have ∀x > 0, R(V ↑, [0, x]) = R(V ↑, x).

Also let A(t) := inf{A(s), s ∈ [0, t]} be the infimum process of A. If A is Markovian and
x ∈ R we denote Ax for the process A starting from x. For A0 we shall only write A. For any
(possibly random) time T > 0, we write AT for the process A shifted and centered at time T :
∀s ≥ 0, AT (s) := A(T + s)−A(T ).

We now recall some facts about V ↑, that is, V conditioned to stay positive.

For a spectrally negative Lévy process V , the Markov family (V ↑
x , x ≥ 0) may be defined as in

[3], Section VII.3. For any x ≥ 0, the process V ↑
x must be seen as V conditioned to stay positive

and starting from x. We denote V ↑ for the process V ↑
0 . It is known that V ↑

x converges in the

Skorokhod space to V ↑ when x goes to 0.

For X a positive random variable, we denote V ↑
X for the process V conditioned to stay positive

and starting from the random variable X. More rigorously, V ↑
X is the Markov process that

conditionally on {X = x} has law V ↑
x .

For any positive x, we have from the Markov property and the absence of positive jumps that

the process V ↑, shifted at τ(V ↑, x), its first passage time at x, is equal in law to V ↑
x . In the

case where V drifts to +∞, it is known from [3], Section VII.3, that V ↑
x has the same law as

Vx conditioned in the usual sense to remain positive. This property, interesting for our study,
is unfortunately not true when V oscillates or drifts to −∞ (in these cases we have to do the
conditioning until an hitting time).
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In the case where V drifts to −∞, we define V ♯ to be "V conditioned to drift to +∞", as in
[3], Section VII.1. The Laplace exponent ΨV ♯ of V ♯ satisfies ΨV ♯ = ΨV (κ + .) where κ is the
non-trivial zero of ΨV . As a consequence Ψ′

V ♯(0) > 0, so V ♯ drifts to infinity (this is deduced

thanks to Corollary VII.2 in [3]) and it is also proven that V ↑ = (V ♯)↑.

In order to do our proofs in a systematic way, we often work with V ♯ which is defined to be "V
conditioned to drift to +∞" in the case where V drifts to −∞ and "only V " in the other cases
(when V oscillates or drifts to +∞). As a consequence, V ♯ always denotes a spectrally negative
Lévy process that does not drifts to −∞ (it oscillates if V does and it drifts to +∞ if V drifts

to +∞ or −∞). In any case we have that for all 0 < x < y, (V ↑
x (t), 0 ≤ t ≤ τ(V ↑

x , y)) is equal

in law to (V ♯
x (t), 0 ≤ t ≤ τ(V ♯

x , y)) conditionally on {τ(V ♯
x , y) < τ(V ♯

x , ]−∞, 0])}. Note that the

same identity is true with V instead of V ♯, but the advantage of dealing with V ♯ is that τ(V ♯
x , y)

is always finite (while τ(Vx, y) can possibly be infinite when V drifts to −∞) which simplifies
the argumentation.

Let W be the scale function of V , defined as in Section VII.2 of [3]. It satisfies

∀0 < x < y, P (τ(Vx, y) < τ(Vx, ]−∞, 0])) =W (x)/W (x+ y).

According to Theorem VII.8 in [3], this function is continus, increasing, and for any λ > ΦV (0),
∫ +∞

0
e−λxW (x)dx =

1

ΨV (λ)
< +∞.

1.1. Results. In the special case of the exponential functional of a drifted brownian motion
conditioned to stay positive, all the properties that are established here are already known and
sometimes more explicitly. We discuss this case in the next subsection.

Our first result is the finiteness of I(V ↑) and the fact that it admits exponential moments.

Theorem 1.1. The random variable I(V ↑) is almost surely finite, has finite expectation E[I(V ↑)]
and

∀λ < 1/E[I(V ↑)], E

[

eλI(V
↑)
]

< +∞. (1.2)

Then, a fundamental point of our study is Proposition 3.2 which says that for any positive y,
I(V ↑) satisfies the random affine equation

I(V ↑)
L
= Ay + e−yI(V ↑), (1.3)

where Ay is independent of the second term and will be specified later. We see that I(V ↑) is a
positive self-decomposable random variable and is therefore absolutely continuous and unimodal.
It is well known (see for example expression (1.10) in [13]) that the exponential functional I(V )
of a spectrally negative Lévy process V is also self-decomposable (as long as it is finite), it can
be seen by splitting the trajectory at τ(V, y), the first passage time at y. Another consequence
of (1.3) is that for any positive y, I(V ↑) can be written as the random series

I(V ↑)
L
=
∑

k≥0

e−kyAy
k,

where the random variables Ay
k are iid and have the same law as Ay. This decomposition is a

very useful tool for the study of the random variable I(V ↑) and is also the base of the proofs of
the results we present below.

Our next results make a link between the asymptotic behavior of ΨV and the properties of
I(V ↑).



Exponential functionals of spectrally one-sided Lévy processes conditioned to stay positive 4

Theorem 1.2. Assume that there is α > 1 and a positive constant C such that for all λ large
enough we have ΨV (λ) ≤ Cλα. Then for all δ ∈]0, 1[ and x small enough we have

P

(

I(V ↑) ≤ x
)

≤ exp
(

−δ(α− 1)/(Cx)1/(α−1)
)

. (1.4)

Assume that there is α > 1 and a positive constant c such that for all λ large enough we have
ΨV (λ) ≥ cλα. Then for all δ > 1 and x small enough we have

P

(

I(V ↑) ≤ x
)

≥ exp
(

−δαα/(α−1)/(cx)1/(α−1)
)

. (1.5)

Let us now recall how is usually quantified the asymptotic behavior of ΨV . We define, as in
[3], page 94,

σ := sup

{

α ≥ 0, lim
λ→+∞

λ−αΨV (λ) = ∞
}

,

β := inf

{

α ≥ 0, lim
λ→+∞

λ−αΨV (λ) = 0

}

.

Recall that ΨV ♯(.) = ΨV (κ + .), so σ and β are identical whether they are defined from ΨV ♯ or
ΨV .

If ΨV has α-regular variation for α ∈ [1, 2] (for example if V is a drifted α-stable Lévy process
with no positive jumps), we have σ = β = α. Recall that Q is the brownian component of V . It
is well known that ΨV (λ)/λ

2 converges to Q/2 when λ goes to infinity so, when Q > 0, ΨV has
2-regular variation, and when Q = 0,

1 ≤ σ ≤ β ≤ 2,

where 1 ≤ σ comes from the convexity of ΨV .

Remark 1.3. When V has bounded variation, we know (see for example [3] Section I.1) that

the brownian component of V is null, the Lévy measure ν of V satisfies
∫ 0
−1 |x|ν(dx) < +∞ and

−γ −
∫ 0
−1 xν(dx), the factor of λ in the expression of ΨV (λ), is positive (otherwise V would be

the opposite of a subordinator). It is thus easy to see that in this case ΨV (λ)/λ converges to

−γ−
∫ 0
−1 xν(dx) when λ goes to infinity, so σ = β = 1. In the remaining, we sometimes assume

that σ > 1, the reader should be aware that it excludes the case where V has bounded variation.
However, this case is quite easy and shall be treated in the remarks.

We are now ready to state our general results on the asymptotic tails at 0 of I(V ↑) :

Theorem 1.4. We have

∀β′ > β, lim
x→0

x1/(β
′−1) log

(

P

(

I(V ↑) ≤ x
))

= −∞, (1.6)

if σ > 1, ∀σ′ ∈]1, σ[, lim
x→0

x1/(σ
′−1) log

(

P

(

I(V ↑) ≤ x
))

= 0. (1.7)

Theorem 1.4 gives for P(I(V ↑) ≤ x) a lower bound involving σ and an upper bound involving
β. In the case of α-regular variation we can expect, under some extra hypothesis, to get a
stronger result. We indeed have :

Theorem 1.5. We assume that there is a positive constant C and α ∈]1, 2] such that ΨV (λ) ∼λ→+∞

Cλα, then

log
(

P

(

I(V ↑) ≤ x
))

∼
x→0

− α− 1

(Cx)
1

α−1

.
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The above theorem is true in particular when, for some α ∈]1, 2], V is an α-stable spectrally
negative Lévy process (with adjonction or not of a drift). In particular, it agrees exactly with
the tail (1.11) given in the next subsection for the particular case of a drifted brownian motion.

Remark 1.6. Since ΨV (λ)/λ
2 has always a finite limit at +∞ we get, from Theorem 1.2, that

there is always a positive constant K (depending on V ) such that for x small enough

P

(

I(V ↑) ≤ x
)

≤ e−K/x.

Remark 1.7. Note that Theorem 1.4 holds when β = 1 and 1/(β′−1) can then equal any number
in ]0,+∞[. When V has bounded variation, we even have a stronger result : P(I(V ↑) ≤ x) is
null for x small enough.

Remark 1.8. Recall that I(V ↑) is unimodal. If 0 was a mode, then we would have P(I(V ↑) ≤
x) ≥ cx for some positive constant c and x small enough, which is incompatible with (1.6). As a
consequence the density of I(V ↑) is non-decreasing on a neighborhood of 0. This allows to remark
that Theorems 1.2, 1.4, 1.5 and Remarks 1.6, 1.7 are true for the density of I(V ↑) in place of
the repartition function P(I(V ↑) ≤ .).

When V drifts to +∞ we prove Proposition 4.3 which says that the left tail of I(V ↑) is the
same as the left tail of I(V ). This implies that all the results we prove for the left tail of I(V ↑)
are true for the left tail of I(V ) :

Proposition 1.9. If V drifts to +∞, then Theorems 1.2, 1.4, 1.5 and Remarks 1.6, 1.7 are true
for I(V ) in place of I(V ↑).

Proposition 1.9 is an example of how the study of the exponential functional of the Lévy
process conditioned to stay positive can be useful for the study of the exponential functional of
the corresponding Lévy process.

We already mentioned that the law of I(V ↑) is absolutely continuous but we do not know how
smooth the density is in general. The following theorem provides a condition for smoothness :

Theorem 1.10. If σ > 1 and β are such that

2β2 − 3σβ + σ + β − 1 < 0, (1.8)

then the density of I(V ↑) belongs to the Schwartz space. All its derivatives converge to 0 at +∞
and 0.

This theorem admits the following corollary :

Corollary 1.11. If V drifts to +∞, is such that σ > 1 and (1.8) is satisfied, then the density
of I(V ) is of class C∞ and all its derivatives converge to 0 at +∞ and 0.

Here again, the study of the exponential functional of the Lévy process conditioned to stay
positive implies results about the exponential functional of the corresponding Lévy process.

Remark 1.12. If ΨV has α-regular variation with α > 1, then σ = β = α so the condition (1.8)
becomes −(α − 1)2 < 0, but this is always true for α > 1, so Theorem 1.10 and Corollary 1.11
apply. In other words, α-regular variation for the Laplace exponent of V implies smoothness of
the density for I(V ↑) (and I(V ) if it is finite) when α > 1.

In the spectrally positive case, the finiteness of the exponential functional is quite easy to
obtain, but our argument also yields the existence of some finite exponential moments. We can
state the result as follows :
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Theorem 1.13. The random variable I(Z↑) is almost surely finite and admits some finite expo-
nential moments.

We also obtain a lower bound for the asymptotic tail at 0 of both I(Z) and I(Z↑). This tail
is heavier than the one given for I(V ↑) and this comes from the positive jumps.

Theorem 1.14. If Z has unbounded variation and non-zero Lévy measure then, there is a positive
constant c such that

e−c(log(x))2 ≤ P (I(Z) ≤ x) ≤ P

(

I(Z↑) ≤ x
)

.

The lower bound for P(I(Z) ≤ x) does not require the hypothesis of unbounded variation.

Remark 1.15. If the Lévy measure of Z is the zero measure then it is known, from the Lévy-
Khintchine formula, that Z is a drifted brownian motion. The exact asymptotic tail at 0 of
I(Z↑) is then given by Theorem 1.5 and it is thinner than the one provided by Theorem 1.14.
The existence of jumps thus plays an important role for the asymptotic tail at 0 of the exponential
functional and the proof of Theorem 1.14 indeed crucially relies on this hypothesis.

The study of the spectrally positive case does not go as far as the study of the spectrally
negative case. The reason for this is twofold. First, we do not have, in the spectrally positive
case, a decomposition of the law of I(Z↑) as in (1.3), which deprives us of an important tool for
the study. Secondly we do not need, in the applications, the results on the exponential functional
to be as precise, in the spectrally positive case, as in the spectrally negative case. Indeed, in
the study of a diffusion in a spectrally negative Lévy environment V drifting to −∞, a random
variable R appears. Its law is the convolution of the laws of I(V ↑) and I(V̂ ↑), where V̂ := −V
is the dual process of V and is thus spectrally positive. The combination of the above theorems
shows that for some things the behavior of I(V ↑) is dominant in the study of R when V has
jumps. In particular, the asymptotic tail at 0 of R is the same as the one of I(V ↑).

