
HAL Id: hal-01175234
https://hal.science/hal-01175234

Submitted on 5 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An algorithm computing combinatorial specifications of
permutation classes

Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Carine Pivoteau,
Dominique Rossin

To cite this version:
Frédérique Bassino, Mathilde Bouvel, Adeline Pierrot, Carine Pivoteau, Dominique Rossin. An algo-
rithm computing combinatorial specifications of permutation classes. Discrete Applied Mathematics,
2017, 224, pp.16-44. �10.1016/j.dam.2017.02.013�. �hal-01175234�

https://hal.science/hal-01175234
https://hal.archives-ouvertes.fr


AN ALGORITHM COMPUTING COMBINATORIAL SPECIFICATIONS OF
PERMUTATION CLASSES

FRÉDÉRIQUE BASSINO, MATHILDE BOUVEL, ADELINE PIERROT, CARINE PIVOTEAU,
AND DOMINIQUE ROSSIN

Abstract. This article presents a methodology that automatically derives a combinatorial spec-
ification for a permutation class C, given its basis B of excluded patterns and the set of simple
permutations in C, when these sets are both finite. This is achieved considering both pattern avoid-
ance and pattern containment constraints in permutations. The obtained specification yields a
system of equations satisfied by the generating function of C, this system being always positive and
algebraic. It also yields a uniform random sampler of permutations in C. The method presented is
fully algorithmic.
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1. Introduction

Permutation classes (and the underlying pattern order on permutations) were defined in the sev-
enties, and since then the enumeration of specific permutation classes (i.e., sets of permutations
closed under taking patterns) has received a lot of attention. In this context, as in many in combi-
natorics, a recursive description of the permutations belonging to the class is often the key towards
their enumeration. This recursive description is a priori specific to the class studied. But more
recently, the substitution decomposition (along with other general frameworks, see [Vat15, and ref-
erences therein]) has been introduced for the study of permutation classes: it provides a general and
systematic approach to their study, with a recursive point of view. This tool has already proved
useful in solving many enumerative problems [AA05, AAB11, AB14, ASV12, among others], but
also in other areas like algorithmics [BBCP07, BR06].

The goal of the current paper is to systematize even more the use of substitution decomposition
for describing recursively and enumerating permutation classes. Our main result is an algorithm
that computes a combinatorial specification (in the sense of Flajolet and Sedgewick [FS09]) for
any permutation class containing finitely many simple permutations. Note that this problem has
been addressed already in [AA05, BHV08], however with much less focus on the algorithmic side.
Moreover, we introduce in this article a generalization of permutation classes that we call restrictions:
while every permutation class is characterized by a set of forbidden patterns, a restriction is described
giving a set of forbidden patterns and a set of mandatory patterns. Our algorithm also allows to
compute a specification for restrictions containing finitely many simple permutations.

The article is organized as follows. We start by recalling the necessary background in Section 2:
permutation classes, substitution decomposition, and the symbolic method. Section 3 gives a more
detailed presentation of our results. Here, we dedicate specific attention to explaining the differences
between our work and those of [AA05, BHV08], and to putting our result in a more global algorithmic
context (namely, we describe an algorithmic chain from the basis B of a class C to random sampling
of permutations in C). With the next sections, we enter the technical part of our work. After
briefly solving the case of substitution-closed classes in Section 4, we explain in two steps how to
obtain a combinatorial specification for other classes C. Section 5 gives an algorithm producing an
ambiguous system of combinatorial equations describing C. Next, Section 6 describes how to adapt
this algorithm to obtain a combinatorial specification for C. Finally, Section 7 illustrates the whole
process on examples.

2. Some background on permutations and combinatorial specifications

2.1. Permutation patterns and permutation classes. A permutation σ of size |σ| = n is
a bijective map from [1..n] = {1, . . . , n} to itself. We represent a permutation by a word σ =
σ1σ2 . . . σn, where each letter σi denotes the image of i under σ. We denote ε the only permutation
of size 0; ε is also called the empty permutation.

Definition 2.1. For any sequence s of k distinct integers, the normalization of s is the permutation
π of size k which is order-isomorphic to s, i.e., s` < sm whenever π` < πm.

For any permutation σ of size n, and any subset I = {i1, . . . , ik} of {1, . . . , n} with i1 < . . . < ik,
σI denotes the permutation of size k obtained by normalization of the sequence σi1 . . . σik .

Definition 2.2. A permutation π is a pattern of a permutation σ if and only if there exists a subset
I of {1, . . . , |σ|} such that σI = π. We also say that σ contains or involves π, and we write π 4 σ.
A permutation σ that does not contain π as a pattern is said to avoid π.

Example 2.3. The permutation σ = 316452 contains the pattern 2431 whose occurrences are 3642
and 3652. But σ avoids the pattern 2413 as none of its subsequences of length 4 is order-isomorphic
to 2413.
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The pattern containment relation 4 is a partial order on permutations, and permutation classes
are downsets under this order. In other words:

Definition 2.4. A set C of permutations is a permutation class if and only if for any σ ∈ C, if
π 4 σ, then we also have π ∈ C.

Throughout this article, we take the convention that a permutation class only contains permuta-
tions of size n ≥ 1, i.e., ε /∈ C for any permutation class C.

Every permutation class C can be characterized by a unique antichain B (i.e., a unique set of
pairwise incomparable elements) such that a permutation σ belongs to C if and only if it avoids
every pattern in B (see for example [AA05]). The antichain B is called the basis of C, and we write
C = Av(B). The basis of a class C may be finite or infinite; it is described as the permutations that
do not belong to C and that are minimal in the sense of 4 for this criterion.

2.2. Simple permutations and substitution decomposition of permutations. The descrip-
tion of permutations in the framework of constructible structures (see Section 2.3) that will be used
in this article relies on the substitution decomposition of permutations. Substitution decomposition
is a general method, adapted to various families of discrete objects [MR84], that is based on core
items and relations, and in which every object can be recursively decomposed into core objects using
relations. In the case of permutations, the core elements are simple permutations and the relations
are substitutions.

Definition 2.5. An interval of a permutation σ of size n is a non-empty subset {i, . . . , (i+ `− 1)}
of consecutive integers of {1, . . . , n} whose images by σ also form a set of consecutive integers. The
trivial intervals of σ are {1}, . . . , {n} and {1, . . . , n}. The other intervals of σ are called proper.

Definition 2.6. A block (resp. normalized block) of a permutation σ is any sequence σi1 . . . σim
(resp. any permutation σI) for I = {i1, . . . , im} an interval of σ.

Definition 2.7. A permutation σ is simple when it is of size at least 4 and it contains no interval,
except the trivial ones.

Note that no permutation of size 3 has only trivial intervals (so that the condition on the size is
equivalent to “at least 3”).

Remark 2.8. The permutations 1, 12 and 21 also have only trivial intervals, and are considered
simple in many articles. Nevertheless, for our notational convenience in this work, we prefer to
consider that they are not simple.

For a detailed study of simple permutations, in particular from an enumerative point of view,
we refer the reader to [AA05, AAK03, Bri10]. Let us only mention that the number of simple
permutations of size n is asymptotically equivalent to n!

e2
as n grows.

Let σ be a permutation of size n and π1, . . . , πn be n permutations of size p1, . . . , pn respectively.
Define the substitution σ[π1, π2, . . . , πn] of π1, π2, . . . , πn in σ (also called inflation in [AA05]) to be
the permutation obtained by concatenation of n sequences of integers S1, . . . , Sn from left to right,
such that for every i, j, the integers of Si form a block, are ordered in a sequence order-isomorphic
to πi, and Si consists of integers smaller than Sj if and only if σi < σj . The interested reader
may find a formal definition in [Pie13, Definition 0.25]. When a permutation τ may be written as
τ = σ[π1, π2, . . . , πn], we also say that σ[π1, π2, . . . , πn] provides a block decomposition of τ .

Example 2.9. The substitution 1 3 2[2 1, 1 3 2, 1] gives the permutation 2 1 4 6 5 3. In particular,
1 3 2[2 1, 1 3 2, 1] is a block decomposition of 2 1 4 6 5 3.
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When substituting in σ = 12 or 21, we often use ⊕ (resp. 	) to denote the permutation 12 (resp.
21).

Definition 2.10. A permutation π is ⊕-indecomposable (resp. 	-indecomposable) if it cannot be
written as ⊕[π1, π2] (resp. 	[π1, π2]).

Simple permutations, together with ⊕ and 	, are enough to describe all permutations through
their substitution decomposition:

Theorem 2.11 (Proposition 2 of [AA05]). Every permutation π of size n with n ≥ 2 can be uniquely
decomposed as either:

• ⊕[π1, π2], with π1 ⊕-indecomposable,
• 	[π1, π2], with π1 	-indecomposable,
• σ[π1, π2, . . . , πk] with σ a simple permutation of size k.

Remark 2.12. The simple permutation σ in the third item of Theorem 2.11 is a pattern of the
permutation π. Hence, as soon as π belongs to some permutation class C, then so does σ.

Theorem 2.11 provides the first step in the decomposition of a permutation π. To obtain its full
decomposition, we can recursively decompose the permutations πi in the same fashion, until we
reach permutations of size 1. This recursive decomposition can naturally be represented by a tree,
that is called the substitution decomposition tree (or decomposition tree for short) of π.

Definition 2.13. The substitution decomposition tree T of a permutation π is the unique ordered
tree encoding the substitution decomposition of π, where each internal node is either labeled by ⊕,	
– those nodes are called linear – or by a simple permutation σ – prime nodes.

Note that in decomposition trees, linear nodes are always binary, and the left child of a node
labeled by ⊕ (resp. 	) may not be labeled ⊕ (resp. 	), since π1 is ⊕-indecomposable (resp. 	-
indecomposable) in the first (resp. second) item of Theorem 2.11.

Example 2.14. The permutation π = 6 9 8 7 3 11 5 4 10 17 1 2 14 16 13 15 12 can be recursively de-
composed as

π = 2413[476519328, 1, 12, 35241]

= 2413[31524[⊕[1,	[1,	[1, 1]]], 1, 1,	[1, 1], 1]], 1,⊕[1, 1],	[2413[1, 1, 1, 1], 1]]

and its decomposition tree is given in Figure 1.

2 4 1 3

3 1 5 2 4

⊕

	

	

	

⊕ 	

2 4 1 3

Figure 1. Decomposition tree of π = 6 9 8 7 3 11 5 4 10 17 1 2 14 16 13 15 12.
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Definition 2.15. The substitution closure Ĉ of a permutation class C is defined as ∪k≥1Ck where
C1 = C and Ck+1 = {σ[π1, . . . , πn] | σ ∈ C and πi ∈ Ck for any i from 1 to n = |σ|}.

Because simple permutations contain no proper intervals, we have:

Remark 2.16. For any class C, the simple permutations in Ĉ are exactly the simple permutations
in C.

Consequently, for any permutation class C, this allows to describe Ĉ as the class of all permutations
whose decomposition trees can be built on the set of nodes {⊕,	} ∪ SC , where SC denotes the set
of simple permutations in C (if 12 and 21 belong to C; otherwise we have to remove ⊕ or 	 from
the set of nodes).

Definition 2.17. A permutation class C is substitution-closed if C = Ĉ, or equivalently if for every
permutation σ of C, and every permutations π1, π2, . . . , πn of C (with n = |σ|), the permutation
σ[π1, π2, . . . , πn] also belongs to C.

Like before, a substitution-closed permutation class can therefore be seen as the set of decompo-
sition trees built on the set of nodes {⊕,	}∪SC (if 12 and 21 belong to C; but otherwise C is trivial
and has at most one permutation of each size).

Remark 2.18. In [AA05], it is proven that substitution-closed permutation classes can be char-
acterized as the permutation classes Av(B) whose basis B contains only simple permutations (or
maybe 12 or 21 for trivial classes).

2.3. From combinatorial specifications to generating functions and random samplers.
Let us leave aside permutations for now, and review some basics of the symbolic method about
constructible structures and their description by combinatorial specifications. We will see in Theo-
rem 6.4 (p.25) that the classes of permutations we are interested in fit in this general framework.

A class C of combinatorial structures is a set of discrete objects equipped with a notion of size:
the size is a function of C → N denoted | · | such that for any n the number of objects of size n in C
is finite.

Among the combinatorial structures, we focus on constructible ones, from the framework intro-
duced in [FS09]. Basically, a constructible combinatorial class is a set of structures that can be
defined from atomic structures of size 1 (denoted by Z), possibly structures of size 0 (denoted by
E), and assembled by means of admissible constructors. While a complete list of these combinatorial
constructors is given in [FS09], we only use a (small) subset of them: the disjoint union, denoted
by ] or + (we may also use the notation

∑
), to choose between structures; and the Cartesian

product, denoted by ×, to form pairs of structures. More formally, a constructible combinatorial
class is one that admits a combinatorial specification.

Definition 2.19. A combinatorial specification for a combinatorial class C1 is an equation or a
system of equations of the form

C1 = H1(E ,Z, C1, C2, . . . , Cm),

C2 = H2(E ,Z, C1, C2, . . . , Cm),
...

Cm = Hm(E ,Z, C1, C2, . . . , Cm),

where each Hi denotes a term built from C1, . . . , Cm,Z and E using admissible constructors.

For example, the equation I = E +Z ×I describes a class I whose elements are finite sequences
of atoms.

5



In this framework, the size of a combinatorial structure is its number of atoms (Z) and from
there, combinatorial structures can be counted according to their size. The size information for
a whole combinatorial class, say C, is encoded by its ordinary generating function1, which is the
formal power series C(z) =

∑
n≥0 cnz

n where the coefficient cn is the number of structures of size n
in C. Note that we also have C(z) =

∑
π∈C z

|π|.
Combinatorial specifications of combinatorial classes may be automatically translated into sys-

tems defining their generating function (possibly implicitly). This system is obtained by means of a
dictionary that associates an operator on generating functions to each admissible constructor. The
complete dictionary is given in [FS09], together with the proof that this translation from construc-
tors of combinatorial classes to operators on their generating functions is correct. Here, we only
use the constructors disjoint union and Cartesian product, which are respectively translated to sum
and product of generating functions.

A lot of information can be extracted from such functional systems; in particular, one can compute
as many coefficients of the series as required, and [FS09] provides many tools to get asymptotic
equivalents for these coefficients.

Combinatorial specifications may also be automatically translated into uniform random samplers
of objects in the class described by the specification. Indeed, a specification can be seen as a
(recursive) procedure to produce combinatorial objects, and randomizing the choices made during
this procedure transforms the specification into a random sampler. To ensure that such random
samplers are uniform (i.e. that for any n, two objects of the same size n have the same probability
of being produced), two methods have been developed: the recursive method [FZVC94] and the
Boltzmann method [DFLS04]. In the first one, the coefficients of the generating functions are used
for the probabilistic choices to ensure uniformity, making this method well-adapted for generating
a large sample of objects of relatively small size: this requires to compute only once a relatively
small number of coefficients. The focus of the second one is to achieve efficiently the generation of
very large objects, with a small tolerance (of a few percents) allowed on their size. Coefficients of
the generating functions are not needed in Boltzmann samplers, but rather the generating functions
themselves. More precisely, the value of the generating function at a given point needs to be
computed, and this is solved in [PSS12].

3. Our results in existing context

3.1. Our contributions, and comparison with [AA05, BHV08]. The goal of the present work is
to solve algorithmically a combinatorial problem on permutation classes: computing in an automatic
way a combinatorial specification for any given class, under some conditions specified below. We
first have to determine how to describe the permutation class C in input. In all what follows,
we will suppose that C is given by its basis B of excluded patterns and the set SC of simple
permutations in C, assuming that both these sets are finite. Note that from [AA05, Theorem 9] the
basis of C is necessarily finite when C contains finitely many simple permutations. On the other
hand, from [BRV08, BBPR15], it is enough to know B to decide whether SC is finite and (in the
affirmative) to compute SC [PR12].

