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A Kinematics-Dynamics based Estimator of the Center of Mass position
for Anthropomorphic System - A Complementary Filtering Approach

Justin Carpentier, Mehdi Benallegue, Nicolas Mansard and Jean-Paul Laumond

Abstract— This paper presents an original approach to
simply and efficiently estimate the center of mass position of a
free-floating base system, like a humanoid robot or a human
body. This approach relies on the theory of complementary
filtering, which is a popular technique in aerial robotics, but
rarely implemented in humanoid robotics. The main idea
consists in merging input measurements like the zero-moment
point position, the contact forces, etc. which are then filtered
according to their reliability in their respective spectral
bandwidth. We validate this approach in simulation by (i)
comparing the estimated center of mass trajectory with its real
value and (ii) showing that the complementary filter offers on
average a least reconstruction error than the classic Kalman
filter.

I. PROBLEM STATEMENT

Biomechanics and humanoid robotics communities share a
common interest in the estimation of Center of Mass (CoM)
position. From a biomechanics perspective, it concerns the
CoM position of the human body which depends on a very
large number of parameters, including soft tissues shapes
and densities. These parameters are classically reduced
to articular angles coupled to a mass distribution model
considering perfectly rigid limbs [1]. Nevertheless, the CoM
of humans is at the heart of classical biomechanical studies
on equilibrium and locomotion [2]. Indeed, CoM trajectories
constitute a synthetic, mechanically and geometrically
relevant motion descriptor [3], and its dynamics carries also
information about the contact forces necessary to compensate
for the gravity and ensure locomotion. The more accurate is
the reconstruction of the CoM trajectory, the more precise
will be the extraction of features and phenomena from
studied motions.

In Robotics, the CoM of a humanoid robot depends on
the configuration of the robot and the dynamical model.
Although the modeling error is much lower for humanoid
robots than for humans, they are usually extracted from
CAD data and may contain discrepancies with the real
robot. And, the aging of the robot in addition to material
updates and repairs lead the robot parameters to drift
from the initial model, and may require a new calibration
process [4]. Despite that, the CoM is the main control
variable for walking motion generation. For instance, on
flat ground this control aims mainly to ensure displacement
in space while respecting the balance constraints that the
center of pressure of the feet, also called Zero Moment
Point (ZMP), stays always strictly inside the convex hull
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Fig. 1: The problem of merging measurements for CoM
reconstruction in the presence of noises and modeling errors.

of the contact surface [5]. The modeling errors inducing
misestimation of the CoM position which may then endanger
the balance of humanoid robots [6]. All these modeling
errors are due to forward kinematic estimation. Nevertheless,
many experimental setups that study human motion and
most humanoid robots are equipped with force and moment
sensors at contact points that provide dynamics-based,
unbiased, ground-truth data on the CoM kinetics.

We have three input signals. The first one comes from
the geometry and contains the modeling errors. This signal
also suffers from noise coming from improper estimation of
the position of the limbs, especially in the case of motion
capture. The second signal is the force measurement, which
is proportional to CoM accelerations. The third one is the
ZMP measurement that we construct using the forces and
the moments. The ZMP can be approximated by a linear
combination of horizontal positions and accelerations of
the CoM. Both last signals suffer from measurement noise.
The linear approximation of ZMP, commonly assumed, also
introduces an estimation error.

This paper proposes a simple method for multi-sensor
data fusion to merge these three signals into an estimator
(see Fig. 1). To do so, we take into account an important
property that characterizes these signals : they have different
spectral distributions of errors and noises. This means that
for almost any frequency range of the CoM trajectory, there
is a signal providing a better estimation than others. We
propose to use data fusion based complementary filtering.
This common technique consists in merging input signals
that suffer from errors that lie in different bandwidths into
one output signal. It is a simple and real-time method
that enables to obtain theoretically unbiased, noise-free and
non-phase-shifted estimation of the CoM position.