The rest of the paper is organized as follows. In Section 2 we prove some preliminary re-
sults on V ↑. In Section 3 we prove Theorem 1.1 and establish Proposition 3.2 about the self-
decomposability of I(V ↑). In Section 4 we prove Theorems 1.2, 1.4 and 1.5 by studying the
asymptotic behavior of the Laplace transform of I(V ↑), and in the case where V drifts to +∞,
we establish a connection between the tails at 0 of the exponential functionals I(V ↑) and I(V ).
In Section 5 we prove Theorem 1.10 and Corollary 1.11 via a study of excursions. Section 6 is
devoted to the spectrally positive case and the proofs of Theorems 1.13 and 1.14.

1.2. The example of drifted brownian motion conditioned to stay positive. The most
simple case is the intersection of the spectrally positive and the spectrally negative case, that is,
when V is a drifted brownian motion. All the results mentioned here are already known in this
case. We define the κ-drifted brownian motion by Wκ(t) :=W (t)− κ

2 t. It is known that the two

processes W ↑
κ and W ↑

−κ are equal in law. This follows, for example, from the expression of the

generator of W ↑
κ , or from the fact that for positive κ, the Laplace exponent of W ♯

κ is equal to the
Laplace exponent of W−κ, so the processes conditioned to stay positive have the same law. We
thus only consider positive κ.

It is known (see (4.6) in [1], see also Lemma 6.6 in [2]) that I(W ↑
k ) is almost surely finite and

has Laplace transform

E[e−λI(W ↑

k )] =

1
2κΓ(1+κ)(2

√
2λ)κ

Iκ(2
√
2λ)

,
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where Iκ is a modified Bessel function. This expression can also be written

E[e−λI(W ↑

k )] =
1

Γ(1 + κ)

1
∑+∞

j=0
(2λ)j

j!Γ(1+j+κ)

, (1.9)

and it is easy to see that it can be analytically extended in a neighborhood of 0, so the random

variable I(W ↑
k ) admits some finite exponential moments.

An easy calculation on the asymptotic of this expression when λ goes to infinity yields

− log
(

E[e−λI(W ↑

k )]
)

∼
λ→+∞

2
√
2λ. (1.10)

Combining (1.10) and De Bruijn’s Theorem (see Theorem 4.12.9 in [5]) we get

− log
(

P

(

I(W ↑
k ) ≤ x

))

∼
x→0

2

x
. (1.11)

This estimate can be seen as a particular case of Theorem 1.5 (when it is applied in the case of
a drifted brownian motion).

As the expression (1.9) extends to a neighborhood of 0, we get the expression of the charac-

teristic function of I(W ↑
k ) which can be proved, using estimates on modified Bessel functions, to

belong to the Schwartz space. Therefore, the density of I(W ↑
k ), which is the Fourier transform of

its characteristic function, belongs to the Schwartz space, but this is already included in Theorem
1.10.

2. Preliminary results on V ↑ and finiteness of I(V ↑)

2.1. Exponential functionals and excursions theory. We fix y > 0. In this subsection,
we use excursions to prove that the integral of exponential V ↑(τ(V ↑, y) + .) or V ♯ stopped at
there last passage time at y and 0 respectively are equal in law to some subordinators stopped
at independent exponential random variables.

It is easy to see that regularity of {y} for the markovian processes V ♯
y and V ↑

y is equivalent to
the regularity of {0} for V (or V ♯) which in turn, according to Corollary VII.5 in [3], is equivalent

to the fact that V has unbounded variation. The property of {y} being instantaneous for V ♯
y

and V ↑
y is equivalent to the same property of {0} for V , but this is a well known property of

spectrally negative Lévy processes. {y} is thus always instantaneous for V ♯
y and V ↑

y and the
only alternative is whether it is regular or not, which corresponds to the fact that V has or not
unbounded variation.

We apply excursions theory away from y (see [3]). Let us denote by L↑
y (respectively L♯

y)

a local time at y of the process V ↑
y (respectively V ♯

y ) and η↑y (respectively η♯y) the associated

excursions measure. We denote η♯ for η♯0. The inverse of the local time L↑,−1
y (respectively L♯,−1

y )

is a subordinator and V ↑
y (respectively V ♯

y ) can be represented as a Poisson point process on the

set of excursions, with intensity measure η↑y (respectively η♯y). Note that this is also true in the

irregular case (when V has bounded variation) if the local time L↑
y (respectively L♯

y) is defined
artificially as in [3], Section IV.5. In this case, the excursion measure is proportional to the law
of the first excursion and in particular the total mass of the excursion measure is finite.

In the case where V drifts to +∞, we also consider the excursions of V away from 0. Then,
L denotes a local time at 0 of V and η the associated excursion measure.



Exponential functionals of spectrally one-sided Lévy processes conditioned to stay positive 8

Given ξ : [0, ζ] → R an excursion away from y, we define ζ(ξ) to be its life-time, Hy(ξ) :=

sup[0,ζ(ξ)] ξ − y its height and G(ξ) :=
∫ ζ(ξ)
0 e−ξ(t)dt.

For any h > 0, we consider IPh, FPh and N three subsets that make a partition of the
excursions of V ♯ away from y. These three subsets are respectively : the set of excursions higher
than h that stay positive, the set of excursions of height smaller than h that stay positive, the
set of excursions that reach ]−∞, 0] :

IPh := {ξ, ∀t ∈ [0, ζ(ξ)], ξ(t) > 0, Hy(ξ) ≥ h} , FPh := {ξ, ∀t ∈ [0, ζ(ξ)], ξ(t) > 0, Hy(ξ) < h} ,
N := {ξ, τ(ξ, ]−∞, 0]) < ζ(ξ)} .

N does not depend on h. IP∞ and FP∞ are defined as the monotone limits of the sets IPh

and FPh : IP∞ is the set of infinite excursions that stay positive and FP∞ is the set of finite

excursions that stay positive. η♯y(IP∞) and η♯y(N) are always finite whereas η♯y(FP∞) is infinite in

the regular case (when V has unbounded variation). Also, note that η♯y(IP∞) = 0 if V oscillates.

Lemma 2.1. Let y be positive and let S be a pure jump subordinator with Lévy measure Gη♯y(.∩
FP∞), the image measure of η♯y(. ∩ FP∞) by G. Let T be an exponential random variable with

parameter η♯y(IP∞) + η♯y(N), independent of S. We have
∫ R(V ↑,y)

τ(V ↑,y)
e−V ↑(t)dt

L
= ST , (2.12)

where τ(., .) and R(., .) are defined in the introduction.

Proof. V ↑(τ(V ↑, y)+ .) has the same law as V ↑
y , from the Markov property applied to V ↑ at time

τ(V ↑, y) and the absence of positive jumps. As a consequence,
∫ R(V ↑,y)

τ(V ↑,y)
e−V ↑(t)dt is equal in law

to
∫ R(V ↑

y ,y)
0 e−V ↑

y (t)dt and we are left to prove the result for the latter.

Then, let us fix h > 0. As it is mentioned in the introduction, (V ↑
y (t), 0 ≤ t ≤ τ(V ↑

y , y+h)) is

equal in law to (V ♯
y (t), 0 ≤ t ≤ τ(V ♯

y , y + h)) conditionally on {τ(V ♯
y , y + h) < τ(V ♯

y , ]−∞, 0])}.

(V ♯
y (t), 0 ≤ t ≤ τ(V ♯

y , y + h)) can be built from the Poisson point process on the set of

excursions with intensity measure η♯y. (V ↑
y (t), 0 ≤ t ≤ τ(V ↑

y , y+ h)) can be built from this same
process, conditioned not to have jumps in N before its first jump in IPh. In other words, we

build (V ↑
y (t), 0 ≤ t ≤ τ(V ↑

y , y+h)) from the process of jumps in FPh stopped at the exponential

time (that has parameter η♯y(IPh) + η♯y(N)) at which occurs the first jump in IPh ∪ N and
conditionally to the fact that this jump belongs to IPh. Then, the process of jumps in FPh

and in IPh ∪N are independent and by a property of Poisson point processes, the fact that the
first jump in IPh ∪ N belongs to IPh is independent of the time when this jump occurs. As a

consequence, (V ↑
y (t), 0 ≤ t ≤ τ(V ↑

y , y + h)) is built from a Poisson point process with intensity

measure η♯y(. ∩ FPh), until an independent exponential time, Th, of parameter η♯y(IPh) + η♯y(N)

where we pick, independently, a jump following the law η♯y(. ∩ IPh)/η
♯
y(IPh) (and we only keep

the part of this excursion that is before its hitting time of y + h).

Let Rh(V ↑
y , y) be the last passage time of V ↑

y at y before τ(V ↑
y , y + h) :

Rh(V ↑
y , y) := sup{t ∈ [0, τ(V ↑

y , y + h)], V ↑
y (t) = y}.

From above, if (ps)s≥0 is a Poisson point process in FP∞ with measure η♯y(.∩FP∞) and if Th is

an independent exponential random variable with parameter η♯y(IPh)+ η♯y(N), then (V ↑
y (t), 0 ≤
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t ≤ Rh(V ↑
y , y)) is built by putting aside the excursions of the process (ps1ps∈FPh

, 0 ≤ s ≤ Th).

Since V ↑
y converges almost surely to +∞, Rh(V ↑

y , y) converges almost surely to R(V ↑
y , y), the last

passage time at y, when h goes to infinity. On the other hand, IPh ∪N decreases to IP∞ ∪N
when h goes to infinity. As a consequence Th increases to an exponential random variable T

with parameter η♯y(IP∞) + η♯y(N) > 0. Also, FPh increases to FP∞ when h goes to infinity.

Then, identifying the limits when h goes to infinity of both (V ↑
y (t), 0 ≤ t ≤ Rh(V ↑

y , y)) and

(ps1ps∈FPh
, 0 ≤ s ≤ Th), we get that (V ↑

y (t), 0 ≤ t ≤ R(V ↑
y , y)) is built by putting aside the

excursions of the process (ps, 0 ≤ s ≤ T ), where T is an exponential random variable with

parameter η♯y(IP∞) + η♯y(N) and is independent from (ps, s ≥ 0).

Now, remark that
∫ R(V ↑

y ,y)
0 e−V ↑

y (t)dt is the sum of the images by G of the excursions of

(V ↑
y (t), 0 ≤ t ≤ R(V ↑

y , y)) away from y. We thus have

∫ R(V ↑
y ,y)

0
e−V ↑

y (t)dt
L
=

∑

0<s<T

G(ps). (2.13)

By properties of Poisson point processes, the process in the right hand side,
∑

0<s<.G(ps), is

the sum of the jumps of a Poisson point process on R+, with intensity measure Gη♯y(. ∩ FP∞).
Thus, from the Lévy-Ito decomposition, it has the same law as the subordinator S, which yields
the result.

�

Remark 2.2. In the case where V has bounded variation, the total mass of η♯y is finite so S is
only a compound Poisson process. In particular ST can then be null with positive probability.

y > 0 is still fixed (and arbitrary), let Ry(V ♯, 0) be the last passage time of V ♯ at 0 before
τ(V ♯, y) :

Ry(V ♯, 0) := sup{t ∈ [0, τ(V ♯, y)], V ♯(t) = 0}.
In order to study the trajectory of V ♯ before Ry(V ♯, 0), we now consider excursions away from
0. Let Iy and Fy denote respectively the subset of excursions higher than y and lower than y :

Iy := {ξ, H0(ξ) ≥ y} , Fy := {ξ, H0(ξ) < y} .
A similar proof as for Lemma 2.1 gives the following lemma.

Lemma 2.3. Let S be a pure jump subordinator with Lévy measure Gη♯(. ∩ Fy), the image

measure of η♯(.∩Fy) by G. Let T be an exponential random variable with parameter η♯(Iy) which
is independent of S. We have

∫ Ry(V ♯,0)

0
e−V ♯(t)dt

L
= ST . (2.14)

In the case where V drifts to +∞ we need to study the trajectory before R(V, 0), the last
passage time of V at 0. We still consider excursions away from 0. Let I and F denote respectively
the subsets of infinite and finite excursions :

I := {ξ, ζ(ξ) = +∞} , F := {ξ, ζ(ξ) < +∞} .
A similar proof as for Lemma 2.1 gives the following lemma.

Lemma 2.4. We assume that V drifts to +∞. Let S be a pure jump subordinator with Lévy
measure Gη(.∩F ), the image measure of η(.∩F ) by G. Let T be an exponential random variable
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with parameter η(I) which is independent of S. We have
∫ R(V,0)

0
e−V (t)dt

L
= ST . (2.15)

2.2. V ↑ and V ♯ shifted at a last passage time. To obtain decomposition (1.3) of the law of
I(V ↑), we split V ↑ at its last passage time at a point y and obtain two independent trajectories
that we can identify.

