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We investigate the relationships between the Lipschitz outer geometry and the embedded topological type of a hypersurface germ in (C n , 0). It is well known that the Lipschitz outer geometry of a complex plane curve germ determines and is determined by its embedded topological type. We prove that this does not remain true in higher dimensions. Namely, we give two normal hypersurface germs (X 1 , 0) and (X 2 , 0) in (C 3 , 0) having the same outer Lipschitz geometry and different embedded topological types. Our pair consist of two superisolated singularities whose tangent cones form an Alexander-Zariski pair having only cusp-singularities. Our result is based on a description of the Lipschitz outer geometry of a superisolated singularity. We also prove that the Lipschitz inner geometry of a superisolated singularity is completely determined by its (non embedded) topological type, or equivalently by the combinatorial type of its tangent cone.

Introduction

A complex germ (X, 0) has two natural metrics up to bilipschitz equivalence, the outer metric given by embedding (X, 0) in some (C n , 0) and taking distance in C n and the inner metric given by shortest distance along paths in X.

In this paper we investigate the relationships between the Lipschitz outer geometry and the embedded topological type of a hypersurface germ in (C n , 0).

It is well known that the Lipschitz outer geometry of a complex plane curve germ determines and is determined by its embedded topological type ( [START_REF] Pham | Fractions Lipschitziennes d'une algebre analytique complexe et saturation de Zariski[END_REF], see also [START_REF] Fernandes | Topological equivalence of complex curves and bi-Lipschitz maps[END_REF] and [START_REF] Walter | Lipschitz geometry of complex curves[END_REF]Theorem 1.1.]). We prove that this does not remain true in higher dimensions:

Theorem 1.1. There exist two hypersurface germs in (C 3 , 0) having same Lipschitz outer geometry and distinct embedded topological type.

It is worth noting that for families of isolated hypersurfaces in C 3 , the constancy of Lipschitz outer geometry implies constancy of embedded topological type. Indeed, Varchenko proved in [START_REF] Varchenko | Algebro-Geometrical Equisingularity and Local Topological Classification of Smooth Mappings[END_REF] that a Zariski equisingular family of hypersurfaces in any dimension has constant embedded topological type and it is proved in [START_REF] Walter | Lipschitz geometry of complex surfaces: analytic invariants and equisingularity[END_REF] that for a family of hypersurface singularities (X t , 0) ⊂ (C 3 , 0), Zariski equisingularity is equivalent to constant Lipschitz outer geometry.

It should also be noted that the converse question, which consists of examining which part of the outer Lipschitz geometry of a hypersurface can be recovered from its embedded topological type seems difficult. In particular the outer geometry of a normal complex surface singularity determines its multiplicity ([10, Theorem 1.2 (2)]) so this question somehow contains the Zariski multiplicity question.

In order to prove Theorem 1.1 we construct two germs of hypersurfaces in (C 3 , 0) having the same Lipschitz outer geometry and different embedded topological types. They consist of a pair of superisolated singularities whose tangent cones form an Alexander-Zariski pair of projective plane curves.

A surface singularity (X, 0) is superisolated (SIS for short) if it is given by an equation

f d (x, y, z) + f d+1 (x, y, z) + f d+2 (x, y, z) + • • • = 0,
where d ≥ 2, f k is a homogeneous polynomial of degree k and the projective curve {f d+1 = 0} ⊂ P 2 contains no singular point of the projective curve

C = {[x : y : z] : f d (x, y, z) = 0}.
In particular, the projectivized tangent cone C of (X, 0) is reduced. In the sequel we will just consider SISs with equations

f d (x, y, z) + f d+1 (x, y, z) = 0 .
Definition 1.2 (Combinatorial type of a projective plane curve). The combinatorial type of a reduced projective plane curve C ⊂ P 2 is the homeomorphism type of a tubular neighborhood of it in P 2 (see, e.g., [START_REF] Artal Bartolo | A survey on Zariski pairs[END_REF]Remark 3]; a more combinatorial version is also given there, which we describe in Section 3).