Our work is a continuation of the main result (Theorem 10) of [AA05]: every permutation
class containing finitely many simples has an algebraic generating function. The main step in
the proof of this result is to construct a system of combinatorial equations describing C using the
substitution decomposition, and more precisely by propagation of pattern avoidance constraints in

1We do not use exponential but ordinary generating functions to count pattern-avoiding permutations. First, note
that the corresponding exponential generating functions would have infinite radii of convergence, pattern-avoiding
permutations of size n being always less than cn for some constant c [MT04]. The use of ordinary generating functions
is moreover very natural since our work is based on an encoding of permutations by trees built on a finite set of nodes.

6



the decomposition trees. Although the proof is in essence constructive, there is still some work to
be done to fully automatize this process. In Section 5, we review their method, going deeper in
the details of the construction. This allows us to bring their methodology to a full algorithm – see
Algorithm AmbiguousSystem (p.15) and Theorem 5.1 (p.14).

It is important to note that the description of C obtained in this way is not a combinatorial
specification, since it is a priori ambiguous (that is to say, unions are not necessarily disjoint).
Nevertheless, as it is done in [AA05], this ambiguous system can be used for proving the algebraicity
of the generating function of C, and even allows its computation (or implicit determination, in
less favorable cases): it is enough to apply the inclusion-exclusion principle. The advantage of a
specification over an ambiguous system will be discussed in Section 3.2 (fifth step, p.10).

The algebraicity result of [AA05] was re-proved in [BHV08] and extended to generating functions
of some subsets of classes C with finitely many simples: the alternating permutations in C, the
even ones, the involutions in C, ... For our purpose, those extensions are less important than the
alternative proof of the main result of [AA05]: indeed, this second proof describes a method to build
a combinatorial specification for C. Essential to this proof are query-complete sets, whose definition
we recall.

Definition 3.1. A property is any set P of permutations. A permutation π is said to satisfy P
when π ∈ P . A set P of properties is query-complete if, for every simple permutation σ (and also
for σ = ⊕ or 	) and for every property P ∈ P, it can be decided whether σ[α1, . . . , α|σ|] satisfies P
knowing only which properties of P are satisfied by each αi.

The proof of the main result (Theorem 1.1) of [BHV08] shows that a combinatorial specification
for a permutation class C with finitely many simples can be obtained from any finite query-complete
set P such that C ∈ P. More precisely, this combinatorial specification consists of three types of
equations, described below (this is reduced to two types by plugging the third one into the second
one). Recall that SC denotes the set of simple permutations in C. Note that all unions below are
finite, since P and SC are finite by assumption.

• First, C is written as the disjoint union

C = ]CX ,
where the union runs over all subsets X of P containing C with CX denoting the set of
permutations that satisfy every property in X and do not satisfy any property in P \ X .
• Second, for any such set X , the substitution decomposition allows to write

CX = 1X ] C⊕X ] C
	
X ]

⊎
σ∈SC

CσX

where 1X is either the set {1} if the permutation 1 belongs to CX , or the empty set otherwise,
and where CσX is the subset of CX of permutations whose decomposition tree has root σ.
• And third, for σ ∈ {⊕,	}∪SC and X as above, the fact that P is query-complete allows to
express CσX as

CσX =
⊎
σ[CX1 , . . . , CXm ]

where the union is over the set EX ,σ of all m-uples (X1, . . . ,Xm) of subsets of P such that
if, for every i ∈ [1..m], it holds that αi ∈ CXi then σ[α1, . . . , αm] ∈ CX . In the case where
σ = ⊕ (resp. 	), to ensure uniqueness of the decomposition, we further need to enforce that
X1 contains the property of being ⊕-indecomposable (resp. 	-indecomposable). W.l.o.g.,
we can assume that these properties are in P.

Note that the number of equations in the specification obtained depends exponentially on the size
of P, since there is at least one equation for each subset of P containing C. Similarly, the number
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of terms of the union defining some CσX may be exponential in the size of P, since the union is over
m-uples of subsets of P (with m = |σ|).

We point out that the above specification is not fully explicit (even assuming that P is given),
since there is no explicit description of the sets EX ,σ. As explained in the proof of Lemma 2.1
of [BHV08], the sets EX ,σ may be described using so-called lenient inflations, which are intimately
linked with the embeddings by blocks of [AA05]. But neither [BHV08] nor [AA05] discuss their
effective computation. We will return to this problem later in this section.

For any permutation class C = Av(B) with finitely many simples, the authors of [BHV08] provide
a finite query-complete set that contains C, and conclude that there is a combinatorial specification
for any such C. More precisely, the class C being described as ∩β∈BAv(β), they rather consider
separately every principal class Av(β) for all β ∈ B, and define a finite query-complete set Pβ
containing it. This is essentially their Lemma 2.1. The query complete set associated with C,
denoted PC , is then obtained taking the union of all Pβ . It consists of the following properties:
the set of ⊕-indecomposable permutations, the set of 	-indecomposable permutations, and the set
Av(ρ) for every permutation ρ which is a pattern of some β ∈ B. Thus PC is often a big set.

It should be noticed that the query-complete sets that are used in the examples of [BHV08,
Section 4] are however strictly included in the set PC . These smaller query-complete sets are better,
since they result in specifications with fewer equations and unions having fewer terms than the ones
that would be obtained applying to the letter the specializations of the proofs. But there are no
indications in [BHV08] on how these smaller query-complete sets were computed, nor on how this
could generalize to other examples. It should be noticed that in the examples of [BHV08], the class
is either substitution-closed, or contains no simple permutations.

To summarize, the proof of the main result of [BHV08] gives a general method to compute a
specification for a permutation class having finitely many simple permutations. But there is still
some work to be done to fully automatize this process, and the specification obtained would be very
big in general. Moreover, an algorithm using this method would have a lot of computations to do
(the computation of all the sets EX ,σ). On the other hand, the ad hoc constructions of the examples
of [BHV08] show that using the specificity of a particular permutation class, it is possible to obtain
shorter specifications with fewer computations.

Our main contribution is to give an algorithm to compute a specification for any permutation
class having finitely many simples, using a different approach – see Algorithm Specification (p.23)
and Theorem 6.4 (p.25). Our method is general (unlike the ad hoc methods used in the examples
of [BHV08]) but nevertheless uses the specificity of the permutation class given in input (unlike the
method described in the proofs of [BHV08]) in order to do less computations and to have fewer
equations in the specification.

Even if the method we use and the specification we produce are not exactly the ones presented
by [BHV08] and reviewed above, they have some similarities. When considering the partition of
C into ]CX shown above, [BHV08] is looking at a very fine level of details, where a coarser level
could be enough. With our method, we consider the partition of C which is the coarsest possible to
allow the derivation of a specification. In practice, if two sets X and X ′ are such that CX and CX ′
appear as CX ] CX ′ everywhere in the specification resulting from [BHV08], our specification will
have only one term instead of these two, representing CX ] CX ′ . Of course, this holds for unions
with more terms as well. Considering fewer sets X results in fewer equations in the specification,
fewer terms in the unions and fewer sets EX ,σ. Since the computation of the EX ,σ amounts to
computing the specification from the query-complete set, the algorithmic complexity for computing
the specification with our method is hereby reduced, compared to what a formalized algorithm of
the approach of [BHV08] would give.
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Concretely, our algorithm computes a query-complete set, the sets EX ,σ associated, and the
specification in parallel, whereas the method of [BHV08] is to first compute a query-complete set
and then deduce a specification. Note that in our presentation, the result of our algorithm is only
the specification, but it contains also implicitly the description of the query-complete set and of the
EX ,σ.

To obtain the announced coarsest partition of C, and the subsequent specification with as few
equations as possible that it yields, we proceed as follows. We use the same guideline as in [AA05] for
computing a possibly ambiguous combinatorial system describing C (however making this approach
effective): the essential idea is to use the substitution decomposition and to propagate pattern
avoidance constraints in the decomposition trees. We get rid of the ambiguity by introducing
complement sets, but only when they are needed (the method in the proofs of [BHV08] can be
seen as somehow introducing all complement sets at once). In practice, it means that we are not
only propagating avoidance constraints in decomposition trees, but also containment constraints.
It will be clear in Sections 5 and 6 that even though the purposes of those two types of constraint
are opposite, the ways to propagate them are very similar, an essential step being the effective
computation of the embeddings/lenient inflations mentioned in [AA05, BHV08]. The method used
to explicitly determine which avoidance/containment constraints are necessary and to effectively
propagate them in the trees is completely new with respect to [AA05, BHV08].

To conclude on our contributions compared with those of [AA05, BHV08], our work describes
how to obtain a combinatorial specification for any class having finitely many simple permutations.
Contrary to [AA05, BHV08], our work is fully algorithmic. Moreover, we develop a method allowing
to have fewer equations in the specification and to have a better efficiency compared to what a
formalized algorithm of the approach of [BHV08] would give.

3.2. An algorithmic chain from B to random permutations in Av(B). Our main result (that
is, the algorithmic computation of specifications for permutation classes with finitely many simples)
can and should be viewed in the context of other recent algorithms from the literature. Together,
they provide a full algorithmic chain starting with the finite basis B of a permutation class C, and
computing a specification for C, from which it is possible to sample permutations in C uniformly at
random. Figure 2 shows an overview of this algorithmic chain, and we present its main steps below.
Note that this procedure may fail to compute its final result, namely when C contains an infinite
number of simple permutations, this condition being tested algorithmically.

We have chosen that the permutation class in input of our procedure should be given by its
basis B, that we require to be finite. This does not cover the whole range of permutation classes,
but it is one of the possible ways to give a finite input to our algorithm. There are of course other
finite descriptions of permutation classes, even of some with infinite basis (by a recognition procedure
for example). The assumption of the description by a finite basis has been preferred for two reasons:
first, it encompasses most of the permutation classes that have been studied; and second, it is a
necessary condition for classes to contain finitely many simple permutations (see [AA05, Theorem
9]) and hence for our algorithm to succeed.
First step: Finite number of simple permutations.
First, we check whether C = Av(B) contains only a finite number of simple permutations. This
is achieved using algorithms of [BBPR10] when the class is substitution-closed and of [BBPR15]
otherwise. The complexity of these algorithms is respectively O(n log n) and O(n log n+p2k), where
n =

∑
β∈B |β|, p = max{|β| : β ∈ B} and k = |B|.

Second step: Computing simple permutations.
The second step of the algorithm is the computation of the set of simple permutations SC contained
in C = Av(B), when we know it is finite. Again, when C is substitution-closed, SC can be computed
by an algorithm that is more efficient than in the general case. The two algorithms are described
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Is there a finite number of simple permutations in the class C=Av(B)?

O(n log n)

B: finite basis of excluded patterns

B contains only simple permutations
Av(B) is substitution-closed

B contains permutations that are not simple
Av(B) is not substitution-closed

NO

YES

Computation of the subset Sc of simple permutations in C

direct

STOP

O(N. l  )4 O(N. l     . k )p+2

O(n log n + p     )2k

Generating functions

Uniform random samplers

Specification for C

Compute an 
ambiguous system 
by propagation of 
pattern avoidance 
constraints 

Constraints propagation

Compute an 
unambiguous system 
of equations for 
generating functions 
using the inclusion-
exclusion principle

Compute a positive 
unambiguous 
combinatorial system

- propagation of pattern
  avoidance constraints

- transform intersecting  
  unions into disjoint unions
  introducing complement
  sets
- express complement sets 
  by means of  pattern 
  containment constraints

Figure 2. The full algorithmic chain starting from the basis B of a permutation
class C, with complexities given w.r.t. n =

∑
β∈B |β|, k = |B|, p = max{|β| : β ∈ B},

N = |SC | and ` = max{|π| : π ∈ SC} where SC is the set of simple permutations of C.

in [PR12], and their complexity depends on the output: O(N · `p+2 · k) in general and O(N · `4)
for substitution-closed classes, with N = |SC |, p = max{|β| : β ∈ B}, ` = max{|π| : π ∈ SC} and
k = |B|.

In the case of substitution-closed classes, the set of simple permutations in C gives an immediate
access to a specification for C – see [AA05] or Theorem 4.3 (p.13). In the general case, finding such
a specification is the algorithmic problem that we address in this article.

Third step: Computing a combinatorial specification.
This corresponds to the computation of a combinatorial specification for C by propagation of pattern
constraints and disambiguation of the equations, as briefly presented in Section 3.1 and described
in details in Sections 5 and 6.

From a combinatorial specification for C, that we may obtain algorithmically as described above,
there are two natural algorithmic continuations (which we have reviewed in Section 2.3):

Fourth step: Computing the generating function C(z) of C.
With the dictionary of [FS09], a system of equations defining C(z) =

∑
n≥0 cnz

n is immediately
deduced from the specification. Because our specification involves only disjoint unions and Cartesian
products, the resulting system is positive and algebraic. In some favorable cases, this system may
be solved for C(z) explicitly. Even if it is not the case, many information may still be derived from
the system, in particular about the coefficients cn or the growth rate of the class.

An alternative for the computation of C(z).
As explained in [AA05] and reviewed earlier in this paper, it is also possible to obtain such a system
of equations for C(z) from an ambiguous system describing C, applying the inclusion-exclusion
principle. In this case, the obtained system is algebraic but with negative terms in general.

Fifth step: Random sampling of permutations in C.
In Section 2.3, we have reviewed the principles that allow, in the same fashion as the dictionary

of [FS09], to translate the combinatorial specification for C into uniform random samplers of per-
mutations in C. Remark that this translation is possible only with a specification, i.e. a positive
unambiguous system describing C. Indeed, whereas adapted when considering generating functions
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(where subtraction is easily handled), the inclusion-exclusion principle cannot be applied for random
generation (since “subtracting combinatorial objects” is not an option in a procedure to produce
them).

To illustrate that this algorithmic chain is effective, we present in Section 7 how our algorithms
run on examples. We also show some observations that are produced through it in Figures 3 and 4
below. These figures have been obtained with a prototype implementing our algorithms, that we
hope to make available for use by others in the future2.

Figure 3. The shape of permutations in the (not substitution-closed) class C of Section 7.2.

Figure 3 shows the “average diagram” of a permutation in the class C (not substitution-closed)
studied in Section 7.2 (p.34). The diagram of a permutation σ is the set of points in the plane at
coordinates (i, σi), and the picture in Figure 3 is obtained by drawing uniformly at random 30 000
permutations of size 500 in C, and by overlapping their diagrams – the darker a point (x, y) is, the
more of these permutations have σ(x) = y.

Figure 4. The shape of separable permutations (left), and of permutations taken in
the substitution-closed class whose set of simple permutations is {2413, 3142, 24153}
(right).

Figure 4 shows average diagrams of permutations in the (substitution-closed) class Av(2413, 3142)
of separable permutations, and in another substitution-closed class. These diagrams are obtained

2A Boltzmann sampler for substitution-closed classes is already available here: http://igm.univ-mlv.fr/
~pivoteau/Permutations/. The implementation is in Maple, an example of use is given in the worksheet.
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overlapping the diagrams of 10 000 permutations of size 100 (resp. 500). The representation is
however a little different from Figure 3: in these 3D representations, for a point at coordinates
(x, y, z), z is the number of permutations such that σ(x) = y. Leaving aside the difference in the
representation, these figures suggest a very different limit behavior in substitution-closed and not
substitution-closed classes.