Lemma 2.5. (Corollary VII.19 of [3])

For any positive y, the two trajectories
(

V ↑(t), 0 ≤ t ≤ R(V ↑, y)
)

and
(

V ↑(t+R(V ↑, y))− y, t ≥ 0
)

are independent and the second is equal in law to V ↑.

Lemma 2.6. • The two trajectories (V ♯(t), 0 ≤ t ≤ Ry(V ♯, 0))

and
(

V ♯(t+Ry(V ♯, 0)), 0 ≤ t ≤ τ(V ♯, y)−Ry(V ♯, 0)
)

are independent and the second is equal in law to (V ↑(t), 0 ≤ t ≤ τ(V ↑, y)). As a

consequence we have τ(V ↑, y)
L
= τ(V ♯, y)−Ry(V ♯, 0) ≤ τ(V ♯, y).

• We assume that V drifts to +∞. The two trajectories

(V (t), 0 ≤ t ≤ R(V, 0)) and (V (t+R(V, 0)), t ≥ 0)

are independent and the second is equal in law to V ↑.

Proof. We fix y > 0 and a ∈]0, y[. Let us denote by (e(s), s ≥ 0) the excursions process of V ♯

away from 0. Recall the notations Iy and Fy, Ty := inf{s ≥ 0, e(s) ∈ Iy} is the time when
occurs the first excursion higher than y and ξy is this excursion.

Decomposing V ♯ as its excursions away from 0, we see that Ry(V ♯, 0) is the instant when
begins the first excursion higher than y, so

(

V ♯(t+Ry(V ♯, 0)), 0 ≤ t ≤ τ(V ♯, y)−Ry(V ♯, 0)
)

= (ξy(t), 0 ≤ t ≤ τ(ξy, y)) . (2.16)

(V ♯(t), 0 ≤ t ≤ Ry(V ♯, 0)) is thus a function of (e(s)1e(s)∈Fy
, 0 ≤ s ≤ Ty) while (V ♯(t +

Ry(V ♯, 0)), 0 ≤ t ≤ τ(V ♯, y)−Ry(V ♯, 0)) is a function of ξy. By properties of Poisson point pro-
cesses, Ty is an exponential random variable independent of ξy and the process of finite excursions
(e(s)1e(s)∈Fy

, s ≥ 0) is also independent of ξy. Therefore the objects (e(s)1e(s)∈Fy
, 0 ≤ s ≤ Ty)

and ξy are independent. From this independence we deduce that
(

V ♯(t), 0 ≤ t ≤ Ry(V ♯, 0)
)

⊥⊥
(

V ♯(t+Ry(V ♯, 0)), 0 ≤ t ≤ τ(V ♯, y)−Ry(V ♯, 0)
)

,

which is the required independence. It only remains to prove that the right hand side in (2.16)
has the same law as (V ↑(t), 0 ≤ t ≤ τ(V ↑, y)).

Using the Markov property at time τ(ξa, a), for an excursion ξa ∈ Ia, we have that ξa(. +

τ(ξa, a)) equals in law V ♯
a killed when it ever reaches 0.

Since Iy ⊂ Ia we can apply this to an excursion ξy ∈ Iy and get that (ξy(t+ τ(ξy, a)), 0 ≤ t ≤
τ(ξy, y) − τ(ξy, a)) is equal in law to (V ♯

a (t), 0 ≤ t ≤ τ(V ♯
a , y)) conditioned to reach y before 0.

Since V ♯
a has no positive jumps, reaching y before 0 is the same as reaching y before ]−∞, 0].
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As we mentioned in the introduction, (V ♯
a (t), 0 ≤ t ≤ τ(V ♯

a , y)) conditioned to reach y before

]−∞, 0] is equal in law to (V ↑
a (t), 0 ≤ t ≤ τ(V ↑

a , y)). Putting all this together we get

(ξy(t+ τ(ξy, a)), 0 ≤ t ≤ τ(ξy, y)− τ(ξy, a))
L
=
(

V ↑
a (t), 0 ≤ t ≤ τ(V ↑

a , y)
)

.

Since τ(ξy, a) converges almost surely to 0 when a goes to 0 and V ↑
a converges in law to V ↑

according to Proposition VII.14 in [3], we can let a go to 0 in both members and get

(ξy(t), 0 ≤ t ≤ τ(ξy, y))
L
=
(

V ↑(t), 0 ≤ t ≤ τ(V ↑, y)
)

. (2.17)

As a consequence the right hand side in (2.16) has the same law as (V ↑(t), 0 ≤ t ≤ τ(V ↑, y)),
which concludes the proof of the first point of the lemma.

We now assume that V drifts to +∞ and prove the second point. For the independence, the
arguments of the proof of the first point can be repeated, just replacing y by +∞ (we consider
ξ∞, the infinite excursion away from 0, instead of the first excursion higher than y). To prove
that (V (t+R(V, 0)), t ≥ 0) is equal in law to V ↑, it suffices to prove that ξ∞ is equal in law to
V ↑. Let y be finite, we know from the proof of the first point that (2.17) is true for any excursion
in Iy. Since ξ∞ ∈ Iy we have

(ξ∞(t), 0 ≤ t ≤ τ(ξ∞, y))
L
=
(

V ↑(t), 0 ≤ t ≤ τ(V ↑, y)
)

.

Since y is arbitrary and τ(V ↑, y) converges almost surely to +∞ when y goes to +∞, we get

(ξ∞(t), t ≥ 0)
L
=
(

V ↑(t), t ≥ 0
)

,

which gives the result.

�

3. Finiteness, exponential moments, and self-decomposability

3.1. Finiteness and exponential moments : Proof of Theorem 1.1. We are grateful to
an anonymous referee for the following proof that is considerably simpler than the proof given
by the author in the previous versions of this paper.

Proof. of Theorem 1.1

The idea of the proof is to provide finite upper bounds for the moments of I(V ↑). The first
step is to prove that E[I(V ↑)] < +∞. Using Fubini’s Theorem and Corollary VII.16 of [3] we
have

E[I(V ↑)] =

∫ +∞

0
E[e−V ↑(t)]dt =

∫ +∞

0

∫ +∞

0
e−y

P(V ↑(t) ∈ dy)dt

=

∫ +∞

0

∫ +∞

0
e−y yW (y)

t
P(V (t) ∈ dy)dt.

Now, using Corollary VII.3 of [3] we get

E[I(V ↑)] =

∫ +∞

0

∫ +∞

0
e−yW (y)P(τ(V, y) ∈ dt)dy =

∫ +∞

0
e−yW (y)P(τ(V, y) < +∞)dy.

Since P(τ(V, y) < +∞) = P(sup[0,+∞[ V ≥ y) = e−κy we obtain

E[I(V ↑)] =

∫ +∞

0
e−(1+κ)yW (y)dy < +∞,
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where the finiteness comes from the fact that
∫ +∞
0 e−λyW (y)dy < +∞ for λ > κ. As a conse-

quence, the exponential functional I(V ↑) is almost surely finite and has finite expectation.

We now turn to the proof of the finiteness of the Laplace transform. We proceed by bounding

the moments of the exponential functional. For any x ≥ 0 let us define h(x) := E[I(V ↑
x )]. For

any x > 0 we have

I(V ↑) =

∫ +∞

0
e−V ↑(t)dt ≥

∫ +∞

τ(V,x)
e−V ↑(t)dt

L
=

∫ +∞

0
e−V ↑

x (t)dt = I(V ↑
x ),

where, for the equality in law, we used the Markov property for V ↑ at time τ(V, x). As a
consequence we have

∀x > 0, h(x) = E[I(V ↑
x )] ≤ E[I(V ↑)] < +∞. (3.18)

Now, note that for any k ≥ 1,

E

[

(

I(V ↑)
)k
]

= E

[
∫ +∞

0
...

∫ +∞

0
e−V ↑(t1) × ...× e−V ↑(tk)dt1...dtk

]

= k! E

[
∫

0≤t1<...<tk

e−V ↑(t1) × ...× e−V ↑(tk)dt1...dtk

]

,

so that

∀k ≥ 1, E

[

(

I(V ↑)
)k
]

/k! = E

[
∫

0≤t1<...<tk

e−V ↑(t1) × ...× e−V ↑(tk)dt1...dtk

]

. (3.19)

Let us prove by induction that for any k ≥ 1,

E

[

(

I(V ↑)
)k
]

≤ k!
(

E[I(V ↑)]
)k

< +∞ (3.20)

(3.20) is clearly true for k = 1. Let us assume that it is true for some arbitrary rank k.
According to (3.19), E[(I(V ↑))k+1]/(k + 1)! equals

E

[

∫

0≤t1<...<tk+1

e−V ↑(t1) × ...× e−V ↑(tk) × e−V ↑(tk+1)dt1...dtkdtk+1

]

=E

[
∫

0≤t1<...<tk

e−V ↑(t1) × ...× e−V ↑(tk)

(
∫ +∞

tk

e−V ↑(s)ds

)

dt1...dtk

]

=E

[
∫

0≤t1<...<tk

e−V ↑(t1) × ...× e−V ↑(tk)E

[
∫ +∞

tk

e−V ↑(s)ds
∣

∣σ(V ↑(u), 0 ≤ u ≤ tk)

]

dt1...dtk

]

.

From the Markov property at time tk, the conditional expectation in the above expression equals
h(V ↑(tk)) which, according to (3.18), is almost surely less than E[I(V ↑)]. We thus get

E[(I(V ↑))k+1]/(k + 1)! ≤ E[I(V ↑)]× E

[
∫ 0≤t1<...<tk

0
e−V ↑(t1) × ...× e−V ↑(tk)dt1...dtk

]

= E[I(V ↑)]× E

[

(

I(V ↑)
)k
]

/k! ≤
(

E[I(V ↑)]
)k+1

,

where we used (3.19) and the induction hypothesis. Thus the induction is proved. As a conse-
quence for all λ ∈]0, 1/E[I(V ↑)][ we have

E

[

eλI(V
↑)
]

=
∑

k≥0

λkE

[

(

I(V ↑)
)k
]

/k! ≤
∑

k≥0

(

λE[I(V ↑)]
)k

< +∞.

The finiteness of the Laplace transform is obvious for λ ≤ 0, so the result is proved. �
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Remark 3.1. If V does not oscillate, the finiteness of I(V ↑) can be derived as a consequence of
Lemma 2.6. Indeed, from the second statement of Lemma 2.6 applied to V ♯, we have

I(V ↑)
L
=

∫ +∞

0
e−V ♯(t+R(V ♯,0))dt =

∫ +∞

R(V ♯,0)
e−V ♯(t)dt ≤

∫ +∞

0
e−V ♯(t)dt = I(V ♯),

and V ♯ drifts to +∞, so Theorem 1 in [4] ensures that I(V ♯) is almost surely finite which yields
the result.

3.2. Decomposition of the law of I(V ↑). In this subsection, we prove that the law of I(V ↑)
is solution of the random affine equation (1.3) and we give a decomposition of its non-trivial
coefficient Ay. This is a key point of our analysis of the law of I(V ↑).

Proposition 3.2. For any y > 0, the law of I(V ↑) satisfies the random affine equation

I(V ↑)
L
=

∫ τ(V ↑,y)

0
e−V ↑(t)dt+ ST + e−yI(Ṽ ↑), (3.21)

where the three terms of the right hand side are independent, ST is as in Lemma 2.1, and Ṽ ↑ is
an independent copy of V ↑.

We define

Ay :=

∫ τ(V ↑,y)

0
e−V ↑(t)dt+ ST

to lighten notations.

As a consequence, I(V ↑) has the same law as the sum of a random series :

I(V ↑)
L
=
∑

k≥0

e−kyAy
k, (3.22)

where the random variables Ay
k are iid and have the same law as Ay.

Remark 3.3. The almost sure convergence of the random series in (3.22) is a consequence of
the almost sure finiteness, given by Theorem 1.1, of the positive random variable I(V ↑). Also, it
is a well known fact on random power series with iid coefficients that their radius of convergence
is almost surely equal to a constant belonging to {0, 1}. Since this constant, in the case of the
power series in (3.22), has been proved to be greater that e−y, we deduce that it equals 1.

Proof. of Proposition 3.2

We fix y > 0. As V ↑ has no positive jumps and goes to infinity we have τ(V ↑, y) ≤ R(V ↑, y) <
+∞ and V ↑(τ(V ↑, y)) = V ↑(R(V ↑, y)) = y.

We write :

I(V ↑) =

∫ R(V ↑,y)

0
e−V ↑(t)dt+

∫ +∞

R(V ↑,y)
e−V ↑(t)dt

=

∫ R(V ↑,y)

0
e−V ↑(t)dt+ e−y

∫ +∞

0
e−(V

↑(t+R(V ↑,y))−y)dt

L
=

∫ R(V ↑,y)

0
e−V ↑(t)dt+ e−yI(Ṽ ↑),
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where we used Lemma 2.5 for the last equality in which Ṽ ↑ is an independent copy of V ↑. We
now decompose :

∫ R(V ↑,y)

0
e−V ↑(t)dt =

∫ τ(V ↑,y)

0
e−V ↑(t)dt+

∫ R(V ↑,y)

τ(V ↑,y)
e−V ↑(t)dt (3.23)

Since V ↑(τ(V ↑, y)) = y, combining with the Markov property at time τ(V ↑, y), the two terms
in the right hand side of (3.23) are independent :

∫ τ(V ↑,y)

0
e−V ↑(t)dt ⊥⊥

∫ R(V ↑,y)

τ(V ↑,y)
e−V ↑(t)dt.