Section II describes the dynamical system linking the
input signals to the trajectory of the CoM. Section III
introduces our linear complementary filter for three signals.
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Fig. 2: A sketch representation of the spectral distribution of errors
that would emerge from the naive reconstruction of CoM trajectory
if we use only one signal (Geometry, Forces and ZMP). The signal
with the lowest error is then selected at each frequency bandwidth
to constitute minimal-error fusion of these signals.

In Section IV we show how our method behaves
against simulated noisy measurements and we compare the
performance to estimation by a Kalman filter. In Section V,
we compare our method to existing approaches.

II. THE ANTHROPOMORPHIC SYSTEM MODEL

In this section, we briefly describe the equations of the
dynamics of a free-floating system with an anthropomorphic
structure. The main purpose is to emphasize the link between
the measured quantities (i.e. the estimates of the positions of
the CoM and ZMP, and the forces) and the under-actuated
dynamics, namely the dynamics reduced around the CoM.

A. The under-actuated dynamics

Consider first the Lagrangian dynamics of a n degrees of
freedom free-floating based system which makes N contacts
with its environment. We name q ∈ Q def

= SE(3)× Rn the
configuration vector of the system and q̇, q̈ its first and
second time derivatives. The Lagrangian dynamics reads:

M(q)q̈ + b(q, q̇) = G(q) + S>τ +
∑
i

J>i (q)φi, (1)

where M stands for the mass matrix, b for the centrifugal and
Coriolis effects, G for the action of the gravity field. S is a
selection matrix which distributes the torque τ over the joints
space, Ji is the jacobian of contact i and φi = (fi, τi) is
the vectorial representation of the unilateral contact wrenches
acting on the robot with linear fi and angular τi components.

This dynamical equation can be split into two parts:
the under-actuated dynamics, i.e the dynamics of the
free-floating base (denoted by b) and the dynamics of the
actuated segments (denoted by a):[

Mb

Ma

]
q̈ +

[
bb
ba

]
=

[
Gb
Ga

]
+

[
06

τ

]
+
∑
i

[
J>i,b
J>i,a

]
φi (2)

The first row of (2) is the so-called Newton-Euler equation
of a moving body, having a mass m, a CoM position c
relative to the inertial frame, a linear and angular momenta
denoted by p and L respectively. This under-actuated

dynamics can be rewritten as:

ṗ =
∑
i

fi −mg (3)

L̇ =
∑
i

(pi − c)× fi + τi, (4)

where × denotes the cross product operator, pi is the position
of the contact point i relative to the inertial frame and g is
the gravity field.

B. The Zero-Moment Point

Under the hypothesis where all contact points lie on the
same plane surface, the ZMP horizontal components are
defined by [7]:

zx,y = cx,y − cz

c̈z + gz
c̈x,y +

1

m(c̈z + gz)

[
−L̇y
L̇x

]
(5)

And, if we neglect the variation of the angular momentum
and consider the vertical CoM position remains constant, we
obtain the so-called cart-table model:

zx,y = cx,y − c
z

gz
c̈x,y, (6)

which is linear in both variables cx,y and c̈x,y .

III. THE LINEAR COMPLEMENTARY FILTER

The complementary filter [8] is well known in the field
of aerial robotics [9], for example to estimate the attitude
of a quad-rotor system by combining the gyroscopic and
accelerometer measurements. Unlike the Kalman filter [10]
which makes no distinction between the contributions of each
measurement in the frequency domain, the complementary
filter exploits the influence and the accuracy of each input
signal in their respective frequency domain and reconstructs
the integrality of the signal by a combination of filtered
measurements, with zero-phase-shift. A simple example of
complementary filter is derived in Sec. III-A. All along this
section, we make use of the following definition:

Definition 1 (Linear Complementary Filter): We say that
the transfert function Y is the linear complementary filter of
the transfert function X if and only if X(s) + Y (s) = 1 for
any s ∈ C, s being the Laplace variable.