Looking at these diagrams, a natural question is then to describe the average shape of permuta-
tions in classes. This is a question which has received quite a lot of attention lately, especially for
classes Av(τ) for τ of size 3, see [AM14, HRS14, MP14a, MP14b]. Inspired by Figure 4, some of us
(in collaboration with V. Féray and L. Gerin) have described the limit shape of separable permu-
tations in [BBFGP16], thus explaining the first diagram of Figure 4. As we discuss in [BBFGP16],
we are working on generalizing this result to substitution-closed classes, which would also explain
the second diagram of Figure 4.

3.3. Perspectives. As described in Section 3.2, our main result combines with previous works to
yield an algorithm that produces, for any class Av(B) containing finitely many simple permutations,
a recursive (resp. Boltzmann) uniform random sampler. When generating permutations with such
samplers, complexity is measured w.r.t. the size of the permutation produced and is quasilinear
(resp. quadratic but can be made linear using classical tricks and allowing a small variation on
the size of the output permutation [DFLS04]). However, the complexity is not at all measured
w.r.t. the number of equations in the specification nor w.r.t. the number of terms in each equation.
In our context, where the specifications are produced automatically, and potentially contain a large
number of equations/terms, this dependency is of course relevant, and opens a new direction in the
study of random samplers.

In addition to providing inspiration for the study of random permutations, our algorithmic chain
has other applications. Indeed, the specifications obtained could also be used to compute or estimate
growth rates of permutation classes. Moreover, the computed specifications could possibly be used
to provide more efficient algorithms to test membership of a permutation to a class.

We should also mention that our procedure fails to be completely general. Although the method
is generic and algorithmic, the classes that are fully handled by the algorithmic process are those
containing a finite number of simple permutations. From [AA05], such classes are finitely based.
And since there are countably many such permutation classes, only a very small subset of the
(uncountably many) permutation classes is covered by our method.

But note that even if a class C contains an infinite number of simple permutations, we can (at
least in theory) use our approach to perform random generation of permutations of the class C.
More precisely, fixing the maximum size n of permutations we want to generate, we can apply our
algorithm to a class C′ ⊆ C containing finitely many simple permutations and that coincides with C
up to size n. It is enough to choose C′ which is the subclass of C whose set of simple permutations
consists in all simple permutations of C of size at most n, whose computation is explained in [PR12].
If the maximal size n is large and if C has many simple permutations of each size, it is likely that
the complexity of our algorithm will be too large for it to be of any use. But this approach may be
relevant when the class has an infinite number of simple permutations, but a small number of each
size.

To enlarge the framework of application of our algorithm computing specifications, we could ex-
plore the possibility of extending it to permutation classes that contain an infinite number of simple
permutations, but that are finitely described. A family of such classes is considered in [ARV15],
where the finite basis and algebraicity results of [AA05] are extended from classes with finitely
many simple permutations to subclasses of substitution closures of geometrically griddable classes
(we refer the reader to [ARV15] for definitions). The proofs in [ARV15] involve similar techniques as
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in [BHV08] (including query-complete sets), but not only. In particular, they heavily rely on the re-
sults of [AABRV13], which are non-constructive. Making all the process in [AABRV13] and [ARV15]
constructive, and then turning it into an effective procedure, it may be possible to extend our al-
gorithms to all classes considered in [ARV15]. But this is far from straightforward, and beyond
the scope of the present work. Note that, with such an improvement, more classes would enter our
framework, but it would be hard to leave the algebraic case.

4. Combinatorial specification of substitution-closed classes

In this section, we recall how to obtain a combinatorial specification for substitution-closed classes
having finitely many simple permutations.

Recall that we denote by Ĉ the substitution closure of the permutation class C, and that C is
substitution-closed when C = Ĉ, or equivalently when the permutations in C are exactly the ones
whose decomposition trees have internal nodes labeled by ⊕,	 or any simple permutation of C.

For the purpose of this article, we additionally introduce the following notation:

Definition 4.1. For any set A of permutations, A+ (resp. A−) denotes the set of permutations of A
that are ⊕-indecomposable (resp. 	-indecomposable) and SA denotes the set of simple permutations
of A.

Theorem 2.11 (p.4) directly yields the following proposition:

Proposition 4.2 (Lemma 11 of [AA05]). Let C = Ĉ be a substitution-closed class3. Then Ĉ satisfies
the following system of equations, denoted EĈ:

Ĉ = 1 ] ⊕[Ĉ+, Ĉ] ] 	[Ĉ−, Ĉ] ]
⊎
π∈SC π[Ĉ, . . . , Ĉ](1)

Ĉ+ = 1 ] 	[Ĉ−, Ĉ] ]
⊎
π∈SC π[Ĉ, . . . , Ĉ](2)

Ĉ− = 1 ] ⊕[Ĉ+, Ĉ] ]
⊎
π∈SC π[Ĉ, . . . , Ĉ].(3)

Note that by Remark 2.16, SC = SĈ . By uniqueness of the substitution decomposition, unions are
disjoint and so Equations (1) to (3) describe unambiguously the substitution-closed class Ĉ. Hence,
Proposition 4.2 can be transposed in the framework of constructible structures as follows:

Theorem 4.3. Let C be a substitution-closed class. Then C can be described as a constructible
combinatorial class in the sense of Section 2.3 with the following combinatorial specification, where
the Eπ for π in SC are distinct objects of size 0:4

C = Z + E⊕ × C+ × C + E	 × C− × C +
∑

π∈SC Eπ × C × · · · × C︸ ︷︷ ︸
|π|

C+ = Z + E	 × C− × C +
∑

π∈SC Eπ × C × · · · × C︸ ︷︷ ︸
|π|

C− = Z + E⊕ × C+ × C +
∑

π∈SC Eπ × C × · · · × C︸ ︷︷ ︸
|π|

.

Moreover this system can be translated into an equation for the generating function C(z):

Proposition 4.4 (Theorem 12 of [AA05]). Let C be a substitution-closed class, with generating
function C(z). Then

C(z)2 + (SC(C(z))− 1 + z)C(z) + SC(C(z)) + z = 0

3that contains 12 and 21; it will be the case until the end of the article and will not be recalled again.
4The Eπ are introduced only to distinguish between substitutions in distinct π of the same size. The term

Eπ × C × · · · × C then corresponds to the classical substitution operation: π[ C, · · · , C ]
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with SC(z) denoting the generating function that enumerate simple permutations in C, i.e. SC(z) =∑
π∈SC z

|π|.

Hence, in the case of a substitution-closed class C (and for the substitution closure Ĉ of any class),
the system EĈ that recursively describes the permutations in Ĉ can be immediately deduced from
the set SC of simple permutations in C. As soon as SC is finite and known, this system is explicit
and gives a combinatorial specification.

Our next goal is to describe an algorithm that computes a combinatorial system of equations for
a general permutation class C from the simple permutations in C, like for the case of substitution-
closed classes. However, when the class is not substitution-closed, this is not as straightforward as
what we have seen in Proposition 4.2, and we provide details on how to solve this general case in
the following sections.

5. A possibly ambiguous combinatorial system for permutation classes

In this section, we explain how to derive a system of equations for a class C with finitely many
simple permutations from the combinatorial specification of its substitution closure. Our method
follows the guideline of the constructive proof of [AA05, Theorem 10]. However, unlike [AA05], we
make the whole process fully algorithmic.

The key idea of the method is to describe recursively the permutations in C, replacing the con-
straint of avoiding the elements of the basis by constraints in the subtrees of the decomposition
tree of permutations in C. This is done by computing the embeddings of non-simple permutations
γ of the basis5 B of C into simple permutations π belonging to the class C (and into ⊕ and 	).
These embeddings are block decompositions of the permutations γ, each (normalized) block being
translated into a new avoidance constraint pushed downwards in the decomposition tree. We then
need to add new equations in the specification for C to take into account these new constraints.

The main algorithm of this section is AmbiguousSystem (Algo. 1 below), which uses auxiliary
procedures described later on. We prove in Section 5.4 that the result it produces has the following
properties:

Theorem 5.1. Let C be a permutation class with a finite number of simple permutations. Denote
by B the (finite) basis of C, by B? the subset of non-simple permutations in B, by SC the (finite)
set of simple permutations in C, and by A〈E〉 the set of permutations of a set A that avoid every
pattern in a set E. The result of AmbiguousSystem(B,SC) is a finite system of combinatorial
equations describing C. The equations of this system are all of the form D0 = 1 ∪

⋃
π[D1, . . . ,Dn],

where Di = Ĉδ〈B? ∪ Bi〉 with δ ∈ { ,+,−}6 and Bi contains only permutations corresponding to
normalized blocks of elements of B?. This system contains an equation whose left part is C and is
complete, that is: every Di that appears in the system is the left part of one equation of the system.

An essential remark is that the obtained combinatorial system may be ambiguous, since it may
involve unions of sets that are not always disjoint. We will tackle the problem of computing a
non-ambiguous system in Section 6.

It is also to note that the result of AmbiguousSystem provides a finite query-complete set
containing C:

Corollary 5.2. Let E be the system of equations output by AmbiguousSystem(B,SC). Then the
set {D : D is the left part of some equation of E} is a query-complete set containing C.

Proof. This a direct consequence of the form of E described in Theorem 5.1. �

5Theorem 9 of [AA05, Theorem 9] ensures that, as soon as C contains finitely many simple permutations, then
the basis of C is finite.

6For any set A of permutations, when writing Aδ for δ ∈ { ,+,−}, we mean that Aδ is either A or A+ or A−.
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Algorithm 1: AmbiguousSystem(B,SC)
Data: A finite basis of forbidden patterns defining C = Av(B) and the finite set SC of simple

permutations in C.
Result: A system of equations of the form D0 = 1 ∪

⋃
π[D1, . . . ,Dn] defining C.

begin
E ← EqnForClass(Ĉ, B?) /* See Algo. 5 (p.21) */
while there is a right-only Ĉδ〈E〉 in some equation of E do
E ← E ∪ EqnForClass(Ĉδ, E)

5.1. A first system of equations. Consider a permutation class C, whose basis is B and which
is not substitution-closed. We compute a system describing C by adding constraints to the system
obtained for Ĉ, as in [AA05]. We denote by B? the subset of non-simple permutations of B and by
A〈E〉 the set of permutations of A that avoid every pattern in E, for any set A of permutations
and any set E of patterns. Note that we have (A〈E〉)+ = A+〈E〉: the corresponding set is the one
of permutations of A that avoid E and that are ⊕-indecomposable. The same goes for A−.

Proposition 5.3. Let C be a permutation class, that contains 12 and 21. We have that Cδ = Ĉδ〈B?〉
for δ ∈ { ,+,−}. Moreover,

Ĉ〈B?〉 = 1 ] ⊕[Ĉ+, Ĉ]〈B?〉 ] 	[Ĉ−, Ĉ]〈B?〉 ]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉(4)

Ĉ+〈B?〉 = 1 ] 	[Ĉ−, Ĉ]〈B?〉 ]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉(5)

Ĉ−〈B?〉 = 1 ] ⊕[Ĉ+, Ĉ]〈B?〉 ]
⊎
π∈SC π[Ĉ, . . . , Ĉ]〈B?〉,(6)

all these unions being disjoint.

Proof. Let σ ∈ C, then σ ∈ Ĉ and σ avoids B?, thus σ ∈ Ĉ〈B?〉. Conversely, let σ ∈ Ĉ〈B?〉 and
let π ∈ B. If π ∈ B? then σ avoids π. Otherwise, π is simple and π /∈ C. Because SĈ = SC by
Remark 2.16, this implies that π /∈ Ĉ. Since σ ∈ Ĉ, σ avoids π. Hence σ ∈ C. Finally Ĉ〈B?〉 = C,
thus Ĉδ〈B?〉 = Cδ. Then the result follows from Proposition 4.2. �

Equations (4) to (6) do not provide a combinatorial specification because the terms π[Ĉ, . . . , Ĉ]〈B?〉
are not simply expressed from the terms appearing on the left-hand side of these equations. To solve
this problem, instead of decorating all terms on the right-hand side of Equations (1)–(3) with con-
straint 〈B?〉 (like in Equations (4)–(6)), we propagate the constraint 〈B?〉 into the subtrees. More
precisely, by Lemma 18 of [AA05], sets π[Ĉ, . . . , Ĉ]〈B?〉 can be expressed as union of smaller sets:

(7) π[Ĉ, . . . , Ĉ]〈B?〉 =
⋃`
i=1 π[Ĉ〈Ei,1〉, Ĉ〈Ei,2〉, . . . , Ĉ〈Ei,k〉]

where the Ei,j are sets of permutations which are patterns of some permutations of B?. For instance,
with C = Av(231), we have B? = {231}, and 	[Ĉ−, Ĉ]〈231〉 = 	[Ĉ−〈12〉, Ĉ〈231〉]. Note that the
set Ĉ−〈12〉, which is not a part of the initial system, has appeared on the right-hand side of this
equation, and we now need a new equation to describe it. In the general case, applying Equation (7)
in the system of Proposition 5.3 introduces sets of the form Ĉδ〈Ei,j〉 on the right-hand side of an
equation of the system that do not appear on the left-hand side of any equation. The reason is
that {C, C+, C−} is not query-complete in general. Propagating the constraints in the subtrees as
described below allows to determine a query-complete set which contains C (see Corollary 5.2).

We call right-only sets the sets of the form Ĉδ〈Ei,j〉 which appear only on the right-hand side of
an equation of the system. For each such set, we need to add a new equation to the system, starting
from Equation (1), (2) or (3) depending on δ, and propagating constraint Ei,j instead of B?. This
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may create new right-only terms in these new equations, and they are treated recursively in the
same way. This process terminates, since the Ei,j are sets of patterns of elements of B?, and there
is only a finite number of such sets (as B is finite).

The key to the precise description of the sets Ei,j , and to their effective computation, is given by
the embeddings of permutations γ that are patterns of some β ∈ B? into the simple permutations
π of C.

5.2. Embeddings: definition and computation. Recall that ε denotes the empty permutation,
i.e. the permutation of size 0. We take the convention A〈ε〉 = ∅.

A generalized substitution (also called lenient inflation in [BHV08]) σ{π1, π2, . . . , πn} is defined
like a substitution with the particularity that any πi may be the empty permutation. Note that
σ[π1, π2, . . . , πn] necessarily contains σ whereas σ{π1, π2, . . . , πn} may avoid σ. For instance, the
generalized substitution 1 3 2{2 1, ε, 1} gives the permutation 2 1 3 which avoids 1 3 2.

Thanks to generalized substitutions, we define the notion of embedding, which expresses how a
pattern γ can be involved in a permutation whose decomposition tree has a root π:

Definition 5.4. Let π = π1 . . . πn and γ be two permutations of size n and p respectively and Pγ
the set of intervals7 of γ, including the trivial ones. An embedding of γ in π = π1 . . . πn is a map α
from {1, . . . , n} to Pγ such that:

• if the intervals α(i) and α(j) are not empty, and i < j, then α(i) consists of smaller indices
than α(j);
• as a word, α(1) . . . α(n) is a factorization of the word 1 . . . |γ| (which may include empty
factors).
• it holds that π{γα(1), . . . , γα(n)} = γ (see Definition 2.1 (p.2) for the definition of γα(i)).

Example 5.5. For any permutations γ and π, α :

{
1 7→ [1..|γ|]
k > 1 7→ ∅

is an embedding of γ in π.

Indeed γ[1..|γ|] = γ and π{γ, ε, . . . , ε} = γ.