It is well known that the combinatorial type of the projectivized tangent cone of a SIS (X, 0) determines the topology of (X, 0). In fact, we will show: Theorem 1.3. (i). The Lipschitz inner geometry of a SIS determines and is determined by the combinatorial type of its projectivized tangent cone.

(ii). There exist SISs with the same combinatorial types of their projectivized tangent cones but different Lipschitz outer geometry.

Proof of Theorem 1.1

The proof of Theorem 1.1 will need Lemma 2.2 and Proposition 2.3 below, which will be proved in section 4. First a definition: Definition 2.1. We say that two germs (C 1 , 0) and (C 2 , 0) of reduced irreducible plane curves are weak RL-equivalent if for i = 1, 2 there are holomorphic maps

h i : (C 2 , 0) → (C, 0) with (h -1 i (0), 0) = (C i , 0), a homeomorphism ψ : (C 2 , 0) → (C 2 , 0), a constant K ≥ 1 and a neighborhood U of the origin in C 2 such that for all a, a ′ ∈ U. 1 K ||h 2 (ψ(a))(1, ψ(a)) -h 2 (ψ(a ′ ))(1, ψ(a ′ ))|| C 3 ≤ ||h 1 (a)(1, a) -h 1 (a ′ )(1, a ′ )|| C 3 ≤ K||h 2 (ψ(a))(1, ψ(a)) -h 2 (ψ(a ′ ))(1, ψ(a ′ ))|| C 3 Lemma 2.2.
Weak RL-equivalence of reduced irreducible plane curve germs (C 1 , 0) and (C 2 , 0) does not depend on the choice of their defining functions h 1 and h 2 . Moreover, it is implied by analytic equivalence of (C 1 , 0) and (C 2 , 0) in the sense of Zariski [START_REF] Zariski | On the problem of existence of algebraic functions of two variables possessing a given branch curve[END_REF] (also called RL-equivalence or A-equivalence).

Proposition 2.3. Let (X, 0) be a SIS with equation f d + f d+1 = 0. The Lipschitz outer geometry of (X, 0) is determined by the combinatorial type of its projectivized tangent cone and by the weak RL-equivalence classes of corresponding singularities of the projectivized tangent cones.

Proof of Theorem 1.1. Recall that a Zariski pair is a pair of projective curves C 1 , C 2 ⊂ P 2 with the same combinatorial type but such that (P 2 , C 1 ) is not homeomorphic to (P 2 , C 2 ). The first example was discovered by Zariski: a pair of sextic curves C 1 and C 2 , each with six cusps, distinguished by the fact that C 1 has the cusps lying on a quadric and C 2 does not. He constructed those of type C 1 in [START_REF] Zariski | On the problem of existence of algebraic functions of two variables possessing a given branch curve[END_REF] and conjectured type C 2 , confirming their existence eight years later in [START_REF] Zariski | The topological discriminant genus p[END_REF]. He distinguished their embedded topology by the fundamental groups of their complements, but they can also be distinguished by their Alexander polynomials (Libgober [START_REF] Libgober | Alexander polynomials of plane algebraic curves and cyclic multiple planes[END_REF]) so they are called Alexander-Zariski pairs. Let (X 1 , 0) and (X 2 , 0) be two SISs whose tangent cones are sextics of types C 1 and C 2 as above. According to [START_REF] Zariski | The moduli problem for plane branches, with an appendix by Bernard Teissier[END_REF], the analytical type of a cusp is uniquely determined, so its weak RL-equivalence class is determined (Lemma 2.2). Then by Proposition 2.3, (X 1 , 0) and (X 2 , 0) are outer Lipschitz equivalent.

On the other hand, Artal showed that (X 1 , 0) and (X 2 , 0) do not have the same embedded topological type. In fact, he shows ([1, Theorem 1.6 (ii)]) that a Zariski pair is distinguished by its Alexander polynomials if and only if the corresponding SISs are distinguished by the Jordan block decompositions of their homological monodromies.