For our case, we have three signals providing information
on the CoM.
[S1] The first one is the geometry-based reconstruction

of the CoM. It suffers mainly from biases due to
modeling errors of mass distribution. It is also subject
to high frequency sensor noise due to motion capture
technology or the measurement of the angular position
of the joints. The error between this signal and the real
position of the CoM lies then in low and high frequency
domains.

[S2] The second signal is the CoM acceleration extracted
from force measurements. This signal suffers also from
sensor noise. The double integration of this signal
reduces the high frequency error but generates quadratic
drift, visible in low and medium frequencies.



Fig. 3: On the left, diagram of the complementary filter for the CoM
vertical component. On the right, the diagram for the horizontal
components.

[S3] The third signal is the ZMP, which only provides
information about the horizontal position of the CoM.
It contains high frequency sensor noise, but also
carries error due to the linear approximation (6).
This approximation assumes a constant CoM height
and a negligible variation of the angular momentum.
These assumptions are particularly acceptable in low
frequency domain, specifically below natural walking
rhythm. Similar reasoning can be found in [11], [12].

These three considerations are schematized in Fig. 2.
In the following, we gradually design the complementary

filters of the CoM vertical and horizontal components. We
designate by s the Laplace variable acting in the frequency
domain. The Laplace Transform of a temporal signal g(t)
is written G(s) and sG(s) corresponds to the Laplace
Transform of its time derivative ġ(t).

A. Complementary filter of the CoM vertical component

1) Hypothesis: The vertical position cz of the CoM can
be observed from two decoupled sources of measurement:

• (1) the mass distribution of the anthropomorphic system
coupled with the current measure of the positions of
links provide an estimation c̃z

• (2) vertical contact force measurements divided by
the mass m and subtracted from gravity (cf. Newton
equation (3)) provide the estimation ˜̈cz of the vertical
acceleration of the CoM.

The complementary filter diagram corresponding to those
two measurements is shown in Fig. 3. Hz

1 and Hz
2 are the

linear filters of c̃z and ˜̈cz respectively.

2) Design: For the first signal [S1], the noise is mostly
located in the high frequency domain. While for the second
measurement [S2], due to the double integration process, the
noise is mainly concentrated in the low frequency domain.
Then s2Hz

2
1 is made a high-pass filter in order to filter out

the low frequency noise in the double integration processus.
We can now set:

s2Hz
2 (s) =

(sτ1)
2

(1 + sτ1)2
, (7)

1the s2 term before Hz
2 comes directly from the fact that s2Cz(s) is

the Laplace Transform of c̈z .

with τ1
def
= 1

2πf1
2 the inverse pulsation and f1 the cut-off

frequency of the high-pass filter s2H2. Therefore (7) reads:

Hz
2 (s) =

τ1
2

(1 + sτ1)2
(8)

Accordingly, H1 can be directly computed as the
complement of s2H2, i.e. H1

def
= 1 − s2H2. So H1 is of

the following form:

Hz
1 (s) =

1 + 2sτ1
(1 + sτ1)2

, (9)

which is the combination of a low-pass filter and a bandpass
filter, both with a unique cutting frequency of value f1.
As expected, H1 acts in the low frequency domain. Fig. 4
represents the bode diagram of the two designed filters H1

and H2. One can remark that both filters depends on the same
free variable f1, which corresponds to the unique cutting
frequency of the low-pass and high-pass filters. The choice
of f1 corresponds to the frequency of sensor noise in the
force measurement and link position reconstruction.

Remark: The double integrator corresponding to
acceleration measurements imposes the order of the filter to
be at least 2; otherwise, the filter Hz

1 would be non-causal.

B. Complementary filter of the CoM horizontal components

In the case of horizontal components estimation, we add
the measure of the ZMP position [S3] to the input of the
estimator. The complete diagram of the complementary filter
of horizontal components is depicted in Fig. 3.