Note that if we denote the non-empty images of α by α1, . . . , αN and if we remove from π the πi
such that α(i) = ε, we obtain a pattern σ of π such that γ = σ[γα1 , . . . , γαN ]. But this pattern σ
may occur at several places in π so a block decomposition γ = σ[γα1 , . . . , γαN ] may correspond to
several embeddings of γ in π.

Example 5.6. There are 12 embeddings of γ = 5 4 6 3 1 2 into π = 3 1 4 2, shown in Table 1.
For instance, when writing γ as the substitution 	[3241, 12], they are derived from the generalized
substitutions π{3241, 12, ε, ε}, π{3241, ε, ε, 12} and π{ε, ε, 3241, 12}, corresponding to the three oc-
currences of 21 in π. But when writing γ as 312[3241, 1, 1], since 312 has only one occurrence in π,
only one embedding is derived, which comes from π{3241, 1, ε, 1}.

Note that this definition of embeddings conveys the same notion as in [AA05], but it is formally
different and it will turn out to be more adapted to the definition of the sets Ei,j in Section 5.3.

For now, we present how to compute the embeddings of some permutation γ into a permutation
π. This is done with AllEmbeddings (Algo. 2) in two main steps, as suggested by the two parts
of Table 1. First we compute all block decompositions of γ (the left part of the table shows only
some block decompositions of γ = 5 4 6 3 1 2, namely those that can be expressed as a generalized
substitution in π = 3 1 4 2). Then for each block decomposition of γ, we compute all the embeddings
of γ into π which correspond to this block decomposition (this is the right part of the table).

7Recall that in this article, an interval of a permutation is a set of indices corresponding to a block of the
permutation (see Definition 2.5 p.3).
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γα(1) γα(2) γα(3) γα(4)
γ = 1[546312] = π{546312, ε, ε, ε} 546312 ε ε ε

= π{ε, 546312, ε, ε} ε 546312 ε ε
= π{ε, ε, 546312, ε} ε ε 546312 ε
= π{ε, ε, ε, 546312} ε ε ε 546312

γ = 	[213, 312] = π{213, 312, ε, ε} 213 312 ε ε
= π{213, ε, ε, 312} 213 ε ε 312
= π{ε, ε, 213, 312} ε ε 213 312

γ = 	[3241, 12] = π{3241, 12, ε, ε} 3241 12 ε ε
= π{3241, ε, ε, 12} 3241 ε ε 12
= π{ε, ε, 3241, 12} ε ε 3241 12

γ = 231[21, 1, 312] = π{21, ε, 1, 312} 21 ε 1 312
γ = 312[3241, 1, 1] = π{3241, 1, ε, 1} 3241 1 ε 1

Table 1. The embeddings of γ = 5 4 6 3 1 2 into π = 3 1 4 2.

Algorithm 2: AllEmbeddings(γ, π)

Data: Two permutations γ and π
Result: The set of embeddings of γ into π
begin
E ← ∅
D ← BlockDecompositions(γ) /* See Algo. 3 */
foreach d ∈ D do
E ← E ∪ Embeddings(d, π) /* See Algo. 4 */

return E

The procedure BlockDecompositions (Algo. 3) finds all the block decompositions of γ. It
needs to compute all the intervals of γ. Such intervals can be described as pairs of indices (i, j)
with i ≤ j such that maxi≤k≤j(γk) − mini≤k≤j(γk) = j − i. Denoting by p the size of γ, this
remark allows to compute easily all the intervals starting at i, for each i ∈ [1..p] – see Inter-
vals(γ, i). Then, BlockDecompositions builds the set D of all sequences of intervals of the
form

(
(i1, j1), . . . , (im, jm)

)
with i1 = 1, jm = p, and ik+1 = jk + 1 for all k < m. These sequences

correspond exactly to the block decompositions of γ. They are computed iteratively, starting from
all the intervals of the form (1, i) and examining how they can be extended to a sequence of intervals
in D. To this end, note that any sequence

(
(i1, j1), . . . , (im, jm)

)
as above but such that jm 6= p is

the prefix of at least one sequence of D, since for every i ∈ [1..p], at least (i, i) is an interval of γ.
For each i ∈ [1..p], computing Intervals(γ, i) is done in O(p), so O(p2) is enough to compute

once and for all the results of Intervals(γ, i) for all i ∈ [1..p] (provided we store them). The
computation of all block decompositions of γ with BlockDecompositions(γ) then costs O(p 2p).
Indeed there are at most 2p−1 such sequences of D and each sequence of D contains at most p
intervals. At each step, the algorithm extends a sequence already built. Thus the (amortized)
overall complexity is O(p 2p) and this bound is tight.

The procedure Embeddings (Algo. 4) finds the embeddings of γ in π which correspond to a
given block-decomposition of γ. The output D of BlockDecompositions corresponds to all
the substitutions σ[γ(1), . . . , γ(m)] which are equal to γ. For each d ∈ D we first determine the
corresponding skeleton σ defined as the normalization of a sequence s1 . . . sm of m integers, where
each si is an element of γ falling into the i-th block of this decomposition. Then, we compute the
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Algorithm 3: BlockDecompositions(γ)

Data: A permutation γ
Result: The set D of block decompositions of γ
begin
D ← ∅; P ← Intervals(γ, 1)

foreach u =
(

(i1, j1), . . . , (im, jm)
)
∈ P do

P ← P \ {u}
if jm = |γ| then D ← D ∪ {u} else
S ← Intervals(γ, jm + 1)
P ← P ∪ {u · s | s ∈ S}

return D

/* Returns the set of intervals of γ of the form (i, j) */
Intervals (γ, i

(

I ← ∅
max← γi; min← γi
for j from i to |γ| do

max← max(max, γj); min← min(min, γj)
if max−min = j − i then I ← I ∪ {(i, j)}

return I

Algorithm 4: Embeddings(d, π)

Data: A permutation π of size n and a block decomposition d ∈ D of γ,
d =

(
(i1, j1), . . . , (im, jm)

)
Result: The set of embeddings of γ into π which correspond to d
begin

if m > n then /* No embedding of γ into π corresponding to d */
return ∅

else
/* σ is the skeleton such that d = σ[γ(1), . . . , γ(m)] */
σ ← γ{i1,i2,...,im}
E ← ∅
foreach subset S = {s1, . . . , sm} of {1, 2, . . . , n} with s1 < . . . < sm do

if π{s1,s2,...,sm} = σ then

α← embedding of γ in π such that

{
α(sk) = [ik..jk] for 1 ≤ k ≤ m
α(i) = ε for i /∈ S

E ← E ∪ {α}

return E

set of occurrences of σ in π, since they are in one-to-one correspondence with embeddings of γ into
π which corresponds to the given substitution γ = σ[γ(1), . . . , γ(m)]. These occurrences are naively
computed by testing, for every subsequence of m elements of π, whether it is an occurrence of σ.
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The preprocessing part of Embeddings (Algo. 4), which consists in the computation of the
skeleton σ, costs O(m). The examination of all possible occurrences of σ in π is then performed in
O(m

(
n
m

)
), where n is the size of π.

In total, computing the set D of block decompositions of γ is performed in O(p 2p). The set
D contains at most

(
p−1
m−1

)
block decompositions in m blocks, so that the complexity of the main

loop of AllEmbeddings is at most
∑p

m=1m
(
n
m

)(
p−1
m−1

)
≤ p 2n+p−1. Note that it can be reduced

to min(p, n) 2n+min(p,n)−1, by discarding all block decompositions of γ in m > n blocks, since these
will never be used in an embedding of γ into π. The upper bound

∑p
m=1m

(
n
m

)(
p−1
m−1

)
is tight, as

can be seen with p ≤ n, γ = 12 . . . p and π = 12 . . . n.

In the next section, we explain how to use embeddings to propagate the pattern avoidance
constraints in the subtrees.

5.3. Propagating constraints. To compute our combinatorial system, we compute equations
for sets Ĉδ〈E〉 (initially for Ĉ〈B?〉, that is C) starting from Equation (1), (2) or (3) (p.13). For
every set π[Ĉ1, . . . , Ĉn] that appears on the right-hand side of the equation, we push the pattern
avoidance constraints of E in the subtrees. This is achieved using embeddings of excluded patterns
in the root π. For instance, assume that γ = 5 4 6 3 1 2 ∈ B? and SC = {3142}, and consider
3142[Ĉ, Ĉ, Ĉ, Ĉ]〈γ〉. The embeddings of γ in 3142 indicates how the pattern γ can be found in the
subtrees in 3142[Ĉ, Ĉ, Ĉ, Ĉ]. The first embedding of Example 5.6 indicates that the full pattern γ
can appear all included in the first subtree. On the other hand, the last embedding of the same
example tells us that γ can spread over all the subtrees of 3142 except the third one. In order to
avoid this particular embedding of γ, it is enough to avoid one of the induced pattern γI in one of
the subtrees. However, in order to ensure that γ is avoided, the constraints resulting from all the
embeddings must be considered and merged. This is formalized in Proposition 5.7.

Proposition 5.7. Let π be a simple permutation of size n and C1, . . . , Cn be sets of permutations.
For any permutation γ, the set π[C1, . . . , Cn]〈γ〉 rewrites as a union of sets of the form π[D1, . . . ,Dn]
where, for all i, Di = Ci〈γ, . . . 〉 and the restrictions appearing after γ (if there are any) are patterns
of γ corresponding to normalized blocks of γ.

More precisely, we have

(8) π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈Kπ
γ

π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉]

where Kπ
γ = {(k1, . . . , k`) ∈ [1..n]` | ∀i, γαi(ki) 6= ε and γαi(ki) 6= 1} and Em,k1...k` = {γαi(ki) | i ∈

[1..`] and ki = m}, {α1, . . . , α`} being the set of embeddings of γ in π.
Similarly, ⊕[C+1 , C2]〈γ〉 (resp. 	[C−1 , C2]〈γ〉) rewrites as the union over K12

γ (resp. K21
γ ) of sets

⊕[D+
1 ,D2] (resp. 	[D−1 ,D2]) with Di = Ci〈Ei,k1...k`〉.

Proposition 5.7 and its proof heavily borrow from the proof of Lemma 18 of [AA05]. There are
however several differences.

In the first part of our statement, while we stop at the condition Di = Ci〈γ, . . . 〉 (which appears
in the proof of Lemma 18 in [AA05]), [AA05] rephrases it as: Di is Ci〈γ〉 or a strong subclass of
this class (that is, a proper subclass of Ci which has the property that every basis element of Di is
involved in some basis element of Ci). Note that this rephrasing is not always correct (but this does
not affect the correctness of the result of [AA05] which uses their Lemma 18). A counter example is
obtained taking π = 2413, Ci = Av(12) for all i and γ = 2143. Then, because of the embedding of
γ in π that maps 21 in π1 and 43 in π2, we get a term with D1 = C1〈2143, 21〉 = Av(12, 21), which
is not a strong subclass of C1〈γ〉 = Av(12).
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The second part of Proposition 5.7 is not present in [AA05]. That is, Proposition 5.7 goes further
than the proof of Lemma 18 of [AA05]: we provide a statement which is nonetheless constructive
as the proof of [AA05], but also explicit, so that it can be directly used for algorithmic purpose.

Proof. We first consider the case of a simple root π. Let γ be a permutation and {α1, . . . , α`}
be the set of embeddings of γ in π, each αi being associated to the generalized substitution γ =
π{γαi(1), . . . , γαi(n)}.

Let σ = π[σ(1), . . . , σ(n)] where each σ(k) ∈ Ck. Then σ avoids γ if and only if for every em-
bedding αi (with 1 ≤ i ≤ `), there exists ki ∈ [1..n] such that γαi(ki) is not a pattern of σ(ki),
i.e. such that σ(ki) avoids γαi(ki). Equivalently, σ avoids γ if and only if there exists a tuple
(k1, . . . , k`) ∈ [1..n]` such that for every embedding αi (with 1 ≤ i ≤ `), σ(ki) avoids γαi(ki). Thus,

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈[1..n]`

⋂̀
i=1

π[C1, . . . , Cki〈γαi(ki)〉, . . . , Cn].

But, for any set A of permutations we have A〈ε〉 = ∅. So if for some i ∈ [1..`], γαi(ki) = ε, then⋂`
i=1 π[C1, . . . , Cki〈γαi(ki)〉, . . . , Cn] = ∅. The same goes for the trivial permutation 1 since every

permutation contains 1.
Therefore, we have:

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈Kπ
γ

⋂̀
i=1

π[C1, . . . , Cki〈γαi(ki)〉, . . . , Cn],

with Kπ
γ = {(k1, . . . , k`) ∈ [1..n]` | ∀i, γαi(ki) 6= ε and γαi(ki) 6= 1}. Following Example 5.6,

and denoting α1 to α12 the embeddings of Table 1 from top to bottom, we have for example
k = (1, 2, 3, 4, 1, 4, 4, 2, 1, 4, 4, 1) ∈ Kπ

γ .
Moreover, as π is simple, by uniqueness of the substitution decomposition we have for any sets

of permutations E1, . . . , En, F1, . . . , Fn:

π[C1〈E1〉, . . . , Cn〈En〉] ∩ π[C1〈F1〉, . . . , Cn〈Fn〉] = π[C1〈E1 ∪ F1〉, . . . , Cn〈En ∪ Fn〉].

Thus,

π[C1, . . . , Cn]〈γ〉 =
⋃

(k1,...,k`)∈Kπ
γ

π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉].

where Em,k1...k` = {γαi(ki) | i ∈ [1..`] and ki = m}. Following the same example again, E1,k =
{γα1(1), γα5(1), γα9(1), γα12(1)} = {546312, 213, 3241}, E2,k = {546312, 12}, E3,k = {546312} and
E4,k = {546312, 312, 12}.

Proposition 5.7 follows as soon as we ensure that each set Em,k1...k` contains γ and possibly other
restrictions that are patterns of γ corresponding to normalized blocks of γ. For a given m ∈ [1..n],
there always exists an embedding of γ in π that maps the whole permutation γ to πm. Denoting
this embedding αjm , we have γαjm (m) = γ and γαjm (q) = ε for q 6= m. Consequently, if kjm 6= m

then γαjm (kjm ) = ε and (k1, . . . , k`) /∈ Kπ
γ . Therefore when (k1, . . . , k`) ∈ Kπ

γ then kjm = m and the
set Em,k1...k` contains at least γαjm (kjm ) = γ. Moreover, by definition its other elements are patterns
of γ corresponding to normalized blocks of γ.

Notice now that the proof immediately extends to the case of roots ⊕ and 	. Indeed, in the above
proof, we need π to be simple only because we use the uniqueness of the substitution decomposition.
In the case π = ⊕ (resp. 	), the uniqueness is ensured by taking the set C+1 of ⊕-indecomposable
permutations of C1 (resp. the set C−1 of 	-indecomposable permutations). �

20



Example 5.8. For π = 	 and γ = 3412, there are three embeddings of γ in π: α1 which follows
from the generalized substitution 3412 = 	{3412, ε}, α2 which follows from 3412 = 	{ε, 3412},
and α3 which follows from 3412 = 	{12, 12}. So Kπ

γ = {(1, 2, 1), (1, 2, 2)} and the application of
Equation (8) gives

	[C−1 , C2]〈3412〉 = 	[C−1 〈3412, 12〉, C2〈3412〉] ∪ 	[C−1 〈3412〉, C2〈3412, 12〉],

which simplifies to 	[C−1 , C2]〈3412〉 = 	[C−1 〈12〉, C2〈3412〉] ∪ 	[C−1 〈3412〉, C2〈12〉].