The inner geometry of a superisolated singularity

We first recall how the topological type of a SIS is determined by the combinatorial type of its projectivized tangent cone. We refer to [START_REF] Artal Bartolo | Superisolated surface singularities, Singularities and computer algebra[END_REF] for details.

A SIS (X, 0) ⊂ (C 3 , 0) is resolved by blowing up the origin of (C 3 , 0). The exceptional divisor of this resolution of (X, 0) is the projectivized tangent cone C of (X, 0) and one obtains the minimal good resolution by blowing up the singularities of C which are not ordinary double points until one obtains a normal crossing divisor C ′ . Let Γ be the dual graph of this resolution. Following [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF] we say L-curve for a component of C ′ which is a component of C and L-node any vertex of Γ representing an L-curve.

One can also resolve the singularities of C as a projective plane curve to obtain the same graph Γ except that the self-intersection numbers of the L-curves are different (in the example below the self-intersection number -9 becomes +3). The graph Γ with these data is equivalent to the combinatorial type of C.

Example 3.1. Consider the SIS (X, 0) ⊂ (C 3 , 0) given by F (x, y, z) = y 3 + xz 2x 4 = 0. Blowing up the origin of C 3 resolves the singularity: using the chart (x, v, w) → (x, y, z) = (x, xv, xw), the equation of the resolved X * is v 3 +w 2 -x = 0 and the exceptional curve has a cusp singularity x = v 3 + w 2 = 0. Blowing up further leads to the following dual graph Γ, the black vertex being the L-node.

-2 -1 -3 -9

The self-intersection -9 of the L-curve is computed as follows. Let E 1 , . . . , E 4 be the components of the exceptional divisor indexed so that E 1 is the L-curve and E 2 , E 3 and E 4 correspond to the string of non L-nodes indexed from left to right on the graph. Since the tangent cone is reduced with degree 3, the strict transform l * 1 of a generic linear form l 1 : (X, 0) → (C, 0) consists of three smooth curves transverse to E 1 . The total transform l 1 is given by the divisor:

(l 1 ) = E 1 + 3E 2 + 6E 3 + 2E 4 + l * 1 . Since (l 1 ) is a principal divisor, we have (l 1 ).E 1 = 0, which leads to E 1 .E 1 = -9.
Proof of Theorem 1.3 (i). Let (X, 0) ⊂ (C 3 , 0) be a SIS with equation f d +f d+1 = 0. We set f = f d and g = -f d+1 .

Let ℓ : C 3 → C 2 be a generic linear projection for (X, 0), let Π be the polar curve of the restriction ℓ | X and ∆ = ℓ(Π) its discriminant curve.

Let e be the blow-up of the origin of C 3 and let p be a singular point of e -1 (0) ∩ X * . Without loss of generality, we can assume ℓ = (x, y). We can also choose our coordinates so that p = (1, 0, 0) in the chart (x, v, w) given by (x, v, w) → (x, y, z) = (x, xv, xw) in the blow-up e (so p corresponds to the x-axis in the tangent cone of X). Then X * has equation

f (1, v, w) -xg(1, v, w) = 0 and g(1, v, w) is a unit at p since {g = 0} ∩ Sing(f = 0) = ∅ in P 2 .
Let e 0 : Y → C 2 be the blow-up of the origin of C 2 . We consider e 0 in the chart (x, v) → (x, y) = (x, xv), we set q = (1, 0) ∈ Y in this chart, and we denote by l : (X * , p) → (Y, q) the projection (x, v, w) → (x, v). So we have the commutative diagram:

(X * , p) e / / l (X, 0) ℓ (Y, q) e0 / / (C 2 , 0) . Now Π = X ∩ {f z -g z = 0}
, so the strict transform Π * of Π by e has equations:

f w (1, v, w) -xg w (1, v, w) = 0 and f (1, v, w) -xg(1, v, w) = 0 ,
which are also the equations of the polar curve of the projection l :