Now, thanks to Lemma 2.1, the second term has the same law as ST with ST as in the lemma.
This achieves the proof.

�

We have two remarks here :

Remark 3.4. It is possible to prove Theorem 1.1 (the fact that I(V ↑) is finite and admits some
finite exponential moments) by invoking (3.22) and proving that each of the two terms composing
Ay admit some finite exponential moments.

Remark 3.5. Let S and T be as in Proposition 3.2 and ǫ ∈]0,E[S1][ (where we do not bother
with the fact that E[S1] is finite or not). Then we have

P (ST ≥ t) ≥ P
(

St/ǫ ≥ t
)

× P (T ≥ t/ǫ) .

The first factor in the right hand side converges to 1 thanks to the law of large numbers for Lévy
processes (see for example Theorem 36.5 in [14]) and the second is equal to e−pt/ǫ, where p is the
parameter of the exponential random variable T . Therefore, the Laplace transform of ST is not
finite everywhere, so neither is the Laplace transform of I(V ↑) (because of (3.22)). This is why
we can not say better than "I(V ↑) admits some finite exponential moments".

4. Asymptotic tail at 0 : Proof of Theorems 1.2, 1.4 and 1.5

First, let us prove that Theorem 1.2 easily implies Theorem 1.4 and prove Remark 1.7.

Proof. of Theorem 1.4

Assume that Theorem 1.2 is proved.

We first prove (1.6). Let us fix β′ > β and ǫ > 0. From the definition of β we have that

ΨV (λ) ≤ ǫλβ
′

for all λ large enough. Using the first point of Theorem 1.2 we deduce that

lim sup
x→0

x1/(β
′−1) log

(

P

(

I(V ↑) ≤ x
))

≤ −(β′ − 1)/ǫ1/(β
′−1).

Since ǫ can be chosen as small as we want we obtain (1.6).

We now assume that σ > 1 and prove (1.7). Let us fix σ′ ∈]1, σ[ and M > 0. From the

definition of σ we have that ΨV (λ) ≥ Mλσ
′

for all λ large enough. Using the second point of
Theorem 1.2 we deduce that

0 ≥ lim inf
x→0

x1/(σ
′−1) log

(

P

(

I(V ↑) ≤ x
))

≥ −σ′σ′/(σ′−1)/M1/(σ′−1).

Since M can be chosen as large as we want we obtain (1.7).

�
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Proof. of Remark 1.7

Let us assume that V has bounded variation. As it can be seen from Remark 1.3, it is the
difference of a positive drift dt and a pure jump subordinator St : ∀t > 0, V (t) = dt− St ≤ dt.
Let us fix y > 0, we have almost surely

∫ τ(V,y)

0
e−V (t)dt ≥

∫ τ(V,y)

0
e−dtdt =

1

d

(

1− e−τ(V,y)
)

. (4.24)

Since V has bounded variation, we have P(V (t) > 0, 0 ≤ t ≤ τ(V, y)) > 0 (see for example (47.1)
in [14]) and we can see that (V ↑(t), 0 ≤ t ≤ τ(V ↑, y)) is equal in law to (V, 0 ≤ t ≤ τ(V, y))
conditioned in the usual sense to remain positive. Combining with (4.24), we see that almost
surely

I(V ↑) ≥
∫ τ(V ↑,y)

0
e−V ↑(t)dt ≥ 1

d

(

1− e−τ(V ↑,y)
)

.

Then, since τ(V ↑, y) converges almost surely to +∞ when y goes to +∞, we deduce that I(V ↑)
is more than the positive constant 1/d almost surely. As a consequence P(I(V ↑) ≤ x) is null for
x ≤ 1/d. �

In the next Subsection we prepare the proofs of Theorems 1.2 and 1.5.

4.1. Laplace transform of I(V ↑). In order to prove asymptotic estimates on P(I(V ↑) ≤ x),
we first study the Laplace transform of I(V ↑) via the decomposition given by Proposition 3.2.
It is thus natural that we need first to study the Laplace transform of Ay.

First, let us define a notation. V ♯ is a spectrally negative Lévy process, so, according to
Theorem VII.1 in [3], the process τ(V ♯, .) is a subordinator which Laplace exponent ΦV ♯ is
defined for λ ≥ 0 by

ΦV ♯(λ) := − log
(

E

[

e−λτ(V ♯,1)
])

,

and we have ΦV ♯ = Ψ−1
V ♯ .

Proposition 4.1. We fix y > 0. Let Ay be as in Proposition 3.2, then, for all ǫ > 0 and λ large
enough we have

(1− ǫ)yΦV ♯(e−yλ) ≤ − log
(

E

[

e−λAy
])

≤ (1 + ǫ)yΦV ♯(λ). (4.25)

Proof. of Proposition 4.1

According to the definition of Ay in the Proposition 3.2, Ay can be decomposed as the sum

of two independent random variables, one having the same law as
∫ τ(V ↑,y)
0 e−V ↑(t)dt and another

having the same law as ST , defined as in Lemma 2.1. Let ΦS be the Laplace exponent of the
subordinator S :

∀λ > 0, ΦS(λ) := − log
(

E

[

e−λS1

])

. (4.26)

We can see that the Laplace transform of the random variable ST is given by

∀λ > 0, E
[

e−λST

]

=
η♯y(IP∞) + η♯y(N)

η♯y(IP∞) + η♯y(N) + ΦS(λ)
.
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We thus have

− log
(

E

[

e−λAy
])

= − log

(

E

[

exp

(

−λ
∫ τ(V ↑,y)

0
e−V ↑(t)dt

)])

− log
(

E

[

e−λST

])

= − log

(

E

[

exp

(

−λ
∫ τ(V ↑,y)

0
e−V ↑(t)dt

)])

− log

(

p

p+ΦS(λ)

)

, (4.27)

where we denoted p for the constant η♯y(IP∞) + η♯y(N). Using the fact that V ↑ is non-negative
and the first point of Lemma 2.6 we have

∫ τ(V ↑,y)

0
e−V ↑(t)dt ≤ τ(V ↑, y)

sto
≤ τ(V ♯, y), (4.28)

where
sto
≤ denotes a stochastic inequality. As a consequence of (4.28) and of the definition of ΦV ♯

we have

− log

(

E

[

exp

(

−λ
∫ τ(V ↑,y)

0
e−V ↑(t)dt

)])

≤ − log
(

E

[

e−λτ(V ♯,y)
])

= yΦV ♯(λ).

Combining this inequality with (4.27) we obtain

− log
(

E

[

e−λAy
])

≤ yΦV ♯(λ)− log

(

p

p+ΦS(λ)

)

. (4.29)

Using the first point of Lemma 2.6 and Lemma 2.3 we have

− log

(

E

[

exp

(

−λ
∫ τ(V ↑,y)

0
e−V ↑(t)dt

)])

= − log

(

E

[

e−λ
∫ τ(V ♯,y)
0 e−V ♯(t)dt

]

/E
[

e−λS̃T̃

]

)

,

where S̃T̃ is as ST from Lemma 2.3. Here again, if ΦS̃ denotes the Laplace exponent of the

subordinator S̃ as in (4.26) we have

∀λ > 0, E
[

e−λS̃T̃

]

=
η♯(Iy)

η♯(Iy) + ΦS̃(λ)
.

Moreover we have
∫ τ(V ♯,y)

0
e−V ♯(t)dt ≥ e−yτ(V ♯, y).

Putting together the above three expressions and the definition of ΦV ♯ we obtain

− log

(

E

[

exp

(

−λ
∫ τ(V ↑,y)

0
e−V ↑(t)dt

)])

≥ yΦV ♯(e−yλ) + log

(

η♯(Iy)

η♯(Iy) + ΦS̃(λ)

)

.

Combining the above inequality with (4.27) and the fact that the term − log(p/(p + ΦS(λ))) is
non-negative we get

− log
(

E

[

e−λAy
])

≥ yΦV ♯(e−yλ) + log

(

η♯(Iy)

η♯(Iy) + ΦS̃(λ)

)

. (4.30)

According to the Lévy-Khintchine formula for subordinators. The Laplace exponent ΦS can be
written

ΦS(λ) = γSλ+

∫ +∞

0
(1− e−λx)νS(dx),

so by dominated convergence, there exists a positive constant CS such that for large λ, ΦS(λ) ≤
CSλ. Similarly, there is a positive constant CS̃ such that for large λ, ΦS̃(λ) ≤ CS̃λ. On the

other hand, since ΨV (λ)/λ
2 is bounded when λ goes to infinity, there is a positive constant c
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such that ΦV ♯(λ) ≥ cλ1/2 for large λ. Combining all this with (4.29) and (4.30) we get (4.25)
for any fixed ǫ > 0 and λ large enough.

�

Proposition 4.2. Assume that there is α ≥ 1 and a positive constant C such that for all λ large
enough we have ΨV (λ) ≤ Cλα, then we have

lim inf
λ→+∞

− log
(

E

[

e−λI(V ↑)
])

/λ1/α ≥ α/C1/α. (4.31)

Assume that there is α ≥ 1 and a positive constant c such that for all λ large enough we have
ΨV (λ) ≥ cλα, then we have

lim sup
λ→+∞

− log
(

E

[

e−λI(V ↑)
])

/λ1/α ≤ α/c1/α. (4.32)

Proof. Let us fix y > 0 for which we apply the decomposition (3.22). Let us denote

M(λ) := − log
(

E

[

e−λI(V ↑)
])

=
∑

k≥0

− log
(

E

[

e−λe−kyAy
])

,

where the second equality comes from (3.22) and from the fact that the sequence (Ay
k)k≥0 is iid.

To establish the left tail of I(V ↑) we study the asymptotic behavior of M(λ) and the latter,
thanks to the above expression, is related to the asymptotic behavior of − log(E[e−λAy

]).

Unfortunately, Proposition 4.1 can not be applied simultaneously to all the terms of the sum
defining M(λ). We separate this sum into three parts : a sum over a finite number of small
indices for which we can apply (4.25) to each term, a sum over an infinite number of large
indices that can be neglected, and a sum over the remaining indices (in finite number) that can
be neglected.

We now prove the second point of the proposition. We assume that there is α ≥ 1 and a
positive constant c such that for all λ large enough we have ΨV (λ) ≥ cλα, and prove (4.32). Let
us fix δ > 1. Since ΨV ♯(.) = ΨV (κ + .) and ΦV ♯ = Ψ−1

V ♯ , we have for all λ large enough that

ΦV ♯(λ) ≤ δλ1/α/c1/α.

According to Proposition 4.1 there exists λδ > 1 such that (4.25) is satisfied with ǫ = δ − 1
for all λ ≥ λδ. By increasing λδ if necessary, we can also assume that ΦV ♯(λ) ≤ δλ1/α/c1/α for
all λ ≥ λδ. Putting all this together we get

λ ≥ λδ ⇒ − log
(

E

[

e−λAy
])

≤ δ2yλ1/α/c1/α. (4.33)

Also, let us choose M ∈]0, 1[ small enough so that

∀λ ∈ [0,M ], 0 ≤ − log
(

E

[

e−λAy
])

≤ 2λE [Ay] .

For any λ > λδ, we define n1(λ) := ⌊log(λ/λδ)/y⌋ and n2(λ) := ⌊log(λ/M)/y⌋. From the
definition of M(λ) we can write

∀λ > λδ, M(λ) = T1(λ) + T2(λ) + T3(λ), (4.34)
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with

T1(λ) :=

n1(λ)
∑

k=0

− log
(

E

[

e−λe−kyAy
])

, T2(λ) :=

n2(λ)
∑

k=n1(λ)+1

− log
(

E

[

e−λe−kyAy
])

,

T3(λ) :=

+∞
∑

k=n2(λ)+1

− log
(

E

[

e−λe−kyAy
])

.

From the definition of n1(λ), (4.33) can be applied to each term of the sum defining T1(λ), we
thus have

T1(λ) ≤ δ2y(λ/c)1/α
n1(λ)
∑

k=0

e−ky/α = δ2y(λ/c)1/α
1− e−y(n1(λ)+1)/α

1− e−y/α
.