By induction on the size of P , Proposition 5.7 extends to the case of a set P of excluded patterns,
instead of a single permutation γ:

Proposition 5.9. For any simple permutation π of size n and for any set of permutations P , the
set π[C1, . . . , Cn]〈P 〉 rewrites as a union of sets π[D1, . . . ,Dn] where for all i, Di = Ci〈P ∪ Pi〉 with
Pi containing only permutations corresponding to normalized blocks of elements of P .

Similarly, ⊕[C+1 , C2]〈P 〉 (resp. 	[C−1 , C2]〈P 〉) rewrites as a union of sets ⊕[D+
1 ,D2] (resp. 	[D−1 ,D2])

where for i = 1 or 2, Di = Ci〈P ∪ Pi〉 with Pi containing only permutations corresponding to nor-
malized blocks of elements of P .

Now we have all the results we need to describe an algorithm computing a (possibly ambiguous)
combinatorial system describing C.

5.4. An algorithm computing a combinatorial system describing C. We describe the algo-
rithm AmbiguousSystem (Algo. 1 p.15) that takes as input the basis B of a class C and the set
SC of simple permutations in C (both finite), and that produces in output a (possibly ambiguous)
system of combinatorial equations describing the permutations of C through their decomposition
trees. Recall (from p.15) that B? denotes the subset of non-simple permutations of B.

The main step is performed by EqnForClass (Algo. 5 below), taking as input SC , δ ∈ { ,+,−}
and a set E of patterns (initially B?), and producing an equation describing Ĉδ〈E〉. The algorithm
takes an equation of the form (1), (2) or (3) (p.13) describing Ĉδ and adds one by one the constraints
of E using Equation (8) as described in procedure AddConstraints.

Algorithm 5: EqnForClass(Ĉδ, E)

Data: E is a set of permutations, Ĉδ is given by SC and δ ∈ { ,+,−}
Result: An equation defining Ĉδ〈E〉 as a union of π[C1, . . . , Cn]
begin
E ← Equation (1) or (2) or (3) p.13 (depending on δ), replacing the left part Ĉδ by Ĉδ〈E〉
foreach constraint γ in E do

foreach t = π[C1, . . . , Cn] that appears in E do
t← AddConstraints(π[C1, . . . , Cn], γ) /* this step modifies E */

return E

/* Returns a rewriting of π[C1 . . . Cn]〈γ〉 as a union
⋃
π[D1, . . .Dn] */

AddConstraints (π[C1 . . . Cn], γ (

compute all the embeddings of γ in π with AllEmbeddings /* See Algo. 2 (p.17) */
compute Kπ

γ and sets Em,k1...k` defined in Equation (8)
return

⋃
(k1,...,k`)∈Kπ

γ
π[C1〈E1,k1...k`〉, . . . , Cn〈En,k1...k`〉]
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The procedure AmbiguousSystem keeps adding new equations to the system which consists
originally of the equation describing Ĉ〈B?〉, that is C. This algorithm repeatedly calls EqnFor-
Class until every Ĉδ〈Ei〉 appearing in the system is defined by an equation. All the sets E are sets
of normalized blocks (therefore of patterns) of permutations in B?. Since B is finite, there is only
a finite number of patterns of elements of B?, hence a finite number of possible E, and Ambigu-
ousSystem terminates. As for its complexity, it depends on the number of equations in the output
system for which we give bounds in Section 6.5.

The correctness of the algorithm is a consequence of Propositions 5.3, 5.7 and 5.9, which therefore
completes the proof of Theorem 5.1.

Example 5.10. Consider the class C = Av(B) for B = {1243, 2413, 531642, 41352}: C contains
only one simple permutation (namely 3142), and B? = {1243}. Applying the procedure Ambigu-
ousSystem to this class C gives the following system of equations:

Ĉ〈1243〉 = 1 ∪ ⊕[Ĉ+〈12〉, Ĉ〈132〉] ∪ ⊕[Ĉ+〈1243〉, Ĉ〈21〉] ∪ 	[Ĉ−〈1243〉, Ĉ〈1243〉]
∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉](9)

Ĉ+〈12〉 = 1 ∪ 	[Ĉ−〈12〉, Ĉ〈12〉](10)

Ĉ〈132〉 = 1 ∪ ⊕[Ĉ+〈132〉, Ĉ〈21〉] ∪ 	[Ĉ−〈132〉, Ĉ〈132〉](11)

Ĉ〈21〉 = 1 ∪ ⊕[Ĉ+〈21〉, Ĉ〈21〉].(12)

Ĉ+〈1243〉 = . . . .

This is a simplified version of the actual output of AmbiguousSystem. For instance, with a
literal application of the algorithm, instead of Equation (9) we would get:

Ĉ〈1243〉 = 1 ∪ ⊕[Ĉ+〈1243, 12〉, Ĉ〈1243, 132〉] ∪ ⊕[Ĉ+〈1243〉, Ĉ〈1243, 132, 21〉] ∪ 	[Ĉ−〈1243〉, Ĉ〈1243〉]

∪ 3142[Ĉ〈1243, 12〉, Ĉ〈1243, 12〉, Ĉ〈1243, 132〉, Ĉ〈1243, 132〉] ∪ 3142[Ĉ〈1243, 12〉, Ĉ〈1243, 12〉, Ĉ〈1243, 132〉, Ĉ〈1243, 132, 21〉]

∪ 3142[Ĉ〈1243, 12〉, Ĉ〈1243, 12〉, Ĉ〈1243, 132, 21〉, Ĉ〈1243, 132〉] ∪ 3142[Ĉ〈1243, 12〉, Ĉ〈1243, 12〉, Ĉ〈1243, 132, 21〉, Ĉ〈1243, 132, 21〉]

∪ 3142[Ĉ〈1243〉, Ĉ〈1243, 12〉, Ĉ〈1243, 132, 21〉, Ĉ〈1243, 132〉] ∪ 3142[Ĉ〈1243〉, Ĉ〈1243, 12〉, Ĉ〈1243, 132, 21〉, Ĉ〈1243, 132, 21〉]

Nevertheless, this union can be simplified. The simplification process will be described more
thoroughly in Section 6.6. We illustrate it by two examples. First, since a permutation that
avoids 12 or 132 will necessarily avoid 1243, the term ⊕[Ĉ+〈1243, 12〉, Ĉ〈1243, 132〉] rewrites as
⊕[Ĉ+〈12〉, Ĉ〈132〉] (see Proposition 6.16 p. 30). We can also remove some terms of the union, such
as

3142[Ĉ〈1243, 12〉, Ĉ〈1243, 12〉, Ĉ〈1243, 132〉, Ĉ〈1243, 132, 21〉]
which is included in 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉] (see Proposition 6.18 p. 30). Such simplifica-
tions can be performed on the fly, each time a new equation is computed.

We observe on Example 5.10 that the system produced by AmbiguousSystem (Algo. 1) is
ambiguous in general. In this case, Equation (9) gives an ambiguous description of the class Ĉ〈1243〉:
the two terms with root ⊕ have non-empty intersection, and similarly for root 3142. Following the
route of [AA05], we could use inclusion-exclusion on this system. On Equation (9) of Example 5.10,
this would give:

Ĉ〈1243〉 = 1 ∪ ⊕[Ĉ+〈12〉, Ĉ〈132〉] ∪ ⊕[Ĉ+〈1243〉, Ĉ〈21〉] \ ⊕[Ĉ+〈12〉, Ĉ〈21〉]

∪ 	[Ĉ−〈1243〉, Ĉ〈1243〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉]

∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] \ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉].

As explained earlier, this is not the route we follow. In the next section, we explain how to modify
the algorithm AmbiguousSystem to obtain a combinatorial specification by introducing pattern
containment constraints.
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6. A non-ambiguous combinatorial system, i.e., a combinatorial specification

The goal of this section is to describe an algorithm computing a specification for any permuta-
tion class having finitely many simple permutations – see algorithm Specification (Algo. 6). This
algorithm proceeds as AmbiguousSystem (Algo. 1 p.15), but also transforms each equation pro-
duced into a non-ambiguous one. The disambiguation of equations is performed by Disambiguate
(Algo. 8). This algorithm replaces ambiguous unions appearing in an equation by disjoint unions
using complement sets, in the spirit of Figure 5.

A B

C

1 2

3

4

5 6
7

A ∪B ∪ C = 1 ] 2 ] 3 ] 4 ] 5 ] 6 ] 7

= (A ∩B ∩ C) ] (A ∩B ∩ C) ] (A ∩B ∩ C)

] (A ∩B ∩ C) ] (A ∩B ∩ C) ] (A ∩B ∩ C)
] (A ∩B ∩ C)

Figure 5. Rewriting unions as disjoint unions.

This may result in new terms appearing on the right side of the modified equation. Indeed,
the terms of the system obtained from AmbiguousSystem involve pattern avoidance constraints
(which were denoted 〈E〉). Consequently, taking complements, we are left with new pattern con-
tainment constraints as well (which we will denote (A)). These new terms need to be defined by
an equation, to be added to the system. This is solved by the procedure EqnForRestriction
(Algo. 7), whose working principle is similar to that of EqnForClass.

Finally, EqnForRestriction and Disambiguate combine into Specification (Algo. 6),
which is our main algorithm.

Algorithm 6: Specification(B,SC)
Data: A finite basis of patterns defining C = Av(B) and the finite set SC of simple

permutations in C.
Result: A combinatorial specification defining C.
begin
E ← EqnForRestriction(Ĉ,B?,∅) /* See Algo. 7 while there is an equation F in E
that has not been processed do

F ← Disambiguate(F) /* See Algo. 8 */
while there exists a right-only restriction Ĉδ〈E〉(A) in equation F do
E ← E

⋃
EqnForRestriction(Ĉδ,E,A).

return E
*/

6.1. Presentation of the method. We start by introducing notation to deal with the pattern
containment constraints.

Definition 6.1. For any set P of permutations, we define P〈E〉(A) as the set of permutations of
P that avoid every pattern of E and contain every pattern of A:

P〈E〉(A) = {σ ∈ P | ∀π ∈ E, π 64 σ and ∀π ∈ A, π 4 σ}.
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When P = Ĉδ for δ ∈ { ,+,−} and C a permutation class, such a set is called a restriction.
We also denote P(E) = P〈∅〉(E).

Restrictions are a generalization of permutations classes. For A = ∅, C〈E〉(∅) is the standard
permutation class C〈E〉. Any permutation class can be written as S〈E〉 with S the set of all
permutations and E a set of patterns that may be infinite. Likewise, any restriction can be written
as S〈E〉(A) with E a set of patterns that may be infinite, but we can always choose a finite set for
A: if A is infinite, then S〈E〉(A) = ∅.

Remark 6.2. Our convention that no permutation class contains the empty permutation ε implies
that ε /∈ Ĉδ〈E〉(A), for any restriction Ĉδ〈E〉(A). We can also make the assumption that ε /∈ E and
ε /∈ A, since Ĉδ〈{ε} ∪ E〉(A) = ∅ and Ĉδ〈E〉({ε} ∪ A) = Ĉδ〈E〉(A) for any E and A. Moreover we
assume that A∩E is empty and that 1 /∈ E, otherwise Ĉδ〈E〉(A) = ∅. We finally assume that 1 /∈ A
since Ĉδ〈E〉(A) = Ĉδ〈E〉(A \ {1}).

Restrictions are stable by intersection as P〈E〉(A) ∩ P〈E′〉(A′) = P〈E ∪ E′〉(A ∪A′).

Definition 6.3. A restriction term is a set of permutations π[D1,D2, . . . ,Dn] for π a simple per-
mutation, or ⊕[D+

1 ,D2] or 	[D−1 ,D2], where each Di is a restriction of the form Ĉ〈E〉(A).

By uniqueness of the substitution decomposition of a permutation (Theorem 2.11 p.4), restriction
terms are stable by intersection and the intersection is performed component-wise for terms sharing
the same root: π[D1, . . . ,Dn] ∩ π[T1, . . . , Tn] = π[D1 ∩ T1, . . . ,Dn ∩ Tn].

Now we have all the notions we need to present the general structure of our main algorithm:
Specification (Algo. 6 above). Adapting to restrictions the ideas developed for classes in Section 5,
we obtain a non-ambiguous equation for any restriction Ĉδ〈E〉(A) for δ ∈ { ,+,−} within four steps
(where 1(A) = 1 if A = ∅ and ∅ otherwise):

• Step 1, equation from the substitution decomposition of permutations:
Ĉδ〈E〉(A) = 1(A) ] . . . ]

⊎
π∈SC π[Ĉ, . . . , Ĉ]〈E〉(A)

• Step 2, propagation of the avoidance constraints:
Ĉδ〈E〉(A) = 1(A) ] . . . ]

⊎
π∈SC ∪`∈Lππ[Ĉ〈F `1〉, . . . , Ĉ〈F `n〉](A)

• Step 3, propagation of the containment constraints:
Ĉδ〈E〉(A) = 1(A) ] . . . ]

⊎
π∈SC ∪i∈Iππ[Ĉ〈Ei1〉(Ai1), . . . , Ĉ〈Ein〉(Ain)]

• Step 4, disambiguation of the equation:
Ĉδ〈E〉(A) = 1(A) ] . . . ]

⊎
π∈SC ]k∈Kππ[Ĉ〈E′k1 〉(A′k1 ), . . . , Ĉ〈E′kn 〉(A′kn )]

The algorithm Specification starts by computing a non-ambiguous equation for C = Ĉ〈B?〉(∅),
calling the procedures EqnForRestriction (performing Steps 1 to 3 above – see details in Algo. 7
p.25) and Disambiguate (performing Step 4 – see details in Algo. 8 p.26). The specification for
C is completed by using the same method of four steps to obtain an equation for each Ĉ〈E′kj 〉(A′kj )
appearing on the right side of the produced equation, and again recursively to obtain an equation
for each restriction that appears in the system.

Even if we use it only to compute specifications for permutation classes (writing C = Ĉ〈B?〉(∅)),
this algorithm allows more generally to obtain a specification for any restriction Sδ〈E〉(A) such that
S〈E〉 has a finite number of simple permutations (implying that E can be chosen finite). Indeed
we only have to replace EqnForRestriction(Ĉ,B,∅) with EqnForRestriction(Ĉδ,E,A), where
C = S〈E〉.

We prove in the next three subsections that the result of our main algorithm Specification has
the following properties:
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Theorem 6.4. Let C be a permutation class given by its finite basis B and whose set SC of simple
permutations is finite and given. Denote by B? the set of non-simple permutations of B.

The result of Specification(B,SC) (Algo. 6) is a finite combinatorial system of equations of the
form D0 = 1[1∈D0]]

⊎
π[D1, . . . ,Dn], where 1[1∈D0] is the class consisting in a unique permutation of

size 1 if the permutation 1 belongs to D0 and is empty otherwise, and where each Di is a restriction
Ĉδ〈E〉(A) with δ ∈ { ,+,−}, and E and A containing only normalized blocks8 of elements of B?.
Moreover C appears as the left part of an equation, and every Di that appears in the system is the
left part of one equation of the system.

In particular this provides a combinatorial specification of C.
Corollary 6.5. Let E be the system of equations output by Specification(B,SC). Then the set
{D : D is the left part of some equation of E} is a query-complete set containing C.
Proof. This a direct consequence of the form of E described in Theorem 6.4. �

6.2. Computing an equation for each restriction. Let Ĉδ〈E〉(A) be a restriction. Our goal
here is to find an equation describing this restriction using smaller restriction terms (smaller w.r.t.
inclusion).

If A = ∅, this is exactly the problem addressed in Section 5 and solved by pushing down the
pattern avoidance constraints with the procedure AddConstraints of EqnForClass (Algo. 5).
The procedure EqnForRestriction (Algo. 7) below shows how to propagate also the pattern
containment constraints induced by A 6= ∅.