(X * , p) → (Y, q). Since g(1, v, w) ∈ C{v, w} is a unit at p, the quotient h(v, w) := f (1,v,w) g(1,v,w) defines a holomorphic function germ h : (C 2 (v,w) , 0) → (C, 0
). In terms of h(v, w) the above equations for (Π * , p) can be written:

h w (v, w) = 0 and h(v, w) -x = 0 .
Consider the isomorphism proj : (X * , p) → (C 2 , 0) which is the restriction of the linear projection (x, v, w) → (v, w). Then Π * is the inverse image by proj of the polar curve Π ′ of the morphism ℓ ′ : (C 2 (v,w) , 0) → (C 2 (x,v) , 0) defined by (v, w) → (h(v, w), v), i.e., the relative polar curve of the map germ (v, w) → h(v, w) for the generic projection (v, w) → v.

We set ∆ ′ = ℓ ′ (Π ′ ) and q = (1, 0) in C 2 (x,v) . We then have a commutative diagram:

(C 2 , Π ′ , 0) o o proj ℓ ′ & & ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ (X * , Π * , p) e / / l (X, Π, 0) ℓ (Y, ∆ ′ , q) e0 / / (C 2 , ∆, 0)
Let (Π 0 , 0) be the part of (Π, 0) which is tangent to the x-axis (i.e., it corresponds to p ∈ e -1 (0) in our chosen coordinates) and let (∆ 0 , 0) be its image by ℓ. Let V be a cone around the x-axis in (C 3 , 0). As in [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF], consider a carrousel decomposition of (ℓ(V ), 0) with respect to the curve germ (∆ 0 , 0) such that the ∆-wedges around ∆ 0 are D-pieces. We then consider the geometric decomposition of (V, 0) into A-, B-and D-pieces obtained by lifting by ℓ this decomposition. Lifting the carrousel decomposition of ℓ(V ) by e 0 we get a carrousel decomposition of (Y, q) with respect to ∆ ′ . On the other hand the lifting by e of the geometric decomposition of V is a geometric decomposition of (X * , p) which coincides with the lifting by l of the carrousel decomposition of (Y, q) just defined.

By the Lê Swing Lemma [8, Lemma 2.4.7], the union of pieces beyond the first Puiseux exponents of the branches of ∆ ′ at q lift to pieces in X * which have trivial topology, i.e., their links are solid tori. Therefore these are absorbed by the amalgamation process consisting of amalgamating iteratively any D-piece which is not a conical piece with the neighbor piece using [4, Lemma 13.1].

Moreover, since ∆ ′ is the strict transform of ∆ by e 0 , the rate of each piece of the obtained decomposition of X * equals q + 1, where q is the first Puiseux exponent of a branch of ∆ ′ . Let Γ p be the minimal resolution graph of the curve h = 0 at p. Let us call a node of Γ p any vertex having at least three incident edges including the arrows representing the components of h and the root vertex of Γ p if h = 0 has more than one line in its tangent cone. According to [8, Théorème C], the rate q equals the polar quotient

m Ei (l) m Ei (h)
where v i is the corresponding node in Γ p and where l : (C 2 v,w , p) → (C, 0) is a generic linear form at p. Now, set f (v, w) = f (1, v, w). Since g(1, v, w) is a unit at p, the curves h = 0 and f = 0 coincide, so m Ei (h) = m Ei ( f ). Since the strict transform of f coincides with the germ of L-curves at p, Γ p is a connected component of Γ minus its L-nodes with free edges replaced by arrows. Therefore the rates mE i (l) mE i ( f ) , and then the inner rate of (X, 0) are computed from Γ.

Example 3.2. Consider again the SIS (X, 0) of Example 3.1 with equation xz 2 + y 3 -x 4 = 0. Its projectivized tangent cone xz 2 +y 3 = 0 has a unique singular point, and the corresponding graph Γ p is the resolution graph of the cusp w 2 + v 3 = 0, i.e., the graph Γ of Example 3.1 with the L-node replaced by an arrow. The multiplicity of f along the curve E 3 corresponding to the node of Γ p equals 6 while that of a generic linear form (v, w) → l(v, w) equals 2. We then obtain the polar quotient mE 3 (l) mE 3 ( f ) = 1/3, which gives inner rate 1/3 + 1 = 4/3.