We get that for λ large enough

T1(λ) ≤ δ2y(λ/c)1/α
1

1− e−y/α
. (4.35)

Using the monotony of the Laplace transform and the definitions of n1(λ) and n2(λ) we get

0 ≤ T2(λ) ≤ −(n2(λ)− n1(λ)) log
(

E

[

e−λe−(n1(λ)+1)yAy
])

≤ −y + log(λδ/M)

y
log
(

E

[

e−λδA
y
])

< +∞. (4.36)

From the definitions of n2(λ) and M we have

0 ≤ T3(λ) ≤ 2λE [Ay]
+∞
∑

k=n2(λ)+1

e−ky = 2λe−y(K2(λ)+1)
E [Ay] /(1 − e−y)

≤ 2ME [Ay] /(1− e−y) < +∞. (4.37)

Putting (4.35), (4.36), and (4.37) into (4.34) we obtain that for λ large enough

lim sup
λ→+∞

M(λ)/λ1/α ≤ δ2y

c1/α(1− e−y/α)
.

Since, from the definition M(λ) = − log(E[e−λI(V ↑)]) which does not depend on δ nor on y, we
can let δ go to 1 and then y go to 0 in the above expression. We obtain

lim sup
λ→+∞

− log
(

E

[

e−λI(V ↑)
])

/λ1/α ≤ α/c1/α.

For the first point of the proposition, we proceed exactly as for the second point, using the
lower bound of (4.25) instead of the upper bound and noticing that n1(λ) converges toward +∞
as λ goes to infinity, so that the factor (1−e−y(n1(λ)+1)/α)/(1−e−y/α) converges to 1/(1−e−y/α).

�

4.2. Tail at 0 of I(V ↑) : proof of Theorems 1.2 and 1.5. We now prove Theorems 1.2 and
1.5 by using Proposition 4.2 together with the deep link that exists between the left tail of a
random variable and the asymptotic behavior of its Laplace transform.

Proof. of Theorem 1.2
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We assume that there is α > 1 and a positive constant C such that for all λ large enough we
have ΨV (λ) ≤ Cλα. We fix δ ∈]0, 1[. According to the first point of Proposition 4.2, there exists
λδ > 0 such that for all λ > λδ we have

E

[

e−λI(V ↑)
]

≤ exp
(

−δ1−1/ααλ1/α/C1/α
)

. (4.38)

Let us fix x ∈]0, δ(α−1)/αC−1/αλ
(1−α)/α
δ [. Using Markov inequality and (4.38) we get that for any

λ > λδ,

P

(

I(V ↑) ≤ x
)

≤ eλxE
[

e−λI(V ↑)
]

≤ exp
(

λx− δ1−1/ααλ1/α/C1/α
)

.

Since x ∈]0, δ(α−1)/αC−1/αλ
(1−α)/α
δ [ we have δC−1/(α−1)x−α/(α−1) ≥ λδ so, in the above inequal-

ity, we can replace λ by δC−1/(α−1)x−α/(α−1). We obtain

P

(

I(V ↑) ≤ x
)

≤ exp
(

−δ(α− 1)/(Cx)1/(α−1)
)

,

which is (1.4).

We now prove the second point. Assume that there is α > 1 and a positive constant c such
that for all λ large enough we have ΨV (λ) ≥ cλα. We fix δ > 1 and r ∈]0, 1[. According to the
second point of Proposition 4.2, there exists λδ > 0 such that for all λ > λδ we have

E

[

e−λI(V ↑)
]

≥ exp
(

−δr(α−1)/ααλ1/α/c1/α
)

. (4.39)

Let us fix x ∈]0, δ(α−1)/ααc−1/αλ
(1−α)/α
δ [. Using (4.39) we get that for any λ > λδ,

exp
(

−δr(α−1)/ααλ1/α/c1/α
)

≤ E

[

e−λI(V ↑)
]

= E

[

e−λI(V ↑)
1{I(V ↑)≤x}

]

+ E

[

e−λI(V ↑)
1{I(V ↑)>x}

]

≤ P

(

I(V ↑) ≤ x
)

+ exp (−λx) ,
so we get

P

(

I(V ↑) ≤ x
)

≥ exp
(

−δr(α−1)/ααλ1/α/c1/α
)

− exp (−λx) .

Since x ∈]0, δ(α−1)/ααc−1/αλ
(1−α)/α
δ [ we have δαα/(α−1)c−1/(α−1)x−α/(α−1) ≥ λδ so, in the above

inequality, we can replace λ by δαα/(α−1)c−1/(α−1)x−α/(α−1). We obtain

P

(

I(V ↑) ≤ x
)

≥ exp
(

−δ(1+r(α−1))/ααα/(α−1)/(cx)1/(α−1)
)

− exp
(

−δαα/(α−1)/(cx)1/(α−1)
)

.

Since δ > δ(1+r(α−1))/α , the second term converges to 0 faster than the first one when 0 goes to
0 so we get, for x large enough,

P

(

I(V ↑) ≤ x
)

≥ 1

2
exp

(

−δ(1+r(α−1))/ααα/(α−1)/(cx)1/(α−1)
)

≥ exp
(

−δαα/(α−1)/(cx)1/(α−1)
)

,

where the last inequality is true for x small enough and comes from the fact that r ∈]0, 1[. This
is precisely (1.5).

�

Proof. of Theorem 1.5

We assume that there is a positive constant C and α ∈]1, 2] such that ΨV (λ) ∼λ→+∞ Cλα.
From Proposition 4.2 we deduce that

− log
(

E

[

e−λI(V ↑)
])

∼
λ→+∞

αλ1/α/C1/α,

and the application of De Bruijn’s Theorem (see Theorem 4.12.9 in [5]) yields the result.

�
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4.3. Connection between I(V ↑) and I(V ) : proof of Proposition 1.9. In this subsection,
we assume that V drifts to +∞ (so that I(V ) < +∞) and we prove a simple connection between
the asymptotic tails at 0 of I(V ↑) and I(V ).

Proposition 4.3. If V drifts to +∞, there is a positive constant c such that for all positive ǫ
and x small enough,

P (I(V ) ≤ x) ≤ P

(

I(V ↑) ≤ x
)

≤ P (I(V ) ≤ (1 + ǫ)x) /cǫx.

As in the proof of Proposition 3.2, we decompose I(V ) as the sum of two independent random
variables, one having the same law as a subordinator stopped at an independent exponential time
and the other having the same law as I(V ↑). We first need an easy lemma about the asymptotic
tail at 0 of a subordinator stopped at an independent exponential time.

Lemma 4.4. Let S be a subordinator and T an independent exponential random variable, there
exists a positive constant c such that for all x small enough

P (ST < x) ≥ cx.

Proof. We prove in fact a stronger result : the function x 7→ P (ST < x) is sub-additive, that is

∀x, y ≥ 0, P (ST < x+ y) ≤ P (ST < x) + P (ST < y) (4.40)

and the lemma follows easily. Recall from the introduction the notation τ(S, h+) for τ(S, [h,+∞[).
Let x, y > 0 (the case when x = 0 or y = 0 is obvious), we have

P (ST < x+ y) = P (ST < x) + P (T ≥ τ(S, x+), T < τ(S, (x+ y)+))

≤ P (ST < x) + P
(

T ≥ τ(S, x+), T < τ(S, [Sτ(S,x+) + y,+∞[)
)

because Sτ(S,x+) ≥ x almost surely,

= P (ST < x) + P (T ≥ τ(S, x+))× P (T < τ(S, y+)) ,

from the characteristic property of the exponential distribution and the Markov property applied
to S at time τ(S, x+). Since P (T ≥ τ(S, x+)) ≤ 1 and P (T < τ(S, y+)) = P (ST < y) we obtain
(4.40).

�

We now prove the proposition

Proof. of Proposition 4.3.

We write :

I(V ) =

∫ R(V,0)

0
e−V (t)dt+

∫ +∞

R(V,0)
e−V (t)dt

=

∫ R(V,0)

0
e−V (t)dt+

∫ +∞

0
e−(V (t+R(V,0)))dt

L
=

∫ R(V,0)

0
e−V (t)dt+ I(V ↑), (4.41)

where we used the second point of Lemma 2.6 for the last inequality in which the two terms
∫R(V,0)
0 e−V (t)dt and I(V ↑) are independent.
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We thus have

P (I(V ) ≤ x) ≤ P

(

I(V ↑) ≤ x
)

. (4.42)

According to Lemma 2.4, the term
∫ R(V,0)
0 e−V (t)dt has the same law as ST where S is a pure

jump subordinator with Lévy measure Gη(.∩F ), the image measure by G of η(.∩F ), and T an
independent exponential random variable with parameter η(I).

For ǫ > 0 and x ≥ 0, combining the equality in law of lemma 2.4 with (4.41) we obtain

P (I(V ) ≤ (1 + ǫ)x) ≥ P

(

I(V ↑) ≤ x
)

× P (ST ≤ ǫx) ≥ cǫxP
(

I(V ↑) ≤ x
)

,

for an appropriate constant c > 0, when x is small enough, according to lemma 4.4. Combining
with (4.42) we get the result.

�

Now, if V drifts to +∞, Proposition 4.3 easily implies that the results of Theorems 1.2, 1.4,
1.5 and of Remarks 1.6, 1.7 are also true for I(V ), as long as they are for I(V ↑). Proposition 1.9
is thus proved.

5. Smoothness of the density : Proof of Theorem 1.10

According to Proposition 3.2, I(V ↑) contains, as a convolution factor, the sum of infinitely
many independent multiples of random variables having the same law as ST (ST being as in
Lemma 2.1). We can thus use a condition on the Lévy mesure of S to have the existence of the
smooth density for I(V ↑). Actually, the condition that we check for S is the one of Proposition
28.3 in [14], which is a condition on the Lévy measure of a Lévy process for it to have a C∞

density with bounded derivatives.

As a jump of S is the image by the mapping G of an excursion of V ♯, we start by lemmas on
the excursions of V ♯.

Lemma 5.1. Assume σ > 1 and choose σ′ such that 1 < σ′ < σ. For all h small enough we
have

η♯ (ξ, ζ(ξ) < +∞, H0(ξ) > h) ≥ h−(σ′−1).

Proof. We consider excursions away from 0. Let M > 0 be a fixed level and, for any h ∈]0,M [,
ph denotes the probability that V ♯ has no finite excursion of height in ]h,M [ before its first
excursion higher than M . Since the set of finite excursions of height in ]h,M [ and the set of
excursions higher than M are disjoint, we have, by a property of Poisson point processes

ph =
η♯ (ξ, H0(ξ) > M)

η♯ (ξ, H0(ξ) > M) + η♯ (ξ, ζ(ξ) < +∞, H0(ξ) ∈]h,M [)
, (5.43)

so we only need to give an upper bound for ph. Now, note that ph is only the probability that
τ(V ♯, h) and τ(V ♯,M) belong to the same excursion of V ♯ away from 0, so

ph = P

(

∀s ∈]τ(V ♯, h), τ(V ♯,M)[, V ♯(s) 6= 0
)

= P

(

∀s ∈]0, τ(V ♯
h ,M)[, V ♯

h (s) 6= 0
)

,

where we used the Markov property at time τ(V ♯, h).

= P

(

τ(V ♯
h ,M) < τ(V ♯

h , ]−∞, 0])
)

=W ♯(h)/W ♯(M + h) ∼
h→0

W ♯(h)/W ♯(M),
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where W ♯ is the scale function of V ♯, and where the last equivalence comes from the continuity
of the scale function (see the Introduction). Recall that W ♯ has a Laplace transform given by
the expression

∫ +∞

0
W ♯(x)e−λxdx =

1

ΨV ♯(λ)
, ∀λ ≥ 0. (5.44)

Now, for any h > 0, by increases of W ♯ we have

W ♯(h) ≤ h−1

∫ 2h

0
W ♯(x)dx ≤ e2h−1

∫ 2h

0
W ♯(x)e−x/hdx

≤ e2h−1

∫ +∞

0
W ♯(x)e−x/hdx

=
e2

hΨV ♯(h−1)
,

because of (5.44). From the definition of σ and the fact that σ′ < σ, we know that ΨV ♯(h−1)/e2 ≥
h−σ′

provided h is small enough. We deduce that whenever h is small enough,

W ♯(h) ≤ hσ
′−1.

We thus get for h small enough,

ph ≤ 2hσ
′−1/W ♯(M), (5.45)

and taking the inverse in (5.43),

η♯ (ξ, ζ(ξ) < +∞, H0(ξ) ∈]h,M [) ≥ η♯ (ξ, H0(ξ) > M)×
(

1

ph
− 1

)

. (5.46)

Since η♯(ξ, ζ(ξ) < +∞, H0(ξ) > h) ≥ η♯(ξ, ζ(ξ) < +∞, H0(ξ) ∈]h,M [), the combination of
(5.45) and (5.46) yields the result. We got rid of the constants since the same result with the
same constant is true for σ′ increased a little bit. �

We now need the following lemma which states that for a spectrally negative Lévy process,
the excursions of a given height can be split into two independents parts of which the law are
known.

Lemma 5.2. For any h > 0, assume that the process X follows the law η♯ (.|H(.) > h). Then
we have :

• (X(s), 0 ≤ s ≤ τ(X,h)) ∼ (V ↑(s), 0 ≤ s ≤ τ(V ↑, h)),

• (X(s), τ(X,h) ≤ s ≤ τ(X(. + τ(X,h)), 0)) ∼ (V ♯
h (s), 0 ≤ s ≤ τ(V ♯

h , 0)),
• (X(s), 0 ≤ s ≤ τ(X,h)) ⊥⊥ (X(s), τ(X,h) ≤ s ≤ τ(X(. + τ(X,h)), 0)).