Algorithm 7: EqnForRestriction(Ĉδ, E,A)

Data: Ĉδ, E,A with E,A sets of permutations, Ĉδ given by SC and δ ∈ { ,+,−}.
Result: An equation defining Ĉδ〈E〉(A) as a union of restriction terms.
begin
E ← Equation (1) or (2) or (3) (depending on δ), replacing the left part Ĉδ by Ĉδ〈E〉(A)

foreach avoidance constraint γ in E do
foreach t = π[C1, . . . , Cn] that appears in E do

t← AddConstraints(π[C1, . . . , Cn], γ) /* See Algo. 5 (p.21) */

foreach containment constraint γ in A do
foreach t = π[C1, . . . , Cn] that appears in E do

t← AddMandatory(π[C1, . . . , Cn], γ)

return E

AddMandatory (π[D1, . . . ,Dn], γ (

return a rewriting of π[D1, . . . ,Dn](γ) as a union of restriction terms using Eq. (13) below

The pattern containment constraints are propagated by AddMandatory, in a very similar
fashion to the pattern avoidance constraints propagated by AddConstraints. To compute t(γ)
for γ a permutation and t = π[D1, . . . ,Dn] a restriction term, we first compute all embeddings of γ
into π. In this case, a permutation belongs to t(γ) if and only if at least one embedding is satisfied.
Then π[D1, . . . ,Dn](γ) rewrites as a union of sets of the form π[D1(γ1), . . . ,Dn(γn)] where, for all
i, γi is a normalized block of γ which may be empty or γ itself (recall that if γi is empty, then
Dj(γi) = Dj). More precisely:

8 Recall from Definition 2.6 (p.3) that the normalized blocks of γ are the permutations γI obtained when restricting
γ to any of its intervals I.
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Proposition 6.6. Let π be a permutation of size n and D1, . . . ,Dn be sets of permutations. For
any permutation γ, let {α1, . . . , α`} be the set of embeddings of γ in π, then

(13) π[D1, . . . ,Dn](γ) =
⋃̀
i=1

π[D1(γαi(1)),D2(γαi(2)), . . . ,Dn(γαi(n))].

For instance, for t = 3142[D1,D2,D3,D4] and γ = 546312, there are 12 embeddings of γ into
3142 (see Table 1 p.17), and the embedding 3142{21, ε, 1, 312} contributes to the above union with
the term 3142[D1(21),D2,D3(1),D4(312)].

Proof. Let σ ∈ π[D1, . . . ,Dn]; then σ = π[σ1, . . . , σn] where each σk ∈ Dk. Then σ contains γ, if
and only if there exists an embedding αi of γ = π[γαi(1) . . . γαi(n)] such that γαi(j) is a pattern of σj
for all j. �

Hence, any restriction term t = π[D1, . . . ,Dn](γ) rewrites as a (possibly ambiguous) union of
restriction terms.

6.3. Disambiguation procedure. As explained earlier, Disambiguate (Algo. 8) disambiguates
equations introducing complement sets.

Algorithm 8: Disambiguate(F )
Data: A potentially ambiguous equation F defining a restriction Result: A non-ambiguous

equation equivalent to F
begin

foreach root π that appears several times in F do
Replace the union of the restriction terms of F whose root is π by a disjoint union using
Equations (14), (15) and (16) below.

return F

Every equation produced by EqnForRestriction is written as t = 1∪ t1∪ t2∪ t3 . . .∪ tk where
the sets ti are restriction terms (some π[D1,D2, . . . ,Dn]) and t is a restriction (some Ĉδ〈E〉(A)). By
uniqueness of the substitution decomposition of a permutation, restriction terms of this union which
have different roots π are disjoint. Thus for an equation we only need to disambiguate unions of
terms with same root. For example in Equation (9) (p.22), there are two pairs of ambiguous terms
which are terms with root 3142 and terms with root ⊕. Every ambiguous union can be written in
an unambiguous way:

Proposition 6.7. Let A1, . . . , An be n sets and for each of them denote Ai the complement of Ai
in any set containing

⋃n
i=1Ai. The union

⋃n
i=1Ai rewrites as the disjoint union of the 2n − 1 sets

of the form
⋂n
i=1Xi with Xi ∈ {Ai, Ai} and at least one Xi is equal to Ai.

This proposition is the starting point of the disambiguation. See Figure 5 (p.23) for an example.
In order to use Proposition 6.7, we have to choose in which set we take complements.

Definition 6.8. For any restriction term t, we define its complement t as follows:
• if t = π[D1, . . . ,Dn] with π simple and for all i, Di ⊂ Ĉ, we set t = π[Ĉ, . . . , Ĉ] \ t;
• if t = ⊕[D+

1 ,D2] with D1,D2 ⊂ Ĉ, we set t = ⊕[Ĉ+, Ĉ] \ t;
• if t = 	[D−1 ,D2] with D1,D2 ⊂ Ĉ, we set t = 	[Ĉ−, Ĉ] \ t.

Moreover for any restriction D of Ĉδ with δ ∈ { ,+,−}, we set D = Ĉδ \ D.
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From Proposition 6.7, every ambiguous union of restriction terms sharing the same root in an
equation of our system can be written in the following unambiguous way:

(14)
⋃k
i=1 ti =

⊎
X⊆[1...k],X 6=∅

⋂
i∈X ti ∩

⋂
i∈X ti.

For instance, consider terms with root 3142 in Equation (9): t1 = 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉]
and t2 = 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉]. Equation (14) applied to t1 ∪ t2 in Equation (9) gives
an expression of the form

Ĉ〈1243〉 = 1 ∪ ⊕[. . .] ∪ ⊕[. . .] ∪ 	[. . .] ∪ (t1 ∩ t2) ] (t1 ∩ t2) ] (t1 ∩ t2).
We now explain how to compute the complement t of a restriction term t.

Proposition 6.9. Let t = π[D1, . . . ,Dn] be a restriction term. Then t is the disjoint union of the
2n − 1 sets of the form π[X1, . . . ,Xn] with Xi ∈ {Di,Di}, and not all Xi are equal to Di:

(15) t =
⊎

X⊆{1,...,n},X 6=∅

π[D′1, . . . ,D′n] where D′i = Di if i ∈ X and D′i = Di otherwise,

For example, 	[D1,D2] = 	[D1,D2] ] 	[D1,D2] ] 	[D1,D2].

Proof. Recall that t = π[Ĉ, . . . , Ĉ] \ t. Let σ = π[σ1, . . . , σn] ∈ t. Assume that for each i σi ∈ Di, by
uniqueness of substitution decomposition we get a contradiction. Therefore σ ∈ π[X1, . . . ,Xn] with
Xi ∈ {Di,Di}, and not all Xi are equal to Di.

Conversely if σ ∈ π[X1, . . . ,Xn] with Xi ∈ {Di,Di} and at least one Xi is equal to Di, then
σ ∈ π[Ĉ, . . . , Ĉ] and σ /∈ t.

Finally for such sets Xi that are distinct, the sets π[X1, . . . ,Xn] are disjoints. Indeed Di ∩ Di is
empty and the writing as π[σ1, . . . , σn] is unique. So the union describing t is disjoint. The proof is
similar when π = ⊕ or π = 	. �

Proposition 6.9 shows that ti is not a restriction term in general. However it can be expressed
as a disjoint union of some π[D′1, . . . ,D′n], where the D′i are either restrictions or complements of
restrictions. The complement operation being pushed from restriction terms down to restrictions,
we now compute D, for a given restriction D = Ĉδ〈E〉(A), D denoting the set of permutations
of Ĉδ that are not in D. Note that, given a permutation σ of A, then any permutation τ of
Ĉδ〈σ〉 is in D because τ avoids σ whereas permutations of D must contain σ. Symmetrically, if
a permutation σ is in E then permutations of Ĉδ(σ) are in D. It is straightforward to check that
Ĉδ〈E〉(A) =

[⋃
σ∈E Ĉδ(σ)

]⋃ [⋃
σ∈A Ĉδ〈σ〉

]
. Unfortunately this expression is ambiguous. As before,

we can rewrite it as an unambiguous union:

Proposition 6.10. Let D = Ĉδ〈E〉(A) be a restriction with δ ∈ { ,+,−}, k = |E| and ` = |A|.
Then D is the disjoint union of the 2k+`−1 restrictions Ĉδ〈E′〉(A′) with (E′, A′) a partition of E]A
such that (E′, A′) 6= (E,A). In other words,

(16) Ĉδ〈E〉(A) =
⊎

X⊆A,Y⊆E
X×Y 6=∅×∅

Ĉδ〈X ∪ Y 〉(Y ∪X), where X = A \X and Y = E \ Y .

Proof. Let τ ∈ D = Ĉδ \D. Define E′ = {π ∈ E∪A | π � τ} and A′ = {π ∈ E∪A | π 4 τ}. Observe
that τ ∈ Ĉδ〈E′〉(A′). Moreover E′ ∩ A′ = ∅, E′ ∪ A′ = E ∪ A and (E′, A′) 6= (E,A) otherwise τ
would be in D.

Conversely let τ ∈ Ĉδ〈E′〉(A′) with (E′, A′) a partition of E]A such that (E′, A′) 6= (E,A), then
τ ∈ Ĉδ. As (E′, A′) 6= (E,A), either there is some σ in E that τ contains, or there is some σ in A
that τ avoids. In both cases, τ /∈ D thus τ ∈ Ĉδ \ D = D.

27



Finally for distinct partitions (E′, A′) of E ∪ A, the sets Ĉδ〈E′〉(A′) are disjoints. Indeed a
permutation in two sets of this form would have to both avoid and contain some permutation of
E ∪A, which is impossible. �

Proposition 6.10 shows that D is not a restriction in general but can be expressed as a disjoint
union of restrictions. For instance,

Ĉ〈231, 123〉(4321) = Ĉ(123, 231, 4321) ] Ĉ〈123〉(231, 4321) ] Ĉ〈231〉(123, 4321)]

Ĉ〈4321〉(123, 231) ] Ĉ〈123, 4321〉(231) ] Ĉ〈231, 4321〉(123) ] Ĉ〈123, 231, 4321〉.

Moreover by uniqueness of the substitution decomposition,

π[D1, . . . ,Dk ] D′k, . . . ,Dn] = π[D1, . . . ,Dk, . . . ,Dn] ] π[D1, . . . ,D′k, . . . ,Dn].

Therefore using Equations (15) and (16) we have that for any restriction term ti, its complement ti
can be expressed as a disjoint union of restriction terms:

Proposition 6.11. For any restriction term t, its complement t can be written as a disjoint union
of restriction terms. More precisely if t = π[D1, . . . ,Dn] with Di = Ĉδi〈Ei〉(Ai) and m =

∑n
i=1 |Ei|+

|Ai|, then t is the disjoint union of the 2m−1 restriction terms t = π[D′1, . . . ,D′n] such that for all i,
D′i = Ĉδi〈E′i〉(A′i) with (E′i, A

′
i) a partition of Ei]Ai, and there exists i such that (E′i, A

′
i) 6= (Ei, Ai).

By distributivity of intersection over disjoint union, Equation (14) above can therefore be rewrit-
ten as a disjoint union of intersection of restriction terms. Because restriction terms are stable by
intersection, the right-hand side of Equation (14) is hereby written as a disjoint union of restriction
terms. This leads to the following result:

Proposition 6.12. Any union of restriction terms can be written as a disjoint union of restriction
terms, and this can be done algorithmically using Equations (14), (15) and (16).

Altogether, for any equation of our system, we are able to rewrite it unambiguously with disjoint
unions of restriction terms, using the algorithm Disambiguate.

6.4. Specification: an algorithm computing a combinatorial specification describing
C. The procedures described above finally combine into Specification (Algo. 6 p.23), the main
algorithm of this article, which computes a combinatorial specification for C. Equations of the
specification are computed iteratively, starting from the one for C: this is achieved using EqnFor-
Restriction (Algo. 7) described in Section 6.2, which produces equations that may be ambiguous.
As we do not know how to decide whether an equation is ambiguous or not, we apply Disam-
biguate (Algo. 8) to every equation produced. Since some new right-only restrictions may appear
during this process, to obtain a complete system we compute iteratively equations defining these
new restrictions using again EqnForRestriction.

The termination of Specification is easy to prove. Indeed, for all the restrictions Ĉδ〈E〉(A) that
are considered in the inner while loop of Specification, every permutation in the sets E and A is
a pattern of some element of the basis B of C. And since B is finite, there is a finite number of such
restrictions. Consequently, the algorithm produces an unambiguous system (i.e. a combinatorial
specification) which is the result of a finite number of iterations of computing equations followed by
their disambiguation.

As for AmbiguousSystem (Algo. 1), the complexity of Specification depends on the number
of equations produced, that we discuss in Section 6.5.
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6.5. Size of the specification obtained. The complexity of Specification (Algo. 6) depends on
the number of equations in the computed specification, which may be quite large.9 We were not able
to determine exactly how big it can be, and could only provide in Proposition 6.13 and Corollary 6.14
upper bounds on its size (i.e., number of equations) which seems to be (very) overestimated. We
leave open the question of improving the upper bound on the size of the specification produced by
our method. However, we point out that such an upper bound cannot be less than an exponential
(in the sum of the sizes of the excluded patterns). Indeed, we give in Proposition 6.15 a generic
example where our method produces such an exponential number of equations in the specification.
Nevertheless, this convoluted example was created on purpose, and in many cases the number of
equations obtained is not so high.

Proposition 6.13. Let C = Av(B) and B? be the set of non-simple permutations of B. Let P ? be
the set of normalized blocks of permutations of B?. The number of equations in the specification of
C computed by the procedure Specification is at most 3|P

?|.

Proof. In the specification we obtain, every equation is of the form

Ĉδ〈E〉(A) = . . . , where δ ∈ { ,+,−}, E ∪A ⊆ P ?.
As explained in Remark 6.2 (p.24), we can further assume that E ∪A ⊆ P ? \ {1} and that E ∩A =
∅. The number of equations is then bounded by the number of such triplets (δ, E,A) which is
31+(|P ?|−1). �

Using the previous proposition and the fact that the number of blocks of a permutation of size k
is less than k2, we have the following consequence:

Corollary 6.14. Let C = Av(B) and t =
∑

π∈B |π|. The number of equations in the specification
of C computed by Specification is at most 3t

2.

However, Specification is designed to compute only the equations we need, and the number of
equations produced is in practice much smaller. See for instance the example of Section 7, where
B? = {1243, 2341} and P ? = {1, 12, 21, 123, 132, 1243, 2341}: the upper bound of Proposition 6.13
is 37 = 2187, but only 16 equations are effectively computed. But as shown by the following
proposition, Specification produces in the worst case a specification with a number of equations
that is exponential in t.

Proposition 6.15. For each n ≥ 4, there exists a class Cn = Av(Bn) whose specification computed
by the procedure Specification (Algo. 6) has at least 2s equations, where the sum t of the sizes of
the elements of Bn is approximately s, in the sense that 1 < t/s� s.

Proof. For any n ≥ 4, denote by Sn the set of simple permutations of size n and by sn its cardinality.
Remember from [AAK03] that sn ∼ n!

e2
. Fix some n ≥ 4, let s = s2n−1, and define γ = ⊕[τ1, . . . , τs]

with {τi : 1 ≤ i ≤ s} = S2n−1 and Bn = S2n ∪ {γ}. Note that Bn is an antichain, and consider the
class Cn = Av(Bn). The sum of the sizes of the elements of Bn is t = 2n · s2n + (2n − 1) · s2n−1.
Thus s < t and t/s ∼ 4n2. Using Stirling formula, t and s are both of order (2ne )2n+ constant.