The Lipschitz inner geometry is then completely described (see [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF]Section 15]) by the graph Γ completed by labelling its nodes by the inner rates of the corresponding geometric pieces:
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Example 3.3. Consider the SIS (X, 0) with equation (zx 2 + y 3 )(x 3 + zy 2 )+ z 7 = 0, that we already considered in [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF]Example 15.2] and in [START_REF] Walter | Lipschitz geometry of complex surfaces: analytic invariants and equisingularity[END_REF]. The tangent cone consists of two unicuspidal curves C and C ′ with 6 intersecting points p 1 , . . . p 6 , the germ (C ∪ C ′ , p 1 ) consisting of two transversal cusps, and the remaining 5 points being ordinary double points of C ∪ C ′ .

For each i = 1, . . . , 6, the tangent cone of (C ∪ C ′ , p i ) has two tangent lines and the quotient m Ev 0 (l)/m Ev 0 ( f ) at the root vertex v 0 of Γ pi is then a polar quotient in the sense of [START_REF] Dũng | Courbes polaires et topologie des courbes planes[END_REF]. The root vertex v 0 has valency 2 and it corresponds to a special annular piece in the sense of [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF], with inner rate m Ev 0 (l)/m Ev 0 ( f ) + 1. For p 2 , . . . , p 6 , we obtain inner rate 1/2 + 1 = 3/2 for that special annular piece and for p 1 , we obtain 1/4 + 1 = 5/4. The inner rates at the two other nodes of Γ p1 both equal 2/10 + 1 = 6/5. We have thus recovered the inner geometry: This was also computed in [START_REF] Birbrair | The thick-thin decomposition and the bilipschitz classification of normal surface singularities[END_REF] with the help of Maple, in terms of the carrousel decomposition of the discriminant curve of a generic projection of (X, 0).

Proof of Theorem 1.3 (ii). Consider the two SISs (X 1 , 0) and (X 2 , 0) with equations respectively:

X 1 : F 1 (x, y, z) = (y 3 -z 2 x)(y 3 + z 2 x) + (x + y + z) 7 = 0 X 2 : F 2 (x, y, z) = (y 3 -z 2 x)(y 3 + 2z 2 x) + (x + y + z) 7 = 0
We will prove that they have same inner geometry and different outer geometries. On one hand, the projectivized tangent cones of (X 1 , 0) and (X 2 , 0) have same combinatorial type, so (X 1 , 0) and (X 2 , 0) have same Lipschitz inner geometry (Theorem 1.3). The tangent cone consists of two unicuspidal components C and C ′ with two intersection points: one, p 1 , at the cusps, with maximal contact there, and one, p 2 , at smooth points of C and C ′ intersecting with contact 3 there. The inner geometry is given by the following graph. In particular, the inner rates at the two non L-nodes are computed from the corresponding polar rates in the two graphs Γ p1 and Γ p2 . They both equal 1/6 + 1 = 7/6. On the other hand, let us compute the multiplicities of the three functions x, y and z at each component of the exceptional locus. We obtain the following triples (m Ej (x), m Ej (y), m Ej (z)) for both X 1 and X 2 :

(

We compute from this the partial derivatives ∂Fi ∂x , ∂Fi ∂y and ∂Fi ∂z along the curves of the exceptional divisor. We obtain different values for two multiplicities (in bold) for (X 1 , 0) and (X 2 , 0), written in that order on the graph: We compute from this the resolution graph of the family of polar curves a ∂Fi ∂x + b ∂Fi ∂y +c ∂Fi ∂z = 0. In the X 1 case one has to blow up once more to resolve a basepoint. We then get the resolution graph of the polar curve of a generic plane projection of (X 1 , 0) resp. (X 2 , 0) (the arrows represent the strict transform, the numbers in parentheses are the multiplicities of the function a ∂Fi ∂x + b ∂Fi ∂y + c ∂Fi ∂z for generic a, b, c and the negative numbers are self-intersections):

(11) (22) (33) (5) (5) (69) (23) (35) (105) (X 1 , 0) -1 - 2 -2 -21 -21 -2 -1 -3 -3 (11) (22) (33) (5) (5) (69) (23) (35) -1 -2 -2 -21 -21 -1 -2 -3 
(X 2 , 0)

The polar curves of (X 1 , 0) and (X 2 , 0) have different Lipschitz geometry since they don't even have the same number of components. Therefore, by [10, Theorem 1.2 (6)], (X 1 , 0) and (X 2 , 0) have different outer Lipschitz geometries.