1) Hypothesis: The hypotheses of the CoM vertical
component still hold for the case of the horizontal ones. We
make the hypothesis the ZMP is a good approximation of
the CoM position for very low frequencies.

2) Design: We first write the Laplace Transform of (6):

Zx,y(s) =
(
1− τ2z s2

)
Cx,y(s), (10)

with τz
def
=
√

cz

gz the inverse pulsation of the linearized ZMP
model. (10) can be rewritten as:

Zx,y(s) = (1 + τzs) (1− τzs)Cx,y(s) (11)

The ZMP dynamics (11) is a second order differential
equation whose integration reveals one stable (1 + τzs) and
one unstable (1−τzs) component [13]. So, we need to reject
this unstable dynamic in order to make the complementary
filter stable. Finally, we want that:

Hx,y
3 (s)(1 + τzs)(1− τzs) =

1− τzs
(1 + sτ2)2

, (12)

with τ2
def
= 1

2πf2
the inverse pulsation and f2 the cutting

frequency of the low-pass filter of the ZMP. Hx,y
3 has the

following expression:

Hx,y
3 (s) =

1

(1 + sτ2)2(1 + τzs)
(13)

2in the previous section II, the bold τ means the moment of the contact
forces wrench. In the current section, τ refers to the inverse pulsation in
the context of linear filtering.
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Fig. 4: Bode diagram of filters: Hz
1 (a), Hx,y,z

2 (b), Hx,y
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3 (d) with f1 = 10 Hz, f2 = 0.4 Hz and cz = 0.6 m.

While Hx,y
2 remains unchanged and equal to Hz

2 ,
Hx,y

1 is the complementary filter of both s2Hx,y
2 and

(1 + τzs)(1− τzs)Hx,y
3 transfert functions, leading to:

Hx,y
1 (s) = 1− s2Hx,y

2 (s)− (1 + τzs)(1− τzs)Hx,y
3 (s)

= 1− (sτ1)
2

(1 + sτ1)2
− 1− τzs

(1 + sτ2)2
(14)

Fig. 4 (right) illustrates the bode diagrams of the designed
filter Hx,y

1 and Hx,y
3 . Hx,y

1 acts as a bandpass filter in a
bandwidth around [f2; f1], while Hx,y

3 is mainly a third
order low-pass filter. Choosing the frequency f2 is a little
bit more subtile than in the case of f1. We consider that
the linearized ZMP model is only valid for the frequencies
below the fondamental frequency of the locomotion pattern.
In general, this fondamental frequency is around 1 or 2 Hz.
Therefore, we might consider a value of f2 below 1 Hz.

IV. EXPERIMENTAL RESULTS

In this section, we apply the proposed complementary
filter to the case of a simulated humanoid robot walking
in straight line. The simulation framework allows: (i) to
obtain ground truth measurements, that will be used for
the evaluation of the performance of the complementary
filter and (ii) to generate noisy model and measurements
which will serve as inputs of the filter. We also compare
the performance of the designed complementary filter to a
more classic Kalman filtering approach, which uses the same
kind of measures while assuming that those sensor measures
are affected by a white noise.

A. Generation of noisy data

1) Motion generation: We use standard techniques in
humanoid robotics to generate the motion of the robot.
We first plan a CoM trajectory according to the given
foot placements and ZMP reference trajectory [5]. Then
we generate a whole body trajectory using a second-order
generalized inverse kinematics [14]; the following tasks
where combined using a strict hierarchy: the feet positions
(first priority), the CoM trajectory and a fixed orientation of
the pelvis (second priority) and finally a posture task to avoid
the drift of actuated joints (third and lowest priority).

2) Generation of noisy measurements: The second-order
kinematics produces a control based on q̈ from which we
obtain by integration q̇ and q.