Note that the time τ(V ♯
h , 0) may possibly be infinite, but this is unlikely when h is small.

Proof. of Lemma 5.2

The first point is a consequence of the first point of Lemma 2.6. The second and third points
come from the Markov property.

�

We can now prove the main lemma of this section, it will allow us to check the condition on
the Lévy mesure of S.
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Lemma 5.3. Assume σ > 1 and choose σ′ and β′ such that 1 < σ′ < σ ≤ β < β′. We also

choose ǫ > β′−1
σ′−1 − 1 and fix C > 0 an arbitrary constant. Then, for r small enough we have

η♯ (ξ, ζ(ξ) ∈]x, r]) ≥ x−(σ′−1)/β′

, ∀x ∈]0, Cr1+ǫ].

Proof. Let us fix r > 0 and x ∈]0, Cr1+ǫ], then

η♯ (ξ, ζ(ξ) ∈]x, r]) ≥ η♯
(

ξ, ζ(ξ) ∈ [x, r], H0(ξ) > x1/β
′
)

= η♯
(

ξ, ζ(ξ) ∈]x, r]
∣

∣

∣
H0(ξ) > x1/β

′
)

× η♯
(

ξ, H0(ξ) > x1/β
′
)

,

where η♯(.|H(.) > x1/β
′

) is the measure of excursions conditioned to be higher than x1/β
′

. The
last quantity thus equals
[

η♯
(

ξ, ζ(ξ) > x
∣

∣

∣
H0(ξ) > x1/β

′
)

− η♯
(

ξ, ζ(ξ) > r
∣

∣

∣
H0(ξ) > x1/β

′
)]

× η♯
(

ξ, H0(ξ) > x1/β
′
)

.(5.47)

We now study the three quantities appearing in (5.47) and show that this expression is of the

same order as η♯(ξ, H0(ξ) > x1/β
′

) for which Lemma 5.1 provides a lower bound. We start by

proving that η♯(ξ, ζ(ξ) > r|H0(ξ) > x1/β
′

) converges to 0 uniformly in x ∈]0, Cr1+ǫ] when r
goes to 0. First, Lemma 5.2 gives for all x in ]0, Cr1+ǫ] that

η♯
(

ξ, ζ(ξ) > r
∣

∣

∣
H0(ξ) > x1/β

′
)

≤ P

(

τ(V ♯

x1/β′ , 0) > r/2
)

+ P

(

τ(V ↑, x1/β
′

) > r/2
)

. (5.48)

The first thing is thus to prove that

sup
x∈]0,Cr1+ǫ]

P

(

τ(V ♯

x1/β′ , 0) > r/2
)

−→
r→0

0. (5.49)

Before reaching 0 (if it does) the process V ♯

x1/β′ reaches ]−∞, 0] (not necessarily at 0). We define

τN
x1/β′ := τ(V ♯

x1/β′ , ]−∞, 0]). For all x in ]0, Cr1+ǫ] we have

P

(

τ(V ♯

x1/β′ , 0) > r/2
)

≤ P

(

τN
x1/β′ > r/4

)

+ P

(

τN
x1/β′ ≤ r/4, τ(V ♯

x1/β′ (.+ τN
x1/β′ ), 0) > r/4

)

.(5.50)

Since (x 7→ τN
x1/β′ ) is stochastically increasing in the variable x we have

sup
x∈]0,Cr1+ǫ]

P

(

τN
x1/β′ > r/4

)

= P

(

τN
C1/β′r(1+ǫ)/β′ > r/4

)

= P

(

V ♯(r/4) > −C1/β′

r(1+ǫ)/β′
)

.

We introduce T , an exponential random variable with parameter 1 independent of the process
V , and a decreasing function q :]0,+∞[→]0,+∞[ that converges to +∞ as r go to 0 and will be
specified latter. We have

P

(

V ♯(r/4) > −C1/β′

r(1+ǫ)/β′
)

≤ P

(

V ♯(T/q(r)) > −C1/β′

r(1+ǫ)/β′
)

+ P (T/q(r) > r/4)

= P

(

exp

(

V ♯(T/q(r))

r(1+ǫ)/β′

)

> exp(−C1/β′

)

)

+ e−rq(r)/4

≤ eC
1/β′

E

[

exp

(

V ♯(T/q(r))

r(1+ǫ)/β′

)]

+ e−rq(r)/4,

from Markov inequality,

=
1/ΦV ♯(q(r))r(1+ǫ)/β′ − 1

ΨV ♯(r−(1+ǫ)/β′)/q(r)− 1
× eC

1/β′

+ e−rq(r)/4,
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from the expression of the Laplace transform of the random variable V ♯(T/q(r)) that can be
found page 192 of [3], and where ΦV ♯ = Ψ−1

V ♯ as in Section 4.1. The last expression goes to 0 if
these three conditions are satisfied :

q(r)r −→
r→0

+∞,

ΦV ♯(q(r))r(1+ǫ)/β′ −→
r→0

0,

q(r)/ΨV ♯(r−(1+ǫ)/β′

)ΦV ♯(q(r))r(1+ǫ)/β′ −→
r→0

0.

From the definition of σ and β and the fact that σ′ < σ ≤ β < β′, we have ΦV ♯(u) ≤ u1/σ
′

,

ΨV ♯(u) ≥ uσ
′

and ΦV ♯(u) ≥ u1/β
′

, provided u is large enough. The three conditions can thus be
simplified and we only need to have :

q(r)r −→
r→0

+∞,

(q(r))1/σ
′

r(1+ǫ)/β′ −→
r→0

0,

(q(r))1−1/β′

r(σ
′−1)(1+ǫ)/β′ −→

r→0
0.

Elevating (q(r)) to the right power so it makes its exponent disappear, these three conditions
become

q(r)r −→
r→0

+∞,

q(r)rσ
′(1+ǫ)/β′ −→

r→0
0,

q(r)r(σ
′−1)(1+ǫ)/(β′−1) −→

r→0
0.

Since σ′ < β′ we can check that σ′/β′ > (σ′ − 1)/(β′ − 1), so the third condition implies the
second. We then only need to verify the first and the third condition, but from the choice of ǫ,
we have that (σ′ − 1)(1 + ǫ)/(β′ − 1) > 1, so q(r) can be chosen such that the first and the third
conditions are satisfied. This yields

sup
x∈]0,Cr1+ǫ]

P

(

τN
x1/β′ > r/4

)

−→
r→0

0. (5.51)

We now turn to the second term of (5.50). It is known that the jumps of V ♯ is a Poisson process
with intensity measure ν♯, the Lévy measure of V ♯. The probability that V ♯ has a jump smaller

than −r before time r/4 is thus 1− erν
♯(]−∞,−r])/4 ∼ rν♯(]−∞,−r])/4 := γ(r) and this goes to

0 for any Lévy measure. As a consequence, on {τN
x1/β′ ≤ r/4} we have V ♯

x1/β′ (τNx1/β′ ) ∈ [−r, 0],
exepted on some event having probability less than γ(r). We thus get

sup
x∈]0,Cr1+ǫ]

P

(

τN
x1/β′ ≤ r/4, τ(V ♯

x1/β′ (.+ τN
x1/β′ ), 0) > r/4

)

≤ P

(

τ(V ♯, r) > r/4
)

+ γ(r),

and we now only need to show that τ(V ♯, r)/r converges to 0 in probability. Now recall that we
know from Theorem VII.1 in [3] that the Laplace transform of this random variable is given by

E

[

exp

(

−λτ(V
♯, r)

r

)]

= e−rΦ
V ♯ (λ/r).
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Since ΦV ♯(u) ≤ u1/σ
′

for u large enough, the last quantity converges to 1 when r goes to 0 so we
indeed have the convergence to 0 in probability of τ(V ♯, r)/r and as a consequence

sup
x∈]0,Cr1+ǫ]

P

(

τN
x1/β′ ≤ r/4, τ(V ♯

x1/β′ (.+ τN
x1/β′ ), 0) > r/4

)

−→
r→0

0.

Putting this, together with (5.51), in (5.50) we get (5.49). We now deal with the second term
of (5.48), more precisely we prove that

sup
x∈]0,Cr1+ǫ]

P

(

τ(V ↑, x1/β
′

) > r/2
)

−→
r→0

0. (5.52)

Because of the increases of the quantity P(τ(V ↑, x1/β
′

) > r/2) we can write

sup
x∈]0,Cr1+ǫ]

P

(

τ(V ↑, x1/β
′

) > r/2
)

= P

(

τ(V ↑, C1/β′

r(1+ǫ)/β′

) > r/2
)

≤ P

(

τ(V ♯, C1/β′

r(1+ǫ)/β′

) > r/2
)

,

according to the first point of Lemma 2.6 applied with y = C1/β′

r(1+ǫ)/β′

.

Therefore, (5.52) will follow if we prove that the random variable τ(V ♯, C1/β′

r(1+ǫ)/β′

)/r con-
verge to 0 in probability as r goes to 0. Again, we see from Theorem VII.1 in [3] that the Laplace
transform of this random variable is given by

E

[

exp

(

−λτ(V
♯, C1/β′

r(1+ǫ)/β′

)

r

)]

= e−C1/β′
r(1+ǫ)/β′

Φ
V ♯ (λr

−1),

but, since ΦV ♯(u) ≤ u1/σ
′

provided λ is large enough, we have that, for small r,

0 ≤ r(1+ǫ)/β′

ΦV ♯(λr−1) ≤ r(1+ǫ)/β′−1/σ′

λ1/σ
′

.

By the choice of ǫ, we have 1 + ǫ > (β′ − 1)(σ′ − 1) > β′/σ′, so the last quantity converges to

0 as r goes to 0. This shows that the Laplace transform of τ(V ♯, C1/β′

r(1+ǫ)/β′

)/r converges to
1 as r goes to 0 so we get the asserted convergence to 0 in probability as r goes to 0 and (5.52)
follows.

Putting (5.49) and (5.52) in (5.48) we get

sup
x∈]0,Cr1+ǫ]

η♯
(

ξ, ζ(ξ) > r
∣

∣

∣
H0(ξ) > x1/β

′
)

−→
r→0

0, (5.53)

which means that among the excursions of heigh greater than x1/β
′

, those of length greater than
r are in negligible proportion, and it thus remains to show that those of length greater than x
are in non-negligible proportion. We want to show that

lim inf
r→0

inf
x∈]0,Cr1+ǫ]

η♯
(

ξ, ζ(ξ) > x
∣

∣

∣
H0(ξ) > x1/β

′
)

> 0. (5.54)

From the second point of Lemma 5.2 we have for all x in ]0, Cr1+ǫ],

η♯
(

ξ, ζ(ξ) > x
∣

∣

∣
H0(ξ) > x1/β

′
)

≥ P

(

τ(V ♯

x1/β′ , 0) > x
)

≥ P

(

τN
x1/β′ > x

)

. (5.55)

As we did before, we introduce T , an exponential random variable with parameter 1 independent
of the process V ♯, and a decreasing function q :]0,+∞[→]0,+∞[ that converges to +∞ at 0 and
will be specified latter.
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For any x in ]0, Cr1+ǫ] we have

P

(

τN
x1/β′ > x

)

= P

(

V ♯(x) > −x1/β′
)

≥ P

(

V ♯(T/q(x)) > −x1/β′
)

− P (T/q(x) < x)

= P

(

V ♯(T/q(x))

x1/β
′ > −1

)

− 1 + e−xq(x)

We choose q(x) = 1/x and, because of (5.55), (5.54) will follow if we prove that the random

variable V ♯(T/q(x))/x1/β
′

converges in probability to 0 as x goes to 0. According to [3] p 192,
the Laplace transform of this random variable is given by

E

[

exp

(

λ
V ♯(T/q(x))

x1/β′

)]

=
q(x)

(

ΦV ♯(q(x)) − λ/x1/β
′
)

ΦV ♯(q(x))
(

q(x)−ΨV ♯(λ/x1/β
′)
) .

This last quantity converges to 1 when x goes to 0 if

• λ/x1/β
′

is negligible compared to ΦV ♯(q(x)) when x goes to 0,

• ΨV ♯(λ/x1/β
′

) is negligible compared to q(x) when x goes to 0.

These two conditions can be written

x1/β
′

ΦV ♯(q(x)) −→
r→0

+∞,

ΨV ♯(λ/x1/β
′

)/q(x) −→
r→0

0.

Now, because of the definition of β, because β′ > β, and because q(x) = 1/x, it is easy to see
that these two conditions are satisfied. This shows that the Laplace transform of the random
variable V ♯(T/q(x))/x1/β

′

converges to 1 as x goes to 0, so this random variable converges to 0
in probability and (5.54) follows.