The outer geometry of a superisolated singularity

Proof of Lemma 2.2. We first re-formulate the definition of weak RL-equivalence. We will use coordinates (v, w) in C 2 and (x, y, z) in C 3 . We have functions h 1 (v, w) and h 2 (v, w) whose zero sets are the curves (C 1 , 0) and (C 2 , 0), a homeomorphism ψ : (C 2 , 0) → (C 2 , 0) of germs, a constant K ≥ 1 and a neighborhood U of the origin in C 2 such that for all a, a ′ ∈ U.

1 K ||h 2 (ψ(a))(1, ψ(a)) -h 2 (ψ(a ′ ))(1, ψ(a ′ ))|| C 3 ≤ ||h 1 (a)(1, a) -h 1 (a ′ )(1, a ′ )|| C 3 ≤ K||h 2 (ψ(a))(1, ψ(a)) -h 2 (ψ(a ′ ))(1, ψ(a ′ ))|| C 3 For i = 1, 2 we define H i : (C 2 , 0) → (C 3 , 0) by H i (v, w) = h i (v, w)(1, v, w)
and denote by (S i , 0) the image of H i in (C 3 , 0). Note that H i maps (C i , 0) to 0 and is otherwise injective. We can thus complete the maps ψ, H 1 and H 2 to a commutative diagram

(C 2 , 0) H1 / / ψ (S 1 , 0) ψ ′ (⋆) (C 2 , 0) H2 / / (S 2 , 0)
and ψ ′ is bijective. Weak RL-equivalence is now the statement that ψ ′ is bilipschitz for the outer geometry. Now write h 1 = U h ′ 1 and H 1 = U H ′ 1 where U = U (v, w) ∈ C{v, w} is a unit. Then we obtain a commutative diagram (C 2 , 0)

H ′ 1 / / (S ′ 1 , 0) η (C 2 , 0) H1 / / (S 1 , 0)
where η is (x, y, z) → U ( y x , z x )(x, y, z). The factor U ( y x , z x ) = U (v, w) has the form α 0 + i,j≥0 α ih v i w j with α 0 = 0 so if the neighborhood U is small then the factor is close to α 0 , so η is bilipschitz. Thus ψ ′ • η : (S ′ 1 , 0) → (S 2 , 0) is bilipschitz, so we have shown that modifying h 1 by a unit does not affect weak RL-equivalence. The same holds for h 2 , so weak RL-equivalence does not depend on the choice of defining functions for the curves (C 1 , 0) and (C 2 , 0).

It remains to show that analytic equivalence of (C 1 , 0) and (C 2 , 0) implies weak RL-equivalence. Analytic equivalence means that there exists a biholomorphic germ ψ : (C 2 , 0) → (C 2 , 0) and a unit U ∈ C{v, w} such that U h 1 = h 2 • ψ. We have already dealt with multiplication with a unit, so we will assume we have

h 1 = h 2 •ψ.
If ψ is a linear change of coordinates, then we get a diagram as in (⋆) above, with ψ ′ given by the corresponding coordinate change in the y, z coordinates of C 3 , so ψ ′ is bilipschitz and we have weak RL-equivalence. For general ψ the same is true up to higher order in u and v, so we still get weak RL-equivalence.