It is not hard to see that Cn contains a finite number of simple permutations. Indeed, it follows
from [ST93] (see details in [PR12] for instance) that Cn contains no simple permutations of size 2n
or more. Note also that the simple permutation π = 246135 is small enough that it belongs to Cn.
Moreover, B?

n = {γ} and from Proposition 5.3, Cn = Ĉn〈γ〉.
We claim that the computations performed by AddConstraints(π[Ĉn, . . . , Ĉn], γ) in EqnFor-

Restriction(Bn) (Algo. 7 p.25) will create at least 2s right-only terms, thus giving rise to at least

9 The same goes for the complexity of AmbiguousSystem. The bounds given in Proposition 6.13, Corollary 6.14
and Proposition 6.15 also hold for the number of equations of the system output by AmbiguousSystem.
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2s additional equations in the specification of Cn. More precisely, with notation from Proposition 5.7
(p.19), we prove that that for each subset E of S2n−1, there exists a tuple (k1, . . . , k`) ∈ Kπ

γ such
that E2,k1,...k` = E ∪ {γ}, ensuring that Ĉn〈E ∪ {γ}〉 appear in the system of equations.

Let us start by classifying the embeddings of γ in π into three categories. For all i ∈ [1..s], let us
denote by αi the embedding of γ in π that sends τi to π2, ⊕[τ1, . . . , τi−1] to π1 and ⊕[τi+1, . . . , τs]
to π3; and let αs+1 be the embedding of γ in π that sends γ to π2. The remaining embeddings of γ
in π are denoted {αi | i ∈ [s+2 .. `]}.

Note that for any i 6= s + 1, there exists some ki ∈ [1..6], with ki 6= 2, such that γαi(ki) 6= ε and
γαi(ki) 6= 1 (since for each j, τj is simple and |π| < |τj |, thus τj has to be entirely embedded in
some πk). This remark allows to consider, for each subset E of S2n−1, a tuple (k1, . . . k`) defined as
follows. For i ∈ [1..s], we set ki = 2 if τi ∈ E, and otherwise we choose ki 6= 2 such that γαi(ki) 6= ε
and γαi(ki) 6= 1. We set ks+1 = 2. For i ∈ [s+2 .. `], we choose ki 6= 2 such that γαi(ki) 6= ε and
γαi(ki) 6= 1. Consequently, the following properties hold:

- (k1, . . . k`) ∈ Kπ
γ (defined in Equation (8) p.19);

- ki = 2 if and only if τi ∈ E or i = s+ 1;
- for τi ∈ E, γαi(ki) = τi;
- and for i = s+ 1, γαi(ki) = γ.

This ensures that E2,k1,...k` = E ∪ {γ} as claimed. �

6.6. Simplifications on the fly. During the computation of the equations by Specification
(Algo. 6), many restriction terms appear, that may be redundant or a bit more intricate than
necessary. For instance, in the equations obtained when pushing down the constraints in the subtrees
using the rewriting described in Propositions 5.7 (p.19) and 6.6 (p.26), some element of a given union
may not be useful because it may be included in some other element of the union. We simplify these
unions by deleting useless elements, using Proposition 6.18 below. Moreover, when a restriction D
of the form Ĉδ〈E〉(A) arise, it can often be written as D = Ĉδ〈E′〉(A′) with E′ (resp. A′) having
fewer elements than E (resp. A). We use the description having as few elements as possible, thanks
to Proposition 6.16. Proposition 6.17 further allows some trivial simplifications.

For any sets E and A of patterns, minE (resp. maxA) denote the subset of E (resp. A) containing
all minimal (resp. maximal) elements of E (resp. A) for the pattern order 4.

Proposition 6.16. In any equation, every restriction Ĉδ〈E〉(A) may be replaced by
Ĉδ〈minE〉(maxA) without modifying the set of permutations described.

Proof. The proposition is an immediate consequence of Ĉδ〈E〉(A) = Ĉδ〈minE〉(maxA). This iden-
tity follows easily from two simple facts: if a permutation σ avoids π then σ avoids all patterns
containing π; and if σ contains π then σ contains all patterns contained in π. �

Proposition 6.17. The restriction term π[C1, . . . , Cn] is the empty set if and only if there exists i
such that Ci = ∅. In this case, π[C1, . . . , Cn] may be removed from any union of restriction terms
without modifying the set of permutations described by this union.

Proposition 6.18. Consider a union of restriction terms containing two terms with the same root
π[C1, . . . , Cn] and π[D1, . . . ,Dn]. If for all i, Ci ⊆ Di, then we may remove π[C1, . . . , Cn] from this
union without modifying the set of permutations it describes.

Proof. If for all i, Ci ⊆ Di, then π[C1, . . . , Cn] ⊆ π[D1, . . . ,Dn], giving the result immediately. �

Performing the simplifications of Proposition 6.16 requires that we can compute minE and maxA
effectively. This can be done naively by simply checking all pattern relations between all pairs of
elements of E (resp. A). Similarly, to perform all simplifications induced by Propositions 6.17 and
6.18, we would need to be able to decide whether Ci is empty or Ci ⊆ Di, for any restrictions Ci and
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Di. Lemmas 6.19 and 6.20 below give sufficient conditions for the emptiness and the inclusion of a
restriction into another, hence allowing to perform some simplifications.

Lemma 6.19. A restriction Ĉδ〈E〉(A) is the empty set as soon as there exist π ∈ E and σ ∈ A
such that π 4 σ.

Lemma 6.20. Let δ ∈ { ,+,−} and E1, E2, A1 and A2 be any sets of permutations. Then
Ĉδ〈E1〉(A1) ⊆ Ĉδ〈E2〉(A2) as soon as:

• for each π ∈ E2, there exists τ ∈ E1 such that τ 4 π, and
• for each π ∈ A2, there exists τ ∈ A1 such that π 4 τ .

Proof. Assume the two conditions of the statement are satisfied. Consider σ ∈ Ĉδ〈E1〉(A1), and let
us prove that σ ∈ Ĉδ〈E2〉(A2).

Let π ∈ E2. By assumption, there exists τ ∈ E1 such that τ 4 π. Since σ ∈ Ĉδ〈E1〉, σ avoids τ .
From τ 4 π, we conclude that σ also avoids π. Therefore σ ∈ Ĉδ〈E2〉.

Similarly, let π ∈ A2. There exists τ ∈ A1 such that π 4 τ . Since σ ∈ Ĉδ〈E1〉(A1), we know that
σ contains τ . Consequently, σ also contains π. Hence σ ∈ Ĉδ〈E2〉(A2). �

Note that the condition given by Lemma 6.20 is sufficient, but it is not necessary. Indeed for
E1 = {34152}, A1 = {364152}, we have Ĉδ〈E1〉(A1) = ∅. In particular Ĉδ〈E1〉(A1) ⊆ Ĉδ〈123〉(132)
even though the first condition of Lemma 6.20 is not satisfied. We may however wonder if the
condition of Lemma 6.20 could be necessary under the assumption that E1, E2, A1 and A2 satisfy
additional conditions, like Ĉδ〈E1〉(A1) being non-empty and E2 and A2 being antichains.

Similarly, the condition given by Lemma 6.19 is also sufficient, but it is not necessary. Indeed
Ĉδ〈132, 213, 231, 312〉(12, 21) is empty even though the condition of Lemma 6.19 is not satisfied.

Any of the simplifications explained above can be performed on the fly, each time a new restric-
tion term appears while running the procedure Specification. This allows to compute systems
of equations significantly more compact than the raw output of our algorithm. We do not claim
that these simplifications constitute an exhaustive list of all possible simplifications. But Propo-
sitions 6.16 to 6.18 and Lemmas 6.19 and 6.20 cover all simplifications that are performed in our
implementation of Specification, and in the examples of Section 7.

7. Examples

We apply the method described in this article to find a combinatorial specification for three
permutation classes. The first two are very small and easy examples, and are the examples of non-
substitution-closed permutation classes dealt with in [BHV08] (Examples 4.3 and 4.4 of [BHV08]).
They use only a fraction of the machinery we have developed, but have been chosen to illustrate
some of the differences between our method and the one of [BHV08]. The third example is more
involved, is meant to illustrate all of the auxiliary procedures defined, and shows better what our
methodology brings.

7.1. Two examples from [BHV08].

7.1.1. The class C = Av(132). First, we note that C is not substitution-closed (indeed, the excluded
pattern 132 is not simple). Next, we remark that C is a subclass of the separable permutations,
that is to say it contains no simple permutations. (Equivalently, only nodes ⊕ and 	 appear in the
decomposition trees.) Alternatively, this could be determined from steps 1 and 2 of the algorithmic
chain presented in Section 3.2.

Because C is not substitution-closed, a specification for C cannot be simply derived as in Section 4,
but can be obtained as the result of our algorithm Specification. More precisely, the first step
is to call EqnForRestriction(Ĉ, {132}, ∅) (which works exactly like EqnForClass on an input
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where the last part is ∅). It starts with Equation (1) of Proposition 4.2 (p.13), describing the
substitution closure Ĉ of C, which rewrites in our case as:

Ĉ = 1 ] ⊕[Ĉ+, Ĉ] ] 	[Ĉ−, Ĉ].
Then, we propagate into each term of this equation the constraint of avoiding the pattern 132,
using the embeddings of 132 into ⊕ and 	. There is only one non-trivial embedding in this case,
corresponding to 132 = ⊕[1, 21]. This results in the equation

C = Ĉ〈132〉 = 1 ∪ ⊕[Ĉ+〈132〉, Ĉ〈21〉] ∪ 	[Ĉ−〈132〉, Ĉ〈132〉].
Because this equation is already non-ambiguous, calling the disambiguation procedure Disam-
biguate does not modify it (except for changing the union symbols ∪ into disjoint union symbols
]). This is the first equation of our specification for C.

This equation contains right-only restrictions, like Ĉ+〈132〉, Ĉ〈21〉, . . . To complete the specifica-
tion, Specification next computes an equation for each of them, in the same fashion as above, that
is to say running EqnForRestriction followed by Disambiguate. All right-only restrictions that
appear are processed iteratively in the same way by Specification, until none is left. Termination
is guaranteed since the number of possible restrictions considered is finite (see Section 6.4).

The final result of calling Specification on C = Av(132) is the following specification:

C = Ĉ〈132〉 = 1 ] ⊕[Ĉ+〈132〉, Ĉ〈21〉] ] 	[Ĉ−〈132〉, Ĉ〈132〉]

Ĉ+〈132〉 = 1 ] 	[Ĉ−〈132〉, Ĉ〈132〉]

Ĉ〈21〉 = 1 ] ⊕[Ĉ+〈21〉, Ĉ〈21〉]

Ĉ−〈132〉 = 1 ] ⊕[Ĉ+〈132〉, Ĉ〈21〉]

Ĉ+〈21〉 = 1.

An important remark is that this is exactly the result produced by our general method, without
applying any ad hoc argument about this specific C. Note that this specification is actually also the
result of applying AmbiguousSystem to C, which happens to be a non-ambiguous system already
in this case.

We now turn to the specifications for C = Av(132) given in [BHV08]. A specification for C
may be derived following the proofs of [BHV08]. As reminded in Section 3.1, the proof of their
Lemma 2.1 shows that the set PC = {Av(12), Av(21), Av(132), I⊕, I	} is query-complete, where I⊕
(resp. I	) is the set of ⊕-indecomposable (resp. 	-indecomposable) permutations. Starting from
this query-complete set, the proof of their Theorem 1.1 shows that there exists a specification for
C having 1 + 24 = 17 equations. To obtain this specification, we would need to compute the sets
EX ,σ defined in Section 3.1, which is not addressed in general in [BHV08].

This specification is however not the one presented in Example 4.3 of [BHV08]. Using ad hoc
arguments and constructions, this example shows that the set P = {Av(21), Av(132), I⊕, I	} is
query-complete. This allows to derive a specification for C with significantly fewer equations, namely,

C = CAv(21),I⊕,I	 ] CAv(21),I	 ] CI⊕ ] CI	
CAv(21),I⊕,I	 = 1

CAv(21),I	 = ⊕[CAv(21),I⊕,I	 , CAv(21),I⊕,I	 ] CAv(21),I	 ]

CI⊕ = 	[CAv(21),I⊕,I	 ] CAv(21),I	 ] CI	 , CAv(21),I⊕,I	 ] CAv(21),I	 ] CI⊕ ] CI	 ]

CI	 = ⊕[CI⊕ , CAv(21),I⊕,I	 ] CAv(21),I	 ].

In the system above, for X ⊂ P ′ = {Av(21), I⊕, I	}, the set CX represents permutations of C
satisfying all properties in X and none in P ′ \ X . Note that the specification above is not exactly
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the one that would be obtained from P applying to the letter the proof of [BHV08, Theorem 1.1],
which would have 1 + 23 = 9 equations, since the empty terms like CI⊕,I	 or CAv(21),I⊕ have been
removed.

This specification has the same number of equations as the one we obtained. However, ours was
derived as the result of a general and algorithmic method, whereas that of [BHV08] made use of ad
hoc arguments specific to C.

Finally, note that in both our construction and the specification given by [BHV08, Example
4.3], the constraint of avoiding the pattern 21 appears because of the embedding of 132 into ⊕
(corresponding to 132 = ⊕[1, 21]), which is the only non-trivial embedding in this example. However,
our specification and the one of [BHV08] are not the same. For example, [BHV08] has an equation
for CI	 = C−(21) whereas we do not have an equation for this set, but for Ĉ−〈132〉 = C−. Note that
beyond the difference of notation, the equations of [BHV08] and ours have a different form. For
example, our equation for Ĉ+〈132〉 = C+ correspond to the equation of [BHV08] for CI⊕ = C+(21) =

C+ \{1}, but since we look at a coarser level, we express this later set as 	[Ĉ−〈132〉, Ĉ〈132〉] while it
is expressed in [BHV08] as 	[CAv(21),I⊕,I	 ]CAv(21),I	 ]CI	 , CAv(21),I⊕,I	 ]CAv(21),I	 ]CI⊕ ]CI	 ].

7.1.2. The class C = Av(2413, 3142, 2143). This second example is another non-substitution-closed
subclass of the set of separable permutations. A specification for C can again be obtained using
our algorithm Specification. The starting point is Equation (1) of Proposition 4.2 (p.13), in
which the 2143-avoidance constraint has been propagated by EqnForRestriction (or equivalently
EqnForClass in this simple case). This equation is

C = Ĉ〈2143〉 = 1 ∪ ⊕[Ĉ+〈2143〉, Ĉ〈21〉] ∪ ⊕[Ĉ+〈21〉, Ĉ〈2143〉] ∪ 	[Ĉ−〈2143〉, Ĉ〈2143〉],

which is ambiguous. Indeed, the two terms ⊕[Ĉ+〈21〉, Ĉ〈2143〉] and ⊕[Ĉ+〈2143〉, Ĉ〈21〉] have a non-
empty intersection (for instance, 12 belongs to both terms). The reason for this ambiguity is the
embedding corresponding to 2143 = ⊕[21, 21], which has two components different from ε and 1.
(This is the only non-trivial embedding for the class C considered.)

Calling the procedure Disambiguate on the above equation (and performing the simplifications
of Section 6.6), Specification obtains the first equation of a specification for C:

C = Ĉ〈2143〉 = 1 ] ⊕[Ĉ+〈2143〉(21), Ĉ〈21〉] ] ⊕[Ĉ+〈21〉, Ĉ〈2143〉(21)] ] ⊕[Ĉ+〈21〉, Ĉ〈21〉]

] 	[Ĉ−〈2143〉, Ĉ〈2143〉].