For the factor η♯(ξ, H0(ξ) > x1/β
′

) of (5.47) we note that it is trivially more than η♯(ξ, ζ(ξ) <

+∞, H0(ξ) > x1/β
′

) and we can use Lemma 5.1 which yields

η♯
(

ξ, H0(ξ) > x1/β
′
)

≥ x−(σ′−1)/β′

, (5.56)

for x small enough. Putting (5.53), (5.54) and (5.56) in (5.47), we get the asserted result. Here
again, we actually obtain the result up to a multiplicative constant, but since the result is still
true if, for example, we increase σ′ a little bit, we can get rid of the constant.

�

We can now prove Theorem 1.10.

Proof. of Theorem 1.10

We make the assumption that (1.8) is satisfied so, by continuity of the left hand side of (1.8)
in σ and β, we can choose σ′ and β′ to be as in Lemma 5.3, but close enough to respectively σ
and β so that they also satisfy (1.8). We also choose ǫ as in Lemma 5.3.

We fix y > 0. Let S is a pure jump subordinator with Lévy mesure µ(.) := Gη♯y(. ∩ FP∞),

the image measure of η♯y(. ∩ FP∞) by the mapping G. From the Lévy-Khintchine formula, the
characteristic function of S(t) is

E

[

eiξS(t)
]

= etΦS(ξ),
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where

∀ξ ∈ R, ΦS(ξ) :=

∫ +∞

0
(eiξx − 1)µ(dx),

so, taking the real part,

∀ξ ∈ R, |R (ΦS(ξ))| =
∫ +∞

0
(1− cos(ξx))µ(dx)

≥
∫ π/|ξ|

0
(1− cos(ξx))µ(dx)

≥ 2ξ2

π2

∫ π/|ξ|

0
x2µ(dx). (5.57)

We now prove that the measure µ satisfies the hypothesis of Proposition 28.3 of [14]. We have
for any r ∈]0, 1[ :

∫ r

0
x2µ(dx) = 2

∫ r

0
xµ([x, r[)dx ≥ 2

∫ r1+ǫ

0
xµ([x, r[)dx. (5.58)

We thus need to minorate µ([x, r[) for x ∈]0, r1+ǫ] :

µ([x, r[) = η♯y({ξ, G(ξ) ∈ [x, r[} ∩ FP∞)

= η♯y

({

ξ,

∫ ζ(ξ)

0
e−ξ(t)dt ∈ [x, r[

}

∩ FP∞

)

,

from the definition of G,

≥ η♯y
({

ξ, ζ(ξ) ∈ [e2yx, r[, sup ξ ≤ 2y
}

∩ FP∞

)

≥ η♯y
({

ξ, ζ(ξ) ∈ [e2yx, r[
})

− η♯y ({ξ, sup ξ > 2y})− η♯y (FP
c
∞)

= η♯
({

ξ, ζ(ξ) ∈ [e2yx, r[
})

− η♯y ({ξ, sup ξ > 2y})− η♯y (IP∞)− η♯y (N)

= η♯
({

ξ, ζ(ξ) ∈ [e2yx, r[
})

− c,

where we have put c := η♯y ({sup ξ > 2y})+η♯y (IP∞)+η♯y (N). Note that c is well defined because

the quantities η♯y ({sup ξ > 2y}), η♯y (IP∞) and η♯y (N) are finite.

We now apply Lemma 5.3 (taking C = e2y) and we deduce that for r small enough,

∀x ∈]0, r1+ǫ], µ([x, r[) ≥ e−2y(σ′−1)/β′

x−(σ′−1)/β′ − c.

Combining this with (5.58), we get that whenever r is small enough :
∫ r

0
x2µ(dx) ≥ 2e−2y(σ′−1)/β′

∫ r1+ǫ

0
x1−(σ′−1)/β′

dx− 2c

∫ r1+ǫ

0
xdx

≥ 2e−2y(σ′−1)/β′

2− (σ′ − 1)/β′
r(1+ǫ)(2−(σ′−1)/β′) − cr2(1+ǫ).

If

(1 + ǫ)(2− (σ′ − 1)/(3β′ − 1)) < 2, (5.59)

then, choosing δ ∈]0, 2− (1+ ǫ)(2− (σ′ − 1)/β′)[ and combining the above estimate with (5.57),
we get that

|ΦS(ξ)| ≥ |R (ΦS(ξ)) | ≥ |ξ|δ , (5.60)
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whenever |ξ| is large enough. As the only assumption on ǫ is that it is greater than (β′−1)/(σ′−
1)− 1, we can choose ǫ such that (5.59) is satisfied if and only if

β′ − 1

σ′ − 1
(2− (σ′ − 1)/(3β′ − 1)) < 2,

which is equivalent to the fact that σ′ and β′ satisfy (1.8). Therefore, we have proved that there
exists δ > 0 such that (5.60) is true.

Let T be an exponential random variable with parameter p := η♯y(IP∞) + η♯y(N) which is
independent of S, the Fourier transform of ST is

E

[

eiξST

]

=

∫ +∞

0
petΦS(ξ)e−ptdt =

p

p− ΦS(ξ)
= O

|ξ|→+∞

(

|ξ|−δ
)

, (5.61)

because of (5.60).

Proposition 3.2 gives the decomposition

I(V ↑) =
∑

k≥0

e−kyBy
k +

∑

k≥0

e−kyCy
k

where all the random variables in the two series are mutually independent, and where each term
By

k has the same law as ST . Therefore, the characteristic function of I(V ↑) is the product of a

characteristic function bounded by 1 and of
∏

k≥0 E[e
ie−kyξST ] which, thanks to (5.61), goes to 0

faster than any negative power of |ξ|. This proves that the density of I(V ↑) is of class C∞ and
that all its derivatives converge to 0 when x goes to +∞. The derivatives of the density of I(V ↑)
also converge to 0 when x goes to 0 since this density is of class C∞ and null on ]−∞, 0[.

To prove that φI(V ↑) actually belongs to the Schwartz space, we have to study a little more

deeply the infinite product. Let us denote by ψ the characteristic function of
∑

k≥0 e
−kyCy

k .
Then

φI(V ↑)(ξ) = ψ(ξ)
∏

k≥0

E

[

eie
−kyξST

]

. (5.62)

The random variable ST admits moments of any positive order because it is a convolution factor
of I(V ↑) which admits moments of any positive order thanks to Theorem 1.1. As a consequence

the derivatives at any order of functions of the kind of (ξ 7→ E[eie
−kyξST ]), for integers k, are

defined and bounded. For any n ∈ N and m > n, we can see by induction that the nth derivative

Pm,n :=

(

ξ 7→
m
∏

k=0

E

[

eie
−kyξST

]

)(n)

is a finite sum of products. In each of these products, there are at least m − n factors of the

form E[eie
−kyξST ] for some integers k and the other factors are derivatives at some orders of the

functions (ξ 7→ E[eie
−kyξST ]) for some integers k. Therefore, from (5.61), we deduce that

Pm,n(ξ) = O
|ξ|→+∞

(

|ξ|−(m−n)δ
)

. (5.63)

We decompose (5.62) into

φI(V ↑)(ξ) =

(

m
∏

k=0

E

[

eie
−kyξST

]

)

×Rm(ξ),
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where
Rm(ξ) := ψ(ξ)

∏

k≥m+1

E

[

eie
−kyξST

]

.

From the Leibniz formula applied to the product, we have

φ
(n)

I(V ↑)
(ξ) =

n
∑

k=0

Ck
nPm,k(ξ) R

(n−k)
m (ξ).

Rm is the Fourier transform of a random variable that admits moments of any positive order
(because it is a convolution factors of I(V ↑)), so its derivatives at any order are defined and
bounded. From (5.63) we thus get that

φ
(n)

I(V ↑)
(ξ) = O

|ξ|→+∞

(

|ξ|−(m−n)δ
)

.

As m is arbitrary, φ
(n)

I(V ↑)
goes to 0 faster than any negative power of |ξ|. Therefore, φI(V ↑)

belongs to the Schwartz space and so does the density of I(V ↑), since the Schwartz space is
stable by Fourier transform.

�

Remark 5.4. The case where V has bounded variation is not contained in Theorem 1.10. More-
over, Remark 2.2 shows that the law of ST (ST being as in Lemma 2.1) has an atom at 0 if V
has bounded variation, so there is no hope to generalize our proof of Theorem 1.10 to this case.

We also prove Corollary 1.11.

Proof. of Corollary 1.11

Since V drifts to +∞ we have V ♯ = V so the expression (4.41) in the proof of Proposition 4.3
tells us that I(V ↑) is a convolution factor of I(V ). Now, under the assumptions of the corollary,
Theorem 1.10 applies and we get the regularity of the density of I(V ) thanks to the boundedness
of the derivatives of the density of I(V ↑) and the differentiation under the integral sign theorem.
We get the convergence to 0 at +∞ of the derivatives of the density of I(V ) thanks to the
boundedness of the derivatives of the density of I(V ↑) and the dominated convergence theorem.
The convergence to 0 at 0 of the derivatives of the density of I(V ) comes from the fact that this
density is of class C∞ and null on ]−∞, 0[.

�

6. The spectrally positive case

We now make a brief study of the exponential functional of Z↑ where Z is a spectrally positive
Lévy process drifting to +∞. If Z is a subordinator, then it stays positive and I(Z↑) is only I(Z)
which is already known to be finite and have some finite exponential moments (see for example
Theorem 2 in [4]), so Theorem 1.13 is already known in this case.

We thus assume that Z is not a subordinator. Since, in this case, −Z is spectrally negative
and not the opposite of a subordinator (then, we denote by κ the non-trivial zero of Ψ−Z), it is
regular for ]0,+∞[ according to Theorem VII.1 in [3], so Z is regular for ]−∞, 0[. Moreover, Z

drifts to +∞. We can thus define the Markov family (Z↑
x, x ≥ 0) as in [7], Chapter 8. It can be

seen from there that the processes such defined are Markov, have infinite life-time (this is where

we need the hypothesis that Z drifts to +∞) and that Z↑
0 , that we denote by Z↑, is indeed well

defined.
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Here again, for any x ≥ 0, the process Z↑
x must be seen as Z conditioned to stay positive and

starting from x. Note that, since Z converges almost surely to infinity, for x > 0, Z↑
x is only Zx

conditioned in the usual sense to remain positive.

6.1. Finiteness, exponential moments : Proof of Theorem 1.13. The idea is that adding
a small term of negative drift to Z↑ does not change its convergence to +∞. It makes Z↑

ultimately greater than a deterministic linear function for which the exponential functional is
defined and deterministically bounded. The key point is thus to control the time taken by Z↑ to
become greater than the linear function once and for good. We start with the following lemma.

Lemma 6.1. For any y > 0, there exists ǫ > 0 and positive constants c1 and c2 such that

∀s > 0, P

(

R(Z↑
y (.) − (y + ǫ .), ]−∞, 0]) > s

)

≤ c1e
−c2s.

Proof. We fix y > 0. From Corollary VII.2 in [3], a spectrally negative Lévy process X drifts to
−∞ if and only if E[X(1)] < 0. Z is a spectrally positive Lévy process drifting to +∞ so taking
the dual in the theorem we get E[Z(1)] > 0. Now E[(Z − ǫ.)(1)] = E[Z(1)] − ǫ which is positive
for ǫ chosen small enough. Still taking the dual in Corollary VII.2 in [3], this implies that Z − ǫ.
is also a spectrally positive Lévy process that dirfts to +∞ and which is not a subordinator. We
have

P

(

R(Z↑
y (.)− (y + ǫ .), ] −∞, 0]) > s

)

= P

(

inf
t∈[s,+∞[

Z↑
y (t)− (y + ǫt) ≤ 0

)

= C P

(

inf
t∈[s,+∞[

Zy(t)− (y + ǫt) ≤ 0, inf
[0,+∞[

Zy > 0

)

,

where C := 1/P(inf [0,+∞[Zy > 0) = 1/(1 − e−κy). This comes from the fact that Z↑
y is only Zy

conditioned to stay positive in the usual sense. Now, noting that Zy = y + Z, we bound the
above quantity by

C P

(

inf
t∈[s,+∞[

Z(t)− ǫt ≤ 0

)

= C P

(

sup
t∈[s,+∞[

−Z(t) + ǫt ≥ 0

)

≤ C P

(

sup
t∈[s,+∞[

−Z(t) + ǫt ≥ 0, −Z(s) + ǫs ≤ 0

)

+ C P (−Z(s) + ǫs ≥ 0)

= C P

(

sup
t∈[0,+∞[

−Zs(t) + ǫt ≥ − (−Z(s) + ǫs) ,−Z(s) + ǫs ≤ 0

)

+ C P (−Z(s) + ǫs > 0) .