Proof of Proposition 2.3. Let (X 1 , 0) and (X 2 , 0) be two SISs with equations respectively f 1 (x, y, z)g 1 (x, y, z) = 0 and f 2 (x, y, z)g 2 (x, y, z) = 0, where for i = 1, 2, f i and g i are homogenous polynomials of degrees d and d + 1 respectively. We can assume that the projective line x = 0 does not contain any singular point of the projectivized tangent cones C 1 = {f 1 = 0} and C 2 = {f 2 = 0}. We assume also that C 1 and C 2 have the same combinatorial types and that corresponding singular points of C 1 and C 2 are weak RL-equivalent.

Since the tangent cone of a SIS (X, 0) is reduced, the general hyperplane section of (X, 0) consists of smooth transversal lines. Therefore, adapting the arguments of [START_REF] Walter D Neumann | Minimal surface singularities are Lipschitz normally embedded[END_REF]Section 4] by taking simply a line as test curve, we obtain that the inner and outer metrics are Lipschitz equivalent inside the conical part of (X, 0), i.e., outside cones around its exceptional lines. So we just have to control outer distance inside conical neighborhoods of the exceptional lines of (X 1 , 0) and (X 2 , 0) whose projective points are corresponding singular points of C 1 and C 2 .

Let p 1 ∈ Sing(C 1 ) and p 2 ∈ Sing(C 2 ) be two singular points in correspondence. After modifying (X 1 , 0) and (X 2 , 0) by analytic isomorphisms, we can assume that p i = (1, 0, 0) for i = 1, 2. We use again the notations of the proof of Theorem 1.3, and we work in the chart (x, v, w) = (x, y/x, z/x) for the blow-up e.

Set h i (v, w) = f i (1, v, w)/g i (1, v, w). Then the germs (X * i , p i ) have equations h i (v, w) + x = 0.

Since C 1 and C 2 are weak RL-equivalent and h i = 0 is an equation of C i , there exists a local homeomorphism ψ : (C 2 (v,w) , 0) → (C 2 (v,w) , 0), a constant K ≥ 1 and a neighborhood U of the origin in C 2 such that for all (v, w), (v ′ , w ′ ) ∈ U . Locally, X * 1 = {x = h 1 (v, w)} and X * 2 = {x = h 2 (ψ(v, w))} As in the proof of Theorem 1.3 we consider for i = 1, 2 the isomorphisms proj i : (X * i , p i ) → (C 2 , 0), the restrictions of the linear projections (x, v, w) → (v, w). The composition proj -1 2 •ψ•proj 1 gives a local homeomorphism ψ ′ : (W 1 , p 1 ) → (W 2 , p 2 ), where W i is an open neighborhood of p i in X * i . Set V i = e(W i ) ⊂ X i . Then, ψ ′ induces an homeomorphism ψ ′′ : V 1 → V 2 such that ψ ′′ • e = e • ψ ′ . Notice that each V i contains the intersection of X i with a cone in (C 3 , 0) around the exceptional line represented by p i .

Consider a pair of points q = (x, xv, xw) and q ′ = (x ′ , x ′ v ′ , x ′ w ′ ) in V 1 . By definition of ψ ′′ , we have

||q -q ′ || = ||h 1 (v, w)(1, v, w) -h 1 (v ′ , w ′ )(1, v ′ , w ′ )|| C 3 ,
and

||ψ ′′ (q) -ψ ′′ (q ′ )|| = ||h 2 (ψ(v, w))(1, ψ(v, w)) -h 2 (ψ(v ′ , w ′ ))(1, ψ(v ′ , w ′ ))|| C 3 .
Then ( * ) implies that the ratio ||ψ ′′ (q)-ψ ′′ (q ′ )|| ||q-q ′ || is bounded in a neighborhood of the origin.

  35, 36 or 35)

1 K ||h 2

 12 (ψ(v, w))(1, ψ(v, w))h 2 (ψ(v ′ , w ′ ))(1, ψ(v ′ , w ′ ))|| C 3 ≤ ||h 1 (v, w)(1, v, w)h 1 (v ′ , w ′ )(1, v ′ , w ′ )|| C 3 ≤ ( * ) K||h 2 (ψ(v, w))(1, ψ(v, w))h 2 (ψ(v ′ , w ′ ))(1,ψ(v ′ , w ′ ))|| C 3
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