These three quantities injected in the right hand side of
the unactuated part of the dynamical equation (2) give us

the resulting wrench φc of contact forces. The linear and
angular part of the measurement of φc are then perturbed
by a Gaussian colored noise in the high frequency domain
with standard deviation σlinear = 10 N and σangular = 10 Nm,
leading to a noisy measurements φ̃c. From φ̃c we obtain the
perturbed ZMP position z̃.

The measurement of the configuration vector q is disturbed
by another Gaussian colored noise in the high frequency
domain too, with a standard deviation σconfiguration = 0.05π.
This noise replicates the effects of errors due to motion
capture techniques. In addition, we generate an error at
the level of the dynamical model of the robot. We add
a Gaussian perturbation to the mass distribution of the
body and position of the CoM of each link. We make
the hypothesis that we know the mass and CoM position
of each limb with a precision of 20%. This process aims
at generating modeling error for a humanoid robot or for
humans due to anthropometric tables. The new dynamical
model and the noisy measurements of q enable to generate
the geometry-based CoM measurement c̃.

3) Identification of the mass of the anthropomorphic
system: The total mass of the system is directly measurable.
It suffices to exploit the forces measurement in static
equilibrium (half-sitting position for a humanoid robot or
standing rest position for humans), and, by taking the average
value of the vertical forces divided by the gravity value, we
obtain a good estimate of the total mass.

B. Spectral analysis of measurement errors

Fig. 5 shows the Fourier transform of the errors. The
simplest spectral distribution is the error of the force
measurement ˜̈c at the middle of the figure. It is simply
the Fourier transform of the noise we added initially, which
lies in high frequencies that are partly canceled by our H2

low-pass filter. At the top of the figure we see the error
of geometry-based estimation of the CoM. As expected, the
error mainly lies in low and high frequencies. The medium
frequencies bandwidth shows a very clean estimation of
the CoM position. The bottom part of the figure shows
the spectral distribution of the error between the noisy
measurement of the ZMP and the perfect linear ZMP of
the model. We see clearly that this measurement is reliable
only in low frequencies and grows very fast with frequency
increase. This is why we fixed the cut-off frequency at
0.4 Hz. We see then that these figures confirm clearly the
hypotheses of Fig. 2.



Fig. 5: Fourier transform of the error of each signal. On the right, the transform of the error between the real CoM position c and
geometry-based estimation c̃. In the middle, the error between the second CoM time-derivative c̈ and its estimation ˜̈c. On the left, the
transform of the error between the linearized ZMP model (6) and the measured values z̃, defined only in x and y.

C. Estimation and comparison with KF
The three measurements of the walking trajectory were

fed to our complementary filter and to a Kalman filter. The
estimation of the complementary filter compared with real
values is shown on the top of Fig. 6. We see that the
tracking in x and y axes is accurate. However, the tracking
in z is subject to bias. This is due to the absence of bias
correction of ZMP along that axis. On the bottom, the
estimation error is displayed for the complementary filter
and Kalman filter along the three axes. We see that the error
of our complementary filter is always inferior or equivalent
to the Kalman filter. We see also that the signal of the
complementary filter contains more high frequency noises,
that partly due to our choice to take the lowest possible
orders for the band-pass filters to keep the simplest possible
formulation. We believe that more sophisticated filters can
get reduce significantly these artifacts without introducing
phase shift. This phenomenon is also due to the fact that
there is certainly a small frequency bandwidth where we
have no perfectly clean signal. This can be tackled by
applying model-based filtering to the estimation, which can
also enable to avoid phase-shift, but may be subject to other
modeling errors. Finally about this figure, along z direction,
we see that Kalman filtering estimation is drifted away from
the estimation. This is because the Kalman filter integrates
the acceleration signal at all frequencies, introducing drift in
medium and low frequency ranges.

We also validate the robustness of our filter with respect
to the hypothesis of constant COM altitude, by generating a
second walking trajectory whose COM heigh is constrained:
it therefore freely derived, mostly in low frequency ranges,
which introduces a small error in the frequency range of
our ZMP signal. We see in Fig. 6 (right) that along x, this
modification only affected the estimation in low frequencies,
as expected, whereas along y and z this modification
had minor effects. Kalman filter suffered more from this
modification, especially along the z direction.