(6.64)

From the independence of the increments, the process −Zs + ǫ. is equal in law to −Z + ǫ. and
independent from −Z(s) + ǫs. From Corollary VII.2 in [3], the supremum over [0,+∞[ of the
process −Zs+ ǫ. follows an exponential distribution with parameter α, where α is the non-trivial
zero of Ψ−Z+ǫ.. From this, combined with the independence from −Z(s) + ǫs, (6.64) becomes

C E

(

eα(−Z(s)+ǫs)
1{−Z(s)+ǫs≤0}

)

+ C P (−Z(s) + ǫs > 0)

≤ C E

(

eα(−Z(s)+ǫs)/2
1{−Z(s)+ǫs≤0}

)

+ C P

(

eα(−Z(s)+ǫs)/2 > 1
)

,

from the decreases of negative exponential and composing by function x 7→ exp(α2 x) in the
probability of the second term,

≤ C E

(

eα/2(−Z(s)+ǫs)
)

+ C P

(

eα(−Z(s)+ǫs)/2 > 1
)

≤ 2C E

(

eα/2(−Z(s)+ǫs)
)

,
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where we used Markov inequality in the second term,

= 2C esΨ−Z+ǫ.(α/2).

As Ψ−Z+ǫ. is negative on ]0, α[, we get the result with c1 = 2C and c2 = −Ψ−Z+ǫ.(α/2).

�

We can now prove Theorem 1.13.

Proof. of Theorem 1.13

We fix y > 0. Let my be the point where the process Z↑
y reaches its infimum, my := sup{s ≥

0, Z↑
y (s−) ∧ Z↑

y (s) = inf [0,+∞[Z
↑
y}. Note that from the absence of negative jumps the infimum

is always reached at least at my− so Z↑
y (my−) = inf [0,+∞[Z

↑
y . In order to get Z↑ from Z↑

y , we
use the decomposition given by Theorem 24 in [7], that is :

• The two processes
(

Z↑
y (my + s)− Z↑

y (my−), s ≥ 0
)

and
(

Z↑
y (s), 0 ≤ s < my

)

are inde-

pendent,

•
(

Z↑
y (my + s)− Z↑

y (my−), s ≥ 0
)

is equal in law to Z↑.

Now,

I(Z↑
y ) =

∫ my

0
e−Z↑

y (u)du+

∫ +∞

my

e−Z↑
y (u)du

=

∫ my

0
e−Z↑

y (u)du+ e−Z↑
y (my−)

∫ +∞

0
e−(Z↑

y (my+u)−Z↑
y (my−))du

≥ e−y

∫ +∞

0
e−(Z↑

y (my+u)−Z↑
y (my−))du,

because almost surely Z↑
y (my−) ≤ y,

L
= e−yI(Z↑),

because of the above decomposition. We thus get

I(Z↑)
sto
≤ eyI(Z↑

y ), (6.65)

where
sto
≤ denotes a stochastic inequality. As a consequence we only need to prove the result for

I(Z↑
y ). We now choose ǫ > 0 as in Lemma 6.1. We have

0 ≤ I(Z↑
y ) =

∫ R
(

Z↑
y (.)−(y+ǫ .),]−∞,0]

)

0
e−Z↑

y (t)dt+

∫ +∞

R
(

Z↑
y (.)−(y+ǫ .),]−∞,0]

)

e−Z↑
y (t)dt

≤ R
(

Z↑
y (.)− (y + ǫ .), ] −∞, 0]

)

+

∫ +∞

R
(

Z↑
y (.)−(y+ǫ .),]−∞,0]

)

e−Z↑
y (t)dt,
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but for t ≥ R(Z↑
y (.)− (y + ǫ .), ] −∞, 0]) we have Z↑

y (t) ≥ y + ǫt, so

0 ≤ I(Z↑
y ) ≤ R

(

Z↑
y (.)− (y + ǫ .), ] −∞, 0]

)

+

∫ +∞

R
(

Z↑
y (.)−(y+ǫ .),]−∞,0]

)

e−y−ǫtdt

≤ R
(

Z↑
y (.)− (y + ǫ .), ] −∞, 0]

)

+

∫ +∞

0
e−y−ǫtdt

= R
(

Z↑
y (.)− (y + ǫ .), ] −∞, 0]

)

+ e−y/ǫ.

From Lemma 6.1, this is almost surely finite and admits some finite exponential moments.
Thanks to (6.65), we have the same for I(Z↑), which is the expected result.

�

6.2. Tails at 0 of I(Z↑) : Proof of Theorem 1.14. We need an analogous of Lemma 2.6 in
order to compare, as we did in subsection 4.3, the exponential functionals I(Z↑) and I(Z). We
define m, the point where the process Z reaches its infimum : m := sup{s ≥ 0, Z(s−)∧Z(s) =
inf [0,+∞[Z}. Here again, from the absence of negative jumps, the infimum is always reached at
least at m− so Z(m−) = inf [0,+∞[Z.

Lemma 6.2. If Z has unbounded variation, then Z(m+ .)− Z(m−) has the same law as Z↑.

Proof. Z(m+ .)−Z(m−) is only the infinite excursion of the post-infimum process Z−Z, so we
only need to prove that this infinite excursion has the same law as Z↑, and for this we want to
apply Proposition 4.7 of [8]. We already know that, because it is spectrally positive, Z is regular
for ] − ∞, 0[. Taking the dual of the process in Corollary VII.5 in [3], we get the regularity of
{0} and ]0,+∞[ for Z, thanks to the hypothesis of unbounded variation. The hypothesis of the
proposition in [8] are thus fulfilled.

Let N denote the excursion measure of the Markov process Z − Z and (L−1, U) the ladder
process of Z : L−1 is the inverse of the local time at 0 of Z − Z and for any positive t, U(t) =
Z(L−1(t)).

Recall from the introduction the notation τ(A,h+) for τ(A, [h,+∞[). We denote by U the
potential measure of U and, since −Z is spectrally negative, the formula page 191 in [3] applies
and yields that U(]− x, 0]) = (1− e−κx)/κ for any x ≥ 0. Proposition 4.7 of [8] tells us that for
any positive measurable function G defined on the space of càd-làg functions from [0,+∞[ to R

with finite lifetime, we have

E

[

G
(

(Z↑(s))0≤s≤τ(Z↑,h+)

)]

= N
(

G
(

(ξ(s))0≤s≤τ(ξ,h+)

)

U(]− ξ(τ(ξ, h+)), 0]) |τ(ξ, h+) <∞
)

×N (ξ, τ(ξ, h+) <∞)

= chN
(

(1− e−κξ(τ(ξ,h+)))G
(

(ξ(s))0≤s≤τ(ξ,h+)

)

|τ(ξ, h+) <∞
)

,

(6.66)
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replacing U by its expression and where we set ch := N (ξ, τ(ξ, h+) <∞) /κ. Let ξ∞ denote the
infinite excursion of Z − Z, then, for any positive measurable function F , we get that

E
[

F
(

(ξ∞(s))0≤s≤τ(ξ∞,h+)

)]

= N
(

P

(

inf
[0,+∞[

Zξ(τ(ξ,h+)) > 0

)

F
(

(ξ(s))0≤s≤τ(ξ,h+)

)

|τ(ξ, h+) <∞
)

= E





P

(

inf [0,+∞[ZZ↑(τ(Z↑,h+)) > 0
)

ch(1− e−κZ↑(τ(Z↑,h+)))
F
(

(Z↑(s))0≤s≤τ(Z↑,h+)

)



 ,

(6.67)

where we used (6.66) with

G
(

(ξ(s))0≤s≤τ(ξ,h+)

)

:=
P
(

inf [0,+∞[Zξ(τ(ξ,h+)) > 0
)

ch(1− e−κξ(τ(ξ,h+)))
× F

(

(ξ∞(s))0≤s≤τ(ξ∞,h+)

)

.

Il follows from (6.67) and from Z↑(τ(Z↑, h+)) ≥ h that, P(inf [0,+∞[Zξ(τ(ξ,h+)) > 0)/ch(1 −
e−κξ(τ(ξ,h+))) is a bounded martingale with respect to the filtration Fh := σ(Z↑(s), 0 ≤ s ≤
τ(Z↑, h+)) and that it converges almost surely to some constant. As a consequence, this quantity
is almost surely equal to 1 for any positive h, hence,

∀h > 0, E
[

F
(

(ξ∞(s))0≤s≤τ(ξ∞,h+)

)]

= E

[

F
(

(Z↑(s))0≤s≤τ(Z↑,h+)

)]

,

so the infinite excursion of Z − Z indeed has the same law as Z↑.

�

We can now prove Theorem 1.14.

Proof. of Theorem 1.14

We have

I(Z) =

∫ m

0
e−Z(t)dt+

∫ +∞

m
e−Z(t)dt

=

∫ m

0
e−Z(t)dt+ e−Z(m−)

∫ +∞

m
e−(Z(m+t)−Z(m−))dt

≥
∫ +∞

m
e−(Z(m+t)−Z(m−))dt,

because almost surely Z(m−) ≤ 0. Since Z has unbounded variation, we can use Lemma 6.2
which tells us that the last term is equal in law to I(Z↑). We thus get

P(I(Z) ≤ x) ≤ P(I(Z↑) ≤ x), (6.68)

so we only need to prove the result for I(Z). Obtaining (6.68) is the only thing for which we
need the hypothesis of unbounded variation in this proof. The result that we now prove for I(Z)
is thus true without this hypothesis.

Let (Q, γ, ν) be the generating triplet of Z in the Lévy-Khintchine representation. Since ν is
non zero, there exist 0 < γ1 < γ2 < +∞ such that ν([γ1, γ2[) > 0. Then, for η ∈]0, 1[ we define

νη,1 := ην(. ∩ [γ1, γ2[) and νη,2 := ν − ην(. ∩ [γ1, γ2[),

and set Zη,1 and Zη,2 to be two independent Lévy processes which generating triplets are respec-
tively (0, 0, νη,1) and (Q, γ, νη,2). We have ν = νη,1 + νη,2 so according to the Lévy-Khintchine
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formula,

Z
L
= Zη,1 + Zη,2.

According to Corollary VII.2 in [3], a spectrally negative Lévy process X drifts to −∞ if and
only if E[X(1)] < 0. Z is a spectrally positive Lévy process drifting to +∞ so taking the
dual in the theorem we get E[Z(1)] > 0. Now since E[Z(1)] = E[Zη,1(1)] + E[Zη,2(1)] and
E[Zη,1(1)] < γ2ην([γ1, γ2[), we have that E[Zη,2(1)] is positive for η small enough. Still taking
the dual in Corollary VII.2 in [3], this implies that Zη,2 drifts to +∞ for η small enough. We
thus choose such an η0 ∈]0, 1[ and denote by m2 the point at which Zη0,2 reaches its minimum.

Zη0,1 is a compound Poisson process, we define N the counting process of its jumps : N(t) :=
♯
{

s ∈ [0, t], Zη0,1(s)− Zη0,1(s−) > 0
}

. N is thus a standard Poisson process with parameter

c0 := η0ν([γ1, γ2[) and it is independent of Zη,2. We have :

I(Z) =

∫ +∞

0
e−(Z

η0,1(t)+Zη0,2(t))dt

≤ e−Zη0,2(m2)

∫ +∞

0
e−Zη0,1(t)dt

≤ e−Zη0,2(m2)

∫ +∞

0
e−γ1N(t)dt

= e−Zη0,2(m2)I(γ1N),

so, from the independence between the two factors :

P (I(γ1N) ≤ x/2)× P

(

e−Zη0,2(m2) ≤ 2
)

≤ P (I(Z) ≤ x) . (6.69)

We put c1 := P(e−Zη0,2(m2) ≤ 2) > 0. Now by a property of standard Poisson processes, it is
easy to see that I(γ1N) has the same law as

1

c0

+∞
∑

k=0

e−γ1kek,

where (ek)k∈N is a sequence of iid exponential random variable with parameter 1. This allows
us to compute the Laplace transform of I(γ1N) :

∀λ ≥ 0, E
[

e−λI(γ1N)
]

=

+∞
∏

k=0

1

1 + λ
c0
e−γ1k

.

We put K(λ) := min{k ∈ N, λe−γ1k ≤ 1} and taking the logarithm we get

log
(

E

[

e−λI(γ1N)
])

= −
+∞
∑

k=0

log

(

1 +
λ

c0
e−γ1k

)

≥ −K(λ) log

(

1 +
λ

c0

)

−
∑

k≥K(λ)

log

(

1 +
λ

c0
e−γ1k

)

≥ −K(λ) log

(

1 +
λ

c0

)

−
∑

k≥0

log

(

1 +
1

c0
e−γ1k

)

.

Now, since K(λ) ∼
λ→+∞

log(λ)/γ1, we get that

log
(

E

[

e−λI(γ1N)
])

≥ −2 (log(λ))2 /γ1,
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for λ large enough. Now, reasoning as in the proof of (1.5) (where, from a lower bound on the
Laplace transform of I(V ↑), we deduced a lower bound for its asymptotic tail at 0) we get

e−c2(log(x))2 ≤ P (I(γ1N) ≤ x) ,

for some positive constant c2. Combining with (6.68) and (6.69), we get the sought result.

�
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