Note that restrictions with pattern containment constraints, like Ĉ+〈2143〉(21), have appeared when
running Disambiguate. The full specification is then obtained calling iteratively the procedures
EqnForRestriction and Disambiguate (with simplifications) on all right-only restrictions. The
final result produced by Specification for C = Av(2413, 3142, 2143) is then

C = Ĉ〈2143〉 = 1 ] ⊕[Ĉ+〈2143〉(21), Ĉ〈21〉] ] ⊕[Ĉ+〈21〉, Ĉ〈2143〉(21)] ] ⊕[Ĉ+〈21〉, Ĉ〈21〉]
] 	 [Ĉ−〈2143〉, Ĉ〈2143〉]

Ĉ+〈2143〉(21) = 	[Ĉ−〈2143〉, Ĉ〈2143〉]
Ĉ〈21〉 = 1 ] ⊕[Ĉ+〈21〉, Ĉ〈21〉]
Ĉ+〈21〉 = 1

Ĉ〈2143〉(21) = ⊕[Ĉ+〈2143〉(21), Ĉ〈21〉] ] ⊕[Ĉ+〈21〉, Ĉ〈2143〉(21)] ] 	[Ĉ−〈2143〉, Ĉ〈2143〉]
Ĉ−〈2143〉 = 1 ] ⊕[Ĉ+〈21〉, Ĉ〈21〉] ] ⊕[Ĉ+〈2143〉(21), Ĉ〈21〉] ] ⊕[Ĉ+〈21〉, Ĉ〈2143〉(21)].
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This specification can again be compared with those obtained from [BHV08]. The proofs therein
show that the set

PC = {Av(12), Av(21), Av(132), Av(213), Av(231), Av(312), Av(2413), Av(3142), Av(2143), I⊕, I	}
is query-complete, so that there exists a specification for C having 1 + 28 = 257 equations.

Example 4.4 of [BHV08] however provides a specification with fewer equations. It is derived from
the query-complete set P = {Av(21), Av(2143), I⊕, I	}. There is however no hint of how this set
was found, and especially not of a general method which would have resulted in this query-complete
set. The specification for C that follows from this set through the proof of [BHV08, Theorem 1.1]
would then have 1 + 23 = 9 equations. Getting rid of empty terms, the specification for C obtained
from this set which is given in [BHV08, Example 4.4] is:

C = CAv(21),I⊕,I	 ] CAv(21),I	 ] CI⊕ ] CI	
CAv(21),I⊕,I	 = 1

CAv(21),I	 = ⊕[CAv(21),I⊕,I	 , CAv(21),I⊕,I	 ] CAv(21),I	 ]

CI⊕ = 	[CAv(21),I⊕,I	 ] CAv(21),I	 ] CI	 , CAv(21),I⊕,I	 ] CAv(21),I	 ] CI⊕ ] CI	 ]

CI	 = ⊕[CAv(21),I⊕,I	 , CI⊕ ] CI	 ] ] ⊕[CI⊕ , CAv(21),I⊕,I	 ] CAv(21),I	 ].

In the system above, for X ⊂ P ′ = {Av(21), I⊕, I	}, the set CX represents permutations of C
satisfying all properties in X and none in P ′ \ X .

In this case, our specification obtained as the result of a general method has one more equation
than the one of [BHV08] obtained using ad hoc constructions.

The non-substitution closed classes addressed in the examples of [BHV08] have no simple per-
mutations. We now turn to the study of a more involved example.

7.2. The class C = Av(1243, 2341, 2413, 41352, 531642). With this third example, we apply the
method described in this article in a more complicated case. Namely, we derive a combinatorial
specification for the permutation class C = Av(B) where B = {1243, 2341, 2413, 41352, 531642}.10

From this description we derive its generating function and furthermore generate at random large
permutations of the class. We follow the different steps described in the diagram of Figure 2 (p.10).

First, note that Av(B) is not substitution-closed as 1243 and 2341 are non-simple permutations
and belong to the basis of the class. Then we test whether the class contains a finite number of
simple permutations, and if it is the case, we compute the set SC of simple permutations in C. In
our case, there is only one simple permutation in C: SC = {3142}.

Now we have all we need to run our algorithm Specification, or our algorithm AmbiguousSys-
tem if we want to compute the generating function using inclusion-exclusion. Their first step is to
compute an equation for C.
7.2.1. An equation for C.
An equation for the substitution-closure Ĉ of C. An equation for the substitution closure Ĉ of C
immediately follows from SC . Specifically, Equation (1) of Proposition 4.2 (p.13) is in our case:

(17) Ĉ = 1 ] ⊕[Ĉ+, Ĉ] ] 	[Ĉ−, Ĉ] ] 3142[Ĉ, Ĉ, Ĉ, Ĉ].

From Ĉ to C = Av(B). Since C = Ĉ〈B?〉 where B? denotes the non-simple permutations of B,
the algorithm AmbiguousSystem calls EqnForClass(Ĉ, B?). Similarly, the algorithm Speci-
fication calls EqnForRestriction(Ĉ, B?, ∅), which works exactly like EqnForClass(Ĉ, B?).
Starting from Equation (17), it consists in adding the non-simple pattern avoidance constraints
imposed by the avoidance of B. In our case, 1243 and 2341 are the only two non-simple patterns

10The reader interested in more details about this example can find them in [Pie13, Section 3.5].
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in B, and we compute an equation for C = Ĉ〈1243, 2341〉 by adding these two constraints one after
the other.

To compute Ĉ〈1243〉, we propagate the constraint of avoiding 1243 into each term of Equation (17)
using the embeddings of γ = 1243 into ⊕, 	 and 3142. This gives the following equation:

Ĉ〈1243〉 = 1 ∪ ⊕[Ĉ+〈12〉, Ĉ〈132〉] ∪ ⊕[Ĉ+〈1243〉, Ĉ〈21〉] ∪ 	[Ĉ−〈1243〉, Ĉ〈1243〉](18)

∪ 3142[Ĉ〈1243〉, Ĉ〈12〉, Ĉ〈21〉, Ĉ〈132〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132〉, Ĉ〈132〉].

As explained in Section 6.6, to obtain the above equation, two types of simplifications have been
performed. First, when a union contains two terms such that one is strictly included in the other,
then the smaller term has been removed (see Proposition 6.18). Second, when two excluded patterns
are such that the avoidance of one implies the avoidance of the other, then the larger one has been
removed (see Proposition 6.16) – for instance we have simplified Ĉ〈1243, 12〉 into Ĉ〈12〉.

Next we add the constraint of avoiding 2341 in the above equation as Ĉ〈1243〉〈2341〉= Ĉ〈1243, 2341〉.
We propagate the constraint 2341 into the 5 different terms that appear in Equation (18), and
perform simplifications as described above. The output of EqnForClass(Ĉ, B?) or EqnFor-
Restriction(Ĉ, B?, ∅) is then:

Ĉ〈1243, 2341〉 = 1 ∪ ⊕[Ĉ+〈1243, 2341〉, Ĉ〈21〉] ∪ ⊕[Ĉ+〈12〉, Ĉ〈132, 2341〉](19)

∪ 	[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉].

If we run AmbiguousSystem, this is exactly the first equation of the system. This equation is
ambiguous, since the intersection of t1 = ⊕[Ĉ+〈12〉, Ĉ〈132, 2341〉] and t2 = ⊕[Ĉ+〈1243, 2341〉, Ĉ〈21〉]
is ⊕[Ĉ+〈12〉, Ĉ〈21〉] which is not empty.

Disambiguation. If we run Specification, the equation is disambiguated using the procedure Dis-
ambiguate. We can write (t1 ∪ t2) as (t1 ∩ t̄2) ] (t̄1 ∩ t2) ] (t1 ∩ t2). The computation of the
complement terms t̄1 and t̄2 (with Equation (15) p.27) increases the number of terms in the disjoint
union that describes t1 ∪ t2, producing in this case a disjoint union of 15 terms. After eliminating
terms that are empty or strictly included in another one, Equation (19) is replaced by:

Ĉ〈1243, 2341〉 = 1 ] ⊕[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉] ] ⊕[Ĉ+〈12〉, Ĉ〈132, 2341〉(21)] ] ⊕[Ĉ+〈12〉, Ĉ〈21〉](20)

] 	[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉].

This is the final version of the first equation of the specification.

7.2.2. The whole system.
AmbiguousSystem. To obtain a complete system, AmbiguousSystem starts with Equation (19)
computed above. Using EqnForClass, it iterates the process of computing equations for new
classes Ĉδ〈E〉 appearing on the right side of this equation, and it does it subsequently for any class
appearing in one of these new equations. As already mentioned, this process terminates since there
is a finite number of subsets E of patterns of permutations of B.
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The result of AmbiguousSystem on C is the following:

Ĉ〈1243, 2341〉 = 1 ∪ ⊕[Ĉ+〈1243, 2341〉, Ĉ〈21〉] ∪ ⊕[Ĉ+〈12〉, Ĉ〈132, 2341〉]

∪ 	[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]

Ĉ+〈1243, 2341〉 = 1 ∪ 	[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]

Ĉ〈21〉 = 1 ∪ ⊕[Ĉ+〈21〉, Ĉ〈21〉]

Ĉ+〈12〉 = 1

Ĉ〈132, 2341〉 = 1 ∪ ⊕[Ĉ+〈132, 2341〉, Ĉ〈21〉] ∪ 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]

Ĉ−〈123〉 = 1 ∪ ⊕[Ĉ+〈12〉, Ĉ〈12〉] ∪ 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉]

Ĉ〈12〉 = 1 ∪ 	[Ĉ−〈12〉, Ĉ〈12〉]

Ĉ+〈21〉 = 1

Ĉ+〈132, 2341〉 = 1 ∪ 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]

Ĉ−〈132, 123〉 = 1 ∪ ⊕[Ĉ+〈12〉, Ĉ〈21, 12〉]

Ĉ−〈12〉 = 1

Ĉ〈21, 12〉 = 1.

As noticed earlier, the first equation of the system is indeed ambiguous. This system can be used to
compute the generating function of C using inclusion-exclusion. Since we want not only to compute
the generating function of C, but also to generate at random uniform permutations of C, we rather
compute a specification for C.

Specification. The unambiguous equation for C computed by Specification is Equation (20). As
noticed in Section 6.3, right-only terms, possibly involving pattern containment constraints like
Ĉ〈132, 2341〉(21), appear in this equation. These terms are not defined by our system, so we have to
compute an equation for each of them (and iteratively so for right-only terms appearing in these new
equations). This is done by iterating EqnForRestriction. This procedure works in a fashion
similar to EqnForClass, except that, in addition, it propagates pattern containment constraints
in the subtrees. For the term Ĉ〈132, 2341〉(21), we describe how Algorithm EqnForRestriction
computes an additional equation. We do not give details for the other right-only terms.

First, starting from Equation (17), we add the pattern avoidance constraints, namely 132 and
2341, and compute an equation for Ĉ〈132, 2341〉 like before. We obtain the following equation:

Ĉ〈132, 2341〉 = 1 ∪ ⊕[Ĉ+〈132, 2341〉, Ĉ〈21〉] ∪ 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉].

Then, we add the pattern containment constraints (here 21) to this equation, considering embed-
dings of 21 in ⊕ and 	. The equation obtained after simplification is

Ĉ〈132, 2341〉(21) = ⊕[Ĉ+〈132, 2341〉(21), Ĉ〈21〉] ∪ 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉].

This equation is already unambiguous, so this is its final version.

The process is iterated until each term that appear on the right hand side of an equation of the
system is defined by an unambiguous equation, which finally leads to the following specification:
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Ĉ〈1243, 2341〉 = 1 ] ⊕[Ĉ+〈12〉, Ĉ〈132, 2341〉(21)] ] ⊕[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉] ] ⊕[Ĉ+〈12〉, Ĉ〈21〉]
] 	[Ĉ−〈123〉, Ĉ〈1243, 2341〉] ] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]

Ĉ+〈12〉 = 1 ] 	[Ĉ−〈12〉, Ĉ〈12〉]
Ĉ〈132, 2341〉(21) = ⊕[Ĉ+〈132, 2341〉(21), Ĉ〈21〉] ] 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]

Ĉ+〈1243, 2341〉(12) = 	[Ĉ−〈123〉(12), Ĉ〈1243, 2341〉(12)] ] 	[Ĉ−〈12〉, Ĉ〈1243, 2341〉(12)]
] 	[Ĉ−〈123〉(12), Ĉ〈12〉] ] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]

Ĉ〈21〉 = 1 ] ⊕[Ĉ+〈21〉, Ĉ〈21〉]
Ĉ−〈123〉 = 1 ] ⊕[Ĉ+〈12〉, Ĉ〈12〉] ] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉]
Ĉ〈12〉 = 1 ] 	[Ĉ−〈12〉, Ĉ〈12〉]

Ĉ〈132, 2341〉 = 1 ] ⊕[Ĉ+〈132, 2341〉, Ĉ〈21〉] ] 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]
Ĉ−〈12〉 = 1

Ĉ+〈132, 2341〉(21) = 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]
Ĉ−〈132, 123〉 = 1 ] ⊕[Ĉ+〈12〉, Ĉ〈21, 12〉]
Ĉ−〈123〉(12) = ⊕[Ĉ+〈12〉, Ĉ〈12〉] ] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉]

Ĉ〈1243, 2341〉(12) = ⊕[Ĉ+〈12〉, Ĉ〈132, 2341〉(21)] ] ⊕[Ĉ+〈12〉, Ĉ〈21〉] ] ⊕[Ĉ+〈1243, 2341〉(12), Ĉ〈21〉]
] 	[Ĉ−〈123〉(12), Ĉ〈12〉] ] 	[Ĉ−〈12〉, Ĉ〈1243, 2341〉(12)]
] 	[Ĉ−〈123〉(12), Ĉ〈1243, 2341〉(12)] ] 3142[Ĉ〈12〉, Ĉ〈12〉, Ĉ〈12〉, Ĉ〈132, 2341〉]

Ĉ+〈21〉 = 1

Ĉ+〈132, 2341〉 = 1 ] 	[Ĉ−〈132, 123〉, Ĉ〈132, 2341〉]
Ĉ〈21, 12〉 = 1.

The above specification contains 16 equations. This should be compared to the number of equa-
tions in the specification that could be derived using the general method described in the proofs
of [BHV08] and reviewed in Section 3.1 (and which would require to compute the sets EX ,σ defined
in Section 3.1). The number of equations following this method would be a priori 1 + 2k+2 where
k is the number of proper patterns of permutations in B (in this case, k = 27, giving 536 870 913
equations), although we can expect many empty terms and hence fewer equations.

7.2.3. Byproducts of the combinatorial specification. The translation of the above specification into
a system of equations for the generating function of C produces in this specific case a system that
can be solved, giving access to a closed form for the generating function of C:

C(z) =
(z6 − 7z5 + 20z4 − 28z3 + 20z2 − 7z + 1)z

1− 9z + 32z2 − 59z3 + 62z4 − 37z5 + 13z6 − 2z7
.

We can also translate this specification into (Boltzmann or recursive) uniform random samplers
of permutations in C. We have used the recursive sampler11 so obtained to uniformly generate
permutations in C. This is how Figure 3 (p.11) was obtained, as well as Figure 4 (p.11) for other
examples of classes C.

Acknowledgments. We are grateful to the anonymous referees and to Mireille Bousquet-Mélou,
whose comments have helped us make the relation between our work and [BHV08] clearer.
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11In this case (and in the one of Figure 4), we chose a recursive sampler over a Boltzmann one because it is more
suitable when you want to sample many random permutations of the same medium size.
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