We see in the next section how former studies also
considered the sensors fusion for CoM estimation in
humanoid robotics and human bio-mechanics communities.
We compare the existing approaches with the complementary
filtering technique in terms of theoretical guarantees and
actual performance.

V. DISCUSSIONS

Our CoM estimation approach is part of an active
topic both in research on human motion and in humanoid

robotics [15]. For humanoids, the corrections on the
CoM provided by forward kinematics is achieved mainly
using various measurement system [16] including force
sensors [17], [18]. These solutions use mostly Kalman
filtering techniques which is agnostic of the frequency
domains of each signal. On the other hand, the CoM
reconstruction has a longer history in the field of
biomechanics [19]. Moreover, since few decades, force
platforms were already considered for CoM position
estimation [20]. Most of the methods did not consider the
fusion of Force sensors with direct kinematics reconstruction
of the CoM [21], [22].

To our best knowledge, the closest published work to our
method is the technique by Maus et al [12]. The Kinematic
CoM estimation was low-pass filtered and the double
time-integral of forces was high-pass filtered, before adding
the two signals. However, the use of non-complementary
filtering removes the guarantee to obtain the totality of the
initial signal with zero-phase-shift. Moreover, the double
integration of acceleration is not a stable process and this
method requires to reset regularly the integral to zero.
Instead, our method works for arbitrary durations thanks to
the stability of all our filters. Schepers et al [11] developed
the same approach as Maus et al, but with ZMP and
force measurements. In addition to theoretical guarantees
and integration stability issues, this method neglected the
horizontal accelerations for the ZMP, which increases the
approximation errors.

VI. CONCLUSION AND FUTURE WORKS

We have seen through this paper the design and the
implementation of an estimator of the position of the CoM
of humans and humanoid robots based on multi-sensor
data fusion. This estimator takes profit from the most
common sensors available both on-board robots and for
human motion recording: the CoM reconstruction provided
by the geometrical reconstruction together with a model of
mass distribution, the forces that give CoM accelerations,
and the ZMP leading to an approximated linear link between
horizontal positions and accelerations. The key idea of
our method is to consider that these measurements carry
noises and errors, but with separated frequency bandwidths
for each error. This statement directs our choice to use a
complementary filtering technique to merge these signals,
specifically because of its particular suitability to merge
different bandwidths of signals.



Fig. 6: On the left, the reconstructed trajectory thanks to the complementary filter. In the middle, error between the ground truth measure
of the CoM position and its reconstruction with Kalman and complementary filters. On the right, error between the ground truth measure
of the CoM position and its reconstruction with both Kalman and complementary filters, when allowing variations of the CoM vertical
position.

The direct conclusion is that this complementarity in
frequency should be exploited when fusing these three
measurements. Complementarity filters are very good at that,
while it is not straightforward to achieve with common
Kalman filters. Despite the solid expertise of our team in
using Kalman filtering for this kind of measurements, we
were not able to obtain qualitative results with such filter
while it was immediate to obtain when implementing a
complementarity filter.

The main limitations of our approach lies in the non
correction of biases in the vertical component of the CoM.
because the ZMP [S3] provides only a 2 dimensional
information. Actually, this limitation takes its root from the
Newton-Euler dynamics: the moment of a force is obtained
by a cross product, and the cross product is not an invertible
operator. Therefore, one dimension of the CoM position is
not observable using the force/torque signal. However, some
CoM trajectories may still make the observation possible
if we do not ignore the CoM vertical displacement. An
interesting perspective is build an estimator that aims to
rebuild the full body dynamics by estimating variation of the
angular momentum and considering CoM height variations.
This estimator would also exploit a nonlinear version of the
complementary filtering techniques in order to increase its
accuracy on the parts to keep in each of the input signals.
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